WorldWideScience

Sample records for thermophoretic particle deposition

  1. Detection of Soot Using a Resistivity Sensor Device Employing Thermophoretic Particle Deposition

    Directory of Open Access Journals (Sweden)

    Doina Lutic

    2010-01-01

    Full Text Available Results are reported for thermophoretic deposition of soot particles on resistivity sensors as a monitoring technique for diesel exhaust particles with the potential of improved detection limit and sensitivity. Soot with similar characteristics as from diesel exhausts was generated by a propane flame and diluted in stages. The soot in a gas flow at 240–270C∘ was collected on an interdigitated electrode structure held at a considerably lower temperature, 105–125C∘. The time delay for reaching measurable resistance values, the subsequent rate, and magnitude of resistance decrease were a function of the distance between the fingers in the electrodes and the degree of dilution of the soot containing flow. Soot deposition and subsequent removal by heating the sensor support was also performed in a real diesel exhaust. Good similarities between the behavior in our laboratory system and the real diesel exhaust were noticed.

  2. Modeling of thermophoretic deposition of aerosols in nuclear reactor containments

    International Nuclear Information System (INIS)

    Fernandes, A.; Loyalka, S.K.

    1996-01-01

    Aerosol released in postulated or real nuclear reactor accidents can deposit on containment surfaces via motion induced by temperature gradients in addition to the motion due to diffusion and gravity. The deposition due to temperature gradients is known as thermophoretic deposition, and it is currently modeled in codes such as CONTAIN in direct analogy with heat transfer, but there have been questions about such analogies. This paper focuses on a numerical solution of the particle continuity equation in laminar flow condition characteristics of natural convection. First, the thermophoretic deposition rate is calculated as a function of the Prandtl and Schmidt numbers, the thermophoretic coefficient K, and the temperature difference between the atmosphere and the wall. Then, the cases of diffusion alone and a boundary-layer approximation (due to Batchelor and Shen) to the full continuity equation are considered. It is noted that an analogy with heat transfer does not hold, but for the circumstances considered in this paper, the deposition rates from the diffusion solution and the boundary-layer approximation can be added to provide reasonably good agreement (maximum deviation 30%) with the full solution of the particle continuity equation. Finally, correlations useful for implementation in the reactor source term codes are provided

  3. Thermophoretic aggregation of particles in a protoplanetary disc

    Science.gov (United States)

    Smith, Francis J.

    2018-04-01

    Thermophoresis causes particles to move down a temperature gradient to a cooler region of a neutral gas. An example is the temperature gradient in the gas around a large cold object, such as an aggregate of particles, cooled by radiation in a protoplanetary disc. Particles near this aggregate move down the temperature gradient to the aggregate, equivalent to the particles being attracted to it by an inter-particle thermophoretic force. This force is proportional to the temperature difference between gas and aggregate, to the gas density and to the cross-section of the aggregate. The force can be large. For example, calculations based on the equations of motion of the interacting particles show that it can be large enough in an optically thin environment to increase the rate of aggregation by up to six orders of magnitude when an aggregate radius lies between 0.1 μm and 1 mm. From 1 mm to about 10 cm aggregates drift inwards through the gas too quickly for the thermophoretic attraction to increase aggregation significantly; so they grow slowly, causing an observed accumulation of particles at these sizes. Particles above 10 cm move more quickly, causing aggregation due to collisions, but also causing fragmentation. However, calculations show that fragmenting particles and bouncing particles in inelastic collisions often have low enough relative velocities that thermophoresis brings them together again. This allows particles to grow above 1 m, which is otherwise difficult to explain.

  4. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    Science.gov (United States)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  5. Relative magnitudes of the effects of electrostatic image and thermo-phoretic forces on particles in the respiratory tract

    International Nuclear Information System (INIS)

    Jeffers, D. E.

