WorldWideScience

Sample records for thermophotovoltaic tpv energy

  1. Thermophotovoltaic (TPV) technology development. Final report, May 15, 1995--December 1, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This program information release (PIR) summarizes work performed under Task Order Contract SF17787, Task Order 18: Thermophotovoltaic Technology Development, sponsored by the U.S. Department of Energy. The period of performance was 15 May 1995 to 1 December 1995. Under this task order, a system model for a thermophotovoltaic (MV) converter was implemented and used to compare a conceptual design for an advanced quaternary III-V cell with integral filter with results previously published for a binary GaSb cell with a freestanding filter. Model results were used to assess the merits of TPV conversion for meeting various levels of space power requirements, including low to medium power isotope applications and high-power reactor applications. A TPV cell development program was initiated to determine the feasibility of fabricating quaternary III-V cells by molecular beam epitaxy. Lastly, a conceptual design was completed for a low-cost demonstration system to test the performance of TPV converters at a multi-cell, sub-system level. The results of these efforts are reported briefly in an executive summary, then in somewhat more detail as a final briefing section in which charts have been reproduced. Additional technical detail is provided in the appendices

  2. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  3. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    Science.gov (United States)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  4. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    Science.gov (United States)

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  5. Development of a novel cascading TPV and TE power generation system

    International Nuclear Information System (INIS)

    Qiu, K.; Hayden, A.C.S.

    2012-01-01

    Highlights: ► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP. -- Abstract: Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.

  6. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  7. The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry

    Science.gov (United States)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N.

    2003-01-01

    This paper aims to provide an overview of heat recovery by thermophotovoltaics (TPV) from industrial high-temperature processes and uses the glass industry in the UK as an example. The work is part of a study of potential industrial applications of TPV in the UK being carried out by the Northumbria Photovoltaics Applications Centre. The paper reviews the relevant facts about TPV technology and the glass industry and identifies locations of use for TPV. These are assessed in terms of glass sector, furnace type, process temperature, impact on the existing process, power scale and development effort of TPV. Knowledge of these factors should contribute to the design of an optimum TPV system. The paper estimates possible energy savings and reductions of CO2 emissions using TPV in the glass industry.

  8. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  9. Toward high performance radioisotope thermophotovoltaic systems using spectral control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawa, E-mail: xiawaw@mit.edu [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Chan, Walker [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Stelmakh, Veronika [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Fisher, Peter [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States)

    2016-12-01

    This work describes RTPV-PhC-1, an initial prototype for a radioisotope thermophotovoltaic (RTPV) system using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. We validated a system simulation using the measurements of RTPV-PhC-1 and its comparison setup RTPV-FlatTa-1 with the same configuration except a polished tantalum emitter. The emitter of RTPV-PhC-1 powered by an electric heater providing energy equivalent to one plutonia fuel pellet reached 950 °C with 52 W of thermal input power and produced 208 mW output power from 1 cm{sup 2} TPV cell. We compared the system performance using a photonic crystal emitter to a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, with more cell areas, better TPV cells, and improved insulation design, the system powered by a fuel pellet equivalent heat source is expected to reach an efficiency of 7.8%.

  10. Design and Optimization of Thermophotovoltaic System Cavity with Mirrors

    Directory of Open Access Journals (Sweden)

    Tian Zhou

    2016-09-01

    Full Text Available Thermophotovoltaic (TPV systems can convert radiant energy into electrical power. Here we explore the design of the TPV system cavity, which houses the emitter and the photovoltaic (PV cells. Mirrors are utilized in the cavity to modify the spatial and spectral distribution within. After discussing the basic concentric tubular design, two novel cavity configurations are put forward and parametrically studied. The investigated variables include the shape, number, and placement of the mirrors. The optimization objectives are the optimized efficiency and the extended range of application of the TPV system. Through numerical simulations, the relationship between the design parameters and the objectives are revealed. The results show that careful design of the cavity configuration can markedly enhance the performance of the TPV system.

  11. Development and characterization of a rare earth emitter for a thermophotovoltaic power generator

    Energy Technology Data Exchange (ETDEWEB)

    Durisch, W; Panitz, J C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Energy conversion based on thermophotovoltaic (TPV) methods has recently attracted renewed interest. Efforts at PSI are directed towards the development of a modular TPV system based on existing technology to demonstrate the feasibility of this method. Here, we report first results obtained with a prototype TPV generator based upon a modified rare earth emitter, a heat reflecting filter and commercial silicon solar cells. The preparation of the modified emitter is described, and first results of spectroscopic and electrical characterization of the TPV system are presented. The introduction of the modified emitter leads to an efficiency gain of 30-40%. (author) 3 figs., 4 refs.

  12. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution

    International Nuclear Information System (INIS)

    Park, K.; Basu, S.; King, W.P.; Zhang, Z.M.

    2008-01-01

    This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency

  13. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    International Nuclear Information System (INIS)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-01-01

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements

  14. Integration between a thermophotovoltaic generator and an Organic Rankine Cycle

    International Nuclear Information System (INIS)

    De Pascale, Andrea; Ferrari, Claudio; Melino, Francesco; Morini, Mirko; Pinelli, Michele

    2012-01-01

    Highlights: ► A new energy system comprising a Thermo-Photo-Voltaic and Organic Rankine Cycle. ► An analytical model to calculate the performance of the system is introduced. ► The system shows promising results in terms of CHP performance. -- Abstract: The constant increase in energy need and the growing attention to the related environmental impact have given a boost to the development of new strategies in order to reduce the primary energy consumption and to improve its utilization. One of the possible strategies for achieving this aim is Combined Heat and Power (CHP) specially if coupled with the concept of on-site generation (also known as distributed generation). These approaches allow the reduction of fuel consumption and pollutant emissions and the increase of security in energy supply. This paper introduces the Thermophotovoltaic Organic Rankine Cycle Integrated System (TORCIS), an energy system integrating a ThermoPhotoVoltaic generator (TPV) and an Organic Rankine Cycle (ORC). This study represents the start-up of a research program which involves three research teams from IMEM – National Research Council, ENDIF – University of Ferrara and DIEM – University of Bologna. The aim of this research is the complete definition and the pre-prototyping characterization of this system covering all the unresolved issues in this field. More specifically, TPV is a system to convert the radiation emitted from an artificial heat source (i.e. the combustion of fuel) into electrical energy by the use of photovoltaic cells. In this system, the produced electrical power is strictly connected to the thermal one as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows this limitation to be overcome by the realization of a CHP system which can be regulated with a large degree of freedom changing the ratio between the produced electrical and thermal power. In this study a thermodynamic

  15. Quaternary InGaAsSb Thermophotovoltaic Diodes

    International Nuclear Information System (INIS)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-01-01

    In x Ga 1-x As y Sb 1-y thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E G = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of η TPV = 19.7% and PD =0.58 W/cm 2 respectively for a radiator temperature of T radiator = 950 C, diode temperature of T diode = 27 C, and diode bandgap of E G = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is η TPV = 28% and PD = 0.85W/cm 2 at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V OC is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V OC and thus efficiency is limited by extrinsic recombination processes such as through bulk defects

  16. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    Science.gov (United States)

    Seyf, Hamid Reza; Henry, Asegun

    2017-01-01

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  17. A review of recent advances in thermophotovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, T.J.; Wanlass, M.W.; Ward, J.S.; Johnson, S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Thermophotovoltaic (TPV) generation of electricity is attracting attention because of advances in materials and devices and because of a widening appreciation of the large number of applications that may be addressed using TPV-based generators. The attractions include the wide range of fuel sources and the potentially high power density outputs. The two main approaches to TPV generators are (1) broadband radiators, coupled with converters with bandgaps in the range 0.4-0.7 eV, and (2) narrow-band emitters coupled with lower-cost silicon converters. The key issues in realizing a viable TPV system are the durability, efficiency, and properties of the radiant emitter; the recuperation of sub-bandgap photons; the optimization of the converter performance; and the recuperation of waste heat.

  18. Front Surface Tandem Filters using Sapphire (Al2O3) Substrates for Spectral Control in thermophotovoltaic Energy Conversion Systems

    International Nuclear Information System (INIS)

    T Rahmlow, Jr.; J Lazo-Wasem; E Gratrix; P Fourspring; D DePoy

    2005-01-01

    Front surface filters provide an effective means of improving thermophotovoltaic (TPV) system efficiency through spectral control of incident radiant energy. A front surface filter reflects the below band gap photons that can not be converted by the TPV cell back towards the high temperature radiator and allows convertible above band gap photons to pass through the filter into the TPV cell for conversion to electricity. The best spectral control efficiency to date has been demonstrated by front surface, tandem filters that combine an interference filter and an InPAs layer (plasma filter) in series. The InPAs material is a highly doped, epitaxially grown layer on an InP substrate. These tandem filter designs have been fabricated with energy and angle weighted spectral efficiencies of 76% for TPV cells with a 2.08(micro)m (0.6eV) band gap [1]. An alternative to the InPAs layer on an InP substrate is an Al 2 O 3 (sapphire) substrate. The use of Al 2 O 3 may increase transmission of above band gap photons, increase the mechanical strength of the tandem filter, and lower the cost of the tandem filter, all at the expense of lower spectral efficiency. This study presents design and fabrication results for front surface tandem filters that use an Al 2 O 3 substrate for 2.08(micro)m band gap TPV cells

  19. Thermophotovoltaic systems for civilian and industrial applications in Japan

    International Nuclear Information System (INIS)

    Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi

    2003-01-01

    The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generators. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan. (Author)

  20. Efficient Thermally Stable Spectral Control Filters for Thermophotovoltaics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The feasibility of radioisotope thermophotovoltaic (RTPV) power systems has been shown. The best efficiencies reported to date for a TPV module test include front...

  1. Solid State Microchp Based On Thermophotovoltaic And Thermoelectric Conversion

    OpenAIRE

    Worek, William M.; Brown, Christopher; Trojanowski, Rebecca; Butcher, Thomas; Horne, Edward

    2012-01-01

    MicroCHP involves the coproduction of both heat and electric power in (typically) residential heating systems. A range of different energy conversion technologies are currently receiving attention for this application including Stirling engines, internal combustion engines, fuel cells, and Rankine cycles with steam or organic compounds as working fluids. In this work the use of ThermoPhotoVoltaic (TPV) and ThermoElectric (TE) conversion devices either alone or in combination for power product...

  2. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    Energy Technology Data Exchange (ETDEWEB)

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  3. Thermophotovoltaics, wood powder and fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Operational Efficiency; Broman, L; Jarefors, K [Solar Energy Research Center, Borlaenge (Sweden)

    1998-06-01

    PV cells can be used for electricity production based on other heat sources than the sun. If the temperature of the source is around 1500 K it is possible to get reasonably high conversion efficiency from heat radiation to electricity. This is due to recent advances in low-bandgap PV cells and selectively emitting fibrous emissive burners. There are some different biomass fuels capable of producing this temperature in the flame, especially gas and liquid fuels of different kinds. Wood powder is the only solid wood fuel with a sufficiently stable quality and properties for this high temperature combustion. A joint project between SERC, SLU and National Renewable Energy Laboratory NREL in Golden, Colorado, USA aims at building a wood powder fuelled thermophotovoltaic (TPV) generator for cogeneration of heat and electricity. A stable flame temperature of 1500 K has been achieved in a prototype pilot-scale burner that includes feeder and combustion chamber. Furthermore, a setup for measuring TPV cell efficiency for a wide region of black body emitter temperatures and cell irradiation has been constructed and several 0.6 eV GaInAs TPV cells have been investigated. A setup for testing the chain IR emitter - selectively reflecting filter - TPV cell has been designed. In order to limit the region of filter incident angles, which will make the filter act more efficiently, a special geometry of the internally reflecting tube that transmits the radiation is considered 23 refs, 4 figs

  4. 500 Watt Diesel Fueled TPV Portable Power Supply

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  5. An integrated microcombustor and photonic crystal emitter for thermophotovoltaics

    Science.gov (United States)

    Chan, Walker R.; Stelmakh, Veronika; Allmon, William R.; Waits, Christopher M.; Soljacic, Marin; Joannopoulos, John D.; Celanovic, Ivan

    2016-11-01

    Thermophotovoltaic (TPV) energy conversion is appealing for portable millimeter- scale generators because of its simplicity, but it relies on a high temperatures. The performance and reliability of the high-temperature components, a microcombustor and a photonic crystal emitter, has proven challenging because they are subjected to 1000-1200°C and stresses arising from thermal expansion mismatches. In this paper, we adopt the industrial process of diffusion brazing to fabricate an integrated microcombustor and photonic crystal by bonding stacked metal layers. Diffusion brazing is simpler and faster than previous approaches of silicon MEMS and welded metal, and the end result is more robust.

  6. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  7. Development of a portable thermophotovoltaic power generator

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1997-03-01

    A 150 Watt thermophotovoltaic (TPV) power generator is being developed. The technical approach taken in the design focused on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a selective emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the initial prototype system, fibrous ytterbia emitters radiating in a band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The system has been operated with air preheat temperatures up to 1350K. The design of the system and development status are presented.

  8. An integrated microcombustor and photonic crystal emitter for thermophotovoltaics

    International Nuclear Information System (INIS)

    Chan, Walker R.; Stelmakh, Veronika; Joannopoulos, John D.; Celanovic, Ivan; Allmon, William R.; Waits, Christopher M.; Soljacic, Marin

    2016-01-01

    Thermophotovoltaic (TPV) energy conversion is appealing for portable millimeter- scale generators because of its simplicity, but it relies on a high temperatures. The performance and reliability of the high-temperature components, a microcombustor and a photonic crystal emitter, has proven challenging because they are subjected to 1000-1200°C and stresses arising from thermal expansion mismatches. In this paper, we adopt the industrial process of diffusion brazing to fabricate an integrated microcombustor and photonic crystal by bonding stacked metal layers. Diffusion brazing is simpler and faster than previous approaches of silicon MEMS and welded metal, and the end result is more robust. (paper)

  9. Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Saroop, Sudesh [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-09-01

    Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.

  10. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  11. Operating experience of a portable thermophotovoltaic power supply

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1999-03-01

    Two configurations of man-portable thermophotovoltaic (TPV) power supplies based on Thermo Power's supported continuous fiber emitter have been designed, built, and are being tested. The systems use narrow-band, fibrous, ytterbia emitters radiating to bandgap matched silicon photovoltaic arrays with dielectric stack filters for optical energy recovery and recuperators for thermal energy recovery. The systems have been designed for operation with propane and with combustion air preheat temperatures of up to 1250 K. To operate at air preheat temperatures above the auto-ignition temperature of the fuel, a unique fuel delivery system was devised which results in the micromixing and rapid combustion of the fuel and air right in the emitter fibers. This allows the ytterbia emitter fibers to run much hotter (˜2000 K) than any of the surrounding structure.

  12. Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap

    Science.gov (United States)

    Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae

    2018-05-01

    The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.

  13. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    International Nuclear Information System (INIS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-01-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ∼ 16 We/kg and ∼ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ∼ 640 m2 and ∼ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ∼ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ∼ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems

  14. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-01

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency (η TPV ) and a power density (PD) of η TPV = 19% and PD=0.58 W/cm 2 were measured for T radiator = 950 C and T diode = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be η TPV = 26% and PD = 0.75 W/cm 2 . These limits are extended to η TPV = 30% and PD = 0.85W/cm 2 if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of state-of-the-art 0.53eV InGaAsSb TPV diode are ∼10

  15. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  16. Minority-carrier transport in InGaAsSb thermophotovoltaic diodes

    International Nuclear Information System (INIS)

    Charache, G.; Martinelli, R.U.; Garbuzov, D.Z.; Lee, H.; Morris, N.; Odubanjo, T.; Connolly, J.C.

    1997-05-01

    Uncoated InGaAsSb/GaSb thermophotovoltaic (TPV) diodes with 0.56 eV (2.2 microm) bandgaps exhibit external quantum efficiencies of 59% at 2 microm. The devices have electron diffusion lengths as long as 29 microm in 8-microm-wide p-InGaAsSb layers and hole diffusion lengths of 3 microm in 6-microm-wide n-InGaAsSb layers. The electron and hole diffusion lengths appear to increase with increasing p- and n-layer widths. At 632.8 nm the internal quantum efficiencies of diodes with 1- to 8-microm-wide p-layers are above 89% and are independent of the p-layer width, indicating long electron diffusion lengths. InGaAsSb has, therefore, excellent minority carrier transport properties that are well suited to efficient TPV diode operation. The structures were grown by molecular-beam epitaxy

  17. Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators

    International Nuclear Information System (INIS)

    Pan, J F; Tang, A K; Duan, L; Li, X C; Yang, W M; Chou, S K; Xue, H

    2010-01-01

    The performance of micro combustion-driven power systems is strongly influenced by the combustor structure. A novel modular thermophotovoltaic (TPV) power generator is presented, which is based on the sub-millimeter parallel plate combustor. It has the potential to achieve a high power density because of the high radiation energy per unit volume due to the high surface-to-volume ratio of the micro-combustor. The work experimentally investigated the ignition limitation for two micro-combustors. It also studied the effects of three major parameters on a sub-millimeter combustor, namely hydrogen to oxygen mixing ratio, hydrogen volumetric flow rate and nozzle geometry. The results show that the combustion efficiency decreases with the increase of the hydrogen flow rate, which is caused by reduced residence time. The average wall temperature with the rectangular nozzle is 25 K higher than that with the circle nozzle. The output electrical power and power density of the modular TPV power generator are projected to be 0.175 W and 0.0722 W cm −3 respectively. We experimentally achieve 0.166 W of electrical power, which is in good agreement with the model prediction

  18. The design and numerical analysis of tandem thermophotovoltaic cells

    International Nuclear Information System (INIS)

    Yang Hao-Yu; Liu Ren-Jun; Wang Lian-Kai; Lü You; Li Tian-Tian; Li Guo-Xing; Zhang Yuan-Tao; Zhang Bao-Lin

    2013-01-01

    In this paper, numerical analysis of GaSb =(E g = 0.72 eV)/Ga 0.84 In 0.16 As 0.14 Sb 0.86 (E g = 0.53 eV) tandem thermophotovoltaic (TPV) cells is carried out by using Silvaco/Atlas software. In the tandem cells, a GaSb p-n homojunction is used for the top cell and a GaInAsSb p-n homojunction for the bottom cell. A heavily doped GaSb tunnel junction connects the two sub-cells together. The simulations are carried out at a radiator temperature of 2000 K and a cell temperature of 300 K. The radiation photons are injected from the top of the tandem cells. Key properties of the single- and dual-junction TPV cells, including I–V characteristic, maximum output power (P max ), open-circuit voltage (V oc ), short-circuit current (I sc ), etc. are presented. The effects of the sub-cell thickness and carrier concentration on the key properties of tandem cells are investigated. A comparison of the dual-TPV cells with GaSb and GaInAsSb single junction cells shows that the P max of tandem cells is almost twice as great as that of the single-junction cells. (interdisciplinary physics and related areas of science and technology)

  19. Quantum-Well Thermophotovoltaic Cells

    Science.gov (United States)

    Freudlich, Alex; Ignatiev, Alex

    2009-01-01

    Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

  20. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  1. Heat transfer modelling in thermophotovoltaic cavities using glass media

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N. [Northumbria University, Newcastle upon Tyne (United Kingdom). School of Engineering and Technology

    2005-08-15

    Optimisation of heat transfer, and in particular radiative heat transfer in terms of the spectral, angular and spatial radiation distributions, is required to achieve high efficiencies and high electrical power densities for thermophotovoltaic (TPV) conversion. This work examines heat transfer from the radiator to the PV cell in an infinite plate arrangement using three different arrangements of participating dielectric media. The modelling applies the Discrete Ordinates method and assumes fused silica (quartz glass) as the dielectric medium. The arrangement radiator-glass-PV cell (also termed dielectric photon concentration) was found to be superior in terms of efficiency and power density. (author)

  2. Thermophotovoltaic Arrays for Electrical Power Generation

    International Nuclear Information System (INIS)

    Sarnoff Corporation

    2003-01-01

    Sarnoff has designed an integrated array of thermophotovoltaic (TPV) cells based on the In(Al)GaAsSb/GaSb materials system. These arrays will be used in a system to generate electrical power from a radioisotope heat source that radiates at temperatures from 700 to 1000 C. Two arrays sandwich the slab heat source and will be connected in series to build voltage. Between the arrays and the heat source is a spectral control filter that transmits above-bandgap radiation and reflects below-bandgap radiation. The goal is to generate 5 mW of electrical power at 3 V from a 700 C radiant source. Sarnoff is a leader in antimonide-based TPV cell development. InGaAsSb cells with a bandgap of 0.53 eV have operated at system conversion efficiencies greater than 17%. The system included a front-surface filter, and a 905 C radiation source. The cells were grown via organo-metallic vapor-phase epitaxy. Sarnoff will bring this experience to bear on the proposed project. The authors first describe array and cell architecture. They then present calculated results showing that about 80 mW of power can be obtained from a 700 C radiator. Using a conservative array design, a 5-V output is possible

  3. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  4. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  5. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  6. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  7. Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system

    International Nuclear Information System (INIS)

    Xu, Xiaojie; Ye, Hong; Xu, Yexin; Shen, Mingrong; Zhang, Xiaojing; Wu, Xi

    2014-01-01

    Highlights: • An accurate theoretical model for thermophotovoltaic system is constructed. • Parallel connected module is superior if radiator temperature is uneven. • Series connected module is superior if cell temperature is uneven. • Short circuit current of series module rises when the shunt resistance decreases. • Fill factor is not always accurate to evaluate the module performance. - Abstract: An experimental thermophotovoltaic (TPV) system with a cylindrical-geometry radiator was established to test the output performances of modules under different conditions. The results demonstrate that the output performance of a cell module decreases when the combustion power increases because of the uneven temperature of the radiator or cells. On this basis, a theoretical model for a TPV system was constructed to compare the performance under different conditions of the series-connected (SC) module and the parallel-connected (PC) module, and was verified by the experimental results. The influences of the temperature gradient of the radiator or the cell module, and the series and shunt resistance of the TPV cell on the module performance were analyzed in detail. The results demonstrate that the PC module can effectively reduce the mismatch loss of output power caused by the uneven radiator temperature. The PC module, for instance, has a maximum output power of 2.54 times higher than that of the SC module when the radiator temperature difference is 500 K. However, the output performance of the module connected in series is superior to the PC module while the cell temperature is non-uniform. The output power of the SC module is 9.93% higher than that of the PC module at the cell temperature difference of 125 K. The short circuit current of the SC module is sensitive to the series and shunt resistance if the radiator temperature distribution is non-uniform. As the shunt resistance falls from ∞ to 0.5 Ω, the current varies from 1.757 A to 4.488 A when the

  8. Solid State Energy Conversion for Deep Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermophotovoltaic (TPV) devices employed in static radioisotope generators show great promise for highly efficient, reliable, and resilient power generation for...

  9. Power and hydrogen production from ammonia in a micro-thermophotovoltaic device integrated with a micro-reformer

    International Nuclear Information System (INIS)

    Um, Dong Hyun; Kim, Tae Young; Kwon, Oh Chae

    2014-01-01

    Power and hydrogen (H 2 ) production by burning and reforming ammonia (NH 3 ) in a micro-TPV (microscale-thermophotovoltaic) device integrated with a micro-reformer is studied experimentally. A heat-recirculating micro-emitter with the cyclone and helical adapters that enhance the residence time of fed fuel-air mixtures and uniform burning burns H 2 -added NH 3 -air mixtures. A micro-reformer that converts NH 3 to H 2 using ruthenium as a catalyst surrounds the micro-emitter as a heat source. The micro-reformer is surrounded by a chamber, the inner and outer walls of which have installations of gallium antimonide photovoltaic cells and cooling fins. For the micro-reformer-integrated micro-TPV device the maximum overall efficiency of 8.1% with electrical power of 4.5 W and the maximum NH 3 conversion rate of 96.0% with the H 2 production rate of 22.6 W (based on lower heating value) are obtained, indicating that the overall efficiency is remarkably enhanced compared with 2.0% when the micro-TPV device operates alone. This supports the potential of improving the overall efficiency of a micro-TPV device through integrating it with a micro-reformer. Also, the feasibility of using NH 3 as a carbon-free fuel for both burning and reforming in practical micro power and H 2 generation devices has been demonstrated. - Highlights: • Performance of micro-TPV device integrated with micro-reformer is evaluated. • Feasibility of using NH 3 –H 2 blends in integrated system has been demonstrated. • Integration with micro-reformer improves performance of micro-TPV device. • Maximum overall efficiency of 8.1% is found compared with 2.0% without integration

  10. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  11. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  12. 0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    MW Dashiell; JF Beausang; G Nichols; DM Depoy; LR Danielson; H Ehsani; KD Rahner; J Azarkevich; P Talamo; E Brown; S Burger; P Fourspring; W Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Marinelli; D Donetski; S Anikeev; G Belenky; S Luryi; DR Taylor; J Hazel

    2004-01-01

    Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm 2 multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm 2 respectively at operating at temperatures of T radiator = 950 C and T diode = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and ∼0.85 W/cm 2 could be attained under the above operating temperatures

  13. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg1-xCdxTe, Pb1-xCdxTe, Hg1-xZnxTe, and Pb1-xZnxS cover the region of interest of 0.50-0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50-0.75 eV range are Pb1-xZnxTe, Sn1-xCd2xTe2, Pb1-xCdxSe, Pb1-xZnxSe, and Pb1-xCdxS. Hg1-xCdxTe (with x~0.21) has been studied extensively for infrared detectors. PbTe and Pb1-xSnxTe have also been studied for infrared detectors. Not much work has been carried out on Hg1-xZnxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg1-xCdxTe thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg1-xCdxTe is to provide excess mercury incidence rate, to optimize the deposition parameters for enhanced mercury incorporation, and to achieve the requisite stoichiometry, grain size, and doping. MBE and MOCVD

  14. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    Science.gov (United States)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  15. A nanophotonic solar thermophotovoltaic device.

    Science.gov (United States)

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  16. Cost estimate of electricity produced by TPV

    Science.gov (United States)

    Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens

    2003-05-01

    A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12-20 kW, the costs of the TPV components and 100 EUR kW-1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (etasys = 1.0%), leading to 3000 EUR kW-1el,peak, an optimized Si based system using conventional, available technology (etasys = 1.5%), leading to 900 EUR kW-1el,peak, a further improved system with future technology (etasys = 5%), leading to 340 EUR kW-1el,peak and a GaSb based system (etasys = 12.3% with recuperator), leading to 1900 EUR kW-1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh-1el (including gas of about 3.5 EURcents kWh-1) were calculated and compared with those of fuel cells (31 EURcents kWh-1) and gas engines (23 EURcents kWh-1).

  17. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  18. Photocell modelling for thermophotovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J -C; Durisch, W; Grob, B; Panitz, J -C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Goal of the modelling described here is the extrapolation of the performance characteristics of solar photocells to TPV working conditions. The model accounts for higher flux of radiation and for the higher temperatures reached in TPV converters. (author) 4 figs., 1 tab., 2 refs.

  19. InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications

    Science.gov (United States)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.

    2004-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.

  20. Triple-axis X-ray reciprocal space mapping of In{sub y}Ga{sub 1-y}As thermophotovoltaic diodes grown on (1 0 0) InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dashiell, M.W.; Ehsani, H.; Sander, P.C. [Lockheed Martin Corporation, Schenectady, NY 12301-1072 (United States); Newman, F.D. [Emcore Corporation, Albuquerque, NM 87123 (United States); Wang, C.A. [MIT Lincoln Laboratory, Lexington, MA 02420 (United States); Shellenbarger, Z.A. [Sarnoff Corporation, Princeton NJ, 08543-5300 (United States); Donetski, D.; Gu, N.; Anikeev, S. [Department of Electrical Engineering, State University of New York, Stony Brook, NY 11794-2350 (United States)

    2008-09-15

    Analysis of the composition, strain-relaxation, layer-tilt, and the crystalline quality of In{sub y}Ga{sub 1-y}As/InP{sub 1-x}As{sub x} thermophotovoltaic (TPV) diodes grown by metal-organic vapor phase epitaxy (MOVPE) is demonstrated using triple-axis X-ray reciprocal space mapping techniques. In{sub 0.53}Ga{sub 0.47}As (E{sub gap}=0.74 eV) n/p junction diodes are grown lattice matched (LM) to InP substrates and lattice-mismatched (LMM) In{sub 0.67}Ga{sub 0.33}As (E{sub gap}=0.6 eV) TPV diodes are grown on three-step InP{sub 1-x}As{sub x} (0TPV active layer and underlying InP{sub 1-x}As{sub x} buffers. Triple-axis X-ray rocking curves about the LMM In{sub 0.67}Ga{sub 0.33}As RELP show an order of magnitude increase of its full-width at half-maximum (FWHM) compared to that from the LM In{sub 0.53}Ga{sub 0.47}As (250 vs. 30 arcsec). Despite the significant RELP broadening, the photovoltaic figure of merits show that the electronic quality of the LMM In{sub 0.67}Ga{sub 0.33}As approaches that of the LM diode material. This indicates that misfit-related crystalline imperfections are not dominating the photovoltaic response of the optimized LMM In{sub 0.67}Ga{sub 0.33}As material compared with the intrinsic recombination processes and/or recombination through native point defects, which would be present in both LMM and LM diode material. However, additional RELP broadening in non-optimized LMM In{sub 0.67}Ga{sub 0.33}As n/p junction diodes does correspond to significant degradation of TPV diode open-circuit voltage and minority carrier lifetime demonstrating that there is correlation between X-ray FWHM and the electronic performance of the LMM TPV diodes. (author)

  1. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    Science.gov (United States)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further

  2. Super-Planckian Thermophotovoltaics Without Vacuum Gaps

    Science.gov (United States)

    Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.

    2017-11-01

    We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.

  3. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV; Preparacao de termoplasticos vulcanizados dinamicamente (TPV) de NBR/PP com nanocargas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G. [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas Professora Eloisa Mano, Rio de Janeiro, RJ (Brazil); Soares, Ketly P. [Centro Universitario do Leste de Minas Gerais (UNILESTEMG) - Coronel Fabriciano, MG (Brazil)

    2011-07-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  4. Analysis of solar thermophotovoltaic test data from experiments performed at McDonnell Douglas

    Energy Technology Data Exchange (ETDEWEB)

    Stone, K.W.; Kusek, S.M.; Drubka, R.E. [McDonnell Douglas, 5301 Bolsa Avenue, Huntington Beach, California 92647 (United States); Fay, T.D. [21911 Bacalar, Mission Viejo, California 92692 (United States)

    1995-01-05

    Solar thermophotovoltaic power systems offer potentially high system efficiency for solar energy to electrical energy conversion and attractive system advantages. McDonnell Douglas Corporation (MDC) has been investigating this technology for both space and terrestrial applications for several years. A testbed prototype was designed, built, and tested on a 90 kW{sub t} dish concentrator at the MDA solar test facility. Twelve experiments were conducted with absorber temperatures in excess of 1300 {degree}C being achieved using only a fraction of the reflected power from the 90 kW{sub t} dish concentrator. This paper discusses the solar thermophotovoltaic testbed prototype unit, test data, and presents an analysis of the unit`s performance. A combination of analytical analysis and test data is used to obtain an understanding of the system and subsystem performance. The preliminary results of these tests and analysis indicate a solar thermophotovoltaic power system can achieve high system performance. Furthermore, system demonstrations are possible utilizing a combination of current off-the-shelf hardware components and components currently being tested in laboratories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  6. High-Performance, 0.6-eV, GA0.32In0.68As/In0.32P0.68 Thermophotovoltaic Converters and Monolithically Interconnected Modules

    International Nuclear Information System (INIS)

    Duda, A.; Murray, C.S.

    1998-01-01

    Recent progress in the development of high-performance, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 thermophotovoltaic (TPV) converters and monolithically interconnected modules (MIMs) is described. The converter structure design is based on using a lattice-matched InAs0.32P0.68/Ga0.32In0.68As/InAs0.32P0.68 double-heterostructure (DH) device, which is grown lattice-mismatched on an InP substrate, with an intervening compositionally step-graded region of InAsyP1-y. The Ga0.32In0.68As alloy has a room-temperature band gap of 0.6 eV and contains a p/n junction. The InAs0.32P0.68 layers have a room-temperature band gap of 0.96 eV and serve as passivation/confinement layers for the Ga0.32In0.68As p/n junction. InAsyP1-y step grades have yielded DH converters with superior electronic quality and performance characteristics. Details of the microstructure of the converters are presented. Converters prepared for this work were grown by atmospheric-pressure metalorganic vapor-phase epitaxy (APMOVPE) and were processed using a combination of photolithography, wet-chemical etching, and conventional metal and insulator deposition techniques. Excellent performance characteristics have been demonstrated for the 0.6-eV TPV converters. Additionally, the implementation of MIM technology in these converters has been highly successful

  7. Modeling of InGaSb thermophotovoltaic cells and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zierak, M.; Borrego, J.M.; Bhat, I.; Gutmann, R.J. [Rensselaer Polytechnic Inst., Troy, NY (United States); Charache, G. [Lockheed Martin, Inc., Schenectady, NY (United States)

    1997-05-01

    A closed form computer program has been developed for the simulation and optimization of In{sub x}Ga{sub 1{minus}x}Sb thermophotovoltaic cells operating at room temperature. The program includes material parameter models of the energy bandgap, optical absorption constant, electron and hole mobility, intrinsic carrier concentration and index of refraction for any composition of GaInSb alloys.

  8. Hybrid thermionic-photovoltaic converter

    Energy Technology Data Exchange (ETDEWEB)

    Datas, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-04-04

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.