    2005-01-01

    The National Radiological Protection Board's Advisory Group on Non-ionising Radiation has recommended research into the deposition, in the lung, of charged particles in the size range 0.005-1 μm. In vivo measurements of the temperature distribution in the respiratory tract have been used to estimate the temperature gradients in the generations up to the segmental bronchus. These gradients define the thermo-phoretic velocities, which oppose deposition during inhalation and assist it during exhalation. The thermo-phoretic forces are effective over a longer range than those due to the electrostatic image of a single charge; and, at distances greater than a few microns from the airway wall, the thermo-phoretic velocities of 0.02 and 0.1 μn particles are greater than those due to electrostatic drift. It is concluded that models describing the effects of electric charge on the deposition of particles with diameters of order 0.1 μm need to take account of the thermal conditions in the respiratory tract. (authors)

  6. The circular thermo-phoretic spectrometer (CTSM), a new device for the study of the thermophoresis, Application on the fractals soot particles

    International Nuclear Information System (INIS)

    Brugiere, E.

    2012-01-01

    This work aims to improve the understanding of soot particle deposition by thermophoresis. In order to show the influence of the morphology of a fractal aggregate on its thermo-phoretic behavior, a new experimental device has been developed; the SpectroMetre Thermophoretique Circulaire (SMTC). This instrument is used to measure the mean thermo-phoretic velocity of particles selected between a hot plate and a cold plate thanks to a transfer function based on the geometry of the radial flow differential mobility analyser RF-DMA or SMEC (Spectrometre de Mobilite Electrique Circulaire). For the experimental validation, effective thermo-phoretic velocities of monodispersed spherical latex particles for diameters ranging from 64 nm to 500 nm and a temperature gradient equal to 50 750 K/m are measured and compared with theoretical values. The good agreement between the experimental results and theoretical values of Beresnev and Chernyak (1995) helps us to validate the operation of the instrument. Then we compare experimental thermo-phoretic velocity obtained with the SMTC for spherical particles and aggregates produced by a combustion aerosol generator. Contrary to the results obtained with the PSL particles, we observe that the thermo-phoretic velocity of aggregates increases with the electrical mobility diameter. Thanks to a morphological study of the aggregates, we showed that the thermo-phoretic velocity depends on the number of primary particles of the aggregate. These experimental results confirm, for the first time, the theoretical data of Mackowski (2006) obtained by a Monte Carlo simulation. Moreover, a comparison with the experimental results of Messerer et al. (2003) shows that the thermo-phoretic velocity of aggregates seems independent of the primary particle size. (author)

  7. Thermophoretic torque in colloidal particles with mass asymmetry

    Science.gov (United States)

    Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando

    2018-05-01

    We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.

  8. A study of aerosol deposition by thermophoresis in cylindrical ducts

    International Nuclear Information System (INIS)

    Montassier, N.

    1990-01-01

    The scope of the study was aerosol deposition in cylindrical ducts, and the deposition due to thermophoresis particularly. The theoretical knowledge on this force and the basis of fluid mechanics are first recalled. An experimental study of thermophoretic deposition of particles in laminar flow was carried out in the particular case of uniform particle concentration and gas temperature at the inlet of the cooled tube. When the gas temperature was equilibrated with the wall temperature and thermophoretic particle deposition along the walls had ceased, the deposition efficiency approached a limit. Our experimental results showed that this limiting efficiency was independent on flow. Finally, for the laminar flow regime, a set of simple equations was developed in order to forecast the thermophoretic deposition of particles of any size along a cylindrical tube [fr

  9. Shape-dependent orientation of thermophoretic forces in microsystems

    KAUST Repository

    Li, Qi

    2013-09-24

    It is generally acknowledged that the direction of the thermophoretic force acting on microparticles is largely determined by the imposed temperature gradient, and the shape of the microparticle has little influence on its direction. We show that one type of thermophoretic force, emerged due to the advent of microfabrication techniques, is highly sensitive to object shape, and it is feasible to tune force orientation via proper shape design. We reveal the underlying mechanism by an asymptotic analysis of the Boltzmann equation and point out the reason why the classical thermophoretic force is insensitive to the particle shape, but the force in microsystems is. The discovered phenomenon could find its applications in methods for microparticle manipulation and separation.

  10. Shape-dependent orientation of thermophoretic forces in microsystems

    KAUST Repository

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2013-01-01

    It is generally acknowledged that the direction of the thermophoretic force acting on microparticles is largely determined by the imposed temperature gradient, and the shape of the microparticle has little influence on its direction. We show that one type of thermophoretic force, emerged due to the advent of microfabrication techniques, is highly sensitive to object shape, and it is feasible to tune force orientation via proper shape design. We reveal the underlying mechanism by an asymptotic analysis of the Boltzmann equation and point out the reason why the classical thermophoretic force is insensitive to the particle shape, but the force in microsystems is. The discovered phenomenon could find its applications in methods for microparticle manipulation and separation.

  11. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  12. Particle Deposition onto Enclosure Surfaces

    Science.gov (United States)

    2009-08-20

    quantitative descriptions were published by Watson in 193633 and Zernik in 1957.34 Thermophoretic force arises from asymmetrical interactions of an aerosol...N t vq CN II s .— o B *-* 2 ^ 3d - CO > X3 CO o feel s.i = ••§ 5 o 5 Ci- vs CJ O T3 0< _ JH C TJ CO — C ca -a 5...Edinburgh 32,239(1884). 52 33. H. H. Watson, "The Dust-Free Space Surrounding Hot Bodies," Trans. Faraday Soc. 32, 1073 (1936). 34. W. Zernik , "The

  13. Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler

    Energy Technology Data Exchange (ETDEWEB)

    Azong-Wara, Nkwenti; Asbach, Christof, E-mail: asbach@iuta.de; Stahlmecke, Burkhard; Fissan, Heinz; Kaminski, Heinz [Institute of Energy and Environmental Technology (IUTA), Air Quality and Sustainable Nanotechnology Unit (Germany); Plitzko, Sabine [Federal Institute for Occupational Safety and Health (BAuA) (Germany); Bathen, Dieter; Kuhlbusch, Thomas A. J. [Institute of Energy and Environmental Technology (IUTA), Air Quality and Sustainable Nanotechnology Unit (Germany)

    2013-04-15

    A personal sampler that thermophoretically samples particles between a few nanometers and approximately 300 nm has been designed and first prototypes built. The thermal precipitator (TP) is designed to take samples in the breathing zone of a worker in order to determine the personal exposure to airborne nanomaterials. In the sampler, particles are deposited onto silicon substrates that can be used for consecutive electron microscopic (EM) analysis of the particle size distribution and chemical composition of the sampled particles. Due to very homogeneous size-independent particle deposition on a large portion of the substrate, representative samples can be taken for offline analysis. The experimental evaluation revealed a good general agreement with numerical simulations concerning homogeneity of the deposit and a very high correlation (R Superscript-Two = 0.98) of the deposition rate per unit area with number concentrations simultaneously measured with an SMPS for particle sizes between 14 and 305 nm. The samplers' small size of only 45 x 32 Multiplication-Sign 97 mm{sup 3} and low weight of only 140 g make it perfectly suitable as a personal sampler. The power consumption for temperature control and pump is around 1.5 W and can be easily provided by batteries.

  14. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    To investigate the physical process of deposition and resuspension of particles in the indoor environment, scale experiments are used and a sampling method is established. The influences of surface orientation and turbulence and velocity of the air on the dust load on a surface are analysed....

  15. Analysis of graphite dust deposition in hot gas duct of HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Zhen Ya'nan; Yang Xiaoyong; Ye Ping

    2013-01-01

    The behavior of the graphite dust is important to the safety of high-temperature gas-cooled reactor (HTGR). The temperature field in hot gas duct was obtained using computational fluid dynamics (CFD) method. Further analysis to the thermo-phoretic deposition and turbulent deposition shows that as the dust particle diameter increases, the thermo-phoretic deposition efficiency decreases, and the turbulent deposition efficiency initially decreases and then increases. The comparisons of calculation results for two reactor powers, namely 30% FP (full power) and 100 % FP, indicate that the thermo-phoretic deposition efficiency is higher at 30% FP than that at 100% FP. while the turbulent deposition efficiency grows more rapidly at 100% FP. Besides, the results also demonstrate that the thermo-phoretic deposition and the turbulent deposition are nearly equivalent when particle sizes are small, while the turbulent deposition becomes dominant when particle sizes are fairly large. The calculation results by using the most probable distribution of particle size show that the total deposition of graphite dusts in hot gas duct is limited. (authors)

  16. Dry deposition of particles to ocean surfaces

    NARCIS (Netherlands)

    Larsen, S.E.; Edson, J.B.; Hummelshoj, P.; Jensen, N.O.; Leeuw, G. de; Mestayer, P.G.