  9. A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application

    International Nuclear Information System (INIS)

    Akhtar, Saad; Kurnia, Jundika C.; Shamim, Tariq

    2015-01-01

    Highlights: • Flow and flame behavior in a micro-combustor are studied. • Predictive capabilities of turbulence and chemistry sub-models are evaluated. • Thermal & hydraulic performance is tested for different combustor geometries. • Excellent outer wall prediction by RSM turbulence and EDC chemistry sub-model. • Enhanced heat transfer for triangular and trapezoid combustor geometries. - Abstract: Wall temperature uniformity and enhancement in a micro combustor for thermo photovoltaic (TPV) applications have attracted considerable attention from researchers in recent years because of their direct impact on efficiency and feasibility of desired energy conversion. In this regard, numerous experimental and numerical studies in micro-combustion application have been conducted and reported. However, most previous studies have been focused on geometrical configurations limited to planar and circular channels. It is therefore of interest to investigate the impact of different channel geometries on wall temperature distribution and energy conversion efficiency. This study addresses flow and flame behavior in a micro-combustor. By utilizing the well-established computational fluid dynamics (CFD) approach, the effect of geometrical parameters on the flow behavior and wall temperature is examined and evaluated. In order to improve the productive capability of the computational model, several steady state Reynolds Average Numerical Simulation (RANS) turbulence models alongside with different reaction rate formulations are evaluated. The results indicate that Reynolds Stress Model (RSM) with Eddy Dissipation Concept (EDC) provide the best quantitative prediction. The developed model is employed to investigate the effect of inlet velocity on flame structure and outer wall temperature. Furthermore, the effect of reactor cross sections, including circular, square, rectangular, triangular and trapezoidal, on the wall temperature is also evaluated. The results show that

  10. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV

    International Nuclear Information System (INIS)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G.; Soares, Ketly P.

    2011-01-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  11. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood

    2004-04-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  12. Sunlight absorption engineering for thermophotovoltaics: contributions from the optical design.

    Science.gov (United States)

    Míguez, Hernán

    2015-03-01

    Nowadays, solar thermophotovoltaic systems constitute a platform in which sophisticated optical material designs are put into practice with the aim of achieving the long sought after dream of developing an efficient energy conversion device based on this concept. Recent advances demonstrate that higher efficiencies are at reach using photonic nanostructures amenable to mass production and scale-up. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)

    2007-10-15

    The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)

  14. Performance of ultra high efficiency thin germanium p-n junction solar cells intended for solar thermophotovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Vera, E S; Loferski, J J; Spitzer, M; Schewchun, J

    1981-01-01

    The theoretical upper limit conversion efficiency as a function of cell thickness and junction position is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorporates minority carrier mirrors and optical mirrors on both the front and back boundaries of the active part of the device. The optical mirrors provide light confinement reducing the thickness required for optimum performance while minority carrier mirrors diminish surface recombination of carriers which seriously reduce short circuit current and limit open circuit voltage. The role of non-ideal optical and minority carrier mirrors and the effect of resistivity variations are studied. The calculations are conducted under conditions of high incident power (2-25 W/cm/sup 2/) which are encountered in solar thermophotovoltaic energy conversion systems. 14 refs.

  15. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  16. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey of peripheral element technologies - Survey of novel voltaic cell structure solar cell development); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (shuhen yoso gijutsu ni kansuru chosa kenkyu - shinhatsuden soshi kozo taiyo denchi kaitaku no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present state and trend are surveyed of organic ferroelectric thin films, new carbon materials, fullerene compounds, and thermophotovoltaic (TPV) power. In the study of organic ferroelectric thin-film solar cells, the effort still remains at the basic stage, with the conversion rate as low as 3% in Europe and 2% in Japan. The progress of basic studies, however, is worth attention. It is deemed that 15% is the photoconversion rate to be currently expected from new carbon material solar cells. Fullerene compounds include some semiconductors whose bandgap values may be controlled across a 0.75-1.95eV range, and they may find their place in thin-film solar cells. However, their physical properties are not fully known, and their development into devices such as solar cells is scarcely reported. The research and development of TPV in the U.S. is led by NASA (National Aeronautics and Space Administration) and NREL (National Renewable Energy Laboratory), with their efforts concentrated on the development of portable power sources utilizing combustion heat. In Europe, TPV application to small-scale residential cogeneration systems is under study. (NEDO)

  17. Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

    NARCIS (Netherlands)

    Svetovoy, V. B.; Palasantzas, G.

    2014-01-01

    A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to

  18. Solar-Powered, Micron-Gap Thermophotovoltaics for MEO Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an InGaAs-based, radiation-tolerant, micron-gap thermophotovoltaic (MTPV) technology. The use of a micron wide gap between the radiation...

  19. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  20. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  1. Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  2. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Research and survey of peripheral element technologies (Research and survey for development of solar cell of new power generation device structure); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu / shuhen yoso gijutsu ni kansuru chosa kenkyu (shinhatsuden soshi kozo taiyo denchi kaitaku no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Attention is paid to behavior at the molecular level with reference taken to the photosynthetic mechanism, and a behavioral mechanism is proposed, which incorporates, in place of the conventional band model, a concept of a molecular structure based on electron transfer, excitation energy transfer, and reactions of oxidation and reduction. Discussion is then made on elements of technology development for the embodiment of high-efficiency organic ferroelectric thin-film solar cells. The elements taken up include the feasibility of organic ferroelectric thin-film cells, photoelctric conversion systems of plants and photosynthetic bacteria, solar cells using donor-acceptor type dyes, organic thin-film solar cells using conductive polymers, and efficient photoexcitation of organic dyes. Fullerene compounds are semiconductive and their band gaps may be controlled to stay within the range of 0.75-1.9eV, and this justifies a hope that they will serve as solar cells. As for TPV (thermophotovoltaic) conversion, it is under development mainly at NASA (National Aeronautics and Space Administration) as a transportable power source based on heat of combustion. Efforts are also being exerted since 1990 in five European countries to develop TPV systems for small-scale cogeneration. (NEDO)

  3. Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency

    International Nuclear Information System (INIS)

    Dong, Qingchun; Liao, Tianjun; Yang, Zhimin; Chen, Xiaohang; Chen, Jincan

    2017-01-01

    Graphical abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. - Highlights: • A new model of the irreversible solar thermophotovoltaic system is proposed. • The material and structure parameters of the system are considered. • The performance characteristics at the maximum efficiency are revealed. • The optimal values of key parameters are determined. • The system can obtain a large efficiency under a relative low concentration ratio. - Abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. The power output and efficiency of the cell are analytically derived. The performance characteristics of the STPVC at the maximum efficiency are revealed. The optimum values of several important parameters, such as the voltage output of the PV cell, the area ratio of the absorber to the emitter, and the band-gap of the semiconductor material, are determined. It is found that under the condition of a relative low concentration ratio, the optimally designed STPVC can obtain a relative large efficiency.

  4. Parametric characteristics of a solar thermophotovoltaic system at the maximum efficiency

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Yang, Zhimin; Lin, Bihong; Chen, Jincan

    2016-01-01

    Graphical abstract: A model of the far-field TPVC driven by solar energy, which consists of an optical concentrator, an absorber, an emitter, and a PV cell and is simply referred as to the far-field STPVS. - Highlights: • A model of the far-field solar thermophotovoltaic system (STPVS) is established. • External and internal irreversible losses are considered. • The maximum efficiency of the STPVS is calculated. • Optimal values of key parameters at the maximum efficiency are determined. • Effects of the concentrator factor on the performance of the system are discussed. - Abstract: A model of the solar thermophotovoltaic system (STPVS) consisting of an optical concentrator, a thermal absorber, an emitter, and a photovoltaic (PV) cell is proposed, where the far-field thermal emission between the emitter and the PV cell, the radiation losses from the absorber and emitter to the environment, the reflected loss from the absorber, and the finite-rate heat exchange between the PV cell and the environment are taken into account. Analytical expressions for the power output of and overall efficiency of the STPVS are derived. By solving thermal equilibrium equations, the operating temperatures of the emitter and PV cell are determined and the maximum efficiency of the system is calculated numerically for given values of the output voltage of the PV cell and the ratio of the front surface area of the absorber to that of the emitter. For different bandgaps, the maximum efficiencies of the system are calculated and the corresponding optimum values of several operating parameters are obtained. The effects of the concentrator factor on the optimum performance of the system are also discussed.

  5. Selection of emitter material for application on a radioisotope thermophotovoltaic (RTPV) power system

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.P.; Frohlich, N.D.; Koehler, F.A.; Ruhkamp, J.D.; Miller, R.G.; McDougal, J.R.; Pugh, B.K.; Barklay, C.D.; Howell, E.I. [EGG Mound Applied Technologies Building 88, P.O. Box 3000 Miamisburg, Ohio45343 (United States)

    1997-01-01

    Radioisotope Thermophotovoltaic (RTPV) power systems are being considered for long duration space missions due to their predicted high thermal to electrical conversion efficiencies. One critical aspect of these power systems is the selection of an appropriate emitter material which will efficiently radiate the thermal energy generated by the heat source to the photovoltaics. The photovoltaics are {open_quotes}tuned{close_quotes} to convert the infrared wavelengths radiated by the emitter into electrical energy. The emphasis of this paper is on the selection and optimization of an appropriate emitter material which would meet all of the mission requirements. A Kepner Tregoe analysis was performed in order to rank the various candidate refractory materials in relationship to their physical and chemical properties. The results of the analysis and material recommendations are discussed. {copyright} {ital 1997 American Institute of Physics.}

  6. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  7. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  8. A Germanium Back Contact Type Thermophotovoltaic Cell

    International Nuclear Information System (INIS)

    Nagashima, Tomonori; Okumura, Kenichi; Yamaguchi, Masafumi

    2007-01-01

    A Ge back contact type photovoltaic cell has been proposed to reduce resistance loss for high current densities in thermophotovoltaic systems. The back contact structure requires less surface recombination velocities than conventional structures with front grid contacts. A SiO2/SiNx double anti-reflection coating including a high refractive index SiNx layer was studied. The SiNx layer has an enough passivation effect to obtain high efficiency. The quantum efficiency of the Ge cell was around 0.8 in the 800-1600 nm wavelength range. The conversion efficiency for infrared lights was estimated at 18% for a blackbody surface and 25% for a selective emitter by using the quantum efficiency and a simulation analysis

  9. Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    Science.gov (United States)

    2016-09-01

    temperatures above 500 °C.1 Figure 1 describes the primary components of a TPV system : a heat source, an emitter, and a photovoltaic converter. The heat...carrier surface not covered by the photovoltaic cell. 4. Mesh The mesh was set to level 3 with the minimum gap size manually set to 0.01 inch. A...heat sink to control the temperature of the photovoltaic cell while exposed to radiation from the emitter. 15. SUBJECT TERMS TPV

  10. Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system

    International Nuclear Information System (INIS)

    Yang, Zhimin; Liao, Tianjun; Zhou, Yinghui; Lin, Guoxing; Chen, Jincan

    2016-01-01

    Highlights: • A molten carbonate fuel cell-thermophotovoltaic cell hybrid system is established. • The performance characteristics of the hybrid system are systematically evaluated. • The optimal regions of the power output density and efficiency are determined. • The values of key parameters at the maximum power output density are calculated. • The proposed system is proved to have advantages over other hybrid systems. - Abstract: A new model of the hybrid system composed of a molten carbonate fuel cell (MCFC) and a thermophotovoltaic cell (TPVC) is proposed to recovery the waste heat produced by the MCFC. Expressions for the power output and the efficiency of the hybrid system are analytically derived. The performance characteristics of the hybrid system are evaluated. It is found that when the current density of the MCFC, voltage output of the TPVC, electrode area ratio of the MCFC to the TPVC, and energy gap of the material in the photovoltaic cell are optimally chosen, the maximum power output density of the hybrid system is obviously larger than that of the single MCFC. Moreover, the improved percentages of the maximum power output density of the proposed model relative to that of the single MCFC are calculated for differently operating temperatures of the MCFC and are compared with those of some MCFC-based hybrid systems reported in the literature, and consequently, the advantages of the MCFC-TPVC hybrid system are revealed.

  11. Thermophotovoltaic cells based on In0.53Ga0.47As/InP heterostructures

    International Nuclear Information System (INIS)

    Karlina, L. B.; Vlasov, A. S.; Kulagina, M. M.; Timoshina, N. Kh.

    2006-01-01

    Reflection of infrared radiation from n-InP substrates with a rear MgF 2 /Au mirror is investigated in the wavelength range 1000-2200 nm. It is found that the reflectance weakly depends on substrate thickness and free-carrier concentration in the (0.1-6) x 10 18 cm -3 range. Thermophotovoltaic cells based on the InP/In 0.53 Ga 0.47 As lattice-matched heterostructure of p-n and n-p are fabricated by liquid-phase epitaxy and Zn and P diffusion from a gas phase. The characteristics of p-n and n-p thermophotovoltaic cells with an identical configuration of the contacts of 1 cm 2 area are determined. These characteristics are the open-circuit voltage U oc = 0.465 V, the filling factor FF = 64% at the current density of 1 A/cm 2 , and the reflectance R = 76-80% for wavelengths longer than 1.86 μm

  12. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  13. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  14. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  15. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  16. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    Science.gov (United States)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  17. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  18. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.

  19. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  20. Finite element analysis of ARPS structures

    International Nuclear Information System (INIS)

    Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.

    1998-01-01

    Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent

  1. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  2. Metal photonics and plasmonics for energy generation

    Science.gov (United States)

    Nagpal, Prashant

    Energy generation from renewable sources and conservation of energy are important goals for reducing our carbon footprint on the environment. Important sources of renewable energy like sun and geothermal energy are difficult to harness because of their energetically broad radiation. Most of our current energy requirements are met through consumption of fossil fuels, and more than 60% of this energy is released to the environment as "waste heat". Thus, converting heat from sun, or inefficient furnaces and automobiles can provide an important source of energy generation. In the present work, I describe design, fabrication, and characterization two and three dimensional patterned metals. These nanofabricated structures can be used as selective emitters to tailor the glow of hot objects. The tailored radiation can then be converted efficiently into electricity using an infrared photocell. This thermophotovoltaic conversion can be very efficient, and useful for converting heat-to-electricity from a wide variety of sources.

  3. Bridgman growth and characterization of bulk single crystals of Ga1-xInxSb for thermophotovoltaic applications

    International Nuclear Information System (INIS)

    Boyer, J.R.; Haines, W.T.

    1997-12-01

    Thermophotovoltaic generation of electricity is attracting renewed attention due to recent advances in low bandgap (0.5--0.7 eV) III-V semiconductors. The use of mixed pseudo-binary compounds allows for the tailoring of the lattice parameter and the bandgap of the material. Conventional deposition techniques (i.e., epitaxy) for producing such ternary or quaternary materials are typically slow and expensive. Production of bulk single crystals of ternary materials, for example Ga 1-x In x Sb, is expected to dramatically reduce such material costs. Bulk single crystals of Ga 1-x In x Sb have been prepared using a Bridgman technique in a two-zone furnace. These crystals are 19 mm in diameter by approximately 50 mm long and were produced using seeds of the same diameter. The effects of growth rate and starting materials on the composition and quality of these crystals will be discussed and compared with other attempts to produce single crystals of this material

  4. Thermodynamic limits of energy harvesting from outgoing thermal radiation.

    Science.gov (United States)

    Buddhiraju, Siddharth; Santhanam, Parthiban; Fan, Shanhui

    2018-04-17

    We derive the thermodynamic limits of harvesting power from the outgoing thermal radiation from the ambient to the cold outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. In particular, we derive the ultimate limit for harvesting outgoing thermal radiation, which is analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible. As an extension of our work, we also derive the ultimate limit of efficiency of thermophotovoltaic systems.

  5. Proceedings of the 1998 oil heat technology conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  6. Advanced conversion technology review panel report

    International Nuclear Information System (INIS)

    Frazier, T.A.

    1998-01-01

    The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) established a DOE lead management team and an Advanced Conversion Technology Review Panel. The panel was tasked with providing the management team with an assessment and ranking of the three advanced conversion technologies. The three advanced conversion technologies were alkali metal thermal to electric converter (AMTEC), Stirling engine converter (SEC), and thermophotovoltaic (TPV). To rate and rank these three technologies, five criteria were developed: (1) Performance, (2) Development and Cost/Production and Cost/Schedule Risk, (3) Spacecraft Interface and Operations, (4) Ability to Scale Conversion, and (5) Safety. Discussed are the relative importance of each of these criteria and the rankings of the three advanced conversion technologies. It was the conclusion of the panel that the technology decision should be based on the risk that DOE and NASA are willing to accept. SEC is the most mature technology and would provide the lowest risk option. However, if more risk is acceptable, AMTEC not only provides benefits in the spacecraft interface but is also predicted to outperform the SEC. It was proposed that if AMTEC were selected, funding should be provided at a reasonable level to support back-up technology to be developed in a parallel fashion until AMTEC has proven its capability. The panel report and conclusion were provided to DOE in February 1997

  7. Decentralised energy supply as our future energy supply system? - An interview with Prof. Alexander Wokaun

    International Nuclear Information System (INIS)

    Nagel, Ch.

    2002-01-01

    In this interview with Professor Alexander Wokaun, head of General Energy Research at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, the decentralised use of small, gas-fired combined heat and power (CHP) units is discussed as a means of meeting Switzerland's Kyoto CO 2 commitments. The question on which of several new CHP technologies such as gas-fired engines and turbines, Stirling engines, fuel cells and thermo-photovoltaics will win the race is discussed. The efficiency and application areas of CHP technologies are examined and the problems involved when controlling complex electricity grids with many small decentrally placed generating facilities is discussed. Finally, Professor Wokaun is asked for his opinion on what the Swiss power mix will look like in 20 years

  8. Comportamento sob fluência em elastômeros termoplásticos vulcanizados baseados em poliamida 6 e borracha nitrílica Creep behavior of polyamide 6/nitrylic rubber TPV's blends

    Directory of Open Access Journals (Sweden)

    Ana C. O. Gomes

    2009-01-01

    Full Text Available Os materiais testados neste trabalho são o resultado de um estudo do uso de aditivos e compatibilizantes na mistura de poliamida 6 (PA6 e borracha nitrílica (NBR, realizado com o objetivo de melhorar suas propriedades mecânicas e facilitar o processamento da mistura. Fluência ("creep" é um teste mecânico importante ao simular a aplicação final do material de engenharia, possibilitando a previsão do desempenho de modo comparativo. Entretanto, é um teste pouco explorado na caracterização de TPV's. A melhora nas propriedades com a adição de aditivos e a eficiência do processo de compatibilização pode ser observada através da variação na compliância das amostras analisadas. Os resultados são correlacionados usando testes de densidade, teor de gel, resistência à tração e microscopia eletrônica de varredura. O presente trabalho mostra que é possível avaliar um material em condições semelhantes à aplicação final em um teste rápido e com gasto mínimo de material.The materials tested in this work are the result of a study involving the use of additives and compatibilization in blends of PA6 and NBR, which was aimed at enhancing the mechanical properties and processability of the blend. Creep is an important mechanical test since it simulates the final application of the material, allowing a prediction of material performance, in a comparative way. However, this is a test seldom explored in the characterization of TPV's. The enhancement of the properties induced by additives and the efficiency of compatibilization process can be observed through the analysis of changes in the compliance of the samples. The results are correlated using measurements of density, gel content, tension strength and scanning electron microscopy. The present work shows it to be possible to evaluate a material under conditions similar to those in the final applications, in a fast test and with minimal material waste.

  9. Short communication: Phenotypic protease inhibitor resistance and cross-resistance in the clinic from 2006 to 2008 and mutational prevalences in HIV from patients with discordant tipranavir and darunavir susceptibility phenotypes.

    Science.gov (United States)

    Bethell, Richard; Scherer, Joseph; Witvrouw, Myriam; Paquet, Agnes; Coakley, Eoin; Hall, David

    2012-09-01

    To test tipranavir (TPV) or darunavir (DRV) as treatment options for patients with phenotypic resistance to protease inhibitors (PIs), including lopinavir, saquinavir, atazanavir, and fosamprenavir, the PhenoSense GT database was analyzed for susceptibility to DRV or TPV among PI-resistant isolates. The Monogram Biosciences HIV database (South San Francisco, CA) containing 7775 clinical isolates (2006-2008) not susceptible to at least one first-generation PI was analyzed. Phenotypic responses [resistant (R), partially susceptible (PS), or susceptible (S)] were defined by upper and lower clinical cut-offs to each PI. Genotypes were screened for amino acid substitutions associated with TPV-R/DRV-S and TPV-S/DRV-R phenotypes. In all, 4.9% (378) of isolates were resistant to all six PIs and 31.0% (2407) were resistant to none. Among isolates resistant to all four first-generation PIs, DRV resistance increased from 21.2% to 41.9% from 2006 to 2008, respectively, and resistance to TPV remained steady (53.9 to 57.3%, respectively). Higher prevalence substitutions in DRV-S/TPV-R isolates versus DRV-R/TPV-S isolates, respectively, were 82L/T (44.4% vs. 0%) and 83D (5.8% vs. 0%). Higher prevalence substitutions in DRV-R/TPV-S virus were 50V (0.0% vs. 28.9%), 54L (1.0% vs. 36.1%), and 76V (0.4% vs. 15.5%). Mutations to help predict discordant susceptibility to DRV and TPV in isolates with reduced susceptibility to other PIs were identified. DRV resistance mutations associated with improved virologic response to TPV were more prevalent in DRV-R/TPV-S isolates. TPV resistance mutations were more prevalent in TPV-R and DRV-S isolates. These results confirm the impact of genotype on phenotype, illustrating how HIV genotype and phenotype data assist regimen optimization.

  10. Effect of updated data base and improved analysis on performance of radioisotope thermophotovoltaic converter

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.

    1996-01-01

    Previous analyses of RTPV space power systems published by the authors were based on a number of approximations employed to permit early dissemination of preliminary results pending availability of fuller experimental data need3d to conduct more rigorous analyses. Among those approximations were: (1) the use of limited test data and optimistic projections of the spectral transmissivity of the RTPV's selective IR filters and of the spectral quantum efficiency of the GaSb PV cells; (2) the use of theoretical formulas instead of experimental measurements of the PV cell's open-circuit voltage, fill factor, and optimum voltage instead of its measured current-voltage characteristics; (3) rough estimates of the TPV converter's active-area fraction instead of computed values based on detailed designs; (4) inadequate accounting for the effect of radiation reflected by the IR filter and absorbed by the emitter in reducing the generator's required heat input; and (5) omission of the shadowing effect and ohmic losses caused by the PV cell's grid lines. The above-listed shortcomings of the previously published analyses are addressed in the present paper, which describes revised analyses based on recently obtained experimental data of IR filter reflectivities and PV cell quantum efficiencies and current-voltage characteristic, measured by EDTEK under an OSC-initiated subcontract to its ongoing DOE contract. Their test results show that EDTEK has been eminently successful in improving the reflectivities of the IR filters and in reproducing the quantum efficiencies of Boeing's best PV cells, but their initial (Dec-95) PV cell fell far short of matching the open-circuit voltages and fill factors predicted by theory

  11. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey of peripheral element technologies - Survey of environmental adaptation of next-generation solar cell development); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (shuhen yoso gijutsu ni kansuru chosa kenkyu - jisedai taiyo denchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Surveys are conducted of photovoltaic power system development projects and their utilization in Japan and overseas, and a discussion is made on the progress, technical challenges, effects, and implementation systems relating to the solar cell application technology development project under the New Sunshine Program. Compiled in the report are the results of surveys of the research and development of photovoltaic power systems and their diffusion in the U.S. and European nations, and the research and development strategies for and the trends of the development of various types of solar cells in these countries. The trends of research and development of non-conventional type solar cells are also collected, which include 3 cases of TPV (thermophotovoltaic) devices, 5 cases of new inorganic materials, 1 case of new organic materials, and 4 cases of dye-sensitized solar cells. In relation to the status of resources of crystalline compound-based solar cell materials, raw materials for solar cells other than silicon are taken up, and their reserves, manufacturing methods, quantities yielded and consumed, costs, etc., are surveyed. These are all taken into consideration in discussing the basic approach to the study of future research and development as it ought to be. (NEDO)

  12. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey and research on practical application - Volume 1); 1999 nendo taiyoko hatsauden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu - 1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A 'Sub-committee for investigation of crystalline compound semiconductor solar cells' was established with the participation of experts from the industrial, bureaucratic, and academic circles to support the manufacture of ultrahigh-efficiency crystalline compound solar cells, and a survey was conducted about technical trends relating to III-V group compound solar cells. In the study of the trends and tasks of the state of the art technology, it is stated that the III-V group compound semiconductor multi-junction solar cell was steadily improving in efficiency, that the InGaP/GaAs 2-junction cell on a Ge substrate and InGaP/GaAs/Ge 3-junction cell in particular were moving toward mass production, and that the target for the 4-junction cell to achieve was 40% or higher in efficiency. For cost reduction, investigations were made into the heteroepitaxial technology, dimensional enlargement, mass production, raw material cost reduction, feasibility of the polycrystalline thin-film technology, light concentration, etc. For efficiency improvement, boundary layer control, structure designs, etc., were studied. Investigations were also conducted into nitride semiconductors, superlattice construction, etc., which related to new materials for thin films. TPV (thermophotovoltaic) power, etc., were reviewed for their practical application. (NEDO)

  13. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  14. 75 FR 81310 - In the Matter of Certain Digital Television Products and Certain Products Containing Same and...

    Science.gov (United States)

    2010-12-27

    ... Victory Electronics (Taiwan) Co., Ltd. (``Top Victory Electronics''); and Envision Peripherals, Inc. (``Envision''). Cease-and-desist orders were issued against Vizio, TPV USA, Envision, and SBC. Respondents Vizio, AmTran, TPV Technology, TPV USA, Top Victory Electronics, and Envision appealed to the United...

  15. Device design of GaSb/CdS thin film thermal photovoltaic solar cells%基于GaSb/CdS薄膜热光伏电池的器件设计∗

    Institute of Scientific and Technical Information of China (English)

    吴限量; 张德贤; 蔡宏琨; 周严; 倪牮; 张建军

    2015-01-01

    基于GaSb薄膜热光伏器件是降低热光伏系统成本的有效途径之一,本文主要针对GaSb/CdS薄膜热光伏器件结构进行理论分析.采用AFORS-HET软件进行模拟仿真,分析GaSb和CdS两种材料各自的缺陷态密度、界面态对电池性能的影响.根据软件模拟可以得知,吸收层GaSb的缺陷态密度以及GaSb与CdS之间的界面态密度是影响电池性能的重要因素.当GaSb缺陷态增加时,主要影响电池的填充因子,电池效率明显下降.而作为窗口层的CdS缺陷态密度对电池性能影响不明显,当CdS缺陷态密度上升4个数量级时,电池效率仅下降0.11%.%Enthusiasm in the research of thermo-photovoltaic (TPV) cells has been aroused because the low bandwidth semi-conductors of III-V family are coming into use. GaSb, as a member of III-V family, has many merits such as high absorption coeffcient, and low band gap of 0.725 eV at 300 K etc.. At present thermo-photovoltaic cells are usually based on GaSb wafer, and it can be manufactured by the vertical Bridgeman method. Thermo-photovoltaic cell based on GaSb films is one of the effective ways to reduce the cost of the thermo-photovoltaic system. GaSb polycrystalline films can be grown by physical vapor deposition (PVD) which has advantages in using fewer materials and energy, and also in doing little harm to the environment. Because of residual acceptor defects VGaGaSb, GaSb thin film is usually of p-type semiconductor. So we should find n-type semiconductor material to form pn junction. We choose CdS as the emission layer of a cell structure. CdS belongs to n-type semiconductor with a narrow band gap of 2.4 eV and high light transmissivity. CdS thin film grown by chemical bath deposition (CBD) has passivation properties for GaSb. CdS layers can remove native oxides from GaSb surface and reduce the surface recombination velocity of GaSb. This paper focuses on theoretical analysis of GaSb/CdS thin film photovoltaic

  16. Effect of Rubber Nanoparticle Agglomeration on Properties of Thermoplastic Vulcanizates during Dynamic Vulcanization

    Directory of Open Access Journals (Sweden)

    Hanguang Wu

    2016-04-01

    Full Text Available We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM/polypropylene (PP thermoplastic vulcanizates (TPVs are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (dn, the thicknesses of PP ligaments (IDpoly and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller dn, a thinner IDpoly and a denser rubber network. Interestingly, the effect of dn and IDpoly on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV.

  17. 5α-Reductase inhibitor is less effective in men with small prostate volume and low serum prostatic specific antigen level.

    Science.gov (United States)

    Lin, Victor C; Liao, Chun-Hou; Wang, Chung-Cheng; Kuo, Hann-Chorng

    2015-09-01

    Large total prostate volumes (TPVs) or high serum prostate-specific antigen (PSA) levels indicate high-risk clinical progression of benign prostatic hyperplasia. This prospective study investigated the treatment outcome of combined 5α-reductase inhibitor and α-blocker in patients with and without large TPVs or high PSA levels. Men aged ≥ 45 years with International Prostate Symptom scores (IPSS) ≥ 8, TPV ≥ 20 mL, and maximum flow rate ≤ 15 mL/s received a combination therapy (dutasteride plus doxaben) for 2 years. Patients with baseline PSA ≥ 4 ng/mL underwent prostatic biopsy for excluding malignancy. The changes in the parameters from baseline to 24 months after combination therapy were compared in those with and without TPV ≥ 40 mL or PSA levels ≥ 1.5 ng/mL. A total of 285 patients (mean age 72 ± 9 years) completed the study. Combination therapy resulted in significant continuous improvement in IPSS, quality of life index, maximum flow rate, and postvoid residual (all p < 0.0001) regardless of baseline TPV or PSA levels. However, only patients with baseline TPV ≥ 40 mL had significant improvements in IPSS-storage subscore, voided volume, reduction in TPV, transitional zone index, and PSA levels. In addition, patients with baseline TPV < 40 mL and PSA < 1.5 ng/mL had neither a reduction in TPV nor a decrease in serum PSA level. A high TPV indicates more outlet resistance, whereas elevated serum PSA level reflects glandular proliferation. Thus, patients with TPV<40 mL and low PSA levels has less benefit from 5α-reductase inhibitor therapy. The therapeutic effect of combined treatment may arise mainly from the α-blocker in these patients. Copyright © 2013. Published by Elsevier B.V.

  18. Image quality of mean temporal arterial and mean temporal portal venous phase images calculated from low dose dynamic volume perfusion CT datasets in patients with hepatocellular carcinoma and pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China); Henzler, T., E-mail: thomas.henzler@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Gawlitza, J.; Diehl, S. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Wilhelm, T. [Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Schoenberg, S.O. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Jin, Z.Y.; Xue, H.D. [Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China); Smakic, A. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2016-11-15

    Purpose: Dynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer. Materials and methods: All patients gave written informed consent for this institutional review board–approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years ± 9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80 kVp tube voltage (18 spiral acquisitions, 71.2 s total acquisition times) and standard dual-energy (90/150 kVpSn) arterial and portal venous acquisition performed 25 min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver

  19. Image quality of mean temporal arterial and mean temporal portal venous phase images calculated from low dose dynamic volume perfusion CT datasets in patients with hepatocellular carcinoma and pancreatic cancer

    International Nuclear Information System (INIS)

    Wang, X.; Henzler, T.; Gawlitza, J.; Diehl, S.; Wilhelm, T.; Schoenberg, S.O.; Jin, Z.Y.; Xue, H.D.; Smakic, A.

    2016-01-01

    Purpose: Dynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer. Materials and methods: All patients gave written informed consent for this institutional review board–approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years ± 9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80 kVp tube voltage (18 spiral acquisitions, 71.2 s total acquisition times) and standard dual-energy (90/150 kVpSn) arterial and portal venous acquisition performed 25 min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver

  20. 17th European photovoltaic solar energy conference and exhibition, Munich 22.-26.10.2001

    International Nuclear Information System (INIS)

    Nowak, S.

    2002-01-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed

  1. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  2. Theoretical efficiency limits for thermoradiative energy conversion

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m 2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices

  3. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  4. Urinary prostate-specific antigen: predictor of benign prostatic hyperplasia progression?

    Science.gov (United States)

    Pejcic, Tomislav P; Tulic, Cane Dz; Lalic, Natasa V; Glisic, Biljana D; Ignjatovic, Svetlana D; Markovic, Biljana B; Hadzi-Djokic, Jovan B

    2013-04-01

    Urinary prostate-specific antigen (uPSA) can be used as additional parameter of benign prostatic hyperplasia (BPH) progression. From January 2001 to December 2011, uPSA was determined in 265 patients with benign prostate. Based on total prostate volume (TPV), the patients with benign prostate were divided in two groups: TPV specificity of 0.83 and sensitivity of 0.67. The level of uPSA reflects prostatic hormonal activity and correlates with TPV, PSA and age. UPSA level ≥ 150 ng/mL can be used as additional predictive parameter of BPH progression.

  5. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  6. Association between metabolic syndrome and intravesical prostatic protrusion in patients with benign prostatic enlargement and lower urinary tract symptoms (MIPS Study).

    Science.gov (United States)

    Russo, Giorgio I; Regis, Federica; Spatafora, Pietro; Frizzi, Jacopo; Urzì, Daniele; Cimino, Sebastiano; Serni, Sergio; Carini, Marco; Gacci, Mauro; Morgia, Giuseppe

    2018-05-01

    To investigate the association between metabolic syndrome (MetS) and morphological features of benign prostatic enlargement (BPE), including total prostate volume (TPV), transitional zone volume (TZV) and intravesical prostatic protrusion (IPP). Between January 2015 and January 2017, 224 consecutive men aged >50 years presenting with lower urinary tract symptoms (LUTS) suggestive of BPE were recruited to this multicentre cross-sectional study. MetS was defined according to International Diabetes Federation criteria. Multivariate linear and logistic regression models were performed to verify factors associated with IPP, TZV and TPV. Patients with MetS were observed to have a significant increase in IPP (P < 0.01), TPV (P < 0.01) and TZV (P = 0.02). On linear regression analysis, adjusted for age and metabolic factors of MetS, we found that high-density lipoprotein (HDL) cholesterol was negatively associated with IPP (r = -0.17), TPV (r = -0.19) and TZV (r = -0.17), while hypertension was positively associated with IPP (r = 0.16), TPV (r = 0.19) and TZV (r = 0.16). On multivariate logistic regression analysis adjusted for age and factors of MetS, hypertension (categorical; odds ratio [OR] 2.95), HDL cholesterol (OR 0.94) and triglycerides (OR 1.01) were independent predictors of TPV ≥ 40 mL. We also found that HDL cholesterol (OR 0.86), hypertension (OR 2.0) and waist circumference (OR 1.09) were significantly associated with TZV ≥ 20 mL. On age-adjusted logistic regression analysis, MetS was significantly associated with IPP ≥ 10 mm (OR 34.0; P < 0.01), TZV ≥ 20 mL (OR 4.40; P < 0.01) and TPV ≥ 40 mL (OR 5.89; P = 0.03). We found an association between MetS and BPE, demonstrating a relationship with IPP. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  7. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  8. Hybrid energy converter based on swirling combustion chambers: the hydrocarbon feeding analysis

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2017-05-01

    Full Text Available This manuscript reports the latest investigations about a miniaturized hybrid energy power source, compatible with thermal/electrical conversion, by a thermo-photovoltaic cell, and potentially useful for civil and space applications. The converter is a thermally-conductive emitting parallelepiped element and the basic idea is to heat up its emitting surfaces by means of combustion, occurred in swirling chambers, integrated inside the device, and/or by the sun, which may work simultaneously or alternatively to the combustion. The current upgrades consist in examining whether the device might fulfill specific design constraints, adopting hydrocarbons-feeding. Previous papers, published by the author, demonstrate the hydrogen-feeding effectiveness. The project’s constraints are: 1 emitting surface dimensions fixed to 30 × 30 mm, 2 surface peak temperature T > 1000 K and the relative ∆T < 100 K (during the combustion mode, 3 the highest possible delivered power to the ambient, and 4 thermal efficiency greater than 20% when works with solar energy. To this end, a 5 connected swirling chambers configuration (3 mm of diameter, with 500 W of injected chemical power, stoichiometric conditions and detailed chemistry, has been adopted. Reactive numerical simulations show that the stiff methane chemical structure obliges to increase the operating pressure, up to 10 atm, and to add hydrogen, to the methane fuel injection, in order to obtain stable combustion and efficient energy conversion.

  9. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  10. Effectiveness of tipranavir versus darunavir as a salvage therapy in HIV-1 treatment-experienced patients.

    Science.gov (United States)

    Domínguez-Hermosillo, Juan Carlos; Mata-Marin, José Antonio; Herrera-González, Norma Estela; Chávez-García, Marcelino; Huerta-García, Gloria; Nuñez-Rodríguez, Nohemí; García-Gámez, José Gerardo; Jiménez-Romero, Anai; Gaytán-Martínez, Jesús Enrique

    2016-09-30

    Although both tipranavir (TPV) and darunavir (DRV) represent important options for the management of patients with multi-protease inhibitor (PI)-resistant human immunodeficiency virus (HIV), currently there are no studies comparing the effectiveness and safety of these two drugs in the Mexican population. The aim of this study was to compare the effectiveness of TPV versus DRV as a salvage therapy in HIV-1 treatment-experienced patients. This was a comparative, prospective, cohort study. Patients with HIV and triple-class drug resistance evaluated at the Hospital de Infectología "La Raza", National Medical Center, were included. All patients had the protease and retrotranscriptase genotype; resistance mutation interpretation was done using the Stanford database. A total of 35 HIV-1 triple-class drug-resistant patients were analyzed. All of them received tenofovir and raltegravir, 22 received darunavir/ritonavir (DRV/r), and 13 received tipranavir/ritonavir (TPV/r) therapies. The median baseline RNA HIV-1 viral load and CD4+ cell count were 4.34 log (interquartile range [IQR], 4.15-4.72) and 267 cells/mm3 (IQR, 177-320) for the DRV/r group, and 4.14 log (IQR, 3.51-4.85) and 445 cells/mm3 (IQR, 252-558) for the TPV/r group. At week 24 of treatment, 91% of patients receiving DRV/r and 100% of patients receiving TPV/r had an RNA HIV-1 viral load HIV-1 patients who were highly experienced in antiretroviral therapy.

  11. The 17{sup th} European photovoltaic solar energy conference and exhibition in Munich from a Swiss point of view; Die 17. europaeische Photovoltaikkonferenz in Muenchen aus Schweizer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed.

  12. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2017-12-01

    Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.

  13. Changes in Speckle Tracking Echocardiography Measures of Ventricular Function after Percutaneous Implantation of the Edwards SAPIEN Transcatheter Heart Valve in the Pulmonary Position

    Science.gov (United States)

    Chowdhury, Shahryar M.; Hijazi, Ziyad M.; Rhodes, John F.; Kar, Saibal; Makkar, Raj; Mullen, Michael; Cao, Qi-Ling; Mandinov, Lazar; Buckley, Jason; Pietris, Nicholas P.; Shirali, Girish S.

    2015-01-01

    Background Patients with free pulmonary regurgitation or mixed pulmonary stenosis and regurgitation and severely dilated right ventricles (RV) show little improvement in ventricular function after pulmonary valve replacement when assessed by traditional echocardiographic markers. We evaluated changes in right and left ventricular (LV) function using speckle tracking echocardiography in patients after SAPIEN transcatheter pulmonary valve (TPV) placement. Methods Echocardiograms were evaluated at baseline, discharge, 1 and 6 months after TPV placement in 24 patients from 4 centers. Speckle tracking measures of function included peak longitudinal strain, strain rate, and early diastolic strain rate. RV fractional area change, tricuspid annular plane systolic excursion, and left ventricular LV ejection fraction were assessed. Routine Doppler and tissue Doppler velocities were measured. Results At baseline, all patients demonstrated moderate to severe pulmonary regurgitation; this improved following TPV placement. No significant changes were detected in conventional measures of RV or LV function at 6 months. RV longitudinal strain (−16.9% vs. −19.6%, P echocardiography may be more sensitive than traditional measures in detecting changes in systolic function after TPV implantation. (Echocardiography 2015;32:461–469) PMID:25047063

  14. Measuring the health impact of human rights violations related to Australian asylum policies and practices: a mixed methods study

    Directory of Open Access Journals (Sweden)

    Mulholland Kim

    2009-02-01

    Full Text Available Abstract Background Human rights violations have adverse consequences for health. However, to date, there remains little empirical evidence documenting this association, beyond the obvious physical and psychological effects of torture. The primary aim of this study was to investigate whether Australian asylum policies and practices, which arguably violate human rights, are associated with adverse health outcomes. Methods We designed a mixed methods study to address the study aim. A cross-sectional survey was conducted with 71 Iraqi Temporary Protection Visa (TPV refugees and 60 Iraqi Permanent Humanitarian Visa (PHV refugees, residing in Melbourne, Australia. Prior to a recent policy amendment, TPV refugees were only given temporary residency status and had restricted access to a range of government funded benefits and services that permanent refugees are automatically entitled to. The quantitative results were triangulated with semi-structured interviews with TPV refugees and service providers. The main outcome measures were self-reported physical and psychological health. Standardised self-report instruments, validated in an Arabic population, were used to measure health and wellbeing outcomes. Results Forty-six percent of TPV refugees compared with 25% of PHV refugees reported symptoms consistent with a diagnosis of clinical depression (p = 0.003. After controlling for the effects of age, gender and marital status, TPV status made a statistically significant contribution to psychological distress (B = 0.5, 95% CI 0.3 to 0.71, p ≤ 0.001 amongst Iraqi refugees. Qualitative data revealed that TPV refugees generally felt socially isolated and lacking in control over their life circumstances, because of their experiences in detention and on a temporary visa. This sense of powerlessness and, for some, an implicit awareness they were being denied basic human rights, culminated in a strong sense of injustice. Conclusion Government asylum policies

  15. Measuring the health impact of human rights violations related to Australian asylum policies and practices: a mixed methods study.

    Science.gov (United States)

    Johnston, Vanessa; Allotey, Pascale; Mulholland, Kim; Markovic, Milica

    2009-02-03

    Human rights violations have adverse consequences for health. However, to date, there remains little empirical evidence documenting this association, beyond the obvious physical and psychological effects of torture. The primary aim of this study was to investigate whether Australian asylum policies and practices, which arguably violate human rights, are associated with adverse health outcomes. We designed a mixed methods study to address the study aim. A cross-sectional survey was conducted with 71 Iraqi Temporary Protection Visa (TPV) refugees and 60 Iraqi Permanent Humanitarian Visa (PHV) refugees, residing in Melbourne, Australia. Prior to a recent policy amendment, TPV refugees were only given temporary residency status and had restricted access to a range of government funded benefits and services that permanent refugees are automatically entitled to. The quantitative results were triangulated with semi-structured interviews with TPV refugees and service providers. The main outcome measures were self-reported physical and psychological health. Standardised self-report instruments, validated in an Arabic population, were used to measure health and wellbeing outcomes. Forty-six percent of TPV refugees compared with 25% of PHV refugees reported symptoms consistent with a diagnosis of clinical depression (p = 0.003). After controlling for the effects of age, gender and marital status, TPV status made a statistically significant contribution to psychological distress (B = 0.5, 95% CI 0.3 to 0.71, p basic human rights, culminated in a strong sense of injustice. Government asylum policies and practices violating human rights norms are associated with demonstrable psychological health impacts. This link between policy, rights violations and health outcomes offers a framework for addressing the impact of socio-political structures on health.

  16. Heat meets light on the nanoscale

    Directory of Open Access Journals (Sweden)

    Boriskina Svetlana V.

    2016-06-01

    Full Text Available We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. The topics covered range from the basics of the thermodynamics of light emission and absorption to applications in solar thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics.

  17. Capillary zone electrophoresis method to assay tipranavir capsules and identification of oxidation product and organic impurity by quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Lago, Matheus Wagner; Friedrich, Mariane Lago; Iop, Gabrielle Dineck; de Souza, Thiago Belarmino; de Azevedo Mello, Paola; Adams, Andréa Inês Horn

    2018-05-01

    Tipranavir (TPV) is one of the most recently developed protease inhibitors (PI) and it is specially recommended for treatment-experienced patients who are resistant to other PI drugs. In this work, a simple and friendly environmental CZE stability-indicating method to assay TPV capsules was developed and two TPV organic impurities were identified by high resolution mass spectrometry (HRMS). The optimized analytical conditions were: background electrolyte composed of sodium borate 50mM, pH 9.0 and 5% of methanol; voltage + 28kV; hydrodynamic injection of 5s (100mbar), detection wavelength 240nm, at 25°C. The separation was achieved in a fused silica capillary with 50µm × 40cm (inner diameter × effective length), using furosemide as internal standard. All the validation parameters were met and the method was specific, even in the presence of degradation products and impurities. Oxidation was indicated as the main degradation pathway among those evaluated in this study (acidic, alkaline, thermal, photolytic and oxidative) and it showed a second order degradation kinetic, under the conditions used in this study. The main oxidation product and an organic impurity detected in the standard were characterized by Q-TOF, and both of them correspond to oxidation products of TPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  19. Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: patient-related and procedural risk factors in the US Melody Valve Trial.

    Science.gov (United States)

    McElhinney, Doff B; Cheatham, John P; Jones, Thomas K; Lock, James E; Vincent, Julie A; Zahn, Evan M; Hellenbrand, William E

    2011-12-01

    Among patients undergoing transcatheter pulmonary valve (TPV) replacement with the Melody valve, risk factors for Melody stent fracture (MSF) and right ventricular outflow tract (RVOT) reintervention have not been well defined. From January 2007 to January 2010, 150 patients (median age, 19 years) underwent TPV implantation in the Melody valve Investigational Device Exemption trial. Existing conduit stents from a prior catheterization were present in 37 patients (25%, fractured in 12); 1 or more new prestents were placed at the TPV implant catheterization in 51 patients. During follow-up (median, 30 months), MSF was diagnosed in 39 patients. Freedom from a diagnosis of MSF was 77±4% at 14 months (after the 1-year evaluation window) and 60±9% at 39 months (3-year window). On multivariable analysis, implant within an existing stent, new prestent, or bioprosthetic valve (combined variable) was associated with longer freedom from MSF (Pbioprosthetic valve was associated with lower risk of MSF and reintervention.

  20. A PV temperature prediction model for BIPV configurations, comparison with other models and experimental results

    OpenAIRE

    Kaplanis, Socrates; Kaplani, Eleni

    2018-01-01

    The temperatures of c-Si and pc-Si BIPV configurations of different manufacturers were studied when operating under various environmental conditions. The BIPV configurations formed part of the roof in a Zero Energy Building, (ZEB), hanged over windows with varying inclination on a seasonal basis and finally two identical 0.5kWp PV generators were mounted on a terrace in two modes: fixed inclination and sun-tracking. The PV and ambient temperatures, Tpv and Ta, respectively, the intensity of t...

  1. Kinematic characteristics of tenodesis grasp in C6 quadriplegia.

    Science.gov (United States)

    Mateo, S; Revol, P; Fourtassi, M; Rossetti, Y; Collet, C; Rode, G

    2013-02-01

    Descriptive control case study. To analyze the kinematics of tenodesis grasp in participants with C6 quadriplegia and healthy control participants in a pointing task and two daily life tasks involving a whole hand grip (apple) or a lateral grip (floppy disk). France. Four complete participants with C6 quadriplegia were age matched with four healthy control participants. All participants were right-handed. The measured kinematic parameters were the movement time (MT), the peak velocity (PV), the time of PV (TPV) and the wrist angle in the sagittal plane at movement onset, at the TPV and at the movement end point. The participants with C6 quadriplegia had significantly longer MTs in both prehension tasks. No significant differences in TPV were found between the two groups. Unlike control participants, for both prehension tasks the wrist of participants with C6 quadriplegia was in a neutral position at movement onset, in flexion at the TPV, and in extension at the movement end point. Two main kinematic parameters characterize tenodesis grasp movements in C6 quadriplegics: wrist flexion during reaching and wrist extension during the grasping phase, and increased MT reflecting the time required to adjust the wrist's position to achieve the tenodesis grasp. These characteristics were observed for two different grips (whole hand and lateral grip). These results suggest sequential planning of reaching and tenodesis grasp, and should be taken into account for prehension rehabilitation in patients with quadriplegia.

  2. Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical

    International Nuclear Information System (INIS)

    Wu Qiu-Hua; Zhao Peng; Liu De-Sheng

    2016-01-01

    We investigate theoretically the spin caloritronic transport properties of a stable 1,3,5-triphenylverdazyl (TPV) radical sandwiched between Au electrodes through different connection fashions. Obvious spin Seebeck effect can be observed in the para-connection fashion. Furthermore, a pure spin current and a completely spin-polarized current can be realized by tuning the gate voltage. Furthermore, a 100% spin polarization without the need of gate voltage can be obtained in the meta-connection fashion. These results demonstrate that TPV radical is a promising material for spin caloritronic and spintronic applications. (paper)

  3. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  4. Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate

    International Nuclear Information System (INIS)

    Chang, Jui-Yung; Yang, Yue; Wang, Liping

    2016-01-01

    Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transfer across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate enhanced near-field radiative transfer between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanism is elucidated by the near-field surface plasmon coupling with fluctuational electrodynamics and dispersion relations. The effects of graphene chemical potential, emitter and receiver doping levels, and vacuum gap distance on the near-field coupling and radiative energy transfer are analyzed in detail. - Highlights: • Near-field radiative transfer between a metamaterial and a graphene-covered plate is studied. • Effective medium theory with uniaxial optics is employed to model nanohole metamaterials. • Enhancement by 2 orders is found between dissimilar materials with graphene coating. • Extraordinary coupling of the nanostructured emitter with graphene is elucidated. • Effects of doping level of silicon and graphene chemical potential are investigated.

  5. Non-invasive clinical parameters for the prediction of urodynamic bladder outlet obstruction: analysis using causal Bayesian networks.

    Directory of Open Access Journals (Sweden)

    Myong Kim

    Full Text Available To identify non-invasive clinical parameters to predict urodynamic bladder outlet obstruction (BOO in patients with benign prostatic hyperplasia (BPH using causal Bayesian networks (CBN.From October 2004 to August 2013, 1,381 eligible BPH patients with complete data were selected for analysis. The following clinical variables were considered: age, total prostate volume (TPV, transition zone volume (TZV, prostate specific antigen (PSA, maximum flow rate (Qmax, and post-void residual volume (PVR on uroflowmetry, and International Prostate Symptom Score (IPSS. Among these variables, the independent predictors of BOO were selected using the CBN model. The predictive performance of the CBN model using the selected variables was verified through a logistic regression (LR model with the same dataset.Mean age, TPV, and IPSS were 6.2 (±7.3, SD years, 48.5 (±25.9 ml, and 17.9 (±7.9, respectively. The mean BOO index was 35.1 (±25.2 and 477 patients (34.5% had urodynamic BOO (BOO index ≥40. By using the CBN model, we identified TPV, Qmax, and PVR as independent predictors of BOO. With these three variables, the BOO prediction accuracy was 73.5%. The LR model showed a similar accuracy (77.0%. However, the area under the receiver operating characteristic curve of the CBN model was statistically smaller than that of the LR model (0.772 vs. 0.798, p = 0.020.Our study demonstrated that TPV, Qmax, and PVR are independent predictors of urodynamic BOO.

  6. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    Science.gov (United States)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  7. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  8. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  9. Thermoplastic Elastomers From Chemically or Irradiation Activated Polyolefin Wastes and Ground Tyre Rubber

    International Nuclear Information System (INIS)

    Tolstov, A.M.; Grigoryeva, A.L.; Bardash, O.P.

    2005-01-01

    Thermoplastic elastomers (TPE) are known as materials with unique combination of elastomeric properties and thermo plasticity. Among the TPE of different type the polymer blends of thermoplastics and rubbers are the most commonly used. Recently a very effective technology of dynamic vulcanization of rubber component inside thermoplastic matrix has been developed. As a result of rubber vulcanization and dispersion inside thermoplastic the new type of TPE so-called thermoplastic dynamic vulcanizations (TPV) are obtained. In our work we have applied the technology of dynamic vulcanization for recycled components (PP, HDPE, GTR). It has appeared that such components are not mixed well and the resulting TPV have poor mechanical properties. To solve a problem of poor compatibility of the components used we carried out a pre-modification (functionalization) of the component surfaces by gamma-irradiation or by chemically or gamma-irradiation induced grafting of reactive monomers. Both the polyolefin (HDPE) and GTR were functionalized before mixing. The monomers were selected by such a way that being grafted to be able to react to each other in interface during the components blending. For example, we used maleic anhydride and acrylamide. The effect of better compatibility has appeared in higher tensile characteristics of TPV synthesized

  10. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2002-09-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report describes eleven investigations on various aspects of the system. Taken as a whole, they confirm the technical feasibility of this technology.

  11. Conjunction of Photovoltaic and Thermophotovoltaic Power Production in Spacecraft Power Systems

    Science.gov (United States)

    2015-09-01

    solar energy, having been converted by plants through photosynthesis to carbohydrates and cellulose, sometimes by animals into more carbohydrates and...the properties of materials specified in the device model that are either drawn from databases built into the software, databases that are closely...linked to the software—such as optical parameters drawn from the Sopra database —or that are specified by the user within the model itself [23]. When

  12. Sarcopenia Adversely Impacts Postoperative Complications Following Resection or Transplantation in Patients with Primary Liver Tumors

    Science.gov (United States)

    Valero, Vicente; Amini, Neda; Spolverato, Gaya; Weiss, Matthew J.; Hirose, Kenzo; Dagher, Nabil N.; Wolfgang, Christopher L.; Cameron, Andrew A.; Philosophe, Benjamin; Kamel, Ihab R.

    2015-01-01

    Background Sarcopenia is a surrogate marker of patient frailty that estimates the physiologic reserve of an individual patient. We sought to investigate the impact of sarcopenia on short- and long-term outcomes in patients having undergone surgical intervention for primary hepatic malignancies. Methods Ninety-six patients who underwent hepatic resection or liver transplantation for HCC or ICC at the John Hopkins Hospital between 2000 and 2013 met inclusion criteria. Sarcopenia was assessed by the measurement of total psoas major volume (TPV) and total psoas area (TPA). The impact of sarcopenia on perioperative complications and survival was assessed. Results Mean age was 61.9 years and most patients were men (61.4 %). Mean adjusted TPV was lower in women (23.3 cm3/m) versus men (34.9 cm3/m) (Psarcopenia. The incidence of a postoperative complication was 40.4 % among patients with sarcopenia versus 18.4 % among patients who did not have sarcopenia (P=0.01). Of note, all Clavien grade ≥3 complications (n=11, 23.4 %) occurred in the sarcopenic group. On multivariable analysis, the presence of sarcopenia was an independent predictive factor of postoperative complications (OR=3.06). Sarcopenia was not associated with long-term survival (HR=1.23; P=0.51). Conclusions Sarcopenia, as assessed by TPV, was an independent factor predictive of postoperative complications following surgical intervention for primary hepatic malignancies. PMID:25389056

  13. Impedance matched thin metamaterials make metals absorbing.

    Science.gov (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  14. Energy Converter with Inside Two, Three, and Five Connected H2/Air Swirling Combustor Chambers: Solar and Combustion Mode Investigations

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2016-06-01

    Full Text Available This work reports the performance of an energy converter characterized by an emitting parallelepiped element with inside two, three, or five swirling connected combustion chambers. In particular, the idea is to adopt the heat released by H2/air combustion, occurring in the connected swirling chambers, to heat up the emitting surfaces of the thermally-conductive emitting parallelepiped brick. The final goal consists in obtaining the highest emitting surface temperature and the highest power delivered to the ambient environment, with the simultaneous fulfillment of four design constraints: dimension of the emitting surface fixed to 30 × 30 mm2, solar mode thermal efficiency greater than 20%, emitting surface peak temperature T > 1000 K, and its relative ∆T < 100 K in the combustion mode operation. The connected swirling meso-combustion chambers, inside the converter, differ only in their diameters. Combustion simulations are carried out adopting 500 W of injected chemical power, stoichiometric conditions, and detailed chemistry. All provide high chemical efficiency, η > 99.9%, and high peak temperature, but the emitting surface ∆T is strongly sensitive to the geometrical configuration. The present work is related to the “EU-FP7-HRC-Power” project, aiming at developing micro-meso hybrid sources of power, compatible with a thermal/electrical conversion by thermo-photovoltaic cells.

  15. Therapeutic potential of and treatment with boceprevir/telaprevir-based triple-therapy in HIV/chronic hepatitis C co-infected patients in a real-world setting.

    Science.gov (United States)

    Mandorfer, Mattias; Payer, Berit A; Niederecker, Alexander; Lang, Gerold; Aichelburg, Maximilian C; Strassl, Robert; Boesecke, Christoph; Rieger, Armin; Trauner, Michael; Peck-Radosavljevic, Markus; Reiberger, Thomas

    2014-05-01

    The aim of this study was to assess the therapeutic potential of telaprevir (TPV)/boceprevir (BOC)-based triple-therapy in a complete cohort of HIV/chronic hepatitis C co-infected patients (HIV/HCV). Moreover, a case series of four HIV/HCV genotype (HCV-GT)1 patients with rapid virologic response (RVR), who received only 28 weeks of BOC-based triple-therapy (BOCW28), was reported. 290/440 HIV-positive patients with positive HCV serology had at least one visit during the past 2 years, 142/290 had target detectable HCV-RNA with 64% (82/142) carrying HCV-GT1. While 18 HIV/HCV-GT1 displayed contraindications, 45% (64/142) of HIV/HCV were eligible for triple-therapy. Insufficiently controlled HIV-infection despite combined antiretroviral therapy (cART) (HIV-RNA treatment uptake rates (39% (25/64)) during the first 2 years of triple-therapy availability suggest that its benefit in HIV/HCV co-infected patients might fall short of expectations. Modification of cART or TPV dose adjustment would have been necessary in 61% and 84% of HIV/HCV-GT1 on cART eligible for triple-therapy using TPV and BOC, respectively, suggesting that drug-drug interactions with cART complicate management in the majority of patients. All four BOCW28 patients achieved a sustained virologic response. Prospective studies are necessary to validate our observations on the shortening of treatment duration in HIV/HCV-GT1 with RVR.

  16. Vpliv kaizna na proizvodno linijo podjetja TPV d.d.

    OpenAIRE

    Gramc, Nina

    2013-01-01

    Domnevamo lahko, da je filozofija Kaizen eden od vzrokov in hkrati motivator za dolgoročno konkurenčno prednost podjetja. Koncept je definiran kot obsežen organizacijski proces, osredotočen na kontinuiteto izboljšav in načrtno vključevanje vsakega posameznika v organizaciji v iskanje izboljšav. Zato je lahko prav Kaizen eden ključnih pokazateljev, ki loči med uspehom enih in odpovedjo oziroma propadom drugih podjetij. Razmere, ki jih dandanes srečujemo v podjetju (razne napake, strojelomi...

  17. Thought and Practice - Vol 6, No 1 (2014)

    African Journals Online (AJOL)

    A Critique of Foucault's Conception and Predictions of the Author-Function · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. J Situma, 9-24. http://dx.doi.org/10.4314/tp.v6i1.3 ...

  18. Inter-Scan Reproducibility of Carotid Plaque Volume Measurements by 3-D Ultrasound

    DEFF Research Database (Denmark)

    Sandholt, Benjamin V; Collet-Billon, Antoine; Entrekin, Robert

    2018-01-01

    (PPV) measure centered on MPT. Total plaque volume (TPV), PPV from a 10-mm segment and MPT were measured using dedicated semi-automated software on 38 plaques from 26 patients. Inter-scan reproducibility was assessed using the t-test, Bland-Altman plots and Pearson's correlation coefficient....... There was a mean difference of 0.01 mm in MPT (limits of agreement: -0.45 to 0.42 mm, Pearson's correlation coefficient: 0.96). Both volume measurements exhibited high reproducibility, with PPV being superior (limits of agreement: -35.3 mm3to 33.5 mm3, Pearson's correlation coefficient: 0.96) to TPV (limits...... of agreement: -88.2 to 61.5 mm3, Pearson's correlation coefficient: 0.91). The good reproducibility revealed by the present results encourages future studies on establishing plaque quantification as part of cardiovascular risk assessment and for follow-up of disease progression over time....

  19. 76 FR 6826 - Certain Display Devices Including Digital Televisions and Monitors; Notice of Commission...

    Science.gov (United States)

    2011-02-08

    ... Commission instituted this investigation on April 21, 2010, based on a complaint filed by Sony Corporation of Japan (``Sony''). 75 FR 20860-1. The complaint, as amended and supplemented, alleges violations of... Corporation and Innolux Corporation (collectively ``CMI''); TPV Technology Limited; Top Victory Electronics...

  20. Development of a cloud-based system for remote monitoring of a PVT panel

    Science.gov (United States)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  1. Endodoncia regenerativa: utilización de fibrina rica en plaquetas autóloga en dientes permanentes vitales con patología pulpar. Revisión narrativa de la literatura*

    Directory of Open Access Journals (Sweden)

    Tatiana Ramírez Giraldo

    2014-01-01

    Full Text Available Actualmente una de las mayores controversias en el tratamiento de dientes permanentes con diagnóstico de pulpitis está en la decisión de realizar una Terapia Pulpar Vital (TPV o un tratamiento convencional de conductos. Diferentes estudios han reportado que se pueden obtener resultados previsibles mediante la realización de una TPV. El éxito del tratamiento dependerá de una adecuada comprensión de la  biología pulpar, un estricto protocolo de tratamiento y una adecuada selección del caso. Con este fin, diferentes materiales han sido sugeridos. Recientemente se ha utilizado la Fibrina Rica en Plaquetas, biomaterial que cumple con propiedades biológicas para lograr una mayor rapidez y adecuada cicatrizacion del tejido. Es necesario desarrollar tratamientos dirigidos a preservar la vitalidad de la pulpa, evitando recurrir como primera opción al tratamiento convencional de conductos, teniendo como objetivo conservar o regenerar el complejo dentino pulpar.

  2. Endodoncia regenerativa: utilización de fibrina rica en plaquetas autóloga en dientes permanentes vitales con patología pulpar. Revisión narrativa de la literatura*

    Directory of Open Access Journals (Sweden)

    Tatiana Ramírez Giraldo

    2014-07-01

    Full Text Available Actualmente una de las mayores controversias en el tratamiento de dientes permanentes con diagnóstico de pulpitis está en la decisión de realizar una Terapia Pulpar Vital (TPV o un tratamiento convencional de conductos. Diferentes estudios han reportado que se pueden obtener resultados previsibles mediante la realización de una TPV. El éxito del tratamiento dependerá de una adecuada comprensión de la  biología pulpar, un estricto protocolo de tratamiento y una adecuada selección del caso. Con este fin, diferentes materiales han sido sugeridos. Recientemente se ha utilizado la Fibrina Rica en Plaquetas, biomaterial que cumple con propiedades biológicas para lograr una mayor rapidez y adecuada cicatrizacion del tejido. Es necesario desarrollar tratamientos dirigidos a preservar la vitalidad de la pulpa, evitando recurrir como primera opción al tratamiento convencional de conductos, teniendo como objetivo conservar o regenerar el complejo dentino pulpar.

  3. MRI to predict prostate growth and development in children, adolescents and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jing; Liu, Huijia; Wen, Didi; Huang, Xufang; Ren, Fang; Huan, Yi [Fourth Military Medical University, Department of Radiology, Xijing Hospital, Xi' an City (China); Wang, He [Fourth Military Medical University, Department of Urology, Tangdu Hospital, Xi' an City (China)

    2014-08-06

    The purpose of this study was to investigate the use of MRI in predicting prostate growth and development. A total of 1,500 healthy male volunteers who underwent MRI of the pelvis were included in this prospective study. Subjects were divided into five groups according to age (group A, 2-5 years; group B, 6-10 years; group C, 11-15 years; group D, 16-20 years; group E, 21-25 years). Total prostate volume (TPV) as well as prostate central zone (CZ) and peripheral zone (PZ) were measured and evaluated on MRI. Data of the different groups were compared using variance analysis, Scheffe's method, Kruskal-Wallis H-test, and Pearson's correlation. Statistical significance was inferred at P < 0.05. In groups A and B, the prostates were barely visible. In group C, although TPV was measured, it was hard to distinguish CZ and PZ. In group D, 136 CZ and PZ were clearly visible. In group E, 377 CZ and PZ were clearly visible on T2-weighted imaging (T2WI). The median TPVs of groups A, B, C, D, and E were 0.00 cm{sup 3}, 0.05 cm{sup 3}, 2.83 cm{sup 3}, 8.32 cm{sup 3,} and 11.56 cm{sup 3}, respectively, and the median prostate development scores were 0.08, 0.69, 1.56, 2.38, and 2.74, respectively. Both TPVs and zonal anatomy scores varied significantly among the five groups (P = 0.000). TPV and zonal anatomy score increased with increasing age. MRI provides a reliable quantitative reference for prostate growth and development. (orig.)

  4. Impact of pannus formation on hemodynamic dysfunction of prosthetic aortic valve: pannus extent and its relationship to prosthetic valve motion and degree of stenosis.

    Science.gov (United States)

    Koo, Hyun Jung; Ha, Hojin; Kang, Joon-Won; Kim, Jeong A; Song, Jae-Kwan; Kim, Hwa Jung; Lim, Tae-Hwan; Yang, Dong Hyun

    2018-02-19

    Although pannus is an important cause of prosthetic valve dysfunction, the minimum pannus size that can induce hemodynamic dysfunction has not yet been determined. This study investigated the correlation between the limitation of motion (LOM) of the prosthetic valve and pannus extent and determined the pannus extent that could induce severe aortic stenosis. This study included 49 patients who underwent mechanical aortic valve replacement (AVR) and showed pannus on cardiac computed tomography (CT). Pannus width, ratio of pannus width to valve diameter, pannus area, effective orifice area, encroachment ratio by pannus, pannus involvement angle and percent LOM of mechanical valves were evaluated on CT. Transvalvular peak velocity (TPV) and transvalvular pressure gradient (TPG) were measured by transesophageal echocardiography to determine the degree of aortic stenosis. The relationship between percent LOM of the prosthetic valve and pannus extent and the cut-off of pannus extent required to induce severe aortic stenosis were evaluated. The mean interval between AVR and pannus formation was 11 years and was longer in patients with than without severe aortic stenosis (14.0 vs. 7.3 years). On CT, the percent LOM of the prosthetic valve was significantly associated with the extent of pannus only in patients with pannus involvement angle > 180° (r = 0.55-0.68, P Pannus width, effective orifice area, and encroachment ratio were significantly associated with increased TPV and TPG (r = 0.51-0.62, P Pannus width > 3.5 mm, pannus width/valve inner diameter > 0.15, and encroachment ratio > 0.14 were significantly associated with severe aortic stenosis (TPV > 4 m/s; mean TPG ≥ 35 mmHg), with c-indices of 0.74-079 (P pannus extent parameters are good indicators of significant hemodynamic changes with increased TPV and mean TPG.

  5. A novel rapid direct haemagglutination-inhibition assay for measurements of humoral immune response against non-haemagglutinating Fowlpox virus strains in vaccinated chickens.

    Science.gov (United States)

    Wambura, Philemon N; Mzula, Alexanda

    2017-10-01

    Fowlpox (FP) is a serious disease in chickens caused by Fowlpox virus (FPV). One method currently used to control FPV is vaccination followed by confirmation that antibody titres are protective using the indirect haemagglutination assay (IHA). The direct haemagglutination inhibition (HI) assay is not done because most FPV strains do not agglutinate chicken red blood cells (RBCs). A novel FPV strain TPV-1 which agglutinates chicken RBCs was discovered recently and enabled a direct HI assay to be conducted using homologous sera. This study is therefore aimed at assessing the direct HI assay using a recently discovered novel haemagglutinating FPV strain TPV-1 in chickens vaccinated with a commercial vaccine containing a non-haemagglutinating FPV.Chicks vaccinated with FPV at 1 day-old had antibody geometric mean titres (GMT) of log 2 3.7 at 7 days after vaccination and log 2 8.0 at 28 days after vaccination when tested in the direct HI. Chickens vaccinated at 6 weeks-old had antibody geometric mean titres (GMT) of log 2 5.0 at 7 days after vaccination and log 2 8.4 at 28 days after vaccination when tested in the direct HI. The GMT recorded 28 days after vaccination was slightly higher in chickens vaccinated at 6-week-old than in chicks vaccinated at one-day-old. However, this difference was not significant (P > 0.05). All vaccinated chickens showed "takes". No antibody response to FPV and "takes" were detected in unvaccinated chickens (GMT 0.05). These findings indicate that a simple and rapid direct HI assay using the FPV TPV-1 strain as antigen may be used to measure antibody levels in chickens vaccinated with non-haemagglutinating strains of FPV, and that the titres are comparable to those obtained by indirect IHA.