    1995-01-01

    Dry deposition of atmospheric particles mainly depends on wind speed and particle diameter. The dry deposition velocity, Vd, is found to vary by a factor of 100-1,000 with diameter in a likely diameter range, adding uncertainty to deposition estimates, because the diameter distribution for many

  17. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    A new experimental set-up to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airBorne dust concentration considerably. As a basis for developing methods to eliminate dust related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension....

  18. Deposition of aerosol particles in bent pipe

    International Nuclear Information System (INIS)

    Matsui, Hiroshi; Ohhata, Tsutomu

    1989-01-01

    An equation to estimate deposition fraction of aerosol particles in a bent pipe is derived and the validity is verified experimentally. The equation is obtained by assuming that the resultant acceleration of the gravity and the centrifugal force induced in the bend acts on the aerosol particles, and is found to give a relatively accurate estimation of the deposition fraction if a certain correction factor is introduced to the equation. The deposition fraction has a minimum against Reynold number, and the deposition due to centrifugal force dominates at greater Reynolds number than that at the minimum deposition fraction. On the other hand, the smaller the radius of curvature of the bend is, the larger the deposition fraction due to the centrifugal force is. (author)

  19. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  20. Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport through Carbon Nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Arcidiacono, Salvatore

    2006-01-01

    Using molecular dynamics simulations, we demonstrate and quantify thermophoretic motion of solid gold nanoparticles inside carbon nanotubes subject to wall temperature gradients ranging from 0.4 to 25 K/nm. For temperature gradients below 1 K/nm, we find that the particles move "on tracks......" in a predictable fashion as they follow unique helical orbits depending on the geometry of the carbon nanotubes. These findings markedly advance our knowledge of mass transport mechanisms relevant to nanoscale applications....

  1. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  2. Deposition kinetics of nanocolloidal gold particles

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Hakbijl, Mark; Wormeester, Herbert; Poelsema, Bene

    2005-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane (APTES), is investigated in situ using single wavelength optical reflectometry. A well-defined flow of colloids towards the

  3. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  4. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and...

  5. Deposition and detection of particles during integrated circuit manufacturing

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Kelly, John J.; Kuper, F.G.

    2006-01-01

    Abstract—Deposition mechanism of silica particles on silicon wafers was investigated by depositing specially prepared mono-dispersed particles (mean diameter = 330 nm). To measure particles of the size below the detection limit of our particle measurement tools, silica particles with luminance core

  6. Thermophoretic transport of water nanodroplets confined in carbon nanotubes: the role of friction

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Zambrano, Harvey

    The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular...... dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted...

  7. COPDIRC - calculation of particle deposition in reactor coolants

    International Nuclear Information System (INIS)

    Reeks, M.W.

    1982-06-01

    A description is given of a computer code COPDIRC intended for the calculation of the deposition of particulate onto smooth perfectly sticky surfaces in a gas cooled reactor coolant. The deposition is assumed to be limited by transport in the boundary layer adjacent to the depositing surface. This implies that the deposition velocity normalised with respect to the local friction velocity, is an almost universal function of the normalised particle relaxation time. Deposition is assumed similar to deposition in an equivalent smooth perfectly absorbing pipe. The deposition is calculated using 2 models. (author)

  8. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  9. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Science.gov (United States)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  10. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, A; Torralba, G; Hausmann, M; Lindenstruth, V [Kirchhoff Institute of Physics, In Neuenheimer Feld 227, Heidelberg (Germany); Loeffler, F; Cheng, Yun-Chien; Koenig, K; Stadler, V; Bischoff, F R [German Cancer Research Centre, In Neuenheimer Feld 280, Heidelberg (Germany); Breitling, F, E-mail: Frank.Breitling@KIT.ed, E-mail: alexander.nesterov-mueller@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology, Herrmann von Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-04-28

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  11. Modeling airflow and particle transport/deposition in pulmonary airways.