  6. Impact of Physical and Relational Peer Victimization on Depressive Cognitions in Children and Adolescents

    Science.gov (United States)

    Sinclair, Keneisha R.; Cole, David A.; Dukewich, Tammy; Felton, Julia; Weitlauf, Amy S.; Maxwell, Melissa A.; Tilghman-Osborne, Carlos; Jacky, Amy

    2012-01-01

    The purpose of this study is to find longitudinal evidence of the effect of targeted peer victimization (TPV) on depressive cognitions as a function of victimization type and gender. Prospective relations of physical and relational peer victimization to positive and negative self-cognitions were examined in a 1-year, 2-wave longitudinal study.…

  7. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Science.gov (United States)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter

    2017-07-01

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  8. Driving Roles of Tropospheric and Stratospheric Thermal Anomalies in Intensification and Persistence of the Arctic Superstorm in 2012

    Science.gov (United States)

    Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong

    2017-10-01

    Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.

  9. Photonic design for efficient solid state energy conversion

    Science.gov (United States)

    Agrawal, Mukul

    The efficiency of conversion between electrical and photonic energy in optoelectronic devices such as light-emitting diodes, photodetectors and solar cells is strongly affected by the photonic modes supported by the device structure. In this thesis, we show how tuning of the local photon density of states in subwavelength structures can be used to optimize device performance. The first part of the thesis is focused on organic light emitting diodes (OLEDs), a candidate technology for next-generation displays and solid-state lighting. An important unsolved problem in OLEDs is to ensure that a significant fraction of photons emitted by the organic emissive layer couple out of the device structure instead of remaining trapped in the device. It is shown using modeling and experiments that optimized non-periodic dielectric multilayer stacks can significantly increase the photon outcoupling while maintaining display quality brightness uniformity over the viewing cone. In the second part, we discuss the theoretical limits to broadband light harvesting in photovoltaic cells. First, it is shown that the extent to which one-dimensional optical cavities can be used to enhance light absorption over a broad spectral range is limited by the requirement that the cavity mirrors have a causal response. This result is used as a guide to design practical dielectric structures that enhance light harvesting in planar thin-film organic solar cells. Finally, we consider the enhancement of optical absorption in two- and three-dimensional structures in which incident light is scattered into quasi-trapped modes for more effective utilization of solar radiation. It is shown that there is an upper bound to the degree to which optical absorption can be enhanced that is identical to the limit found in the geometric optics regime. Rigorous optical simulations are used to show that an optical structure consisting of a two-dimensional array of inverted pyramids comes close to this limit. Before

  10. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Jensen, Just

    2013-01-01

    ) to 0.67 (LL) for BF, and from 0.13 (DD) to 0.19 (YY) for body conformation. Feeding behavior traits including DFI, number of visits to feeder per day (NVD), total time spent eating per day (TPD), feed intake rate (FR), feed intake per visit (FPV), and time spent eating per visit (TPV) were moderately...

  11. Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2015-01-01

    Purpose: Detection of subtle microcalcifications in digital breast tomosynthesis (DBT) is a challenging task because of the large, noisy DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. Most regularization methods depend on local gradient and may treat the ill-defined margins or subtle spiculations of masses and subtle microcalcifications as noise because of their small gradient. The authors developed a new multiscale bilateral filtering (MSBF) regularization method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Methods: The MSBF exploits a multiscale structure of DBT images to suppress noise and selectively enhance high frequency structures. At the end of each SART iteration, every DBT slice is decomposed into several frequency bands via Laplacian pyramid decomposition. No regularization is applied to the low frequency bands so that subtle edges of masses and structured background are preserved. Bilateral filtering is applied to the high frequency bands to enhance microcalcifications while suppressing noise. The regularized DBT images are used for updating in the next SART iteration. The new MSBF method was compared with the nonconvex total p-variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system was used for acquisition of projections at 21 angles in 3° increments over a ±30° range. The reconstruction image quality with no regularization (NR) and that with the two regularization methods were compared using the DBT scans of a heterogeneous breast phantom and several human subjects with masses and microcalcifications. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications and across the spiculations within their in-focus DBT slices were used as image quality measures. Results: The MSBF method reduced contouring artifacts

  12. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  13. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  14. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Directory of Open Access Journals (Sweden)

    Sun Xingshu

    2017-07-01

    Full Text Available Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  15. Synthesis of Zn-doped TiO{sub 2} microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Wang Lingling [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Liu Bingkun; Zhai Jiali; Fan Haimei; Wang Dejun; Lin Yanhong [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Xie Tengfeng, E-mail: xietf@jlu.edu.cn [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China)

    2011-07-15

    Highlights: > Near-monodisperse Zn-doped TiO{sub 2} microspheres have been synthesized. > The photovoltaic properties of the samples were examined by SPS, FISPS and TPV measurements. > Surface photovoltage results revealed Zn doping can promote charge transfer in TiO{sub 2} film electrode. - Abstract: Zn-doped TiO{sub 2} microspheres have been synthesized by introducing a trace amount of zinc nitrate hexahydrate to the reaction system. Scanning electron microscope (SEM), field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been utilized to characterize the samples. Both surface photovoltage spectroscopy (SPS) technique based on lock-in amplifier and transient photovoltage (TPV) measurement reveal that the slight doping of Zn can promote the separation of photo-generated charges as well as restrain the recombination due to the strong interface built-in electric field and the decreasing of surface trap states. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) based on Zn-doped TiO{sub 2} are significantly better, compared to that of a cell based on undoped TiO{sub 2}. The relation between the performance of DSSCs and their photovoltaic properties is also discussed.

  16. MRI to predict prostate growth and development in children, adolescents and young adults

    International Nuclear Information System (INIS)

    Ren, Jing; Liu, Huijia; Wen, Didi; Huang, Xufang; Ren, Fang; Huan, Yi; Wang, He

    2015-01-01

    The purpose of this study was to investigate the use of MRI in predicting prostate growth and development. A total of 1,500 healthy male volunteers who underwent MRI of the pelvis were included in this prospective study. Subjects were divided into five groups according to age (group A, 2-5 years; group B, 6-10 years; group C, 11-15 years; group D, 16-20 years; group E, 21-25 years). Total prostate volume (TPV) as well as prostate central zone (CZ) and peripheral zone (PZ) were measured and evaluated on MRI. Data of the different groups were compared using variance analysis, Scheffe's method, Kruskal-Wallis H-test, and Pearson's correlation. Statistical significance was inferred at P 3 , 0.05 cm 3 , 2.83 cm 3 , 8.32 cm 3, and 11.56 cm 3 , respectively, and the median prostate development scores were 0.08, 0.69, 1.56, 2.38, and 2.74, respectively. Both TPVs and zonal anatomy scores varied significantly among the five groups (P = 0.000). TPV and zonal anatomy score increased with increasing age. MRI provides a reliable quantitative reference for prostate growth and development. (orig.)

  17. Using an accelerometer for analyzing a reach-to-grasp movement after stroke

    Directory of Open Access Journals (Sweden)

    Stella Maris Michaelsen

    2013-12-01

    Full Text Available The purpose of this study was using an accelerometer to access the kinematics of reach-to-grasp movements in subjects with hemiparesis. Eight subjects (59.4 ± 6.9 years old with chronic hemiparesis (50.9 ± 25.8 months post-stroke participated in this study. Kinematic assessment was performed using a triaxial accelerometer (EMG Systems, Brazil attached to the subjects' forearm. Ten reach-to-grasp movements of grabbing a 500ml-size bottle were performed by the subjects with the paretic and the non-paretic upper limbs (ULs. The following space-temporal variables were calculated and used to compare the paretic and non-paretic ULs: movement time (MT, time to reach the peak velocity, absolute and relative (TPV and TPV%MT, relative deceleration duration (DEC%MT, time to peak acceleration (TPA and peak hand acceleration (PA. Movements were slower in the paretic UL with increased MT, TPA and DEC. The accelerometer allowed to identify of changes in reaching-to-grasp movements of subjects with hemiparesis. When complex systems are not available, accelerometers can be an alternative to measure UL movements.

  18. Swirling Combustor Energy Converter: H2/Air Simulations of Separated Chambers

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2015-09-01

    Full Text Available This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆T ≤ 100 K, in order to be compatible with a thermal/electrical conversion by thermo-photovoltaic cells. The authors investigate how to reach that goal adopting swirling chambers integrated in a thermally-conductive and emitting element. The converter consists of a small parallelepiped brick inside two separated swirling meso-combustion chambers, which heat up the parallelepiped, emitting material by the combustion of H2 and air at ambient pressure. The overall dimension is of the order of cm. Nine combustion simulations have been carried out assuming detailed chemistry, several length/diameter ratios (Z/D = 3, 5 and 11 and equivalence ratios (0.4, 0.7 and 1; all are at 400 W of injected chemical power. Among the most important results are the converter surfaces temperatures, the heat loads, provided to the environment, and the chemical efficiency. The high chemical efficiency, h > 99.9%, is due to the relatively long average gas residence time coupled with the fairly good mixing due to the swirl motion and the impinging air/fuel jets that provide heat and radicals to the flame.

  19. Relationship between Metabolic Syndrome and Predictors for Clinical Benign Prostatic Hyperplasia Progression and International Prostate Symptom Score in Patients with Moderate to Severe Lower Urinary Tract Symptoms.

    Science.gov (United States)

    Zhao, Sicong; Chen, Chao; Chen, Zongping; Xia, Ming; Tang, Jianchun; Shao, Sujun; Yan, Yong

    2016-06-28

    To investigate the association between metabolic syndrome (MetS) and the predictors of the progression of benign prostatic hyperplasia (BPH) and the corresponding frequency and severity of lower urinary tract symptoms (LUTS). A total of 530 men with moderate to severe International Prostate Symptom Score (IPSS) > 7 were recruited in the present study. The predictors for clinical BPH progression were defined as the total prostate volume (TPV) ≥ 31 cm3, prostate-specific antigen level (PSA) ≥ 1.6 ng/mL, maximal flow rate (Qmax) < 10.6 mL/s, postvoid residual urine volume (PVR) of ≥ 39 mL, and age 62 years or older. LUTS were defined according to the IPSS and MetS with the National Cholesterol Education Program-Adult Treatment Panel III guidelines. The Mantel-Haenszel extension test and the multivariate logistic regression analyses were used to statistically examine their relationships. The percentage of subjects with ≥ 1 predictors for clinical BPH progression, the percentage of subjects with a TPV ≥ 31 cm3, the percentage of subjects with a PVR ≥ 39 mL, and the percentage of subjects with a Qmax < 10.6 mL/s increased significantly with the increasing in the number of MetS components (all P < .05). After adjusting for age and serum testosterone level, the MetS were independently associated with the presence of TPV ≥ 31 cm3 (OR = 17.030, 95% CI: 7.495-38.692). Moreover, MetS was positively associated with the severity of LUTS (P < .001) and voiding scores (P < .001), and each individual MetS component appeared as an independent risk factor for severe LUTS (IPSS > 19, all P < .001). Our data have shown that the MetS significantly associated with the predictors for clinical BPH progression and the frequency and severity of LUTS, especially the voiding symptoms. The prevention of such modifiable factors by promotion of dietary changes and regular physical activity practice may be of great importance for public health. .

  20. Increased serum C-reactive protein level is associated with increased storage lower urinary tract symptoms in men with benign prostatic hyperplasia.

    Directory of Open Access Journals (Sweden)

    Shun-Fa Hung

    Full Text Available OBJECTIVE: Chronic inflammation is considered as one of the contributing mechanisms of lower urinary tract symptoms (LUTS. Serum C-reactive protein (CRP level is the widely used biomarker of inflammatory status. This study investigated the association between serum CRP level in men with benign prostatic hyperplasia (BPH and lower urinary tract symptoms (LUTS before and after medical treatment. METHODS: A total of 853 men with BPH and LUTS were enrolled. All patients completed the International Prostate Symptoms Score (IPSS questionnaire and urological examinations. The parameters of uroflowmetry (maximum flow rate, Qmax; voided volume, VV, post-void residual (PVR, total prostate volume (TPV and transition zone index (TZI, serum prostate specific antigen (PSA, and serum CRP levels were obtained. All patients were treated with alpha-blocker or antimuscarinic agent based on the IPSS voiding to storage subscore ratio (IPSS-V/S. Correlation analyses were performed between serum CRP levels with age, IPSS, TPV, TZI, Qmax, PVR, VV, PSA and between baseline and post treatment. RESULTS: The mean age was 66.9 ± 11.6 years old and the mean serum CRP levels were 0.31 ± 0.43 mg/dL. Univariate analyses revealed serum CRP levels were significantly associated with age (p<0.001, PSA levels (p = 0.005 and VV (p = 0.017, but not significantly associated with TPV (p = 0.854 or PVR (p = 0.068. CRP levels were positively associated with urgency (p<0.001 and nocturia (p<0.001 subscore of IPSS, total IPSS (p = 0.008 and storage IPSS (p<0.001 and negatively associated with IPSS- V/S ratio (p = 0.014. Multivariate analyses revealed that serum CRP levels were significantly associated with age (p = 0.004 and storage IPSS subscore p<0.001. Patients with IPSS-V/S<1 and treated with tolterodine for 3 months had significant decrease of CRP levels after treatment. CONCLUSION: Serum CRP levels are associated with storage LUTS and sensory bladder disorders, suggesting chronic

  1. Factors Influencing Nonabsolute Indications for Surgery in Patients With Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Hyperplasia: Analysis Using Causal Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Myong Kim

    2014-12-01

    Full Text Available Purpose To identify the factors affecting the surgical decisions of experienced physicians when treating patients with lower urinary tract symptoms that are suggestive of benign prostatic hyperplasia (LUTS/BPH. Methods Patients with LUTS/BPH treated by two physicians between October 2004 and August 2013 were included in this study. The causal Bayesian network (CBN model was used to analyze factors influencing the surgical decisions of physicians and the actual performance of surgery. The accuracies of the established CBN models were verified using linear regression (LR analysis. Results A total of 1,108 patients with LUTS/BPH were analyzed. The mean age and total prostate volume (TPV were 66.2 (±7.3, standard deviation years and 47.3 (±25.4 mL, respectively. Of the total 1,108 patients, 603 (54.4% were treated by physician A and 505 (45.6% were treated by physician B. Although surgery was recommended to 699 patients (63.1%, 589 (53.2% actually underwent surgery. Our CBN model showed that the TPV (R=0.432, treating physician (R=0.370, bladder outlet obstruction (BOO on urodynamic study (UDS (R=0.324, and International Prostate Symptom Score (IPSS question 3 (intermittency; R=0.141 were the factors directly influencing the surgical decision. The transition zone volume (R=0.396, treating physician (R=0.340, and BOO (R=0.300 directly affected the performance of surgery. Compared to the LR model, the area under the receiver operating characteristic curve of the CBN surgical decision model was slightly compromised (0.803 vs. 0.847, P<0.001, whereas that of the actual performance of surgery model was similar (0.801 vs. 0.820, P=0.063 to the LR model. Conclusions The TPV, treating physician, BOO on UDS, and the IPSS item of intermittency were factors that directly influenced decision-making in physicians treating patients with LUTS/BPH.

  2. Climatology of Tibetan Plateau Vortices and connection to upper-level flow in reanalysis data and a high-resolution model simulation

    Science.gov (United States)

    Curio, Julia; Schiemann, Reinhard; Hodges, Kevin; Turner, Andrew

    2017-04-01

    The Tibetan Plateau (TP) and surrounding high mountain ranges constitute an important forcing of the atmospheric circulation over Asia due to their height and extent. Therefore, the TP impacts weather and climate in downstream regions of East Asia, especially precipitation. Mesoscale Tibetan Plateau Vortices (TPVs) are known to be one of the major precipitation-bearing systems on the TP. They are mainly present at the 500 hPa level and have a vertical extent of 2-3 km while their horizontal scale is around 500 km. Their average lifetime is 18 hours. There are two types of TPVs: the largest number originating and staying on the TP, while a smaller number is able to move off the plateau to the east. The latter category can cause extreme precipitation events and severe flooding in large parts of eastern and southern China downstream of the TP, e.g. the Yangtze River valley. The first aim of the study is to identify and track TPVs in reanalysis data and to connect the TPV activity to the position and strength of the upper-level subtropical jet stream, and to determine favourable conditions for TPV development and maintenance. We identify and track TPVs using the TRACK algorithm developed by Hodges et al. (1994). Relative vorticity at the 500 hPa level from the ERA-Interim and NCEP-CFSR reanalyses are used as input data. TPVs are retained which originate on the TP and which persist for at least two days, since these are more likely to move off the TP to the East. The second aim is to identify TPVs in a high-resolution, present-day climate model simulation of the MetOffice Unified Model (UPSCALE, HadGEM3 GA3.0) to assess how well the model represents the TPV climatology and variability. We find that the reanalysis data sets and the model show similar results for the statistical measures of TPVs (genesis, track, and lysis density). The TPV genesis region is small and stable at a specific region of the TP throughout the year. The reason for this seems to be the convergence

  3. EDITORIAL: The 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS 2007)

    Science.gov (United States)

    Hebling, C.; Woias, P.

    2008-10-01

    field trying to commercialize micro energy harvesting devices, micro thermo-photovoltaics or micro fuel cells in order to make an impact on our daily life. It is interesting to see the remarkable scientific dynamics and innovations in micro energy technology that have been mirrored in the scope of consecutive PowerMEMS workshops. Micro fuel cells, micro combustion systems and heat engines have been on-going topics from the beginning due to their promising power densities and high power levels up to hundreds of watts. At the other end of the power scale micro energy harvesting has entered the stage, with a remarkable growth rate of presentations during the last three workshops, towering over all other topics with 33 presentations at PowerMEMS 2007. Another significant trend is the slow but steady emergence of electronic energy management as a future key technology. As Guest Editors of this special issue we would like to express our appreciation to the members of the Organizing Committee and the Technical Program Committee of PowerMEMS for their on-going efforts. By selecting the research fields mentioned above they formed the PowerMEMS 2007 program as a comprehensive digest of today's micro energy technology that is reflected, along with selected high quality publications, in this special issue of JMM. We hope that this work will stimulate further innovative research in micro energy technology and will help to mark the trail for further progress in this exciting field of MEMS science and technology.

  4. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  5. MRI to predict prostate growth and development in children, adolescents and young adults.

    Science.gov (United States)

    Ren, Jing; Liu, Huijia; Wang, He; Wen, Didi; Huang, Xufang; Ren, Fang; Huan, Yi

    2015-02-01

    The purpose of this study was to investigate the use of MRI in predicting prostate growth and development. A total of 1,500 healthy male volunteers who underwent MRI of the pelvis were included in this prospective study. Subjects were divided into five groups according to age (group A, 2-5 years; group B, 6-10 years; group C, 11-15 years; group D, 16-20 years; group E, 21-25 years). Total prostate volume (TPV) as well as prostate central zone (CZ) and peripheral zone (PZ) were measured and evaluated on MRI. Data of the different groups were compared using variance analysis, Scheffé's method, Kruskal-Wallis H-test, and Pearson's correlation. Statistical significance was inferred at P development scores were 0.08, 0.69, 1.56, 2.38, and 2.74, respectively. Both TPVs and zonal anatomy scores varied significantly among the five groups (P = 0.000). TPV and zonal anatomy score increased with increasing age. MRI provides a reliable quantitative reference for prostate growth and development. • When and how the prostate develops after birth remains unclear. • Prostate volume increases rapidly after the age of 10 years. • MRI provides a reliable objective and quantitative reference for prostate growth and development.

  6. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  7. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  9. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    Science.gov (United States)

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm-2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  10. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  11. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  12. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    KAUST Repository

    Farhat, Mohamed

    2016-01-28

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm–2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  13. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  14. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume.

    Science.gov (United States)

    Pejčić, Tomislav; Tosti, Tomislav; Tešić, Živoslav; Milković, Borivoj; Dragičević, Dejan; Kozomara, Milutin; Čekerevac, Milica; Džamić, Zoran

    2017-07-01

    There is still no consensus regarding intraprostatic androgen levels and the accumulation of androgens in the hyperplastic prostatic tissue. The current opinion is that intraprostatic dihydrotestosterone (DHT) concentrations are maintained but not elevated in benign prostatic hyperplasia (BPH), while there is no similar data concerning intraprostatic testosterone (T). Tissue T (tT) and tissue DHT (tDHT) concentration were determined in 93 patients scheduled for initial prostate biopsy. The criteria for biopsy were abnormal DRE and/or PSA > 4 ng/mL. Total prostate volume (TPV) was determined by transrectal ultrasound (TRUS). During TRUS- guided prostate biopsy, 10-12 samples were collected from the peripheral zone (PZ) and two additional samples were collected from the transition zone (TZ). The samples from the TZ were immediately frozen in liquid nitrogen at -70°C, and transported for tissue androgen determination, using liquid chromatography mass spectrometry (LC-MS). Pathological analysis revealed that prostate cancer (PCa) was present in 45 and absent in 48 patients. In the whole group, there were 42 men with small prostate (TPV prostate (TPV ≥ 31 mL). The overall average tT level was 0.79 ± 0.66 ng/g, while the average tDHT level was 10.27 ± 7.15 ng/g. There were no differences in tT and tDHT level in prostates with and without PCa. However, tT and tDHT levels were significantly higher in larger, than in smaller prostates (tT: 1.05 ± 0.75 and 0.46 ± 0.29 ng/g, and tDHT: 15.0 ± 6.09 and 4.51 ± 2.75 ng/g, respectively). There were strong correlations between tT and TPV (r = 0.71), and tDHT and TPV (r = 0.74). The present study confirmed that both T and DHT accumulated in the stroma of enlarged prostates; the degree of accumulation correlated with prostate volume. © 2017 Wiley Periodicals, Inc.

  15. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  16. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. NREL preprints for the photovoltaic specialists conference of IEEE twenty-five

    Energy Technology Data Exchange (ETDEWEB)

    Gwinner, D. [ed.

    1996-05-01

    This volume contains 40 papers prepared for presentation at the conference. Topics include: material properties, fabrication of solar cells, thermophotovoltaics, performance efficiency of photovoltaic cells, gettering procedures, market development, and photovoltaic power supplies for remote areas. Materials for solar cells include: Si, CuInSe{sub 2}, CuInGaSe{sub 2}, GaInP, GaAs, CdTe, and CdS. Papers have been processed separately for inclusion on the data base.

  18. Characterization of tobacco geminiviruses in the Old and New World.

    Science.gov (United States)

    Paximadis, M; Idris, A M; Torres-Jerez, I; Villarreal, A; Rey, M E; Brown, J K

    1999-01-01

    Biological differences and molecular variability between six phenotypically distinct tobacco-infecting geminivirus isolates from southern Africa (Zimbabwe) and Mexico were investigated. Host range studies conducted with tobacco virus isolates ZIM H from Zimbabwe and MEX 15 and MEX 32 from Mexico indicated all had narrow host ranges restricted to the Solanaceae. Alignment of coat protein gene (CP) and common region (CR) sequences obtained by PCR, and phylogenetic analysis of the CP sequences indicated Zimbabwean isolates were distantly related to those from Mexico and that geographically proximal isolates shared their closest affinities with Old and New World geminiviruses, respectively. Zimbabwean isolates formed a distinct cluster of closely related variants (> 98% sequence identity) of the same species, while MEX 15 segregated independently from MEX 32, the former constituting a distinct species among New World geminiviruses, and the latter being a variant, Texas pepper virus-Chiapas isolate (TPV-CPS) with 95% sequence identity to TPV-TAM. Results collectively indicated a geographic basis for phylogenetic relationships rather than a specific affiliation with tobacco as a natural host. MEX 15 is provisionally described as a new begomovirus, tobacco apical stunt virus, TbASV, whose closest CP relative is cabbage leaf curl virus, and ZIM isolates are provisionally designated as tobacco leaf curl virus, TbLCV-ZIM, a new Eastern Hemisphere begomovirus, which has as its closest relative, chayote mosaic virus from Nigeria.

  19. Módulo de sincronización entre Tienda Online Prestashop y Unicenta POS

    OpenAIRE

    Sánchez Corredor, Montserrat

    2015-01-01

    [CASTELLÀ] Este proyecto consiste en la creación de un sistema que permite sincronizar los productos, categorías y stock, entre dos programas que gestionan tiendas. Estos programas son el TPV (Terminal Punto de Venta) uniCenta y el CMS (Content Management System) eCommerce (Electronic Commerce) Prestashop. [ANGLÈS] This project involves the creation of a system that synchronizes products, categories and stock between two programs that manage shops. These programs are the POS (Point of Sal...

  20. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  1. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    Directory of Open Access Journals (Sweden)

    K. Naskar

    2014-04-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  2. Dynamic Simulation of a CPV/T System Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Carlo Renno

    2014-11-01

    Full Text Available The aim of this paper is the determination of a concentrating thermo-photovoltaic (CPV/T system dynamic model by means of the finite element method (FEM. The system consist of triple-junction InGaP/InGaAs/Ge (indium-gallium phosphide/indium-gallium-arsenide/germanium solar cells connected to a metal core printed circuit board (MCPCB placed on a coil circuit used for the thermal energy recovery. In particular, the main aim is to determine the fluid outlet temperature. It is evaluated corresponding both to a constant cell temperature equal to 120 °C, generally representing the maximum operating temperature, and to cell temperature values instantly variable with the direct normal irradiation (DNI. Hence, an accurate DNI analysis is realized adopting the Gordon-Reddy statistical model. Using an accurate electric model, the cell temperature and efficiency are determined together with the CPV/T module electric and thermal powers. Generally, the CPV system size is realized according to the user electric load demand and, then, it is important to evaluate the necessary minimum concentration ratio (Cmin, the limit of CPV system applicability, in order to determine the energy convenience profile. The fluid outlet temperature can be then obtained by the FEM analysis to verify if a CPV/T system can be used in solar heating and cooling applications.

  3. Monitor de Control Integral

    OpenAIRE

    García Corominas, Estefania

    2016-01-01

    Control Integral es un programa informático especializado en gestión de ferreterías, bricolaje, suministros industriales y centros de construcción. Este programa está formado por dos ejecutables: el primero de ellos es el de ‘Gestión' y el segundo es el llamado ‘Monitor'. El módulo de gestión se compone de diferentes características para satisfacer las necesidades de los clientes, actualización automática de precios de los artículos, terminal punto de venta (TPV) este permite la creación e im...

  4. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  5. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  6. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  7. Near-field radiation between graphene-covered carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M., E-mail: zhuomin.zhang@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-05-15

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  8. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  9. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  10. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E.

    2002-02-01

    A review is made about the consequences of the European directive on energy that entered into application in august 2000. It appears that most countries are opening their electricity and gas markets at a faster pace than required by the E.U. directive. European gas imports reached 480 Gm{sup 3} in 2000 and are expected to be over 700 Gm{sup 3} in 2015, so the question of the reliability of the gas suppliers has to be answered at the European level. The current time is marked by an increase of the complexity of the energy market that is due to different factors: 1) the delay in the implementation of European energy directives in France, 2) new arrangement is occurring in United-Kingdom in the energy sector, 3) the lack of a regulating authority in Germany, and 4) the difficulty of inter-connecting the different European energy networks. This transitory period may generate some economic imbalances and competition disturbances by allowing some enterprises to benefit from lower energy prices before others. (A.C.)

  11. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  12. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  13. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  14. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  15. Energy Fact Sheets - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  16. Hábitos alimentarios de individuos inmaduros de Ephemeroptera, Plecoptera y Trichoptera en la parte media de un río tropical de montaña

    Directory of Open Access Journals (Sweden)

    Cristian José Guzmán-Soto

    2014-04-01

    Full Text Available Los aspectos morfológicos y de comportamiento de insectos permiten agruparlos en gremios, y representar la dependencia de la comunidad lotica hacia recursos alimentarios particulares. Se evaluó los hábitos alimentarios de organismos inmaduros de Ephemeroptera, Plecoptera y Trichoptera (EPT de la parte media del río Gaira (Sierra Nevada de Santa Marta, Colombia, por medio del análisis del contenido estomacal. Se identificaron 13 géneros de EPT, pero solo a diez de éstos se les revisó el contenido estomacal, para un total de 100 organismos analizados. Se describieron seis ítems alimentarios: restos animales (RA, tejido de plantas vasculares (TPV, Microalgas (MA, hongos (HN, materia orgánica particulada gruesa (MOPG y materia orgánica particulada fina (MOPF. Baetodes se registró como Recolector-Raspador, ya que su principal ítem alimentario fue MOPF (46.6% seguido de HN (38.4%. Chimarra, Leptohyphes, Thraulodes y Lachlania, se categorizaron como Recolectores con proporciones promedio de 86.8%, 93.1%, 93.1% y 93.7% de MOPF, respectivamente. En los géneros Phylloicus, Leptonema y Smicridea se observó principalmente TPV y MOPG con 76.3%, 54,6% y 62.4% junto con proporciones de MOPF de 22.3%, 38.8% y 32.9%, respectivamente. Categorizado como Detritívoro, Phylloicus es funcionalmente clasificado como Fragmentador y Leptonema y Smicridea como Recolectores. Los géneros Anacroneuria y Atopsyche fueron clasificados como Depredadores y fueron los únicos taxones en los que se observó RA en altas proporciones (57.9% y 58.2%. Nuestro estudio sugiere que los organismos examinados ingieren una amplia variabilidad de recursos.

  17. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  18. Energy Mix between Renewable Energy and Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Yousry E. M. Abushady

    2015-08-01

    Full Text Available  Energy is the backbone of any development in any State. Renewable Energy (wind, solar and biomass appears currently as a major strategic energy source for a sustainable development particularly for developing or under developing societies. Use of renewable Energy will challenge major technological changes, by achieving energy production and saving. In particular by replacing fossil fuel, a significant cut of environmental impact and green house gas emission (GHG could be achieved. In addition Renewable Energy could offer a sustainable development for different societies particularly those in rural area (e.g. desert or isolated islands. The significant technical renewable energy tool developments in developed States could be much easier to be transferred to or copied in developing States .

  19. Energy consumption and energy prices

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    Data are presented on energy consumption and energy prices related to a number of OECD (Organisation for Economic Co-operation and Development) lands covering the period 1951-1990. The information sources are described and the development of energy consumption and prices in Denmark are illustrated in relation to these other countries. The energy intensity (the relation between energy consumption and the gross national product) is dealt with. Here it is possible to follow development during the whole post-war period. It is generally understood that Denmark saved large amounts of energy after 1973-74 but, taken over the whole post-war period, savings and decline in energy-gross national product relations are less dramatic compared to conditions in other OECD countries. Energy coefficients or elasticities show the relative rise in consumption compared to the relative rise in gross national product (growth rate). This is shown to be typically unstable and an eventual connection with the amount of energy price increase and/or the growth rate of the national economy is considered. Results of Granger causuality tests on energy consumption, national income and energy prices are presented. Effective energy prices were very low in Denmark up to 1970 when they suddenly began to increase. Since the oil crisis Denmark's energy consumption has fallen whereas the other countries have used rather more energy than before. Effective promotion of energy savings must be seen in relation to the fact that the 1970 basis level of energy consumption and intensity was unusually high. The high effective energy prices have also encouraged energy savings in Denmark. (AB)

  20. Development of solar thermophotovoltaic systems = Desarrollo de sistemas termofotovoltaicos solares

    OpenAIRE

    Datas Medina, Alejandro

    2011-01-01

    Esta tesis aborda el análisis, tanto teórico como experimental, de los sitemas termofotovoltaicos solares. En estos sistemas, un material (emisor) se calienta hasta la incandescencia mediante radiaci ón solar. La radiación térmica emitida por dicho material se dirige hacia una célula fotovoltaica, que convierte dicha radiación en electricidad. En esta configuración, se pueden emplear elementos de control espectral para lograr que los fotones no útiles para el proceso de conversión fotovoltáic...

  1. Advanced Radiative Emitters for Radioisotope Thermophotovoltaic Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS performance,...

  2. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  3. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  4. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  5. Energy audit and energy security

    Directory of Open Access Journals (Sweden)

    Beata Agnieszka Kulessa

    2013-07-01

    Full Text Available In article, we present the issue of energy security. This article to answer the questions concerning the future of energy in Poland. These activities are directly related to energy security and the reduction of CO2 emissions. One element of this plan is the introduction in the EU energy certification of buildings. The energy certificates in Poland launched on 01.01.2009 and implements the objectives adopted by the European Union and contribute to energy security, increasing energy efficiency in construction and environmental protection.

  6. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  7. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  8. Energy catastrophes and energy consumption

    International Nuclear Information System (INIS)

    Davis, G.

    1991-01-01

    The possibility of energy catastrophes in the production of energy serves to make estimation of the true social costs of energy production difficult. As a result, there is a distinct possibility that the private marginal cost curve of energy producers lies to the left or right of the true cost curve. If so, social welfare will not be maximized, and underconsumption or overconsumption of fuels will exist. The occurrence of energy catastrophes and observance of the market reaction to these occurrences indicates that overconsumption of energy has been the case in the past. Postulations as to market reactions to further energy catastrophes lead to the presumption that energy consumption levels remain above those that are socially optimal

  9. Clean energy, renewable energies; Energie propre, energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This document is the compilation of the 4 issues of the 'energie propre - energie renouvelables' newsletter published by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular facility or installation: the pico-hydraulic power plant of the Allos lake (Mercantour, French Alps), the 'Chute de la Guerche' and 'Chute de Chastillon' hydraulic power plant exploited by the Isola town; the pico-hydraulic power plant of the drinkable water network of Hameau des Agnielles village, the direct solar thermal floor. (J.S.)

  10. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com; Wang, Shun; Zheng, Haiwu; Gu, Yuzong [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2016-07-25

    ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V{sub 2}O{sub 5} can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

  11. Energy memento; Memento sur l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This memento about energy provides a series of tables with numerical data relative to energy resources and uses in France, in the European Union and in the rest of the world: energy consumption (primary energy, forecasting, CO{sub 2} emissions, energy independence, supplies, uses and imports, demand scenarios, energy savings..), power production (production, forecasting, loads, consumption, hydro-power, thermal equipment, exports), nuclear power (production, forecasting, reactors population, characteristics of French PWRs, uranium needs and fuel cycle), energy resources (renewable energies, fossil fuels and uranium reserves and production), economic data (gross national product, economic and energy indicators, prices and cost estimations), energy units and conversion factors (counting, calorific value of coals, production costs, energy units). (J.S.)