    Science.gov (United States)

    Kleinstreuer, Clement; Zhang, Zhe; Li, Zheng

    2008-11-30

    A review of research papers is presented, pertinent to computer modeling of airflow as well as nano- and micron-size particle deposition in pulmonary airway replicas. The key modeling steps are outlined, including construction of suitable airway geometries, mathematical description of the air-particle transport phenomena and computer simulation of micron and nanoparticle depositions. Specifically, diffusion-dominated nanomaterial deposits on airway surfaces much more uniformly than micron particles of the same material. This may imply different toxicity effects. Due to impaction and secondary flows, micron particles tend to accumulate around the carinal ridges and to form "hot spots", i.e., locally high concentrations which may lead to tumor developments. Inhaled particles in the size range of 20nm< or =dp< or =3microm may readily reach the deeper lung region. Concerning inhaled therapeutic particles, optimal parameters for mechanical drug-aerosol targeting of predetermined lung areas can be computed, given representative pulmonary airways.

  12. Factors affecting on the particle deposition in the respiratory tract

    International Nuclear Information System (INIS)

    Kubota, Yoshihisa

    1991-01-01

    The deposition pattern of inhaled particles in the respiratory tracts is affected by anatomical structure of the respiratory tracts and respiratory pattern of animals, which are modified by many factors as animal species, physiological and psychological conditions, age, sex, smoking drug, lung diseases, etc. In human, studies have been focused on the initial lung deposition of particles and have made it clear that the respiratory pattern, gender, and diseases may have influence on the deposition pattern. On the other hand, there was little knowledge on the initial lung deposition of particles in laboratory animals. Recently, Raabe et al. have reported the initial lung deposition of 169 Yb-aluminosilicate particles in mice, rats, hamsters, guinea pigs and rabbits. The authors have also investigated the lung deposition of latex particles with different sizes and 198 Au-colloid in rats whose respiratory volumes during the inhalation were monitored by body plethysmography. These experiments indicated that the deposition of inhaled particles in distal lung e.g. small bronchiolar and alveolar region, was much lower in laboratory animals than that of human. This species difference may be due to smaller diameter of respiratory tract and/or shallower breathing and higher respiratory rate of laboratory animals. The experimental animals in which respiratory diseases were induced artificially have been used to investigate the modification factors on the deposition pattern of inhaled particles. As respiratory diseases, emphysema was induced in rats, hamsters, beagle dogs in some laboratories and pulmonary delayed type hypersensitivity reaction in rats was in our laboratory. The initial lung deposition of particles in these animals was consistently decreased in comparison with normals, regardless of the animal species and the type of disease. (author)

  13. Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation

    Directory of Open Access Journals (Sweden)

    Camby M.K. Se

    2010-12-01

    Full Text Available The present study investigates the deposition efficiency during the unsteady inhalation cycle by using Computational Fluid Dynamics (CFD. The unsteady inhalation profile was applied at the outlet of nasopharynx, which had a maximum flow rate of 40.3L/min which corresponds to an equivalent steady inhalation tidal volume flow rate of 24.6L/min. Aerodynamic particle sizes of 5μm and 20μm were studied in order to reflect contrasting Stokes numbered particle behaviour. Two particle deposition efficiencies in the nasal cavity versus time are presented. In general, the deposition of 5μm particles was much less than 20μm particles. The first 0.2 second of the inhalation cycle was found to be significant to the particle transport, since the majority of particles were deposited during this period (i.e. its residence time. Comparisons were also made with its equivalent steady inhalation flow rate which found that the unsteady inhalation produced lower deposition efficiency for both particle sizes.

  14. A new approach for modeling dry deposition velocity of particles

    Science.gov (United States)

    Giardina, M.; Buffa, P.

    2018-05-01

    The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.

  15. EFFECT OF BODY SIZE ON BREATHING PATTERN AND FINE PARTICLE DEPOSITION IN CHILDREN

    Science.gov (United States)

    Inter-child variability in breathing patterns may contribute to variability in fine particle, lung deposition and morbidity in children associated with those particles. Fractional deposition (DF) of fine particles (2um monodisperse, carnauba wax particles) was measured in healthy...

  16. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    Science.gov (United States)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  17. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  18. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard...... field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy...