  12. Energy for sustainable development in Malaysia: Energy policy and alternative energy

    International Nuclear Information System (INIS)

    Rahman Mohamed, Abdul; Lee, Keat Teong

    2006-01-01

    Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia

  13. Solar energy in the context of energy use, energy transportation and energy storage.

    Science.gov (United States)

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low

  14. Energy audit for energy conservation

    International Nuclear Information System (INIS)

    Kanetkar, V.V.

    1996-01-01

    Energy audit is a very effective management tool for betterment of plant performance. The energy audit has a problem solving approach rather than a fault finding technique. The energy conservation is a rational use of energy. It has been the experience of the developed countries that energy is one issue which results into cost savings with relatively much less efforts/cost in comparison with other resources used in production, development and adoption of energy efficiency equipment and practices in most of production process has been the result of same technique. (author). 1 tab

  15. The energy; L'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In order to inform the public on the stakes bonded to the energy, the french government developed seven days of information on the energy. Visits of energy facilities (production, transport, storage, distribution) are proposed. Colloquium, exhibitions and debates on the energy questions are also offered to the public. This paper summarizes the activities and the concerned addresses of these energy days. (A.L.B.)

  16. Pocket dictionary of energy. Taschenlexikon Energie

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhaus, O; Boldt, G; Gonsior, B; Klein, K; Ziburske, H

    1981-01-01

    The pocket dictionary of energy does not only address the interested amateur but also students, pupils, teachers, scientists, technicians, and polititcians in like manner. The dictionary contains ca. 900 key-words from the fields of energy, consumption, energy types, energy deposits, energy programmes, energy industry, thermal insulation, governmental aids for energy conservation measures, heating cost calculation, energy utilization and energy conservation. The problems of the costs and efficiency of energy conversion, energy pricing, the promotion of research projects, the rentability of heating devices or insulation, the sanitation of old buildings, governmental aids by subsidies or tax abatement according to the modernization and energy conservation law etc., as well as the problem of pollution and the endangering of the environment by exhaust air, waste heat, ash and litter are emphasized particularly. Considering the space available the criterion for the selection of the key-words was not a scientific completeness but the provision of a fundamental understanding of the matter.

  17. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  18. Energy Trends 2012; Energie Trends 2012

    Energy Technology Data Exchange (ETDEWEB)

    Van Dril, T. (ed.); Gerdes, J. (ed.) [ECN Beleidsstudies, Petten (Netherlands); Marbus, S. (ed.) [Energie-Nederland, Den Haag (Netherlands); Boelhouwer, M. (ed.) [Netbeheer Nederland, Arnhem (Netherlands)

    2012-11-15

    In Energy Trends 2012, all figures and developments in the field of energy in the Netherlands are presented in conjunction. The book provides information on energy use by consumers and businesses, provides insight into the international energy trade, energy production and development of energy networks [Dutch] In Energie Trends 2012 staan alle cijfers en ontwikkelingen op het gebied van energie in Nederland in samenhang gepresenteerd. Het boek biedt informatie over energiegebruik door consumenten en bedrijven, geeft inzage in de internationale energiehandel en energieproductie en biedt inzicht in de ontwikkeling van de energienetten.

  19. The hydro energy; Energie hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This paper is a first approach of the hydro energy energy. It presents the principle and the applications of this energy source. It proposes recommendations on the sizing and the cost estimation of an installation and the environmental impacts of this energy. (A.L.B.)

  20. A facile room temperature route to ternary Cu{sub 7.2}S{sub 2}Se{sub 2} compounds and their photovoltaic properties based on elemental copper

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiamei [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Jia, Huimin, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Lei, Yan [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Liu, Songzi [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Gao, Yuanhao [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Hou, Hongwei [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Zheng, Zhi, E-mail: zzheng@xcu.edu.cn [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2017-06-01

    A one-pot synthesis of novel hierarchical flower-like Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystals was developed based on the direct metal surface elemental reaction (DMSER) method. This new room temperature synthesis is an economic and environmentally friendly soft chemical approach. The prepared Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystals uniformly cover the surface of the Cu substrates. The mechanism of formation was investigated by observing the materials produced from changing the reaction time, the molar ratio of Na{sub 2}S to elemental selenium, and the volume of solvent. The crystal structure, surface morphologies and light absorption properties were collected by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–visible spectroscopy. The results show that the as-prepared ternary nanocrystals are face-centered cubic and have an optical bandgap of 1.58 eV, which is ideal for potential solar cell applications. Transient photovoltage spectroscopy (TPV) was used to evaluate the photovoltaic performance of pure Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystalline powder as well as in-situ generated Cu{sub 7.2}S{sub 2}Se{sub 2}/ZnO heterojunctions. The current work offers a novel and simple approach for preparing ternary chalcogenide semiconductors for photoelectric and photocatalytic applications. - Highlights: • A one-pot synthesis of novel hierarchical flower-like Cu{sub 7.2}S{sub 2}Se{sub 2} was developed. • This work offers a facile way for prepare ternary chalcogenide at room temperature. • TPV was firstly used to evaluate the photovoltaic performance of Cu{sub 7.2}S{sub 2}Se{sub 2}.

  1. Damage Effects and Fractal Characteristics of Coal Pore Structure during Liquid CO2 Injection into a Coal Bed for E-CBM

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-05-01

    Full Text Available Pore structure has a significant influence on coal-bed methane (CBM enhancement. Injecting liquid CO2 into coal seams is an effective way to increase CBM recovery. However, there has been insufficient research regarding the damage effects and fractal characteristics of pore structure at low temperature induced by injecting liquid CO2 into coal samples. Therefore, the methods of low-pressure nitrogen adsorption-desorption (LP-N2-Ad and mercury intrusion porosimetry (MIP were used to investigate the damage effects and fractal characteristics of pore structure with full aperture as the specimens were frozen by liquid CO2. The adsorption isotherms revealed that the tested coal samples belonged to type B, indicating that they contained many bottle and narrow-slit shaped pores. The average pore diameter (APD; average growth rate of 18.20%, specific surface area (SSA; average growth rate of 7.38%, and total pore volume (TPV; average growth rate of 18.26% increased after the specimens were infiltrated by liquid CO2, which indicated the generation of new pores and the transformation of original pores. Fractal dimensions D1 (average of 2.58 and D2 (average of 2.90 of treated coal samples were both larger the raw coal (D1, average of 2.55 and D2, average of 2.87, which indicated that the treated specimens had more rough pore surfaces and complex internal pore structures than the raw coal samples. The seepage capacity was increased because D4 (average of 2.91 of the treated specimens was also higher than the raw specimens (D4, average of 2.86. The grey relational coefficient between the fractal dimension and pore structure parameters demonstrated that the SSA, APD, and porosity positively influenced the fractal features of the coal samples, whereas the TPV and permeability exerted negative influences.

  2. Energy modeling: nuclear energy as China's main energy after 2040

    International Nuclear Information System (INIS)

    Guo Xingqu

    1987-01-01

    According to the energy modeling and the strategic forecast of China's economic development and population, the energy demand in China in the coming century has been calculated yearly by computer simulation. It is shown by the calculation results that the primary energy consumption in 2050 will be 3.37-4.25 times as that of 2000. The fossil energy will still be the main energy during the early stage of 21st century, but it will be cut down rapidly since 2020s as its annual consumption is increased to 1.656-2.044 x 10 9 tce/a. Because the fossil fuel ressources in China are limited, more and more fossil fuel will be mainly turned to chemical products, and the environmental pollution will be serious if we still use the fossil as a main fuel widely. The amount of renewable energy will be increasing, but its share in the primary energy consumption will be cut down from 36% to about 20% during the first half of next century and then will maintain this portion. In this case, the nuclear energy will be developed rapidly during the early stage of next century and will become the main energy since 2040. The methodology of energy forecast has also been reviewed

  3. Future energy, exotic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dumon, R

    1974-01-01

    The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.

  4. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  5. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  6. Energy Consumption vs. Energy Requirement

    Science.gov (United States)

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  7. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  8. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  9. The renewable energies; Les energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The renewable energies are everywhere but also irregular. Thus they need savings in our energy consumptions. This document provides information, such as economics, capacity and implementation, on the following renewable energies: the wind power, the solar energy, the photovoltaic energy, the biogas, the geothermal energy, the hydroelectricity, the wood. It also presents a state of the art and examples of bio-climatic architecture. (A.L.B.)

  10. To understand the new world of energy - Energy saving and energy efficiency: the world of energy 2.0

    International Nuclear Information System (INIS)

    Maestroni, Myriam; Chevalier, J.M.; Derdevet, Michel

    2013-01-01

    This bibliographical note contains the table of contents and a brief presentation of a book which proposes a general overview of the world of modern energy, focuses on the main associated political and climatic stakes and challenges. It also addresses the crucial issue of energy efficiency and energy savings which are the pillars of the current energy transition. The chapters address the world energy stakes and challenges, the emergence of a new energetic paradigm, the issues of energy efficiency and energy savings, the main sources of energy savings to be exploited and valorised, the situation in Europe and in the World regarding energy efficiency, the relationship between energy transition and local territories, the necessary continuous innovation

  11. Energy-Water Nexus | Energy Analysis | NREL

    Science.gov (United States)

    Nexus Energy-Water Nexus Water is required to produce energy. Energy is required to pump, treat , and transport water. The energy-water nexus examines the interactions between these two inextricably linked sectors. A cartoon showing the nexus of water and energy using red and blue arrows to indicate the

  12. Dutch Energy Investment Allowance (EIA). Energy and Companies. Energy List for 2007; Energie-Investeringsaftrek. Energie en Bedrijven. Energielijst 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The EIA scheme (Energy Investment Allowance) offers a fiscal advantage when investing in energy-saving company assets and sustainable energy. In addition to the usual depreciation rate, 44% of the investment costs of these assets are deductible from the fiscal profit. The Dutch government uses the EIA scheme to promote a sustainable energy management that, in the long term, results in clean, available and affordable energy. Section 1 of this brochure lists the changes compared to 2006. Section 2 explains how the EIA scheme works. Section 3 explains how to apply for the allowance. Section 4 provides additional information concerning the Energy List. Section 5 includes an overview, with descriptions and examples, of energy investments (Energy List). Section 6 explains how to submit a proposal for additions or changes to the scheme for 2008, compared to 2007. Section 7 contains an application form for EIA, along with an authorisation form. [Dutch] De Energie-investeringsaftrek (EIA) biedt ondernemers een belastingvoordeel als er wordt geinvesteerd in energiebesparende bedrijfsmiddelen en duurzame energie. Naast de gebruikelijke afschrijving is 44% van de investeringskosten van deze bedrijfsmiddelen aftrekbaar van de fiscale winst. In deel 1 van deze brochure vindt u de wijzigingen ten opzichte van het jaar 2006. In deel 2 treft u een uitleg aan over de werking van de EIA. In deel 3 leest u hoe u gebruik kunt maken van deze regeling. In deel 4 staat de toelichting op de energielijst. In deel 5 is een overzicht opgenomen met omschrijvingen en voorbeelden van energie-investeringen, de zogenoemde Energielijst. In deel 6 is aangegeven hoe u een voorstel kunt doen om de Energielijst van 2007 aan te vullen of te wijzigen voor 2008. Het meldingsformulier om EIA aan te vragen en het machtigingsformulier zijn opgenomen bij deel 7.

  13. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  14. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  15. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  16. Energy memento; Memento sur l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This memento about energy provides a series of tables with numerical data relative to energy resources and uses in France, in the European Union and in the rest of the world: energy consumption (primary energy, forecasting, CO{sub 2} emissions, energy independence, supplies, uses and imports, demand scenarios, energy savings..), power production (production, forecasting, loads, consumption, hydro-power, thermal equipment, exports), nuclear power (production, forecasting, reactors population, characteristics of French PWRs, uranium needs and fuel cycle), energy resources (renewable energies, fossil fuels and uranium reserves and production), economic data (gross national product, economic and energy indicators, prices and cost estimations), energy units and conversion factors (counting, calorific value of coals, production costs, energy units). (J.S.)

  17. Energy awareness luncheon and energy seminar

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-23

    A separate abstract was prepared for each of the following: the luncheon address, energy-growth-freedom by Kenneth A. Randall; the keynote commentary, by F.S. Patton, program chairman; and four current-awareness papers on the future of oil and gas, coal, nuclear energy, and solar energy. In addition, in a section, Speaking of Energy, very brief statements by eight professional engineers on the energy challenge are included. Also, the NSPE position paper on energy policy is included.

  18. Architecture and energy; Arkitektur og energi

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R.; Grupe Larsen, V.; Lauring, M.; Christensen, Morten

    2006-07-01

    The aim of this book is to illustrate the interaction between architecture and energy in an overall perspective starting from the new energy requirements. Architects make a lot of form related outlines early in the design process, and these have significant consequences for the energy consumption. Furthermore, the new energy requirements start from an overall evaluation, during which the architectural form is of decisive importance to minimization of the energy consumption. The book focuses on four themes: a) day lighting, which plays a decisive part in relation to our health and wellness inside buildings, b) solar heating; passive solar heating has traditionally been playing an important part in low-energy architecture, c) rough house; choice of materials can both increase and decrease buildings' energy consumption, and d) technology; modern buildings use a number of energy demanding installations, therefore the interaction between technology and energy is examined. (BA)

  19. Energy in Croatia 2009, Annual Energy Report

    International Nuclear Information System (INIS)

    2010-01-01

    With the eighteenth edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiancy index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2008 and 2009, made following the EUROSTAT and IEA methodologies. In 2009 total energy demand in Croatia was 1.6 percent lower than the year before. At the same time, gross domestic product fell by 5.8 percent, which as a result gave a 4.4 percent higher level of energy intensity in total energy consumption. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was 6.8 percent higher. The primary energy production in 2009 was 7.1 percent higher form the previous year. Also, due to favorable hydrological situation the hydropower utilization grew by 31 percent. The energy from renewable sources increased by 29.8 percent and the energy from fuel wood increased by 5.6 percent. The production of crude oil in 2009 decreased by 6

  20. Energy in Croatia 2011, Annual Energy Report

    International Nuclear Information System (INIS)

    2012-01-01

    With the twentieth edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2010 and 2011, made following the EUROSTAT and IEA methodologies. In 2011 total primary energy supply in Croatia was 6.8 percent lower than the year before. At the same time, gross domestic product slightly decreased by 0.01 percent, which resulted in lowering energy intensity of total energy consumption by a 6.8 percent. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was only 1.2 percent higher. The primary energy production in 2011 decreased by 18 percent from the previous year. Also, due to unfavorable hydrological situation the hydropower utilization was as much as 46.6 percent lower than in 2010. The energy from renewable sources increased by 13.3 percent and the energy from fuel wood, ondustrial waste wood, energy

  1. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  2. The Energy Factory; EnergieFabriek

    Energy Technology Data Exchange (ETDEWEB)

    Van den Boomen, M.; Van den Dungen, G.J.; Elias, T.; Jansen, M. [Universiteit van Amsterdam UvA, Amsterdam (Netherlands)

    2009-05-15

    The Energy Factory is a collaboration of 26 Dutch local water boards in which options for energy saving and energy production are examined. According to the authors, the initiative of the Energy Factory will lead to a reframing of the role of the water boards. Moreover, they explain how the PPP concept (People, Planet, Profit) may act as platform for negotiations between actors who are involved in the Energy Factory. In addition, the PPP concept is used to demonstrate that the Energy Factory will lead to larger social involvement, social entrepreneurship and growing profits [Dutch] De Energiefabriek is een samenwerkingsverband van 26 waterschappen in Nederland waarin wordt gezocht naar mogelijkheden om energie te besparen en zelf energie te produceren. Volgens de auteurs van deze notitie leidt het initiatief van de Energiefabriek tot een reframing van de rol van waterschappen. Daarnaast leggen ze uit hoe het PPP-concept (People, Profit, Planet) kan fungeren als platform voor onderhandelingen tussen de actoren die betrokken zijn bij de Energiefabriek. Verder wordt met het PPP-concept aangetoond dat de Energiefabriek leidt tot ruimere maatschappelijke betrokkenheid, maatschappelijk ondernemen en winstvergroting.

  3. The Energy Crisis and Solar Energy

    Science.gov (United States)

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  4. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  5. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  6. Energy in Croatia 2012, Annual Energy Report

    International Nuclear Information System (INIS)

    2013-01-01

    With the twenty-first edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2011 and 2012, made following the EUROSTAT and IEA methodologies. In 2012 total energy demand in Croatia was 4.7 percent lower than the year before. At the same time, gross domestic product fell by 2 percent, which resulted in a decrease in a total primary energy supply intensity by 2.8 percent. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was 6.9 percent higher. The primary energy production in 2012 decreased by 5.6 compared to the previous year. Also, due to hydrological situation the hydropower utilization grew by 6.7 percent. The energy from renewable sources increased by 29.8 percent and the energy from fuel wood increased by 5.6 percent. The production of crude oil in 2012 decreased by 9.7 percent and of natural

  7. French people, energy transition, and energy savings. IFOP for Energie Perspective

    International Nuclear Information System (INIS)

    Fourquet, Jerome; Chasles-Parot, Marion

    2014-10-01

    After a presentation of the adopted methodology, this report presents under the form of tables, and comments the results of a survey performed on the perception and relationship French people have on and with energy transition and energy savings. Different aspects have been addressed and assessed by this survey: confidence in local authorities, recognition of energy transition, sensitivity of the issue of energy transition, an example of a local authority communication about energy issues, notoriety of subsidies and primes awarded by the local authority for energy-related works, assessment of well-being in housing, housing occupation status, intention to perform energy-related renovation works in the housing, choice between a large national group or a local company to perform these works

  8. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  9. Western Energy Corridor -- Energy Resource Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  10. Western Energy Corridor -- Energy Resource Report

    International Nuclear Information System (INIS)

    Roberts, Leslie; Hagood, Michael

    2011-01-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  11. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  12. Energy in Croatia 2007, Annual Energy Report

    International Nuclear Information System (INIS)

    2008-01-01

    With a great deal of pleasure we present the sixteenth edition of the review Energy in Croatia. With this Review the Ministry of Economy, Labor and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiency indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiency trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2006 and 2007, made following the EUROSTAT and IEA methodologies. Total annual energy consumption in Croatia in 2007 increased by 1.5 percent from the previous year. At the same time gross domestic product increased by 5.6 percent, which resulted in a continuing energy intensity reduction, by 3.8 percent. In relation the European Union (EU 27), energy intensity in Croatia was 16.5 percent above the European average. In 2007 the Croatian production of primary energy decreased by 6.4 percent. The production decrease was recorded in most of primary energy forms. The only energy forms with growing production in 2007 were natural gas production and energy from renewable sources. Due to unfavorable hydrology in 2007, hydro power utilization decreased by 27.4 percent

  13. Energy in 1996; L`energie en 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Six charts are presented and discussed concerning energy utilization in France during the 1970-1996 period: national energy bill, energy intensity ratios, imported crude oil costs, energy-induced carbon dioxide emissions, operating ability ratios of EDF nuclear plants, France`s energy independence ratios. 1996 has seen an strong increase (+31%) in the energy bill, reaching 77 billions Francs, combining an increase in energy consumption and dollar exchange rate and a decline in energy conservation; carbon dioxide emission are taking up again after a strong decrease in the 80`s

  14. Pocket dictionary of energy. BI-Taschenlexikon Energie

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, W

    1981-01-01

    This dictionary explains all important concepts of the field of energy conversion, energy use, energy sources, energy transfer, and energy distribution. The explanations are given in popular form so as to be generally intelligible.

  15. The wind energy, a clean and renewable energy; L'energie eolienne, une energie propre et renouvelable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Facing the context of greenhouse gases reduction, the France began a national program of fight against the climatic change, in which the development of the renewable energies plays a major part. Among the renewable energy sources, the wind energy is the only one which is cheap and easily used. After a presentation of the leader of the wind energy in Europe (Germany, Spain and Denmark) and the position of the France, the document details the economical and environmental advantages of the wind energy, as the public opinion concerning this energy source. (A.L.B.)

  16. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  17. Energy supply and energy saving in Ukraine

    Directory of Open Access Journals (Sweden)

    V.M. Ilchenko

    2015-09-01

    Full Text Available The article examines the main problems and solutions of energy saving and energy supply in Ukraine. Low energy efficiency has become one of the main factors of the crisis in the Ukrainian economy. The most relevant scientific and methodical approaches to assessment of the level of energy consumption and saving are indicated. The comparative analysis of annual energy use has been made. A potential to solve energy supply problems is strongly correlated with the ability to ensure the innovative development of economy for efficient and economical use of existing and imported energy resources. The ways for reducing of energy resource consumption have been suggested. Creation of technological conditions for the use of alternative energy sources is considered to be rational also. The development of renewable sources of energy (alternative and renewable energy sources will provide a significant effect in reducing the use of traditional energy sources, harmful emissions and greenhouse gas. Under these conditions, increasing of energy efficiency of economy and its competitiveness can be real. Improvement of environmental and social conditions of citizens of the country will mark a positive step towards the EU, and also will cancel some problems of the future generation.

  18. Effect of energy taxes on energy consumption

    International Nuclear Information System (INIS)

    Johnsen, T.A.

    1991-01-01

    The energy consumption and taxation in Norway is described in addition to some of the consequences of this taxation on the energy market. Modelling of energy demand is dealt with. It is concluded that the influence of energy taxation on energy consumption is dependent on market conditions for individual energy products. This thesis is elaborated. (AB)

  19. Energy Information Augmented Community-Based Energy Reduction

    Directory of Open Access Journals (Sweden)

    Mark Rembert

    2012-06-01

    Full Text Available More than one-half of all U.S. states have instituted energy efficiency mandates requiring utilities to reduce energy use. To achieve these goals, utilities have been permitted rate structures to help them incentivize energy reduction projects. This strategy is proving to be only modestly successful in stemming energy consumption growth. By the same token, community energy reduction programs have achieved moderate to very significant energy reduction. The research described here offers an important tool to strengthen the community energy reduction efforts—by providing such efforts energy information tailored to the energy use patterns of each building occupant. The information provided most importantly helps each individual energy customer understand their potential for energy savings and what reduction measures are most important to them. This information can be leveraged by the leading community organization to prompt greater action in its community. A number of case studies of this model are shown. Early results are promising.

  20. Energy in Croatia 2004, Annual Energy Report

    International Nuclear Information System (INIS)

    2005-11-01

    Report represents a continuous information source for both national and international public on relations and trends in the Croatian energy system. This edition brings certain changes in the energy topics' outline and broader scope of information compared to the previous editions. However, the representative features of the Croatian energy sector, related to supply and demand of energy at all levels, kept the familiar outlook of presentation.Besides the detailed analysis of energy trends, this edition provides numerous information on capacity, reserves and prices of energy as well as individual energy sources' balances - crude oil and oil derivates, natural gas, electricity, heat, coal and renewable energy sources. In addition, Croatian basic and economic and financial indicators, emission of air pollutants plus basic energy efficiency indicators were presented in order to give better understanding of the Croatian energy sector environment. Finally, there is a special novelty of representing energy balances of the Republic of Croatia made in the compliance with EUROSTAT and IEA methodology for years 2003 and 2004. Total primary energy supply in the Republic of Croatia in 2004 was 4.1 percent higher compared to the previous year. The gross domestic product increased by 3.8 percent over the same period. This means that energy intensity, primary energy supply per unit of gross domestic product, increased by 0.3 percent. Compared to the European Union average Croatian energy intensity was approximately 24 percent higher. Total primary energy production, on the other hand, increased by 11.2 percent due to extremely favourable hydrological conditions. The raise i n hydropower by 48.5 percent improved Croatian primary energy self-supply to 49.6 percent. In the structure of total primary energy supply for 2004, the losses of transmission and distribution of energy were reduced only while the rest of the categories of energy consumption increased. The 3.3 percent increase

  1. Energy consumption: energy consumption in mainland Norway

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-25

    The purpose of this report is to describe trends in energy consumption in mainland Norway, with an emphasis on key trends within the largest consumer groups. We also explain common terms and concepts in the field of energy consumption. Finally, we look at forecasts for future energy consumption, produced by bodies outside NVE. Total final energy consumption in mainland Norway in 2009 was 207 TWh. The most important end-user groups are households, service industries, manufacturing industry and transport. In addition, the energy sector in mainland Norway consumed 15 TWh. Energy consumed in the energy sector is not considered as final consumption, as the energy is used to produce new energy products. The long-term trend in energy consumption in mainland Norway is that fuel in the transport sector and electricity for the energy sector increases, while energy consumption in other sectors flattens out. The main reason for an increased use of fuel in the transport sector is the rise in the number of motorised machinery and vehicles in mainland Norway. This has caused a rise in gasoline and diesel consumption of 75 per cent since 1976. The petroleum sector is the largest consumer of energy within the energy sector in mainland Norway, and electricity from onshore to platforms in the North Sea and to new shore side installations has led to a rise in electricity consumption from 1 TWh in 1995 to 5 TWh in 2009. The energy consumption in households showed flat trend from 1996 to 2009, after many years of growth. The main reasons are a warmer climate, higher energy prices, the use of heats pumps and more energy-efficient buildings. In the service industries, the growth in energy consumptions has slightly decreased since the late 1990s, for much the same reasons as for households. In manufacturing industries the energy consumption have flatten out mainly due to the closure of energy-intensive businesses and the establishment of new more energy-efficient businesses. Electricity is

  2. Domestic energy use and householders' energy behaviour

    International Nuclear Information System (INIS)

    Yohanis, Yigzaw Goshu

    2012-01-01

    This paper discusses domestic energy use and energy behaviour. It shows some improvement in domestic energy consumption and adoption of good energy practice. The survey conducted indicated that 35% of homes could improve their energy efficiency by improved tank insulation. In the last 5 years condensing boilers have been installed only in 3% of homes, indicating that householders are unaware of their advantages. Although 88% of surveyed homes had purchased a major appliance in the last 2 years, only 16% had any idea of the energy rating of their new appliances. Use of energy saving light bulbs is predominant in kitchens compared to other rooms. 70–80% of householders undertook some kind of day-to-day energy efficiency measures. 20–35% of householders would like to invest in energy-saving measures but found cost to be a key barrier. Approximately 84% of those surveyed were unaware of the energy rating of their household appliances. Price and brand were the most important factors determining the purchase of a new appliance. Significant energy-saving could be achieved by providing appropriate information to the general public regarding temperature control, efficiency of appliances and energy-saving heating systems. - Highlights: ▶ Good practice in household energy use is being adopted but actual use is rising. ▶ Cost is dominant in energy related decisions purchasing of household appliances. ▶ Energy behaviour is improving but level of awareness needs more work.

  3. Energy in Croatia 2003. Annual Energy Report

    International Nuclear Information System (INIS)

    2004-11-01

    Reports have kept domestic and international audience continuously informed about the latest relations and developments in the Croatian energy system. Annual report presents all characteristic indicators of the Croatian energy system in 2003, outlines their development over a longer past period, and suggests a future course of development of basic energy system indicators. Total primary energy supply in the Republic of Croatia in 2003 was 5.2 percent higher compared to the previous year. The gross domestic product increased by 4.3 percent over the same period. This means that energy intensity, primary energy supply per unit of gross domestic product, increased by 0.9 percent. Compared to the european Union average Croatian energy intensity was approximately 32 percent higher. Total primary energy production, on the other hand, decreased by 1.1 percent compared to 2002. This means that primary energy self-supply, which fell to 46.4 percent, reached its lowest level to-date in the observed period. The remaining energy needs were met by imports, which increased by 1.7 percent. In the structure of total primary energy supply, decrease has been observed only in energy conversion losses, while all other categories increased. Final energy demand increased by 6.7 percent in 2003, with the levels recorded in different sectors ranging from 2.5 percent in industry to 7.5 and 8 percent in transport and other sectors, respectively. In terms of final energy demand, an increase has been recorded in all energy forms except natural gas, whose consumption showed stagnation. This is due to lower consumption in the energy transformation sector and a significant 9.2 percent increase in its final energy demand. A continuous increase in electricity consumption - which reached 4.8 percent in the observed period - is worth nothing. Energy forms which recorded highest consumption increase levels in 2003 are coal (16 percent) and diesel fuel (15 percent). In contrast to the fast increase in

  4. Studies on energy system for an energy-saving society; Sho energy gata shakai ni okeru energy system kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The system to which new energy technology and energy saving technology were introduced was constructed for case studies of urban areas including core cities and the peripheral areas, and the quantitative analysis was conducted on environmental effects, etc. In the energy supply system model, the following element technologies were all considered: cogeneration system, sewage water heat, river water heat, the photovoltaic power generation, energy storage/heat storage/cold heat storage, adsorption type refrigerator, etc. Also considered were power interchange between clusters, system power buying/power selling, heat interchange or no heat interchange, etc. As a result, it was found that when constructing the energy system which synthetically takes into account thermoelectric ratios, rates of simultaneous loads, ratios of daytime/nighttime in the energy supply and demand in the urban area, the energy saving effect multiplicatively increases, and the energy system using cogeneration and unused energy such as refuse and sewage in the urban area and river water brings an energy saving effect of 32% especially in the concentrated cluster. 83 figs., 45 tabs.

  5. Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics

    International Nuclear Information System (INIS)

    Sütterlin, Bernadette; Brunner, Thomas A.; Siegrist, Michael

    2011-01-01

    The present paper aims to identify and describe different types of energy consumers in a more comprehensive way than previous segmentation studies using cluster analysis. Energy consumers were segmented based on their energy-related behavioral characteristics. In addition to purchase- and curtailment-related energy-saving behavior, consumer classification was also based on acceptance of policy measures and energy-related psychosocial factors, so the used behavioral segmentation base was more comprehensive compared to other studies. Furthermore, differentiation between the energy-saving purchase of daily products, such as food, and of energy efficient appliances allowed a more differentiated characterization of the energy consumer segments. The cluster analysis revealed six energy consumer segments: the idealistic, the selfless inconsequent, the thrifty, the materialistic, the convenience-oriented indifferent, and the problem-aware well-being-oriented energy consumer. Findings emphasize that using a broader and more distinct behavioral base is crucial for an adequate and differentiated description of energy consumer types. The paper concludes by highlighting the most promising energy consumer segments and discussing possible segment-specific marketing and policy strategies. - Highlights: ► By applying a cluster-analytic approach, new energy consumer segments are identified. ► A comprehensive, differentiated description of the different energy consumer types is provided. ► A distinction between purchase of daily products and energy efficient appliances is essential. ► Behavioral variables are a more suitable base for segmentation than general characteristics.

  6. Second Strategic Energy Review. Securing our Energy Future

    International Nuclear Information System (INIS)

    2008-11-01

    Europe has agreed a forward-looking political agenda to achieve its core energy objectives of sustainability, competitiveness and security of supply. This agenda means substantial change in Europe's energy system over the next years, with public authorities, energy regulators, infrastructure operators, the energy industry and citizens all actively involved. It means choices and investments during a time of much change in global energy markets and international relations. The European Commission has therefore proposed a wide-ranging energy package which gives a new boost to energy security in Europe, i.e. putting forward a new strategy to build up energy solidarity among Member States and a new policy on energy networks to stimulate investment in more efficient, low-carbon energy networks; proposing a Energy Security and Solidarity Action Plan to secure sustainable energy supplies in the EU and looking at the challenges that Europe will face between 2020 and 2050; adopting a package of energy efficiency proposals aims to make energy savings in key areas, such as reinforcing energy efficiency legislation on buildings and energy-using products. All relevant and related documents with regard to the Second Strategic Energy Review can be found through this site

  7. An Energy Integrated Dispatching Strategy of Multi- energy Based on Energy Internet

    Science.gov (United States)

    Jin, Weixia; Han, Jun

    2018-01-01

    Energy internet is a new way of energy use. Energy internet achieves energy efficiency and low cost by scheduling a variety of different forms of energy. Particle Swarm Optimization (PSO) is an advanced algorithm with few parameters, high computational precision and fast convergence speed. By improving the parameters ω, c1 and c2, PSO can improve the convergence speed and calculation accuracy. The objective of optimizing model is lowest cost of fuel, which can meet the load of electricity, heat and cold after all the renewable energy is received. Due to the different energy structure and price in different regions, the optimization strategy needs to be determined according to the algorithm and model.

  8. Energies-climate review (Panorama energies-climate) - issue 2013

    International Nuclear Information System (INIS)

    Goubet, Cecile; Beriot, Nicolas; Daurian, Aurelien; Vieillefosse, Alice; Ducastelle, Julien; Le Guen, Solenn; Strang, Axel; Courtois, Sophie; Brender, Pierre; Guibert, Olivier de; Croquette, Gilles; Simiu, Diane; Venturini, Isabelle; Hesske, Philip; Oriol, Louise; Louati, Sami; Cadin, Didier; Korman, Bernard; Defays, Julien; Balian, Armelle; Guichaoua, Sabine; Isoard, Vivien; Lamy, Jean-michel; Pelce, Frederic; Fondeville, Louis; Baumont, Thierry; Triquet, Olivier; Mouloudi, Fadwa; Quintaine, Thierry; Reizine, Stanislas; Pertuiset, Thomas; Caron, Antoine; Blanchard, Sidonie; Timsit, Isabelle; Lewis, Florian; Ducouret, Melanie; Leclercq, Martine; Derville, Isabelle; Grenon, Georgina; Thomas, Julien; Oeser, Christian; Thouin, Catherine; Dumiot, Jacques-Emmanuel; Rondeau, Claudine; Menager, Yann; Barber, Nicolas; Weill, Jonathan; Furois, Timothee; Thomines, Marie; Brunet-Lecomte, Helene; Boutot, Romary; Strang, Axel; Giraud, Jean; Thomas, Julien; Oeser, Christian; Perrette, Lionel; Breda, Willy; Panetier, Vincent; Miraval, Bruno; Delaugerre, Frederique; Leinekugel Le Cocq, Thibaut; Lemaire, Yves; Thabet, Soraya

    2013-01-01

    This issue first analyses what is at stake with energy transition: struggle against climate change, management of energy demand and promotion of energy efficiency, struggle against energy poverty, development of technologies for tomorrow's energy system. It discusses France's position within its European and international environment: European energy-climate objectives, world context of oil and gas markets, European electricity markets, imports and exports, energy bill. It presents and analyses the situation of the oil and gas sector in France: hydrocarbon exploration and production in France, refining activities, substitution fuels, oil infrastructures, oil product retailing, and gas infrastructures. It then presents the French electric system (electricity production, electricity transport and distribution grids and networks, electric system safety) and the industrial sectors involved in de-carbonated energy production: biomass, wind energy, sea energy, geothermal energy, hydroelectricity, nuclear energy, photovoltaic and thermodynamic solar energy. It addresses the industrial sectors involved in a better use of energy: dynamic control of smart energy systems (smart grids, hydrogen, energy storage), CO 2 capture and storage, de-carbonated vehicle and its ecosystem. The last part addresses oil product prices, gas prices, electricity prices, the energy tax system, and the arrangements and costs of the support to renewable energy production

  9. Energy contracting. Energy-related services and decentral energy supply. 2. ed.; Energie-Contracting. Energiedienstleistungen und dezentrale Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Martin

    2012-11-01

    According to the author, the intended German energy turnaround cannot be achieved solely on the basis of power from renewables and by constructing new passive buildings. Also required are decentral energy services if the energy saving and efficiency goals are to be achieved. In spite of many variations, the basic structure of these is the following: A contractor providing energy services does not only supply energy but also carries the risk and responsibility for efficient supply. This will relieve energy users, whether industrial or trade enterprises, public administration or home owners from this task; also, this integrated approach will open up undeveloped efficiency potentials. The book discusses current legal issues in a clear and practice-oriented manner and also provides a check list for energy contracting and an exemplary contract. (orig./RHM)

  10. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  11. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    1998-12-01

    The Ministry of Economic Affairs continues its task of observing and informing about the Croatian energy system. The review consists of the most recent and classified data on 1997 and the previous four years. Compared to previous year, in 1997 the total primary energy supply decreased by 1,3 percent. At the same time the gross domestic product increased by 6,5 percent, thus the energy intensity dropped, which is a positive trend. The energy intensity, the value showing the total energy consumed per unit of gross domestic product, exceeds the level realised by the Western European countries, but it is at the same time more favourable related to the transition economy countries. On the other hand, 1997 saw a decrease in the primary energy production by 8,9 percent, resulting from the decline in the production of natural gas, oil and coal, and naturally, unfavourable hydrological conditions. Thus, own supply dropped to 57 percent, the lowest recorded in the past five years. In 1997 the losses and operational consumption of energy decreased more than the non-energy consumption increased, but despite the decrease of the total primary energy supply there occurred an increase of final energy demand by total of 4,4 percent, 2,1 of which in general consumption, 5,5 in transport and 7,8 percent in industry. Apart from these data, the review considers all other relevant indicators showing a positive shift but leaving space for further improvements with the aim of achieving higher energy system efficiency

  12. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  13. Energy. Economics - politics - technology. Energie. Wirtschaft - Politik - Technik

    Energy Technology Data Exchange (ETDEWEB)

    Kruppa, A; Mielenhausen, E; Kallweit, J H; Schlueter, H; Schenkel, J; Vohwinkel, F; Streckel, S; Brockmann, H W

    1978-01-01

    The themes of the various aspects of the energy sector collected in this volume and discussed by different authors are: Energy policy, energy demand-research and forecasts, energy supplies, new technologies for future energy supply, generation of electrical energy by nuclear power stations, effect on the environment of energy plants, legal problems of site planning, and the authorisation of energy plants.

  14. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  15. Dutch Energy Investment Allowance (EIA). Energy and Companies. Energy List for 2008; Energie-Investeringsaftrek. Energie en Bedrijven. Energielijst 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    This tax relief programme gives a direct financial advantage to dutch companies that invest in energy-saving equipment and sustainable energy. 44 percent of the annual investment costs of such equipment (purchase costs and production costs) are deductible from the fiscal profit over the calendar year in which the equipment was procured, subject to a maximum of EUR 111 million. The Energy List determines which types of equipment qualify for this programme. The programme includes the costs of obtaining energy advice, provided that the advice results in an investment in energy-saving equipment. Within three months of entering into obligations one must report the investment to the Investment Schemes and Arbitrary Depreciation Office in Breda, Netherlands. [Dutch] De Energie-investeringsaftrek (EIA) biedt ondernemers een belastingvoordeel voor investeringen in energiebesparende bedrijfsmiddelen en duurzame energie. Naast de gebruikelijke afschrijving is 44% van de investeringskosten van deze bedrijfsmiddelen aftrekbaar van de fiscale winst. In deel 1 van deze brochure vindt men de wijzigingen ten opzichte van het jaar 2007. In deel 2 wordt de werking van de EIA uitgelegd en in deel 3 hoe van deze regeling gebruik kan worden gemaakt. In deel 4 staat de toelichting op de energielijst en in deel 5 is een overzicht opgenomen met omschrijvingen en voorbeelden van energie-investeringen, de zogenoemde Energielijst. In deel 6 is aangegeven hoe men een voorstel kan doen om de Energielijst van 2008 aan te vullen of te wijzigen voor 2009. Het meldingsformulier om EIA aan te vragen en het machtigingsformulier zijn opgenomen bij deel 7.

  16. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  17. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  18. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  19. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  20. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  1. Energy for Germany 2010. US energy policy; Energie fuer Deutschland 2010. Energiepolitik der USA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    This is a publication of the Weltenergierat-Deutschland e.V. (World Energy Council), Berlin, dealing with US energy policy. In particular, it presents the energy-political boundary conditions and challenges, the energy policy of the USA and an outlook to the future: While Obama's energy policy is giving room for transatlantic cooperations, obstacles will remain. There is a chapter on energy and the world, which goes into the following issues: World Energy Outlook 2009 of the International Energy Agency (IEA); Copenhagen from thew view of the World Energy Council; Desertec; CCS implementation worldwide; ''Yasun: ITT'' - Ecuador. The chapter on energy in Europe discusses the following subjects: Priorities of the energy policy of the new EU Commission; EEX and coupling points; the third EU energy package for the internal market; Green power certificates (EWI study); Nuclear power: New power plant construction projects and operating times of existing powerplants in Europe; EU directive on gas supply reliability; Regional cooperations for assuring reliability of supply. The final chapter informs on energy in Germany: Long-term geological storage of CO2 in Germany; Electromobility; Vulnerability and reliability of supply as indicators of assured energy supply. (orig./RHM)

  2. Energy for Germany 2010. US energy policy; Energie fuer Deutschland 2010. Energiepolitik der USA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    This is a publication of the Weltenergierat-Deutschland e.V. (World Energy Council), Berlin, dealing with US energy policy. In particular, it presents the energy-political boundary conditions and challenges, the energy policy of the USA and an outlook to the future: While Obama's energy policy is giving room for transatlantic cooperations, obstacles will remain. There is a chapter on energy and the world, which goes into the following issues: World Energy Outlook 2009 of the International Energy Agency (IEA); Copenhagen from thew view of the World Energy Council; Desertec; CCS implementation worldwide; ''Yasun: ITT'' - Ecuador. The chapter on energy in Europe discusses the following subjects: Priorities of the energy policy of the new EU Commission; EEX and coupling points; the third EU energy package for the internal market; Green power certificates (EWI study); Nuclear power: New power plant construction projects and operating times of existing powerplants in Europe; EU directive on gas supply reliability; Regional cooperations for assuring reliability of supply. The final chapter informs on energy in Germany: Long-term geological storage of CO2 in Germany; Electromobility; Vulnerability and reliability of supply as indicators of assured energy supply. (orig./RHM)

  3. Energy revolution: From a fossil energy era to a new energy era

    Directory of Open Access Journals (Sweden)

    Caineng Zou

    2016-01-01

    Full Text Available This paper aims to predict the future situation of global energy development. In view of this, we reviewed the history of energy use and understood that new energy sources will usher in a new era following oil & gas, coal and wood one after another in the past time. Although the fossil energy sources are still plenty in the world, great breakthroughs made in some key technologies and the increasing demand for ecological environmental protection both impel the third time of transformation from oil & gas to new energy sources. Sooner or later, oil, gas, coal and new energy sources will each account for a quarter of global energy consumption in the new era, specifically speaking, accounting for 32.6%, 23.7%, 30.0% and 13.7% respectively. As one of the largest coal consumer, China will inevitably face up to the situation of tripartite confrontation of the coal, oil & gas and new energy. The following forecasting results were achieved. First, the oil will be in a stable period and its annual production peak will be around 2040, reaching up to 45 × 108 t. Second, the natural gas will enter the heyday period and its annual production peak will be around 2060, reaching up to 4.5 × 1012 m3, which will play a pivotal role in the future energy sustainable development. Third, the coal has entered a high-to-low-carbon transition period, and its direct use and the discharged pollutants will be significantly reduced. In 2050, the coal will be dropped to 25% of the primary energy mix. Last, the development and utilization of new energy sources has been getting into the golden age and its proportion in the primary energy mix will be substantially enhanced. On this basis, we presented some proposals for the future energy development in China. At first, we should understand well that China's energy production and consumption has its own characteristics. Under the present situation, we should strengthen the clean and efficient use of coal resources, which

  4. Dissolve energy obesity by energy diet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Heum [Sunmoon University, Asan (Korea)

    2000-07-01

    Every organism takes needed materials or energy from outside and excretes unessential things to outside. This is called a metabolism or energy metabolism. Calculating the amount of energy consumed by human in the world by converting to the amount of metabolism of an animal to survive, the weight of a human being is corresponding to an animal with a weigh of 40 ton. Human beings can find a solution to dissolve energy obesity or can maintain a massive status by finding a new energy source in the universe.

  5. Energy in Croatia 2005, Annual Energy Report

    International Nuclear Information System (INIS)

    2006-12-01

    Report presents the latest information on relations and trends in the Croatian energy sector. The reports gives a familiar overview of comprehensive data about and representative features of the Croatian energy sector, related to the supply and demand of energy at all levels. It produces a detailed analysis of energy trends and provides extensive data on capacity, reserves and prices as well as balances of individual energy sources - crude oil, petroleum products, natural gas, electricity, heat, coal and renewable source of energy. Basic economic and financial indicators, emissions of air pollutants and basic energy efficiency indicators for Croatia are also presented. In 2005, total primary energy supply in Croatia decreased slightly by 0.1 per cent with respect to the previous year. At the same time, GDP rose by 4.3 per cent, resulting in a drop in energy intensity of the total primary energy supply of 4.2 per cent. The energy intensity in Croatia was 20.1 per cent higher than the average energy intensity in the European Union, but a positive decreasing trend was noted during the past period. In 2005 the total primary energy production in Croatia fell by 3.5 per cent with respect to the previous year. The highest decrease was recorded in harnessing hydro power, and the production of crude oil and fuel wood also declined. Only the production of natural gas showed a growth of 3.5 per cent. Due to the decrease in the primary energy production, energy self-supply was also reduced to 47.9 per cent. A less value was achieved only in the year 2003. A continuing trend towards a gradual decline in energy self-supply was present throughout the past several years. Final energy demand increased by 3 per cent while demands in other sectors decreased. Energy transformation losses were reduced by 7 per cent, non-energy use declined by 5.6 per cent and energy transmission and distribution losses by 5.5 per cent, and there was a slight drop of 0.2 per cent in demand in energy

  6. Periodic Arrays of Film-Coupled Cubic Nanoantennas as Tunable Plasmonic Metasurfaces

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that a two-dimensional periodic array of metallic nanocubes in close proximity to a metallic film acts as a metasurface with tunable absorbance. The presence of a metallic film underneath the array of plasmonic nanocubes leads to an impedance matched plasmonic metasurface enhancing up to 4 times the absorbance of incident radiation, in the spectral region below 500 nm. The absorbance spectrum is weakly dependent on the angle of incidence and state of polarization of incident light a functionality which can find application in thermo-photovoltaics. Our calculations are based on a hybrid layer-multiple-scattering (hLMS method based on a discrete-dipole approximation (DDA/T-matrix point matching method.

  7. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  8. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  9. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  10. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  11. Energy situation - Forth quarter 2016. Energy situation October 2016; Energy situation November 2016; Energy situation December 2016

    International Nuclear Information System (INIS)

    Guggemos, Fabien; Misak, Evelyne; Mombel, David; Moreau, Sylvain

    2017-02-01

    This publication presents, first, a quarterly report of the French energy situation: primary energy consumption, energy independence and CO_2 emissions, national production, imports, exports, energy costs, average and spot prices. Data are presented separately for solid mineral fuels, petroleum products, natural gas and electricity. Month-to-month details are summarized in a second part, in the form of tables and graphs

  12. Energy situation - First quarter 2017. Energy situation January 2017; Energy situation February 2017; Energy situation March 2017

    International Nuclear Information System (INIS)

    Guggemos, Fabien; Misak, Evelyne; Mombel, David; Moreau, Sylvain

    2017-05-01

    This publication presents, first, a quarterly report of the French energy situation: primary energy consumption, energy independence and CO_2 emissions, national production, imports, exports, energy costs, average and spot prices. Data are presented separately for solid mineral fuels, petroleum products, natural gas and electricity. Month-to-month details are summarized in a second part, in the form of tables and graphs

  13. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  14. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    2001-12-01

    The review consists of the most recent and settled data for the year 2000 as well as data for the five-years period. In 2000 total energy consumption decreased by 2.8 percent compared to the previous year. As at the same time the gross domestic product increased by 3.7 percent, energy intensity grew, thus presenting a positive change of trend . The energy intensity, the measurement showing the total energy consumption per unit of gross domestic product, exceeded the level realised by the Western European countries, but was still more favourable than in most transition countries. At the same time 2000 saw an decrease of primary energy generation by 1.7 percent but, as a consequence of extremely favourable hydrological conditions, with a decreased production of natural gas and oil. The supply from own sources remained 51 percent but the trend is expected to be negative in the following few years bearing in mind the condition of the gas and oil reserves, i.e. cessation of coal production in Istria. Only partly will the process be slowed down by the production of natural gas from the Northern Adriatic. Natural gas production grew by 6.8 percent compared to the previous year, causing the share of natural gas in energy production to exceed 32 percent. In 2000 the transformation losses fell by 11 percent, transportation and distribution losses fell by 6.7 percent and non-energy consumption by 2.4 percent, while energy sector own use rose by 1.4 percent.. The result of this was that, despite the increase of total energy production by 2.8 percent, final energy demand fell by only 0.2 percent, i.e. 1.5 percent in other sectors and transport, and 2.9 percent increase in industry. Apart from these data, the publication includes all other relevant indicators about our energy system, i.e. system capacities, energy source prices, environmental influence, etc

  15. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  16. The energy yield of nuclear energy

    International Nuclear Information System (INIS)

    Smith, Ph.B.

    1983-01-01

    In this paper, a comparison is made between the energy produced in a nuclear cycle in a light-water reactor without recycling of plutonium or uranium on the one hand and the energy stored into the system to realize this energy production on the other. Only empirical data are used, which means that some energy costs are omitted because no empirical data were available (e.g. energy needed to waste processing and waste disposal). The following steps are taken into account: production and processing of ores, conversion and enrichment of fuels, construction and shutdown of the reactor itself. (Auth.)

  17. Energy transition, a new French energy model. Future energies, green growth, sustainable jobs

    International Nuclear Information System (INIS)

    Royal, Segolene

    2014-01-01

    This publication introduces the new French energy policy for energy transition. It presents and comments the main orientations defined for this policy and which are at the base of the French law on energy transition for a green growth. Thus, it addresses the following topics: to define common objectives for a successful energy transition, to strengthen France's energy independence and to struggle against climate change; to better insulate buildings to save energy, to reduce energy bills and to create jobs; to develop clean transports to improve air quality and to protect the health of French people; to promote renewable energies to diversify energies and to valorise resources of French territories; to struggle against wastage and to promote circular economy from product design to product recycling; to simplify and clarify procedures aimed at improving efficiency and competitiveness; to strengthen nuclear safety and citizen information; and to provide citizen, enterprises, territories and the State with the power to act together

  18. Energy Statistics Manual; Manual Statistik Energi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.

  19. Energy Sharing and Energy Feedback: Affective and Behavioral Reactions to Communal Energy Displays

    Energy Technology Data Exchange (ETDEWEB)

    Leygue, Caroline, E-mail: caroline.leygue@nottingham.ac.uk [Horizon Digital Economy Research, University of Nottingham, Nottingham (United Kingdom); Ferguson, Eamonn [School of Psychology, University of Nottingham, Nottingham (United Kingdom); Skatova, Anya [Horizon Digital Economy Research, University of Nottingham, Nottingham (United Kingdom); Spence, Alexa [Horizon Digital Economy Research, University of Nottingham, Nottingham (United Kingdom); School of Psychology, University of Nottingham, Nottingham (United Kingdom)

    2014-07-25

    Smart meters and energy displays are being rolled out in many countries to help individuals monitor and reduce their energy usage. However, to date, there is little in depth understanding of how they may change behavior. While there is currently a great deal of technical research into developing smart metering, little research has been conducted on how this affects the energy user. This research addresses this gap and explores the user perspective of energy displays when energy is considered as a shared resource. We report an online experiment conducted across the UK examining affective and behavioral responses to energy sharing situations incorporating different types of energy displays. Reactions differed depending on the type of display. In a situation where one person used more than their fair share of energy, displays showing the average amount of usage in the house were associated with feelings of guilt and fear and a decrease in intention to use energy. Displays that identified the person who overused the resource were associated with anger, and direct sanction intentions on those who were overusing energy. Findings are discussed in terms of the smart meter rollout and the potential utility of detailed energy monitoring technologies for behavior change.

  20. Energy sharing and energy feedback: Affective and behavioral reactions to communal energy displays.

    Directory of Open Access Journals (Sweden)

    Caroline eLeygue

    2014-07-01

    Full Text Available Smart meters and energy displays are being rolled out in many countries to help individuals monitor and reduce their energy usage. However, to date there is little in depth understanding of how they may change behavior. While there is currently a great deal of technical research into developing smart metering, little research has been conducted on how this affects the energy user. This research addresses this gap and explores the user perspective of energy displays when energy is considered as a shared resource. We report an online experiment conducted across the UK examining affective and behavioral responses to energy sharing situations incorporating different types of energy displays. Reactions differed depending on the type of display. In a situation where one person used more than their fair share of energy, displays showing the average amount of usage in the house were associated with feelings of guilt and fear and a decrease in intention to use energy. Displays that identified the person who overused the resource were associated with anger, and direct sanction intentions on those who were overusing energy. Findings are discussed in terms of the smart meter rollout and the potential utility of detailed energy monitoring technologies for behavior change.

  1. Energy Sharing and Energy Feedback: Affective and Behavioral Reactions to Communal Energy Displays

    International Nuclear Information System (INIS)

    Leygue, Caroline; Ferguson, Eamonn; Skatova, Anya; Spence, Alexa

    2014-01-01

    Smart meters and energy displays are being rolled out in many countries to help individuals monitor and reduce their energy usage. However, to date, there is little in depth understanding of how they may change behavior. While there is currently a great deal of technical research into developing smart metering, little research has been conducted on how this affects the energy user. This research addresses this gap and explores the user perspective of energy displays when energy is considered as a shared resource. We report an online experiment conducted across the UK examining affective and behavioral responses to energy sharing situations incorporating different types of energy displays. Reactions differed depending on the type of display. In a situation where one person used more than their fair share of energy, displays showing the average amount of usage in the house were associated with feelings of guilt and fear and a decrease in intention to use energy. Displays that identified the person who overused the resource were associated with anger, and direct sanction intentions on those who were overusing energy. Findings are discussed in terms of the smart meter rollout and the potential utility of detailed energy monitoring technologies for behavior change.

  2. Energy fluxes and their relations within energy plants

    International Nuclear Information System (INIS)

    Grazzini, Giuseppe; Milazzo, Adriano

    2007-01-01

    Analysing how energy is delivered from its primary sources to final users, it may be seen that the evolution of technology, driven by economic considerations, has mainly rewarded those systems that have intense energy fluxes through their main sections. On the other hand, renewable energy sources are prevented from being widespread by their low energy density. If a high energy flux is a recognized target for energy use, one may try to characterise the various devices encountered along the energy path according to the concentration obtained of the energy flow. In this way, apart from measuring the energy loss suffered within a given device, it can be decided if this loss is adequate with respect to the gain in terms of energy density

  3. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  4. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  5. Widening energy access in Africa: Towards energy transition

    International Nuclear Information System (INIS)

    Sokona, Youba; Mulugetta, Yacob; Gujba, Haruna

    2012-01-01

    The discussion to widen access to modern energy services has been influential in shaping some of the discussions on energy at the international level. The practice of widening modern energy services access to the poor in Africa is complex, and exacerbated by the dual nature of the energy system across Sub-Saharan Africa where traditional and modern energy systems and practices co-exist. This presents major challenges for policy makers who have to contend with a fragmented energy system, which requires the mobilisation of an array of actors at cross-sectoral levels in order to develop effective institutions and implement innovative policy frameworks. This paper further argues that, the ‘energy access’ discussion needs to take place in the context of energy transitions, giving due consideration to the productive sector as an important vehicle for change. As the link between energy and development is context specific, each African country needs to chart its own energy transition pathway into the future, and there are ample lessons that they can draw from previous energy transitions. - Highlights: ► Lack of access to modern energy services in Africa is an impediment to socio-economic development. ► Widening modern energy services access to the poor in Africa is complex. ► A broader approach to address the ‘energy access’ discourse is required. ► Each African country needs to chart its own energy transition pathway. ► Both fossil and renewable energy systems would be needed for a transition to modern energy sources.

  6. Energy in Italian regions. Energy balance

    International Nuclear Information System (INIS)

    Catoni, P. G.; Perrella, G.

    1998-01-01

    This paper reports the syntheses of regional energy balance and the elaboration of the most important energy index from 1990 to 1996 at this scope a specific methodology. Pentec (territorial energy planning ecompatible) is pointed [it

  7. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  8. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  9. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  10. Energy Choices. A North European Energy Map; Vaegval Energi. Nordeuropeisk Energikarta

    Energy Technology Data Exchange (ETDEWEB)

    Groenkvist, Stefan; Stenkvist, Maria; Paradis, Hanna

    2008-11-15

    Oil, coal and natural gas dominate the energy consumption in Northern Europe, as well as in the world at large. The energy supply mix varies between the countries of the region. For example, a large proportion of biomass and waste in Finland and Latvia (Norway) and Sweden use a high proportion of hydroelectric power, while Poland has a very high proportion of coal in their energy mix. Energy use per person in Northern Europe is more than twice as high compared with the average global - but lower than the average in the OECD. In Northern Europe, there are three separate networks for energy transfer: natural gas, electricity and heating. The expansion of the natural gas network has been strong since 1970. Gas pipelines today covers large parts of Europe and new pipelines are planned. The electricity grids and their transmission capacity has grown. Electricity began to be transferred between the Nordic countries during the 1960s. Today, the North European countries are linked with a number of high capacity cables. While the networks for district heating has grown, these systems are separate for individual cities. In recent years, the region's net imports of oil rose, as (Norway's oil production has declined since the early 2000s. On the other hand, the North European countries in 2007 became, for the first time, net exporters of natural gas. As the energy systems expand, trade in energy increases - both within the region and with the rest of Europe and the rest of the world. Several new energy projects are planned in Northern Europe for expanded capacity in oil refineries and new pipelines for natural gas and transmission lines for electricity. The energy integration in the region is therefore expected to increase further. In the long term, climate policy will be of greater importance, both for the region's use of primary energy and for the look of the region's future energy map

  11. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  12. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  13. Proceedings of V International Conference of Renewable Energy, Energy Saving and Energy Education. CIER 2007. International Workshop of Eolic Energy

    International Nuclear Information System (INIS)

    2007-05-01

    The CD-ROM presents papers submitted to the International Conference of Renewable Energy, Energy Saving and Energy Education. CIER 2007, held in Havana, Cuba, on May 22-25, 2007. The purpose of the CIER 2007 are to offer an opportunity to engineers, investigators, academic, makers and specialists in the energy topic from all over the world to exchange experiences, to share their successes and to discuss their focuses to future in the topic of the energy renewable, the energy saving, the energy efficiency and the energy education. The objective of the International Workshop of Eolic Energy is in advancing in the dialogue international on the systems in question and their applications around the world, you they analyzed the perspectives of possible programs of cooperation in this field and their use in Cuba

  14. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  15. The energy report - Energy-climate preservation - 100% Renewable energy by 2050

    International Nuclear Information System (INIS)

    Singer, Stephan; Denruyter, Jean-Philippe; Jeffries, Barney; Gibbons, Owen; Hendrix, Ellen; Hiller, Martin; McLellan, Richard; Pols, Donald; Allott, Keith; Anderson, Jason; Baker, Bryn; Battle, Jessica; Blom, Esther; Caught, Kellie; Clough, Kirsty; Chatterjee, Keya; Duveau, Thomas; Elliott, Wendy; Emfel, Magnus; Englum, Lynn; Fabbri, Mariangiola; Geneen, Bart; Gray, Ian; Gritsevich, Inna; Van de Gronden, Johan; Guerraoui, May; Hart, Piers; Hartmann, Joerg; Hofstetter, Patrick; Holland, Richard; Hou, Yanli; Ibrahim, Nora; Kaszewski, Andrea; Kiianmaa, Sampsa; Kokorin, Alexey; Lifeng, Li; Lockley, Pete; Maassen, Paul; Masako, Yosuke; McLaughlin, David; Mathe, Laszlo; McLellan, Elisabeth; Von Mirbach, Martin; Ogorzalek, Kevin; Orr, Stuart; Perrin, Mireille; Pollard, Duncan; Randriambola, Voahirana; Rast, Georg; Roberntz, Peter; Senga, Rafael; Sinha, Shirish; Steindlegger, Gerald; Taylor, Rod; Valencia, Ivan; Vitali, Arianna; Willstedt, Heikki; Woul, Mattias de; Worthington, Richard; Yamagishi, Naoyuki; Boufflers, Jean-Philippe; Gilbert, Olivier; Marsily, Anne de; Graaf, Reinier de; Baird, Laura; Merkeley, Tanner; D'Amico, Federico; Christensen, Vilhelm; McPhee, Amelia

    2011-01-01

    WWF has a vision of a world that is powered by 100 per cent renewable energy sources by the middle of this century. Unless we make this transition, the world is most unlikely to avoid predicted escalating impacts of climate change. But is it possible to achieve 100 per cent renewable energy supplies for everyone on the planet by 2050? WWF called upon the expertise of respected energy consultancy Ecofys to provide an answer to this question. In response, Ecofys has produced a bold and ambitious scenario - which demonstrates that it is technically possible to achieve almost 100 per cent renewable energy sources within the next four decades. The Ecofys scenario raises a number of significant issues and challenges. The Energy Report investigates the most critically important political, economic, environmental and social choices and challenges, and encourages their further debate. How are we going to provide for all of the world's future needs, on energy, food, fibre, water and others, without running into such huge issues as: conflicting demands on land/water availability and use; rising, and in some cases, unsustainable consumption of commodities; nuclear waste; and regionally appropriate and adequate energy mixes? The world needs to seriously consider what will be required to transition to a sustainable energy future, and to find solutions to the dilemmas raised in this report. Answering these challenges - the solutions to the energy needs of current and future generations is one of the most important, challenging and urgent political tasks ahead

  16. Energy and energy policy

    International Nuclear Information System (INIS)

    Clerici, A.

    2007-01-01

    Energy has taken with his reflections on the environment, the geopolitical aspects and its pervasive use in all activities a crucial role for sustainable development of our planet. The energy in the future will be increasingly a global problem [it

  17. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  18. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  19. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  20. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  1. The International Energy Agency's world energy outlook

    International Nuclear Information System (INIS)

    O'Dell, S.

    1996-01-01

    The 1996 edition of the World Energy Outlook to 2010 was reviewed. An overview of the energy projections was provided based on assumptions about economic growth and energy prices, geological potential, technological developments, the availability of traditional fuels outside the OECD and the future preferences of energy users. Demand vs. price movements were modelled, based on 'capacity constraints' and 'energy saving ' scenarios. Three major conclusions derived from the projections were: (1) world primary energy demand will grow steadily as it has over the past two decades, (2) fossil fuels will account for 90 per cent of total primary energy demand in 2010, and (3) a structural shift in the shares of different regions in world energy demand is likely to occur, i.e., the OECD share will fall in favor of the share of the ROW (rest of the world). 4 tabs., 9 figs

  2. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  3. Proceedings of the 8. Brazilian congress on energy: energy policy, regulation and sustainable development. v. 1: energy, environment and energy sector regulation

    International Nuclear Information System (INIS)

    1999-01-01

    The theme energy policy, regulation and sustainable development chosen for the 8. Brazilian congress on energy to be held in Rio de Janeiro from 30 November of 1999 to 02 December of 1999, specifically means the contribution of energy to a satisfactory quality of life for everyone. Within such a context, the congress technical programme theme has been structured around six different divisions: energy, environment and development; energy sector regulation; energy policy and planning; technology innovation; energy conservation; and renewable energy sources and rural areas energy supply

  4. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. (Dansk Energi Analyse A/S, Frederiksberg (Denmark)); Langkilde, G.; Olesen, Bjarne W. (Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark)); Moerck, O. (Cenergia Energy Consultants, Herlev (Denmark)); Sundman, O. (DONG Energy, Copenhagen (Denmark)); Engelund Thomsen, K. (Aalborg Univ., SBi, Hoersholm (Denmark))

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  5. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Langkilde, G; Olesen, Bjarne W [Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark); Moerck, O [Cenergia Energy Consultants, Herlev (Denmark); Sundman, O [DONG Energy, Copenhagen (Denmark); Engelund Thomsen, K [Aalborg Univ., SBi, Hoersholm (Denmark)

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  6. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    1997-12-01

    The publication creates a condensed review of the state of affairs within our energy system. It includes the latest data for 1996, which were at the same time compared to the situations from the previous four years in order to achieve a more accurate insight into all the related problems. The relation of the gross domestic product (GDP) and the electric energy consumption illustrates the fact that the economic conditions are closely connected to the development of the energy sector. In 1996 the gross domestic product was 4.2% higher than in the year before and the electric energy consumption increased by approximately the same figure. It rose from the consumed 12958.0 GWh in 1995 to 12877.9 GWh in 1996, i.e. 4.2%. The total energy consumption in 1996 increased by entire 10.8%, amounting to 352.56 PJ, this predominantly being a result of growing hydro power and natural gas consumption. The immediate energy consumption grew by 8.3%, from 185.96 PJ in 1995 to 201.35 PJ in 1996. Apart from the data included in the review, there are also other presentations referring to the energy generation and consumption in Croatia. A special chapter comprises an analysis of oil and gas system, i.e. hydrocarbon and coal reserves as well as the capacities required for oil and gas processing and transportation. The attention was directed to positive environmental incentives, as the energy sector is responsible for more than 90% of all polluting substances. Apart from the economic and financial indices, the publication includes the prices for electric energy, natural gas and oil derivations as well as maps showing the route of the gas and JANAF systems and the transmission electric energy network. The review puts forward some positive achievements in the development of our energy sector, which create the basis for continued efforts in order to bring about the desired objectives. This will be realized by defining the legislation system and the institutions ensuring high-quality market

  7. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  8. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  9. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    2001-12-01

    The review, in its own recognisable way, consists of the most recent and settled data for the year 2001, i.e. for the period from 1996 until 2001. We have, however, added data appertaining to a longer time period together with future expectations with the aim of an easier insight into long-term prospects. In 2001 total primary energy supply increased by 3.3 percent compared to the preceding year. Owing to the simultaneous growth of the gross domestic product by 4.1 percent, energy intensity decreased and consequently a positive trend continues. Energy intensity, which expressed the total energy consumed per unit of gross domestic product, exceeds the realised level of the developed European countries, but it is still more favourable than in the majority of transition countries. We would particularly like to stress the fact about the recorded growth of primary energy production by 7 percent, which in 2001 occurred partly as the consequence of favourable hydrological conditions and partly of a considerable increase in natural gas production. Supply from own sources grew to 52.8 percent. In 2001, natural gas production in the structure of the domestic production amounted to more than 36 percent. Energy import recorded an increase of 2.2 percent, whereby the portion of the imported crude oil was 65 percent. In 2001 transformation losses increased by 15.9 percent, transportation and distribution losses by 22.6 percent, energy sector own use by 10.3 percent, while non-energy consumption decreased by 15 percent. This brought about the situation that, together with the above mentioned growth of the total energy consumed of 3.3 percent, final demand grew by 2.6 percent - 2.3 percent in other sectors, 1.1 percent in traffic with the simultaneous increase in industry of 5.1 percent. Apart from these data, the publication comprises other interesting facts about our energy system, its capacities, energy source prices and environmental impact

  10. Tidal energy

    International Nuclear Information System (INIS)

    Lochte, H.G.