  19. Air pollution dry deposition: radioisotopes as particles and volatiles

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This study focuses on determining volcanic ash and ambient airborne solids concentrations at various sampling sites subsequent to the Mt. St. Helens' eruption in order to develop an experimental basis for models predicting removal of airborne particles and gases by dry deposition onto outdoor surfaces. In addition, deposition rates were determined using dual tracer techniques in the field and in a wind tunnel in the laboratory

  20. Deposition of Aerosol Particles in Electrically Charged Membrane Filters

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L

    1972-05-15

    A theory for the influence of electric charge on particle deposition on the surface of charged filters has been developed. It has been tested experimentally on ordinary membrane filters and Nuclepore filters of 8 mum pore size, with a bipolar monodisperse test aerosol of 1 mum particle diameter, and at a filter charge up to 20 muC/m2. Agreement with theory was obtained for the Coulomb force between filter and particle for both kinds of filters. The image force between charged filter and neutral particles did not result in the predicted deposition in the ordinary membrane filter, probably due to lacking correspondence between the filter model employed for the theory, and the real filter. For the Nuclepore filter a satisfactory agreement with theory was obtained, also at image interaction

  1. Time-fractional particle deposition in porous media

    Science.gov (United States)

    Xu, Jianping

    2017-05-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann-Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media.

  2. Time-fractional particle deposition in porous media

    International Nuclear Information System (INIS)

    Xu, Jianping

    2017-01-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann–Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media. (paper)

  3. Modeling Dry Deposition of Aerosol Particles on Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Hussein, T.; Smolík, Jiří; Kerminen, V.-M.; Kulmala, M.

    2012-01-01

    Roč. 46, č. 1 (2012), s. 44-59 ISSN 0278-6826 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol particles * dry deposition * transport Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.780, year: 2012

  4. Deposition of magnetite particles onto alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H. [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    1998-07-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m{sup 2} . A concentration of suspended magnetite of 5.0E-03kg/m{sup 3} was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1{mu}m) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was

  5. Deposition of magnetite particles onto alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H.

    1998-01-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m 2 . A concentration of suspended magnetite of 5.0E-03kg/m 3 was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1μm) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was considered

  6. Experimental study on the particles deposition in the sampling duct

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Charuau, J. [Institut de Protection et de Surete Nucleaire, Yvette (France)

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  7. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    Science.gov (United States)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  8. Theoretical calculation of solid particles deposition from the air

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2002-03-01

    Full Text Available This paper presents the calculation of harmful substance deposition (air pollution from the point source (Slanèo, et al., 2001 using equation (1. The point source shall be understood as e.g. chimneys of factory, heat plant, incinerator, boiler plant, local heating plant, etc.The theoretical calculation of concentration (1, or deposition (8 is based on the study of transfer and dispersion of pollution in air (Slanèo, et al., 2000a. The movement of pollution in air consists of a movement of the air itself and a relative movement of pollution particles and air, while the movement of harmful substance in the smoke trail is under the influence of turbulent diffusion, convection and gravitation. Molecular diffusion is not important in this process. When calculating concentrations (1 and deposition (8 of air pollution on a particular place near the source, it is assumed that the air speed is constant, the direction of wind does not change with the height and the source of air pollution is time-constant. The change in the wind speed with the height depends on the stability class of atmosphere (temperature gradient (Slanèo, et al., 2000a and it is calculated using equation (10.The theoretical calculation of concentration and or deposition of harmful substance from the point source (1 and (8 shall be applied if the harmful substance particles, which leave the source, have the same density (composition, shape (spherical and size.The experimental observations of dust deposition showed the significance of 0.1-20 µm particles. The application of equation (1 to calculate the concentration is conditioned, in addition to the recognition of source parameters and meteorological conditions, by the recognition of the particle sedimentation speed, which changes with the size of particle radius (2.For a practical calculation of deposition it is therefore necessary to know the differential distribution function f(r of particle radii, which can be made on the basis

  9. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient....... The translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS......) in order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  10. Depositing nanometer-sized particles of metals onto carbon allotropes

    Science.gov (United States)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  11. Characteristics of airflow and particle deposition in COPD current smokers

    Science.gov (United States)

    Zou, Chunrui; Choi, Jiwoong; Haghighi, Babak; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    A recent imaging-based cluster analysis of computed tomography (CT) lung images in a chronic obstructive pulmonary disease (COPD) cohort identified four clusters, viz. disease sub-populations. Cluster 1 had relatively normal airway structures; Cluster 2 had wall thickening; Cluster 3 exhibited decreased wall thickness and luminal narrowing; Cluster 4 had a significant decrease of luminal diameter and a significant reduction of lung deformation, thus having relatively low pulmonary functions. To better understand the characteristics of airflow and particle deposition in these clusters, we performed computational fluid and particle dynamics analyses on representative cluster patients and healthy controls using CT-based airway models and subject-specific 3D-1D coupled boundary conditions. The results show that particle deposition in central airways of cluster 4 patients was noticeably increased especially with increasing particle size despite reduced vital capacity as compared to other clusters and healthy controls. This may be attributable in part to significant airway constriction in cluster 4. This study demonstrates the potential application of cluster-guided CFD analysis in disease populations. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837.

  12. Continuous production of nanostructured particles using spatial atomic layer deposition

    International Nuclear Information System (INIS)

    Ommen, J. Ruud van; Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis

    2015-01-01

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO 2 ) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min −1 . Tuning the precursor injection velocity (10–40 m s −1 ) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications

  13. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    Science.gov (United States)

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  14. The energy deposition of slowing down particles in heterogeneous media

    International Nuclear Information System (INIS)

    Prinja, A.K.; Williams, M.M.R.

    1980-01-01

    Energy deposition by atomic particles in adjacent semi-infinite, amorphous media is described using the forward form of the Boltzmann transport equation. A transport approximation to the scattering kernel, developed elsewhere, incorporating realistic energy transfer is employed to assess the validity of the commonly used isotropic-scattering and straight-ahead approximations. Results are presented for integral energy deposition rates due to a plane, isotropic and monoenergetic source in one half-space for a range of mass ratios between 0.1 and 5.0. Integral profiles for infinite and semi-infinite media are considered and the influence of reflection for different mass ratios is evaluated. The dissimilar scattering properties of the two media induce a discontinuity at the interface in the energy deposition rate the magnitude of which is sensitive to the source position relative to the interface. A comprehensive evaluation of the total energy deposited in the source free medium is presented for a range of mass ratios and source positions. An interesting minimum occurs for off-interface source locations as a function of the source-medium mass ratio, the position of which varies with the source position but is insensitive to the other mass ratio. As a special case, energy reflection and escape coefficients for semi-infinite media are obtained which demonstrates that the effect of a vacuum interface is insignificant for deep source locations except for large mass ratios when reflection becomes dominant. (author)

  15. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  16. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  17. Kinematics of flow and sediment particles at entrainment and deposition

    Science.gov (United States)

    Antico, Federica; Sanches, Pedro; Aleixo, Rui; Ferreira, Rui M. L.

    2015-04-01

    A cohesionless granular bed subjected to a turbulent open-channel flow is analysed. The key objective is to clarify the kinematics of entrainment and deposition of individual sediment particles. In particular, we quantify a) the turbulent flow field in the vicinity of particles at the instants of their entrainment and of their deposition; b) the initial particle velocity and the particle velocity immediately before returning to rest. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameters in the range 0.007 to 0.03. Froude numbers ranged from 0.63 to 0.95 while boundary Reynolds numbers were in the range 130 to 300. It was observed that the bed featured patches of regular arrangements: face centered cubic (fcc) or hexagonal close packing (hcp) blocks alternate with and body centered cubic (bcc) blocks. The resulting bed surface exhibits cleavage lines between blocks and there are spatial variations of bed elevation. The option for artificial sediment allowed for a simplified description of particle positioning at the instant of entrainment. In particular support and pivoting angles are found analytically. Skin friction angles were determind experimentally. The only relevant variables are exposure (defined as the ratio of the actual frontal projection of the exposed area to the area of a circle with 5 mm diameter) and protrusion (defined as the vertical distance between the apex of the particle and the mean local bed elevation

  18. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  19. NRPB volunteer study: deposition and clearance of inhaled particles

    International Nuclear Information System (INIS)

    Etherington, G.; Smith, J.