    1995-01-01

    Together with wave energy, ocean thermal energy, and the often overlooked energy from ocean curents tidal energy belongs to those renewable energy sources that can be subsumed under the generic term of ocean energy. All that these energy sources have in common, however, is that they are found in the ocean. The present article discusses tidal energy with respect to the four principal factors determining the scope of a renewable energy source, namely global, technical, and economic availability and ecological acceptability. (orig.) [de

  11. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  12. Deciphering energy

    International Nuclear Information System (INIS)

    Dessus, Benjamin

    2014-01-01

    In this book, the author aims at giving some explanations about the various terms regarding energy which are present in our everyday life, in speeches, in papers and magazines, on the air, in our energy bills, for instance: energy poverty, price of a barrel of oil, resources and proved reserves, intermittency and energy storage, fossil and renewable energies, and so on. In a first part, the author addresses issues ranging from the development needs of a society to the energy assessment of a country, i.e.: nature and quantity of needs in services provided by energy, analysis of the required quantity of energy products needed to satisfy these needs, stages between primary resources and service delivery, description of the French consumption of available final energy products (per product and per economic sector). In the second part, he addresses energy supply, energy sectors and environmental issues, thus focusing on the front end of the energy system, i.e. ways of production from primary energy resources to final energy products: main physical characteristics and description of the different fissile, fossil and renewable energies, description of the main sectors of production of final energy products (fuels, electricity, heat) with a specific attention to electricity. In this part, local, regional and global environmental issues related to the exploitation of these energy sectors are discussed: sources of atmospheric pollution related to energy, relationship between energy and global warming, role of the different greenhouse gases emitted by these sectors, and quantitative analysis of these emissions. The third part addresses the economy of energy systems. The author proposes a cost assessment method which can be used for the production analysis as well as the economic analysis of a specific energy product. He also described external costs and profits, and methods to take those hidden costs and profits into account. Other economic tools are discussed and compared

  13. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  14. Energy audit at Russian dairies. Energy guidance

    Energy Technology Data Exchange (ETDEWEB)

    Draborg, S [Dansk Energi Analyse A/S, Vanloese (Denmark); Sheina, L S; Kolesnikov, A I [RDIEE, Moscow (Russian Federation)

    1999-12-31

    The project encompassed following activities: Elaboration of a description of the Russian dairy sector including a mapping of the entire sector in respect of production capacity, actual production, products, production technologies and energy consumption; Energy audits at twelve selected dairies with different typical productions; Elaboration of an `Energy Audit Guidance` which describes how to perform energy audits in dairies and where to expect energy saving possibilities. The energy savings possibilities are often due to the same kind of problems, e.g. low production, inefficient equipment or manually control of the process equipment. The main problems that Russian dairies faces can be divided into the following categories: Old and inefficient technological equipment which is operated at low capacity with very low energy efficiency; Lack of knowledge about new energy efficient technologies; Financial problems which causes low interest and few possibilities for using funds for investment in energy efficient equipment; Energy savings do not lead to personal gains for the persons in the dairy management or other employees which causes low interest in energy savings. At some dairies it seemd to be a problem for the management to adapt to the new and very different conditions for enterprises in Russian today, where sales, production, production capacity and raw milk available are interconnected. With respect to energy matters it was often a wish to replace existing oversized equipment with new equipment of the same size no matter that it is unlikely that the production will increase considerable in the future. The project has discovered that there is a need for demonstrating energy saving measures by implementation because it was in many ways hard for the dairy management`s to believe that, the energy consumption could be reduced dramatically without affecting the production or the processes. Furthermore, the project has discovered a need for transferring to the

  15. Energy audit at Russian dairies. Energy guidance

    Energy Technology Data Exchange (ETDEWEB)

    Draborg, S. [Dansk Energi Analyse A/S, Vanloese (Denmark); Sheina, L.S.; Kolesnikov, A.I. [RDIEE, Moscow (Russian Federation)

    1998-12-31

    The project encompassed following activities: Elaboration of a description of the Russian dairy sector including a mapping of the entire sector in respect of production capacity, actual production, products, production technologies and energy consumption; Energy audits at twelve selected dairies with different typical productions; Elaboration of an `Energy Audit Guidance` which describes how to perform energy audits in dairies and where to expect energy saving possibilities. The energy savings possibilities are often due to the same kind of problems, e.g. low production, inefficient equipment or manually control of the process equipment. The main problems that Russian dairies faces can be divided into the following categories: Old and inefficient technological equipment which is operated at low capacity with very low energy efficiency; Lack of knowledge about new energy efficient technologies; Financial problems which causes low interest and few possibilities for using funds for investment in energy efficient equipment; Energy savings do not lead to personal gains for the persons in the dairy management or other employees which causes low interest in energy savings. At some dairies it seemd to be a problem for the management to adapt to the new and very different conditions for enterprises in Russian today, where sales, production, production capacity and raw milk available are interconnected. With respect to energy matters it was often a wish to replace existing oversized equipment with new equipment of the same size no matter that it is unlikely that the production will increase considerable in the future. The project has discovered that there is a need for demonstrating energy saving measures by implementation because it was in many ways hard for the dairy management`s to believe that, the energy consumption could be reduced dramatically without affecting the production or the processes. Furthermore, the project has discovered a need for transferring to the

  16. Pakistan energy consumption scenario and some alternate energy option

    International Nuclear Information System (INIS)

    Maher, M.J.

    1997-01-01

    Pakistan with its energy-deficient resources is highly dependent on import-oriented energy affected the economy because of repeated energy price hike on international horizon. The energy consumption pattern in Pakistan comprises about two-third in commercial energy and one-third in non-commercial forms. Most of the country's energy requirements are met by oil, gas hydro power, coal, nuclear energy and thermal power. Pakistan meets it's commercial energy requirements indigenously up to 64%. The balance of deficit of 35-40% is met through import. The consumption of various agro-residues and wood as fuel also plays a vital role. The analysis shows that emphasis needs to be placed on new and renewable resources of energy besides adopting technologies for energy conservation. Renewable energy depends on energy income and constitutes the development process. The are several renewable energy options such as biogas technology, micro-hydro power generation, direct solar energy and biomass energy conservation etc. By improving the conservation techniques as designs of solar converters, pre treating the biomass fuel, increasing the effectiveness of carbonization and pyrolysis increases the energy production. (A.B.)

  17. Energy demand and supply, energy policies, and energy security in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Hoseok; Shin, Eui-soon; Chung, Woo-jin

    2011-01-01

    The Republic of Korea (ROK) has enjoyed rapid economic growth and development over the last 30 years. Rapid increases in energy use-especially petroleum, natural gas, and electricity, and especially in the industrial and transport sectors-have fueled the ROK's economic growth, but with limited fossil fuel resources of its own, the result has been that the ROK is almost entirely dependent on energy imports. The article that follows summarizes the recent trends in the ROK energy sector, including trends in energy demand and supply, and trends in economic, demographic, and other activities that underlie trends in energy use. The ROK has been experiencing drastic changes in its energy system, mainly induced by industrial, supply security, and environmental concerns, and energy policies in the ROK have evolved over the years to address such challenges through measures such as privatization of energy-sector activities, emphases on enhancing energy security through development of energy efficiency, nuclear power, and renewable energy, and a related focus on reducing greenhouse gas emissions. The assembly of a model for evaluating energy futures in the ROK (ROK2010 LEAP) is described, and results of several policy-based scenarios focused on different levels of nuclear energy utilization are described, and their impacts on of energy supply and demand in the ROK through the year 2030 are explored, along with their implications for national energy security and long-term policy plans. Nuclear power continues to hold a crucial position in the ROK's energy policy, but aggressive expansion of nuclear power alone, even if possible given post-Fukushima global concerns, will not be sufficient to attain the ROK's 'green economy' and greenhouse gas emissions reduction goals. - Research highlights: →Rapid industrialization caused ROK energy use to increase over 10-fold during 1970-2000, with dramatic structural changes. → Growth in energy use after 2000 slowed to under 5%/yr, and

  18. International Congress on Energy Efficiency and Energy Related Materials

    CERN Document Server

    Bahsi, Zehra; Ozer, Mehmet; ENEFM2013

    2014-01-01

    The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings   Economical and Environmental Issues Environment Energy Requirements Economic Development   Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Supercon...

  19. Energy crisis

    International Nuclear Information System (INIS)

    1977-01-01

    From energy policy to the problem of public acceptance of nuclear power, problems like energy supply, energy strategies, the race of industrial countries for the short energy reserves, the West German energy demand until the year 2.000, energy conservation, and the controversy over increased use of nuclear energy are reviewed. (GL) [de

  20. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  1. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  2. Energy entanglement relation for quantum energy teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)

    2010-07-26

    Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.

  3. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  4. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  5. Proceedings of VI International Conference for Renewable Energy, Energy Saving and Energy Education (CIER 2009)

    International Nuclear Information System (INIS)

    2009-01-01

    The CD-ROM presents papers submitted to the International Conference of Renewable Energy, Energy Saving and Energy Education. CIER 2009, held in Havana, Cuba, on Jun 9-13, 2009 May. The purpose of the CIER 2009 are to offer an opportunity to engineers, investigators, academic, makers and specialists in the energy topic from all over the world to exchange experiences, to share their successes and to discuss their focuses to future in the topic of the energy renewable, the energy saving, the energy efficiency and the energy education

  6. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  7. Distributed energy resources for a zero-energy neighbhourhood

    NARCIS (Netherlands)

    Morales Gonzalez, R.M.D.G.; Asare-Bediako, B.; Cobben, J.F.G.; Kling, W.L.; Scharrenberg, G.R.; Dijkstra, D.

    2012-01-01

    Zero energy buildings are on the increasing trend. They are perceived as appropriate technology to reducing CO2 emissions, improving energy efficiency and alleviating energy poverty. The main goal is that a grid-connected building produces enough energy on site to equal or exceed its annual energy

  8. Exploration of energy conservation opportunities through energy audit

    International Nuclear Information System (INIS)

    Swain, R.K.; Swain, A.K.; Subudhi, B.

    1994-01-01

    Developing countries like India, has to cater the imbalance of energy between the supply and demand in almost all the sectors, so as to devise energy conservation strategies. Electricity is one of the most convenient form of energy gifted to the mankind. The raising cost of electricity and the need to raise large resources to meet the required demand is only at the most of other important assets of the country. This gap between demand and supply can be partially met by appropriate energy conservation schemes through energy audit- a scientific approach for balancing the supply and demand. India has to go a long way ahead in it, therefore, energy audit has been initiated at vulnerable energy consuming places. This paper presents the effectiveness of energy audit strategy in achieving energy conservation. The energy audit of Shrama Shakti Bhavan, an office complex at New Delhi, has been taken as a case study for this work. (author). 2 refs., 12 tabs

  9. Exploration of energy conservation opportunities through energy audit

    International Nuclear Information System (INIS)

    Swain, R.K.; Swain, A.K.; Subudhi, B.

    1995-01-01

    Developing countries like India, has to cater to the imbalance of energy between the supply and demand in almost all the sectors, so as to devise energy conservation strategies. Electricity is one of the most convenient form of energy gifted to the mankind. The raising cost of electricity and the need to raise large resources to meet the required demand is only at the cost of other important assets of the country. This gap between demand and supply can be partially met by appropriate energy conservation schemes through energy audit- a scientific approach for balancing the supply and demand. India has to go a long way ahead in it, therefore, energy audit has been initiated at vulnerable energy consuming places. This paper presents the effectiveness of energy audit strategy in achieving energy conservation. The energy audit of Shrama Shakti Bhavan, an office complex at New Delhi, has been taken as a case study. (author). 2 refs., 12 tabs

  10. Energy at what price? Energy markets

    International Nuclear Information System (INIS)

    Favennec, J.P.; Amic, E.; Darmois, G.

    2006-01-01

    In 2005, the whole world had to stand a real energy shock due to the rise of oil, gas and electricity prices. The perspective of a possible shortage, even at the prospect of several decades, has led to a deep change of the world energy market. In this context, this book supplies a clear and didactical presentation of the mechanisms of petroleum, gas and electricity markets, with their advantages and limitations. At the time of a globalization of economy, the book analyzes the consequences of markets deregulation on the energy prices and tries to answer several main questions: why such a price volatility? Who will take the risk of investing now? Will the energy actors of the present day concentration be in a dominating position? Content: 1 - energy, markets and energy markets; 2 - crude oil and petroleum product markets; 3 - gas markets; 4 - electric power markets; 5 - perspectives. Glossary. Index. (J.S.)

  11. For a rational energy transition based on nuclear energy

    International Nuclear Information System (INIS)

    Chalmin, Philippe

    2014-06-01

    After having recalled the meaning of the concept of energy transition, and stated that this concept is a fuzzy one, this paper addresses the issue of the future of energy through the concept of Energy returned on Energy invested (EROI). It discusses this approach by outlining that energy is the initial driver of economy, and by showing that only hydroelectricity, coal, nuclear and wind energy have a sufficient return rate, and that shale gas is an energy source for the short and medium term. Then, based on data related to world energy resources and consumption, to electric power production from various sources, to pollution health impacts, to electricity prices for industries and for households, it discusses the sustainability of the energy mix regarding energy reserves, health issues, and economic issues. Some examples (Spain, Germany) illustrate economic problems faced by some renewable energies. Finally, the authors outline that, thanks to its nuclear policy, France is the western country which is the most committed in energy transition. Some proposals are made to support nuclear energy, to reduce the use of fossil energies, to launch an ambitious research policy (on energy storage, on photovoltaic energy, on CO 2 hydrogenation, on hydrogen as a fuel), in favour of energy mixes decided at national levels in Europe

  12. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  13. Energy researchers - 1. Energy efficiency: Energy efficiency is driving innovation; No economic crisis for energy efficiency; How can we change our energy habits?

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2011-01-01

    A first article comments how the race to achieve energy efficiency is driving the emergence of new technologies in transportation and construction (hybrid cars, phase change material, digital mock-ups, and so on). The example of the AGV is evoked, a new version of the TGV developed by Alstom which will run faster and consume less energy. A second article outlines that, due to the support from public authorities and to an increased awareness of energy costs and environmental challenges, the energy savings market is booming. Then, in an interview, a sociologist of the ADEME comments the difficulty of changing habits in terms of energy savings

  14. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  15. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  16. Australian energy statistics - Australian energy update 2005

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, K.

    2005-06-15

    ABARE's energy statistics include comprehensive coverage of Australian energy consumption, by state, by industry and by fuel. Australian Energy Update 2005 provides an overview of recent trends and description of the full coverage of the dataset. There are 14 Australian energy statistical tables available as free downloads (product codes 13172 to 13185).

  17. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  18. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  19. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  20. Geothermal energy in the world energy scenario

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    This paper reports on the world energy consumption between 1960 and 1984 from primary energy sources (coal, natural gas, oil, hydropower, nuclear energy) and the same in percentages from 1925. This highlights the diminishing role of coal and the increased consumption of gas and oil. The latter has stabilized around 42% of the total after the drop in demand resulting from the oil crisis of 1973. The world energy consumption has then been divided into industrialized and developing countries. It appears that the latter, with a population equal to 68% of the total world population, consumed 23% of the world energy in 1982. Furthermore, the consumption figures show that the demand for domestic energy is much smaller in developing countries, and it is well-known that domestic energy consumed is one of the parameters used to assess standard of living. The total installed electric capacity throughout the world is then reported, divided between developed and developing countries, showing that the latter consumed 11% of all the electricity generated in the world in 1981. The world installed electric power of geothermal origin at the end of 1985 is shown, along with estimates for 1990. Geothermal energy represents 0.2% of the world electric power. This is obviously a small figure and indicates that geothermal energy plays a minor role on the world energy scene. However, if we distinguish between industrialized and developing countries, we can observe that, with their currently limited electrical consumption but good geothermal prospects, the developing countries could achieve quite a significant contribution to their total electric energy from that of geothermal origin, increasing at the moment from 3 to 19%. Finally, a comparison is made between electricity generating costs of different sources, showing that geothermal energy is competitive. A table illustrates the world evolution in installed geothermal capacity from 1950 to 1985. The non-electric uses of geothermal energy

  1. Energy conservation, energy efficiency and energy savings regulatory hypotheses - taxation, subsidies and underlying economics

    Energy Technology Data Exchange (ETDEWEB)

    Trumpy, T. [International Legal Counsel, Brussels (Belgium)

    1995-12-01

    More efficient use of energy resources can be promoted by various regulatory means, i.e., taxation, subsidies, and pricing. Various incentives can be provided by income and revenue tax breaks-deductible energy audit fees, energy saving investment credits, breaks for energy saving entrepreneurs, and energy savings accounts run through utility accounts. Value added and excise taxes can also be adjusted to reward energy saving investments and energy saving entrepreneurial activity. Incentives can be provided in the form of cash refunds, including trade-in-and-scrap programs and reimbursements or subsidies on audit costs and liability insurance. Pricing incentives include lower rates for less energy use, prepayment of deposit related to peak load use, electronically dispatched multiple tariffs, savings credits based on prior peak use, and subsidized {open_quotes}leasing{close_quotes} of more efficient appliances and lights. Credits, with an emphasis on pooling small loans, and 5-year energy savings contracts are also discussed.

  2. Energy and durable development: the place of the renewable energies; Energie et developpement durable: la place des energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The 29 may 2000, took place at the UNESCO, a colloquium on the place of the renewable energies facing the economic development. This document presents the opening presentation of A. Antolini and L. Jospin and the colloquium papers and debates in the following four domains: the energy challenges of the durable development, the renewable energies sources facing the european directive, the thermal renewable energies (solar, geothermics and biomass) and the greenhouse effect, the world market of the renewable energies. (A.L.B.)

  3. Energy, the engine for progress? 120 keys to understand energies

    International Nuclear Information System (INIS)

    Mathis, Paul

    2014-01-01

    Through 120 issues or questions, the author proposes an overview of issues related to energy. He first addresses general issues (definition of energy, relationship between heat and temperature, between energy and climate change, types of energy), discusses the relationship between life and energy (our energy need, energy in food, use and consumption of energy by living materials), proposes an history of the use of energy resources by mankind, gives an overview of energy resources (origins, primary and final energies, energy mix, fossil energies, oil producers, peak oil, shale gases, coal is back, nuclear energy and accidents, renewable energies, biomass and biofuel production, the issue of energy storage, and so on). He discusses the various aspects and issues of energy transition, and the role of energy in the society (prices, technological perspectives, risks, accidents and their consequences, the strategic role of energy). He finally comments the perspectives: the interest of using scenarios, the use of hydrogen, future biofuels, micro-algae, thermal solar power plants, sea energies, etc.

  4. Energy conservation. Federal shared energy savings contracting

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Milans, Flora H.; Kirk, Roy J.; Welker, Robert A.; Sparling, William J.; Butler, Sharon E.; Irwin, Susan W.

    1989-04-01

    A number of impediments have discouraged federal agencies from using shared energy savings contracts. As of November 30, 1988, only two federal agencies - the U.S. Postal Service (USPS) and the Department of the Army -had awarded such contracts even though they can yield significant energy and cost savings. The three major impediments we identified were uncertainty about the applicability of a particular procurement policy and practice, lack of management incentives, and difficulty in measuring energy and cost savings. To address the first impediment, the Department of Energy (DOE) developed a manual on shared energy savings contracting. The second impediment was addressed when the 100th Congress authorized incentives for federal agencies to enter into shared savings contracts. DOE addressed the third impediment by developing a methodology for calculating energy consumption and cost savings. However, because of differing methodological preferences, this issue will need to be addressed on a contract-by-contract basis. Some state governments and private sector firms are using performance contracts to reduce energy costs in their buildings and facilities. We were able to identify six states that were using performance contracts. Five have established programs, and all six states have projects under contract. The seven energy service companies we contacted indicated interest in federal shared energy savings contracting

  5. Dossier Energy

    International Nuclear Information System (INIS)

    Weijer, H.; Holwerda, B.; Schrauwers, A.; Van de Graaf, A.; Van Gelder, T.

    2003-01-01

    Several aspects with respect to energy are discussed in a special section of this magazine: the security of energy supply in a liberalized market, saving energy by outsourcing (e.g. compressed air contracting), the profits of a liberalized energy market for businesses, incentives for energy saving projects and innovations, an energy efficiency project at Ineos Silicas (producer of zeolites), and energy efficient electronic equipment [nl

  6. Renewable energy

    International Nuclear Information System (INIS)

    Yoon, Cheon Seok

    2009-09-01

    This book tells of renewable energy giving description of environment problem, market of renewable energy and vision and economics of renewable energy. It also deals with solar light like solar cell, materials performance, system and merit of solar cell, solar thermal power such as solar cooker and solar collector, wind energy, geothermal energy, ocean energy like tidal power and ocean thermal energy conversion, fuel cell and biomass.

  7. Resolving society's energy trilemma through the Energy Justice Metric

    International Nuclear Information System (INIS)

    Heffron, Raphael J.; McCauley, Darren; Sovacool, Benjamin K.

    2015-01-01

    Carbon dioxide emissions continue to increase to the detriment of society in many forms. One of the difficulties faced is the imbalance between the competing aims of economics, politics and the environment which form the trilemma of energy policy. This article advances that this energy trilemma can be resolved through energy justice. Energy justice develops the debate on energy policy to one that highlights cosmopolitanism, progresses thinking beyond economics and incorporates a new futuristic perspective. To capture these dynamics of energy justice, this research developed an Energy Justice Metric (EJM) that involves the calculation of several metrics: (1) a country (national) EJM; (2) an EJM for different energy infrastructure; and (3) an EJM which is incorporated into economic models that derive costs for energy infrastructure projects. An EJM is modeled for China, the European Union and the United States, and for different energy infrastructure in the United Kingdom. The EJM is plotted on a Ternary Phase Diagram which is used in the sciences for analyzing the relationship (trilemma) of three forms of matter. The development of an EJM can provide a tool for decision-making on energy policy and one that solves the energy trilemma with a just and equitable approach. - Highlights: • Energy justice advances energy policy with cosmopolitanism and new economic-thinking. • An Energy Justice Metric is developed and captures the dynamics of energy justice. • The Energy Justice Metric (EJM) compares countries, and energy infrastructure. • EJM provides an energy policy decision-making tool that is just and equitable.

  8. NANA Strategic Energy Plan & Energy Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine.

  9. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  10. The energy sector in Israel: The renewable energies place

    International Nuclear Information System (INIS)

    1997-11-01

    The energy production, in Israel, is not sufficient to satisfy the country needs, that is perpetually growing. Today 96% of the energy consumption is imported, essentially with petroleum and coal. To reduce this energy dependence, the government encourages the scientific researches and innovations in the field of clean and renewable energies. The paper presents political and economical aspects of the management and the exploitation of the following energy resources, developed in Israel: fossil fuels with oil shales; solar energy; biomass; wind energy; geothermal energy and hydraulic energy. (A.L.B.)

  11. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  12. Energy needs

    International Nuclear Information System (INIS)

    Chateau, Bertrand

    2014-05-01

    The author first discusses the various concepts and definitions associated with energy needs, and then the difference between actual needs and energy needs by distinguishing personal needs, needs of the productive sector, energetic needs and services. In the next part, he discusses how energy needs are assessed. He discusses the relationship between energy needs and energy consumption, how energy consumptions can be analysed and interpreted. He comments how energy needs can be assessed and analysed in time and in space. He notices and explains why economy and climate are the main causes of spatial differences for energy needs per habitant, and comments the evolution of energy consumption over long periods

  13. Energy assessments

    International Nuclear Information System (INIS)

    Unruh, T.D.

    1998-01-01

    Energy industry initiatives during the 1970s and during the 1990s are compared. During the 1970s, the objective was to reduce energy consumption and to reduce dependency on foreign fuel. Today, the emphasis is on reducing energy costs and to improve net operating income. The challenges posed by the drive to reduce energy costs are discussed. As a tool in the drive to reduce energy cost, the energy assessment process was described. The process entails a detailed analysis of energy consumption, an investigation of energy rates and an assessment of site conditions and equipment, with a view towards an optimum combination that will lead to energy cost reductions

  14. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  15. Fostering sustained energy behavior change and increasing energy literacy in a student housing energy challenge

    Science.gov (United States)

    Brewer, Robert Stephen

    We designed the Kukui Cup challenge to foster energy conservation and increase energy literacy. Based on a review of the literature, the challenge combined a variety of elements into an overall game experience, including: real-time energy feedback, goals, commitments, competition, and prizes. We designed a software system called Makahiki to provide the online portion of the Kukui Cup challenge. Energy use was monitored by smart meters installed on each floor of the Hale Aloha residence halls on the University of Hawai'i at Manoa campus. In October 2011, we ran the UH Kukui Cup challenge for the over 1000 residents of the Hale Aloha towers. To evaluate the Kukui Cup challenge, I conducted three experiments: challenge participation, energy literacy, and energy use. Many residents participated in the challenge, as measured by points earned and actions completed through the challenge website. I measured the energy literacy of a random sample of Hale Aloha residents using an online energy literacy questionnaire administered before and after the challenge. I found that challenge participants' energy knowledge increased significantly compared to non-challenge participants. Positive self-reported energy behaviors increased after the challenge for both challenge participants and non-participants, leading to the possibility of passive participation by the non-challenge participants. I found that energy use varied substantially between and within lounges over time. Variations in energy use over time complicated the selection of a baseline of energy use to compare the levels during and after the challenge. The best team reduced its energy use during the challenge by 16%. However, team energy conservation did not appear to correlate to participation in the challenge, and there was no evidence of sustained energy conservation after the challenge. The problems inherent in assessing energy conservation using a baseline call into question this common practice. My research has

  16. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, J [Business Unit ESC-Energy Studies, Netherlands Energy Research Foundation, Petten (Netherlands)

    1992-11-01

    A brief overview is given of the options to use biomass as an energy source. Attention is paid to processing techniques, energy yields from crops, production costs in comparison with other renewable sources and fossil fuels, and the Dutch energy policy for this matter. 1 fig., 1 ill., 2 tabs., 3 refs.

  17. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  18. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  19. Energy, ecology and unreason; Energie, Oekologie und Unvernunft

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio [Technische Univ. Dresden (Germany); Unger, Jochem

    2013-07-01

    The contribution deals with the following issues: the civil use of nuclear power in Germany, the development of nuclear power plants and the actual status of reactor technology in Germany, nuclear waste management, future nuclear reactors, thermonuclear fusion, radioactivity and environments, energy policy - exit from nuclear and fossil-fuel energy, renewable energies for electricity production, infrastructure for renewable energies, objective sight on the exit from nuclear and fossil-fuel energy, futuristic large energy concepts, other civilization threatening hazards, conclusions and hopes.

  20. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  1. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  2. Energy policy and renewable energy sources

    International Nuclear Information System (INIS)

    2000-01-01

    According to Shell, by 2050, renewable energy sources may supply over 50% of the energy, worldwide. This concentration on renewable energy sources is primarily due to the intensified environmental demands. The UN climate panel has estimated that to avoid irreversible climate change it is necessary to reduce the global emissions of CO2 by 50 to 60% during the next 100 years. Biomass energy includes a number of biological raw materials from forestry and agriculture. The forests provide wood, wood chips, bark, branches and treetops, and from agriculture, straw. Although biomass energy is not entirely pollution-free, it is renewable and CO2-neutral as long as growth and consumption are in balance. In Norway, the total annual growth of available biomass corresponds to about 80 TWh. The technical potential is estimated to 30 TWh per year, allowing for operationally reasonable ways of producing the biomass. However, there is competition for the biomass since it is used by the wood processing industry. The use of biomass and waste for energy generation varies considerably among the Nordic countries. In Denmark, agriculture dominates and large quantities of straw are burned in cogeneration plants. Sweden and Finland have well-developed forest industries, and the wood processing industry in these countries uses much more biomass fuel (bark, fibre mud, black liquor) than the Norwegian wood processing industry. In Norway, more energy can be obtained by retrofitting old hydroelectric plants such as by installing a flexible liner in existing tunnels. This improves energy flexibility and increases energy production without negative environmental consequences. The potential for wind power is larger in Norway than in Denmark and Germany. The cost of wind power has fallen considerably as a consequence of the technological development of the sector

  3. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  4. U.S. energy outlook and future energy impacts

    Science.gov (United States)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  5. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  6. Energy. Against the current; Energie. Gegen den Strom

    Energy Technology Data Exchange (ETDEWEB)

    Stellpflug, Juergen (comp.)

    2008-07-01

    This is a special issue 'Oeko-Test Spezial Energie' of Oeko-Test journal of 15 December 2008. It contains information on the following subjects: Builder-owners over 50: Passive buildings, the best way to prepare for old age; Floor heating systems: Floors that give you a good feeling; CO2 check: How to check a home from the basement to the roof; Insulating materials; Energy certificates - none is perfect; Energy consulting: detecting leaks; Energy saving with thermal insulation; Heating with wood; Radiators and radiator design; Internal thermal insulation: Better than nothing; Tiled stoves for thermal comfort; Combined heat and power generation for energy autonomy; New laws and ordinances: Energy conservation becomes obligatory; Solar energy: Big is beautiful; Solar energy: Public funding: Solar energy technology; Solar power generation: High yields but impending obstacles; Wall heating systems: Thermal comfort out of the wall; Integrated thermal insulation systems: Nothing to fear from the cold; Heat pumps: Getting heat into the house; Thermal engineering: High efficiency is advantageous. (orig.)

  7. Renewable energy outlook in Iran and World's energy structure

    International Nuclear Information System (INIS)

    Azarm, D.; Adl, M.

    2001-01-01

    Limited fossil fuel resources and environmental impact of energy production technologies causing Global Warming have encouraged wide spread used of renewable energies. This article reviews the characteristics of renewable energy sources as well as their status within IR of Iran and pro-countries. According to the mentioned Information and Status, currently 22% of world electricity is produced through conversion of various renewable energies and expected to grow even further. This trend has been a main factor in reduction of end-used renewable energy prices. Consideration of social and environmental costs of fossil fuel use will help to reveal compatibility of renewable energies. Utilization of renewable energy potentials apart from proven environmental advantages and job creation effects may conserve country's conventional fossil fuel resources. In general, growth of renewable energy in a country is direct result of existing energy policies with respect to increasing the share of clean energies in the energy basket. Nevertheless in Iran yearly demand hikes for energy and considering the fact the fossil fuel reservoirs are limited, utilization of renewable energy potentials is inevitable

  8. VT Renewable Energy Sites - Renewable Energy Professionals

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  9. Energy Vulnerability and EU-Russia Energy Relations

    Directory of Open Access Journals (Sweden)

    Edward Hunter Christie

    2009-08-01

    Full Text Available The concept of energy vulnerability is reviewed and discussed with a focus on Russia’s foreign energy relations, in particular those with European countries. A definition and a conceptual framework for quantifying energy vulnerability are proposed in the context of a review of recent research on energy vulnerability indices. In particular it is suggested that source country diversification should be reflected using the expected shortfall measure used in financial economics, rather than the Herfindahl-Hirschman or Shannon-Wiener indices, and that the former should then enter a calibrated function in order to yield expected economic loss. The issues of asymmetric failure probabilities and accidental versus intentional supply disruptions are then discussed with examples of recent Russian actions. Energy vulnerability measurement and modelling should ultimately inform policy. In particular, member states should legislate that no energy infrastructure project by one or more member states may increase the energy vulnerability of another member state. Additionally, European environmental policies, notably the EU ETS, should be amended so as to account for induced changes in energy vulnerability. Finally, member states should increase the level of transparency and disclosure with respect to gas import statistics and gas supply contracts.

  10. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  11. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  12. East European energy. Romania's energy needs persist

    International Nuclear Information System (INIS)

    Smith, Elliott C.; Denman, Sara B.; Kutnick, Bruce; Schultz, John R.; Foley Hinnen, Patricia; Bylsma, Peter J.

    1992-08-01

    Romania's economic growth and development have been hampered by declining domestic energy production and disrupted fuel imports, creating an energy shortage. Consequently, homes and businesses lack sufficient light and heat, and industrial output has fallen. In order to ensure sufficient energy supplies in the future, Romania is taking steps to decentralize its state-owned energy industries, modernize its outdated facilities and equipment, diversify its fuel sources, and eliminate its inefficient production practices. To accomplish these objectives, Romania needs substantial foreign trade and investment, according to Romanian officials. However, despite government efforts to reform the energy sector and improve the business climate, impediments to U.S. trade with and investment in Romania persist. These barriers include lack of a comprehensive energy strategy, underdeveloped legal and business infrastructures, uncertain economic and political conditions, and the absence of U.S. most-favored-nation trade status. Recent efforts by the Romanian and U.S. governments to overcome the barriers to most-favored-nation status have led to progress in this area. U.S. government and international agencies have initiated a variety of efforts to assist Romania's energy sector. For example, the Agency for International Development (AID) funded an Emergency Energy Program; the U.S. Trade and Development Program is evaluating requests to fund several feasibility studies in the power generation sector; and the Department of Commerce offers energy-related information exchanges and trade missions to Romania. International organizations such as the World Bank and the European Investment Bank have also granted loans for energy sector development projects in Romania

  13. Energy intermittency

    CERN Document Server

    Sorensen, Bent

    2014-01-01

    The first book to consider intermittency as a key point of an energy system, Energy Intermittency describes different levels of variability for traditional and renewable energy sources, presenting detailed solutions for handling energy intermittency through trade, collaboration, demand management, and active energy storage. Addressing energy supply intermittency systematically, this practical text:Analyzes typical time-distributions and intervals between episodes of demand-supply mismatch and explores their dependence on system layouts and energy source characteristicsSimulates scenarios regar

  14. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  15. Nuclear energy + solar energy, why not?

    International Nuclear Information System (INIS)

    Hernandez C, I.; Nelson E, P.

    2016-09-01

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  16. Energy in Croatia 2002. Annual Energy Report

    International Nuclear Information System (INIS)

    2003-01-01

    The review, in its own recognisable way, consists of the most recent and settled data on the Croatian energy system for the period up to and including the year 2002. Some data appertain to a longer time period with the aim of an easier insight into long-term prospects. In 2002 total primary energy supply exceeded the year before by 1.3 percent. Owing to the simultaneous growth of the gross domestic product by 5.2 percent, energy intensity decreased thus marking the third year of a positive trend. However, it has to be mentioned that energy intensity, which expresses the total energy consumed per unit of gross domestic product, exceeded the level of the developed European countries by 33 percent, although it was still more favourable than in the majority of transition countries. Supply from own sources fell to the less than 50 percent, and energy import, with oil in the leading position, recorded an average annual increase of 4.7 percent. In 2002 transformation losses as well as transportation and distribution losses decreased thus bringing about the already mentioned total energy consumption growth of 1.3 percent and final demand increase by 2.3 percent - this means that the energy system was more efficient. The year 2002 recorded a consumption increase in traffic by 6.2 percent, in other sectors by 3 percent, while industry realised a decrease by 3.9 percent. It should be emphasised that diesel fuel recorded a major increase and in the whole structure almost reached the level of the motor gasoline. From 1995 till the end of the period observed the gas distribution network was doubled in length. The report includes other interesting information about our energy system, i.e. capacities, energy, source prices, as well as environmental impact from the energy sector

  17. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  18. Energy policy and energy market performance: The Argentinean case

    International Nuclear Information System (INIS)

    Recalde, Marina

    2011-01-01

    In the early 1990s Argentina liberalized and privatized the energy system, trending to a total market oriented system and abandoning the use of energy policy. Since 2004, as a result of a boom in energy demand and constrains in energy supply, Argentina has gone through an energy problem mainly related to natural gas and electricity, which derived in energy shutdowns. In this frame, this study explores the role of energy policy and institutions in Argentina, with the aim of discussing whether it has been properly used to contrast the observed lack of coordination between fossil energy reserves management and the demand of fuels in power generation. The results of the analysis enhance the relevance of regulatory and control authorities, as well as the active use of long run energy policy for the energy system performance in order to avoid coordination failures between subsectors of the system. The relevance of energy consumption for the development process, and the particular characteristics of energy systems require a wide planning perspective. - Highlights: → This paper examines some aspects of the performance of the Argentinean energy system and energy policy. → There is a lack of coordination between fossil energy reserves management and electricity demand. → It is required an improvement of the regulatory framework, and an active role of the regulatory authorities. → A better planning for electricity supply and strengthening aspects related to the linking with other energy chains. → Promoting a systematic exploitation of NG and oil reserves' and increasing the share of RETs in the energy mix.

  19. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  20. Proceedings of IX International Conference for Renewable Energy, Energy Saving and Energy Education (CIER 2017)

    International Nuclear Information System (INIS)

    2017-01-01

    The Study Centre for Renewable Energy Technologies (CETER) located at the Technological University of Havana Jose Antonio Echeverria (CUJAE) Cuba hosted the IX International Renewable Energy Conference, Energy Saving and Energy Education (CIER 2017). The current focus on Cuba's renewable energy sector is ambitious with the Government proposing to boost investment by USD 3.5 billion in order to reach its goal of generating 24 per cent of its power from renewable energy by 2030. CIER 2017 brought together hundreds of scientist, engineers, manufactures, investors, policy makers, energy users and other specialists from across the entire international renewable energy spectrum to exchange knowledge, debate and analyze the global efforts currently being carried out in the field. This is all with the objective of intensifying the introduction of renewable energy technologies and promoting the sustainable energetic development in Cuba and the Caribe.

  1. Energy Investment Allowance. Energy List 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The title regulation (EIA, abbreviated in Dutch) offers entrepreneurs in the Netherlands financial incentives to invest in energy efficient capital equipment and renewable energy. Minimal 40% of the investment costs with a maximum of 208 million Dutch guilders can be deducted from fiscal profits. For one or more years less income tax or corporation taxes have to be paid. In this brochure it is outlined what the EIA means and how it can be used. The Energy List contains brief descriptions of examples of different energy efficient options that can be applied to qualify for the EIA

  2. The relationship among energy prices and energy consumption in China

    International Nuclear Information System (INIS)

    Yuan, Chaoqing; Liu, Sifeng; Wu, Junlong

    2010-01-01

    The pricing mechanism for energy is not in line with the international standards, because the energy prices are controlled by the government partly or completely in China. Chinese government made a lot of efforts to improve the pricing mechanism for energy. The relations between Chinese energy prices and energy consumption are the foundations to reform the mechanism. In this paper, the relations between Chinese energy consumption and energy prices are researched by cointegration equations, impulse response functions, granger causality and variance decomposition. The cointegration relations among energy prices, energy consumption and economic outputs show that higher energy price will decrease energy consumption in Chinese industrial sectors but will not reduce the economic output in the long run. The cointegration relation between energy price and household energy consumption shows that higher energy price will decrease household energy consumption in the long run and increase it in the short run. So Chinese government should deepen the reform of pricing mechanism for energy, and increase the energy prices reasonably to save energy. (author)

  3. China's energy security: The perspective of energy users

    International Nuclear Information System (INIS)

    Bambawale, Malavika Jain; Sovacool, Benjamin K.

    2011-01-01

    The article explores the energy security concerns faced by China from the point of view of energy users working in government, university, civil society and business sectors. The authors first derive a set of seven hypotheses related to Chinese energy security drawn from a review of the recent academic literature. We then explain each of these seven hypotheses, relating to (1) security of energy supply, (2) geopolitics, (3) climate change, (4) decentralization, (5) energy efficiency, (6) research and innovation of new energy technologies, and (7) self sufficiency and trade. Lastly, the article tests these hypotheses through a survey distributed in English and Mandarin completed by 312 Chinese participants. The conclusion presents insights for policymakers and energy scholars.

  4. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  5. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  6. Municipal energy managers; Responsables energie municipaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  7. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  8. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  9. Energy Choices. Energy markets; Vaegval Energi. Energimarknader

    Energy Technology Data Exchange (ETDEWEB)

    Damsgaard, Niclas (Econ Poeyry AB, Stockholm (Sweden))

    2008-12-15

    Each of the major energy markets for oil, coal, natural gas, biofuels and electricity has its own character. But markets are dependent on each other in an often complicated way. This interconnection has become even more complex since the market for emissions trading began in Europe in 2005. This report describes the current situation of the different energy markets but also the relationships between them, and some possible future scenarios. The oil market is global, but is dominated by a few producing countries. Coal is traded on the international market with good competition and over time probably a stable price. Other markets are more regional or even local. One example is the natural gas market. In the current situation of natural gas is not particularly important for Sweden's energy supply, but very much so in a European perspective. There may be repercussions also in Sweden. The gas price ups and downs are important for the price of emission rights and electricity. Biofuel markets ranging from global markets, such as ethanol, to regional or local markets, depending on processing. Only with the creation of a single trading venue, Nordpool was a common pricing of electricity possible in the Nordic region. In the near future we will have a common electricity market covering at least the Nordic region and northwestern Europe. This does not mean that prices will become equalized, for that further expansion of the transmission capacity is needed. It is possible to imagine several scenarios for future energy markets, but the interaction between the different markets will persist. To develop appropriate instruments is of great importance to achieve the political objectives in the energy field the next decade

  10. Energy 93, energy in Israel

    International Nuclear Information System (INIS)

    Shilo, D.; Bar Mashiah, D.; Er-El, J.

    1993-01-01

    For the first time this report includes a chapter entitles 'energy and peace'. Following is an overview of israel's energy economy and some principal initiatives in its various sectors during 1992/93 period. 46 figs, 13 tabs

  11. Advantage Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Increased focus has been placed on the issues of energy access and energy poverty over the last number of years, most notably indicated by the United Nations (UN) declaring 2012 as the 'International Year of Sustainable Energy for All'. Although attention in these topics has increased, incorrect assumptions and misunderstandings still arise in both the literature and dialogues. Access to energy does not only include electricity, does not only include cook stoves, but must include access to all types of energy that form the overall energy system. This paper chooses to examine this energy system using a typology that breaks it into 3 primary energy subsystems: heat energy, electricity and transportation. Describing the global energy system using these three subsystems provides a way to articulate the differences and similarities for each system's required investments needs by the private and public sectors.

  12. Energy trading and pricing in microgrids with uncertain energy supply

    DEFF Research Database (Denmark)

    Ma, Kai; Hu, Shubing; Yang, Jie

    2017-01-01

    This paper studies an energy trading and pricing problem for microgrids with uncertain energy supply. The energy provider with the renewable energy (RE) generation (wind power) determines the energy purchase from the electricity markets and the pricing strategy for consumers to maximize its profi....... In particular, the uncertainty of the energy supply from the energy provider is considered. Simulation results show that the energy provider can obtain more profit using the proposed decision-making scheme.......This paper studies an energy trading and pricing problem for microgrids with uncertain energy supply. The energy provider with the renewable energy (RE) generation (wind power) determines the energy purchase from the electricity markets and the pricing strategy for consumers to maximize its profit...

  13. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  14. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  15. Translating EU renewable energy policy for insular energy systems: Reunion Island's quest for energy autonomy

    Directory of Open Access Journals (Sweden)

    Matthew Sawatzky

    2017-12-01

    Full Text Available Recognition of the negative impacts of climate change has led to agreement on the need to decarbonise energy systems through the employment of renewable energy. With many national and transnational policies in place, the options available to insular energy systems (IES differ from those of interconnected areas due to fragility in their production and distribution networks. Based on the concepts of policy mobility and translation, this study examines the interplay of EU renewable energy policy and insular governance processes aimed at achieving energy autonomy through renewable energy development. Reunion Island, a French Overseas Department and Region, is used as a case study to examine local energy governance processes, aspects that shape regional translation of national and EU policy, and the potential effects that create structures and pathways of energy transition. The study shows that Reunion Island’s regional Energy Governance Committee has significant application potential as a governance tool in other IES and small islands within the EU, but that renewable energy development is restricted due to national policy measures and path dependent governance structural constraints.

  16. What energies for tomorrow?; Quelles energies pour demain?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document gathers the transparencies presented at the occasion of the jubilee day on nuclear engineering. The main theme was the energies of the future. Four presentations were given, dealing with: the long-term wold energy perspectives (C. Mandil); the nuclear and renewable energies in a development perspective (B. Barre); the new energy technologies (C. Ngo); and the energy situation and problem in China (transparencies and article, D. Chavardes). (J.S.)

  17. New technologies of the energy 1. The renewable energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2006-01-01

    This book, devoted to the renewable energies, is the first of three volumes taking stock on the new technologies of the energy situation. The first part presents the solar energy (thermal photovoltaic and thermodynamic), completed by a chapter on the wind energy. An important part is devoted to new hydraulic energies with the sea energies and the very little hydroelectricity and in particular the exploitation of the energy of the drinking water and wastes water pipelines. (A.L.B.)

  18. Engineered Geothermal Systems Energy Return On Energy Investment

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use efficiency when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the minimum EROI an energy production system should have to be an asset rather than a liability.

  19. Energy policy formulation and energy administration in South Africa

    International Nuclear Information System (INIS)

    Du Plessis, S.J.P.

    1983-01-01

    The evolvement of the governmental energy administrative mechanisms is discussed. Energy policy formulation and the role of the Department of Mineral and Energy Affairs in this regard are outlined. The energy administrative process, with reference to various energy carriers and specific spheres of the South African energy economy is discussed. It is indicated that close co-operation between the public and private energy sectors should result in mutual understanding of each others' practical problems and objectives, and should contribute towards the process of judicious energy policy formulation and administration in the interests of the national well-being

  20. Energy education; Education a l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The aim of this forum is to analyze the role of local and regional energy agencies in promoting low energy consuming technologies and in the information and education of the general public about energy mastery and conservation. (J.S.)

  1. Nuclear energy and its synergies with renewable energies

    International Nuclear Information System (INIS)

    Carre, F.; Mermilliod, N.; Devezeaux De Lavergne, J.G.; Durand, S.

    2011-01-01

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  2. Myth of energy competitiveness in energy producing countries

    International Nuclear Information System (INIS)

    Watanabe, Chihiro; Widayanti, Tjahya

    1992-01-01

    This paper examines the relative comparative advantage, focusing on energy prices, of an energy producing developing country (Indonesia) and a non-energy producing developed country (Japan). For energy producing developing countries, it is strategically important to increase the competitiveness of energy dependent industries, and encourage the development of value-added industries. Much work has been done on relative advantage analysis, but the effects of the energy price formation mechanisms on price competitiveness have not been analysed. In this paper a comprehensive approach, using production and cost functions and synchronized price formation by means of principal component analysis, is introduced. (Author)

  3. Energy, tourism

    OpenAIRE

    Frantál, B. (Bohumil)

    2015-01-01

    The chapter provides a general definition of energy and resume the role and environmental impacts of tourism as one of the largest global industries and energy consumers.Then the energy tourism nexus is conceptualized from three perspectives: The first is energy as a driver of tourism. The second is energy as a constraint of tourism. The third is energy as an attraction and object of tourists´interests.

  4. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  5. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  6. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  7. Energy Management. Special. Magazine for energy supply and energy management

    International Nuclear Information System (INIS)

    Van Mil, R.

    2000-05-01

    The special Energy Management was issued in cooperation with many participating businesses in the Netherlands which provided articles on recent developments and new services and products with respect to the liberalized energy market in the Netherlands and Europe

  8. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  9. Energy prices and the promotion of energy conservation. A background study for energy conservation programme

    International Nuclear Information System (INIS)

    1994-01-01

    The prices of fuels in the international markets affect the development of consumer prices of energy in Finland. In the near future no factors can be foreseen, which would cause major increases in the prices of oil, coal or gas. It can thus not be expected that increased fuel prices would motivate more efficient energy conservation. In international comparison, consumer prices of energy have been relatively low in Finland. This applies especially to electricity. After the removal of price controls, energy prices have been determined by the markets. The influence of the public authorities in energy pricing is put into effect through taxation. The price of energy has a fairly small effect on energy consumption in a short term, but longer term effects are more significant. Energy products are faxed in all western countries. (orig.)

  10. Energy - environment - nutrition. Energie - Umwelt - Ernaehrung

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The special edition contains contributions made by different authors on the array of problems presented by the environment, energy, and nutrition, biosphere and man, economic growth and energy supplies for future security, new environmental awareness, - the end of market economy., power plant safety, conditions for the evolution of mankind, policy and criminal law demonstrated by means of environmental protection. The concept of ecology and the development of world energy supplies are documented. The bibliography report goes into detail as far as studies are concerned which deal with the hazards of nuclear power plants, related pros and cons, with the energy crisis in general, and with nuclear weapons.

  11. Energy policy, the energy price fallacy and the role of nuclear energy in the UK

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1978-01-01

    The widely held belief that the world energy problem will be solved by rising prices - closing the energy gap by reducing demand and bringing in new, large, previously overcostly energy sources is rejected by the author who feels that high prices are the problem and not the solution. It is argued that supply and demand will be brought into balance at some price, and the objective of energy policy should be to make it as low as possible, by concentrating on the exploitation of large, low-cost energy sources. The role of nuclear energy in this discussion is considered with respect to three specific points: the currently identified reserves of low-cost uranium, if used in fast reactors, represent an energy source greater than all other energy sources put together; nuclear power is the cheapest, safest and cleanest way of producing electricity; and electricity production accounts for a very large part of total primary energy consumption. (U.K.)

  12. Dutch Energy Investment Allowance (EIA). Energy List for 2013; Energie-investeringsaftrek (EIA). Energielijst 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The Energy Investment Allowance (EIA) is a tax system by means of which the Dutch government supports companies with investments in energy-saving equipment and renewable energy. This brochure explains the assets eligible for EIA and how the scheme works [Dutch] De Energie-investeringsaftrek (EIA) is een fiscale regeling waarmee de overheid ondersteuning biedt voor bedrijven bij investeringen in energiebesparende bedrijfsmiddelen en duurzame energie. In deze brochure wordt uitgelegd welke bedrijfsmiddelen in aanmerking komen voor EIA en hoe de regeling werkt.

  13. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    Science.gov (United States)

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  14. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    Directory of Open Access Journals (Sweden)

    Bruno Srbinovski

    2016-03-01

    Full Text Available Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind. Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources and power hungry sensors (ultrasonic wind sensor and gas sensors. The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  15. Hydro-energy; Energie hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P. [Electricite de France (EDF), 75 - Paris (France); Tardieu, B. [Coyne et Bellier, 92 - Gennevilliers (France)

    2005-07-01

    The first part of this study concerns the different type of hydraulic works. The second part presents the big hydro-energy, its advantages and disadvantages, the industrial risks, the electric power transport network, the economy and the development perspectives. The third part presents the little hydro-energy, its advantages and disadvantages, the decentralized production and the development perspectives. (A.L.B.)

  16. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  17. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  18. Guidebook for using unused energy; Miriyo energy katsuyo guidebook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Unused energy is the temperature difference energy such as seawater, river water and sewage heat, waste heat from building, refuse incineration waste heat energy, etc. These have not been very much used because of the technical or economic restraints. There exists a large amount of unused energy around cities. If these unused energy is used well by appropriate technology such as heat pump, heat storage tank, etc., the energy used for heating/cooling and hot water supply in cities are expected to be greatly reduced. For further promotion of the use of unused energy, this guidebook was aimed at being used as a guidebook in studying the introduction of unused energy for new urban plans and architectural plans, re-development plans on existing buildings and regions, etc. The guidebook introduced the energy situation in Japan, utilization technology of unused energy and examples of the introduction, the system construction method in introducing unused energy and the evaluation method of effects, procedures to be taken to study heat supply business, and the most up-to-date R and D of the utilization technology of unused energy. (NEDO)

  19. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  20. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  1. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  2. Effective energy planning for improving the enterprise’s energy performance

    Directory of Open Access Journals (Sweden)

    Păunescu Carmen

    2016-09-01

    Full Text Available The global pressing need to protect the environment, save energy and reduce greenhouse gas emissions worldwide has prompted the enterprises to implementing both individual energy saving measures and a more systematic approach to improve the overall enterprise’s energy performance. Energy management is becoming a priority as enterprises strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. As such, enterprises are encouraged to manage their energy related matters in a systematic manner and a more harmonized way, to ensure continual improvement on their energy efficiency. Despite the increasing interest in energy management standards, a gap persists between energy management literature and current implementation practices. The release of the ISO 50001 international standard was meant to help the organizations develop sound energy management systems and effective process-based energy management structures that could be recognized through third-party certification. Building on the energy management literature and energy management standards, the current paper presents the essential steps the enterprises should take to practically design a sustainable energy management system. Also, by using multiple case studies of enterprises that have implemented an ISO 50001 energy management system, it introduces a structured approach that companies can use to effectively develop their energy planning and improve energy performance. The key components of the enterprise’s energy planning are discussed, as well as practical examples of energy objectives and performance indicators from various industries are offered. The paper shows that by establishing an effective energy planning system, this will efficiently meet demands for achieving energy performance indicators and international certification.

  3. A study on energy security and nuclear energy role

    International Nuclear Information System (INIS)

    Ujita, Hiroshi

    2011-01-01

    Energy security was a major concern for OECD governments in the early 1970s. Since then, successive oil crises, volatility of hydrocarbon prices, as well as terrorist risks and natural disasters, have brought the issue back to the centre stage of policy agendas. Here, an energy security concept has been proposed, which is defined by time frame and space frame as well. Wide-meaning energy security is divided broadly into two categories. One is short-term (∼10 y) energy crisis, which is narrow-meaning energy security. Short-term energy crisis is further divided into contingent crisis, such as energy supply chain (sealane) interruption due to conflict, accident, terrorism, etc., and structural crisis, such as price fluctuations, supply shortage, energy demand increase in Asia, technology development stagnation, etc. The other is long-term (∼100 y) energy crisis and global energy problems, such as fossil fuel exhaustion and global warming. (author)

  4. Energy and environment policies. International Energy Agency

    International Nuclear Information System (INIS)

    1991-01-01

    An analysis is made of how energy policies can be adapted to environmental concerns. The efficiency of measures solving environmental problems is investigated, in particular measures substituting energy carriers, improving energy efficiency rates, postfitting pollution control devices, and applying clean energy technologies. In connection with methods of state control the report deals with questions of taxation and regularization which are to induce the private sector to actively to something for the protection of the environment. (orig.) [de

  5. Energy Choices. The energy markets and the energy policy choices

    International Nuclear Information System (INIS)

    Bergman, Lars; Lindh, Hampus

    2009-03-01

    Well-functioning energy markets are in society's interests whatever the circumstances. Furthermore, supply, demand and the competitive situation in the various energy markets influence the effect of energy and climate change policy measures. There are therefore good reasons to examine and evaluate how the energy markets operate. In this report we specifically focus on the energy markets. The analysis has been carried out against the background of the overall objectives for energy and climate change policy in Sweden and the EU. However, for these goals to be attainable a number of concrete energy and climate change policy decisions will have to be taken in the coming years. Some of these are key issues that will prove decisive for the formulation of energy and climate change policy, and we therefore also discuss these. The first of these concerns which policy instruments should be chosen to influence the energy markets. The second key issue concerns the power companies' prospects for using nuclear power even in the future. We will also focus on the extent to which energy and climate change policy chooses to prioritise measures which mean that climate change policy objectives can be achieved at the lowest possible cost. We can briefly summarize our results in the following conclusions: The cost of achieving the climate change policy objectives set by Sweden and the EU will probably be very high. It is therefore important that the choices made ensure that climate change policy objectives are achieved at the lowest possible cost. Focusing on keeping costs to a minimum may in actual fact be the very thing that makes it at all possible to achieve these goals. The best solution then is as far as possible to base energy and climate change policy on so-called market-based instruments, such as emission charges and tradable emission permits. Emissions of carbon dioxide are easy to measure and the siting of emission sources is irrelevant in terms of the effect of the emissions

  6. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  7. Energy conservation and energy prices: the Hungarian experience

    International Nuclear Information System (INIS)

    Molnar, L.

    1997-01-01

    The main sources of emissions into the outdoor air are from the energy sector (e.g. power plants), industry, the transport sector and the residential sector (buildings). The danger from most of these emissions is the fact that heat plants and boilers of residential buildings in particular, are usually in the areas where people live and work and therefore their emissions may have a direct effect on health. The best way to improve this situation - to diminish emissions and to improve air quality - is to increase the efficiency of both energy production and use. This also has important consequences for the economic use of the national energy carrier stock and diminishes the need to import energy which increases the competitiveness of goods produced. The Hungarian government has set out an Energy Saving Programme to address, among other things the fact that the Hungarian average energy consumption per capita is less than the EU average but the energy intensity (the necessary energy to produce 1 USD GDP) is 3.5-4.0 times higher than the EU average. It has been shown that the best way to save energy is to invest in energy-conscious behaviour and training. Recent studies in public and residential buildings have shown that there is a potential for high energy saving in Hungarian buildings which is independent from the building technology used. Also, the pay-back times of investment in the building envelope are significantly higher than the pay-back times of investment in heating-ventilating or control systems, while the energy saved was of the same magnitude. (author) 5 figs., 5 tabs., 6 refs

  8. Energy Capture Optimization for an Adaptive Wave Energy Converter

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Meijer, Harmen; van Rooij, Marijn; Clemente Pinol, Silvia; Galvan Garcia, Bruno; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2016-01-01

    Wave energy has great potential as a renewable energy source, and can therefore contribute significantly to the proportion of renewable energy in the global energy mix. This is especially important since energy mixes with high renewable penetration have become a worldwide priority. One solution to

  9. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection

    International Nuclear Information System (INIS)

    Yu, Peng; Ashalley, Eric; Wang, Zhiming; Wu, Jiang; Govorov, Alexander

    2016-01-01

    For most of the reported metamaterial absorbers, the peak absorption only occurs at one single wavelength. Here, we investigated a dual-band absorber which is based on simple gold nano-rings. Two absorption peaks can be readily achieved in 3–5 µ m and 8–14 µ m via tuning the width and radius of gold nano-rings and dielectric constant. The average maximum absorption of two bands can be as high as 95.1% (−0.22 dB). Based on the simulation results, the perfect absorber with nano-rings demonstrates great flexibility to create dual-band or triple-band absorption, and thus holds potential for further applications in thermophotovoltaics, multicolor infrared focal plane arrays, optical filters, and biological sensing applications. (paper)

  10. Energy Education Incentives: Evaluating the Impact of Consumer Energy Kits

    Science.gov (United States)

    Kirby, Sarah D.; Guin, Autumn; Langham, Laura

    2015-01-01

    Measuring the energy and environmental impact of residential energy education efforts is difficult. The E-Conservation residential energy management program uses consumer energy kits to document the impact of energy-efficient improvements. The consumer energy kit provides an incentive for individuals attending energy education workshop, helps…

  11. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  12. Energy accountancy

    International Nuclear Information System (INIS)

    Boer, G.A. de.

    1981-01-01

    G.A. de Boer reacts to recently published criticism of his contribution to a report entitled 'Commentaar op het boek 'Tussen Kernenergie en Kolen. Een Analyse' van ir. J.W. Storm van Leeuwen' (Commentary on the book 'Nuclear Energy versus Coal. An Analysis by ir. J.W. Storm van Leeuwen), published by the Dutch Ministry of Economic Affairs. The contribution (Appendix B) deals with energy analyses. He justifies his arguments for using energy accountancy for assessing different methods of producing electricity, and explains that it is simply an alternative to purely economic methods. The energy conversion yield (ratio of energy produced to energy required) is tabulated for different sources. De Boer emphasises that his article purposely discusses among other things, definitions, forms of energy, the limits of the systems, the conversion of money into energy and the definition of the energy yield at length, in order to prevent misunderstandings. (C.F.)

  13. Survey report on establishing a new energy and energy saving vision in Fukui Prefecture; Fukuiken shin energy sho energy vision sakutei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Surveys and discussions were given on establishing a new energy and energy saving vision in Fukui Prefecture. The energy consumption in Fukui Prefecture for fiscal 1996 was 25242 x 1 billion kcal, being 0.7% of the nation's total consumption. The per capita energy consumption is about a little greater than the national average. The energy consumption structure is characterized by large consumption in the transportation department, especially in automotive consumption. Carbon dioxide discharge is as little as being ranked 13th among all the prefectures in Japan. The availability and usable quantity of new energies in Fukui Prefecture is estimated as 1659939 x 10{sup 3} kWh/year as electric power, 9436 x 10{sup 6} kcal/year as gas, and 3536720 x 10{sup 6} kcal/year as heat. Energies could be saved most greatly by enhancing automotive fuel consumption rate, followed by effects of energy saving activities based on spontaneous action plans established by the industrial departments. New energies selected to be worked on importantly include: solar energy power generation, wind power generation, clean energy fueled automobiles, wastes energy, co-generation and solar heat. (NEDO)

  14. Auditing energy use -a systematic approach for enhancing energy efficiency

    International Nuclear Information System (INIS)

    Ardhapnrkar, P.M.; Mahalle, A.M.

    2005-01-01

    Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)

  15. Renewable energy: key factor of China’s energy revolution

    Science.gov (United States)

    Shen, Wan

    2017-12-01

    To realize the sustainable development of China’s energy industry, it is necessary to speed up the transformation of energy development mode and deepen the reform of the energy system in an all-round way so as to establish a clean, low-carbon, safe and efficient modern energy system. This paper analysed the opportunities and challenges in energy sectors to promote the energy mix update in China. Fossil energy, especially coal, has brought great progress to the world as well as a great deal of negative effects. In recent years, China’s greenhouse gas emissions continued to grow rapidly, and has become the world’s largest greenhouse gas emitter. To deal with the challenge, the Chinese government has promised that renewable energy will account for 15% of total energy consumption in 2020 and 20% in 2030. This goal requires China to add 800 to 1000 GW of wind, solar and other clean energy.

  16. Energy security, energy modelling and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, Anil [Basque Centre for Climate Change (Spain); University of Bath (United Kingdom); Pemberton, Malcolm [University College London (United Kingdom)

    2010-04-15

    The paper develops a framework to analyze energy security in an expected utility framework, where there is a risk of disruption of imported energy. The analysis shows the importance of an energy tax as a tool in maximizing expected utility, and how the level of that tax varies according to the key parameters of the system: risk aversion, probability of disruption, demand elasticity and cost of disruption. (author)

  17. Energy security, energy modelling and uncertainty

    International Nuclear Information System (INIS)

    Markandya, Anil; Pemberton, Malcolm

    2010-01-01

    The paper develops a framework to analyze energy security in an expected utility framework, where there is a risk of disruption of imported energy. The analysis shows the importance of an energy tax as a tool in maximizing expected utility, and how the level of that tax varies according to the key parameters of the system: risk aversion, probability of disruption, demand elasticity and cost of disruption. (author)

  18. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  19. Energy research 2002 - Overview; Energie-Forschung 2002 / Recherche energetique 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy presents an overview of advances made in energy research in Switzerland in 2002. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energy sources, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, fuel cells and combustion. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, geothermal energy, wind energy and small-scale hydro are presented. Nuclear safety and controlled thermonuclear fusion are discussed.

  20. Energy Choices. Choices for the future energy use; Vaegval Energi. Vaegval foer framtidens energianvaendning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kenneth; Fjaellman, Ted; Sjoegren, Helena (eds.)

    2009-03-15

    The primary objective of this energy project is to prepare data for decision-makers to show what practical measures can be taken to reduce emissions of greenhouse gases. Energy users play a key role in this task. It is the users who pay for and directly or indirectly choose how much and which energy we are using. We should be using energy in an efficient way in order to develop both our society and our industry. With regard to transport we see great potential for increased efficiency in plug-in hybrids and electric cars. But logistics also play an important role. In this area there is, among other things, a need for purchasers and sellers to jointly plan their requirements and deliveries. This would mean that more energy efficient forms of goods transport, such as the railways, could be used to a greater extent than is currently the case. In order to achieve increased efficiency in industry with high energy consumption, we are proposing that the Programme for Energy Efficiency be expanded to also include heating and new policy instruments that target the most energy-consuming processes. Low-energy buildings constitute systems of different technical solutions which have to work in unison to ensure that the effects of the energy saving subsystems are not lost. At the same time, a low-energy building has to function together with energy systems to supply surplus power to the electricity network. Private individuals, too, need to widen their system boundaries in their everyday life when it comes to choosing the services or products they buy, so that greater consideration is given to total energy consumption during the manufacture and active lifetime of the product or service in question. For society to become more energy efficient, analyses and measures need to take an overarching approach and ensure that subsystems work together to avoid sub optimisations. More than individual technical solutions are required to meet future challenges concerning the energy sector. It

  1. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  2. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... Energy Efficiency and Renewable Energy Advisory [[Page 69656

  3. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  4. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  5. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Spaa, J H

    1990-11-01

    In view of the disadvantages of the use of fossil fuels in producing energy it is worth-while to reconsider the possibilities of biomass to produce energy. Therefore it is necessary to pay attention to production methods, production costs and the consequences of the use of biomass energy for the consumer. Also agreements have to be formulated by governments to control the production and the prices of biomass. Some possibilities to develop biomass production techniques in the Netherlands are mentioned. The results of these developments can be used by developing countries to produce energy from biomass in a more effective and cheaper way than is the case now. 16 refs., 2 ills.

  6. SwissEnergy - new energy for everybody

    International Nuclear Information System (INIS)

    2001-01-01

    This is a richly illustrated general document on the Swiss programme 'SwissEnergy' aiming at promoting energy efficiency and renewable energy sources in Switzerland, especially as a part of efforts made to reach the target set by the Kyoto Protocol for the emissions of greenhouse gases into the atmosphere. Compared to 1990 figures, CO 2 emissions in Switzerland have to be reduced by 10% until 2010. SwissEnergy is supported by the national and regional governments and by the economy as well. The document lists the main issues addressed by the programme and the proposed actions, all of them related to large dissemination of already known technologies. The document is designed as a motivation tool for ordinary people

  7. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  8. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  9. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  10. Calorimeter energy calibration using the energy conservation law

    Indian Academy of Sciences (India)

    A new calorimeter energy calibration method was developed for the proposed ILC detectors. The method uses the center-of-mass energy of the accelerator as the reference. It has been shown that using the energy conservation law it is possible to make ECAL and HCAL cross calibration to reach a good energy resolution ...

  11. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  12. 2002 energy statistics

    International Nuclear Information System (INIS)

    2003-01-01

    This report has 12 chapters. The first chapter includes world energy reserves, the second chapter is about world primary energy production and consumption condition. Other chapters include; world energy prices, energy reserves in Turkey, Turkey primary energy production and consumption condition, Turkey energy balance tables, Turkey primary energy reserves production, consumption, imports and exports conditions, sectoral energy consumptions, Turkey secondary electricity plants, Turkey energy investments, Turkey energy prices.This report gives world and Turkey statistics on energy

  13. Tidal energy, a renewable energy within hand reach

    International Nuclear Information System (INIS)

    Danielo, O.

    2011-01-01

    Tide energy and oceanic current energy represent a strong potentiality for a few countries in the world including France. In the domain of tidal energy there are 2 strategies. The first one is based on the search for the lowest power production cost in order to contribute efficiently to the country's energy mix. Generally this strategy leads to the construction of tidal dams. The second strategy is based on the search for the lowest environmental impact. This strategy is economically competitive only in places where electrical power is expensive like isolated islands. This strategy is illustrated by the tidal power station of the Alderney island. In fact the amount of energy delivered by a tidal power station depends on the rise of the tide and on the surface of the dam. It appears that tidal dams require less surface that hydroelectric power plants. The energy of oceanic currents like Gulf Stream or the thermal energy of oceans or wave power are very little exploited now but represent a potentiality higher by several orders of magnitude than tidal energy. (A.C.)

  14. Energy [R]evolution 2008-a sustainable world energy perspective

    International Nuclear Information System (INIS)

    Krewitt, Wolfram; Teske, Sven; Simon, Sonja; Pregger, Thomas; Graus, Wina; Blomen, Eliane; Schmid, Stephan; Schaefer, Oliver

    2009-01-01

    The Energy [R]evolution 2008 scenario is an update of the Energy [R]evolution scenario published in 2007. It takes up recent trends in global socio-economic developments, and analyses to which extent they affect chances for achieving global climate protection targets. The main target is to reduce global CO 2 emissions to 10 Gt per year in 2050, thus limiting global average temperature increase to 2 deg. C and preventing dangerous anthropogenic interference with the climate system. A review of sector and region specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding energy supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The Energy [R]evolution scenario shows that renewable energy can provide more than half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO 2 emissions, whilst at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%.

  15. Renewable energy policy and wind energy development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zitzer, Suzanne E [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Department Urban Ecology, Environmental Planing and Transport

    2009-07-15

    The author of the contribution under consideration reports on the renewable energy policy and wind energy development in the Federal Republic of Germany. First of all, the author describes the historical development of the renewable energy policy since the 1970ies. Then, the environmental policies of the Red-Green Coalition (till to 2005) and of the Grand Coalition (since 2005) as well as the Renewable Energy Sources Act are described. The next section of this contribution is concern to the development of wind energy in the Federal Republic of Germany under consideration of onshore wind energy and offshore wind energy.

  16. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  17. Energy policy

    International Nuclear Information System (INIS)

    Forrester, J.W.

    1979-01-01

    The author places the energy problem in the context of world economy. The various obstacles encountered in the United States to spell out a viable national energy policy are cited. A certain number of practical proposals is given to lead to an 'effective policy' which would allow energy economy at the same time as energy development, that is, including nuclear energy [fr

  18. Energy economics; Economie de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Babusiaux, D. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    2005-07-01

    The energy demand is strongly conditioned by the consuming equipments. Depending on the uses, some energy sources can be substituted, while for some others the choice is limited or impossible. The energy offer comes mainly from non-renewable resources, and taking into consideration the geographical localization of these resources, economics are geopolitics are indissociable despite the development of markets. Necessary for the economic development, energy cannot be consumed without impact on the environment, which raises some worrying questions, like the one of global warming. (J.S.)

  19. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... within the field of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public...

  20. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...