    1996-01-01

    At the Board Meeting of the National Radiological Protection Board held on 15 February 1996, approval was given for an experimental study of the deposition and clearance of inhaled particles in the human nasal passage. This is the latest in a series of volunteer biokinetic studies that have been conducted at NRPB since its formation. This article explains the purpose of the study, how ethical approval was obtained, how the study will be performed, what volunteers will be asked to do, and what doses they will receive. Doses will of course be carefully controlled, and will be well below the annual limits set for such experiments. The success of the study is of course crucially dependent on recruitment of a sufficient number of volunteers. The aim of this article is to provide information to anyone who might be interested in volunteering. (UK)

  20. Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors

    International Nuclear Information System (INIS)

    Talebizadeh, P.; Rahimzadeh, H.; Ahmadi, G.; Brown, R.; Inthavong, K.

    2016-01-01

    Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.

  1. Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors

    Energy Technology Data Exchange (ETDEWEB)

    Talebizadeh, P.; Rahimzadeh, H., E-mail: rahimzad@aut.ac.ir [Amirkabir University of Technology, Department of Mechanical Engineering (Iran, Islamic Republic of); Ahmadi, G. [Clarkson University, Department of Mechanical and Aeronautical Engineering (United States); Brown, R. [Queensland University of Technology, Biofuel Engine Research Facility (Australia); Inthavong, K. [RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering (Australia)

    2016-12-15

    Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.

  2. REGIONAL DEPOSITION OF COARSE PARTICLES AND VENTILATION DISTRIBUTION IN PATIENTS WITH CYSTIC FIBROSIS

    Science.gov (United States)

    The efficacy of inhaled pharmaceuticals depends, in part, on their site of respiratory deposition. Markedly nonuniform ventilation distribution may occur in persons with obstructive airways diseases and may affect particle deposition. We studied the relationship between regional ...

  3. Deposition of magnetite particles from high velocity water onto isothermal tubes

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1977-02-01

    The deposition rate of magnetite particles from a high velocity water slurry onto isothermal metal tubes was measured. The effects of velocity (5 to 100 m/s), slurry concentration (200 to 1000 mg Fe/kg H 2 O), temperature (25 0 to 90 0 C), pH (4 to 10 at 25 0 C), and tube material (nickel, Zircaloy-4) on deposition rate were studied. The data are interpreted in terms of two steps in series for deposition: a mass transfer step followed by a deposition or inertial coasting step. Mass transfer of particles through the bulk water phase apparently limits the deposition of particles at high Reynolds number

  4. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    International Nuclear Information System (INIS)

    Puragliesi, R.; Dehbi, A.; Leriche, E.; Soldati, A.; Deville, M.O.

    2011-01-01

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10 9 , 10 10 ) and three values of the particle diameter (d p = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρ w = 1000 [kg/m 3 ] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic

  5. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  6. Particle deposition due to turbulent diffusion in the upper respiratory system

    Science.gov (United States)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  7. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  8. Lung dynamics of aerosol particles with special reference to deposition model

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1977-01-01

    A movement of aerosol particles in the lungs, which was inhaled into the respiratory organ was given an outline by means of technological deposition model. The respiratory organ was considered to be one airway system, and was divided into nasopharyngeal part, trachea-bronchial part, and pulmonary part. The transport of particles in the respiratory tract was explained by mentioning structual model of the airway system, standard respiratory flow, and distribution of flow speed in the respiratory tract. It was explained that particle deposition in the respiratory tract seemed to be caused by inertia impact at bifurcation, gravity deposition and scattering deposition at tubular wall, interruption effect in nasopharyngeal part, and scattering phoresis effect in the upper respiratory tract or gas exchange part. Furthermore, an outline of calculation of the deposition amount of particles was described from a standpoint of the above-mentioned structure, breathing air flow, and deposition structure of particles. (Kanao, N.)

  9. Development of an ash particle deposition model considering build-up and removal mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Strandstroem, Kjell; Mueller, Christian; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Biskopsgatan 8, FI-20500 Aabo (Finland)

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling is since long considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. (author)

  10. Development of an ash particle deposition model considering build-up and removal mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kjell Strandstroem; Christian Muellera; Mikko Hupa [Abo Akademi Process Chemistry Centre, Abo (Finland)

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.

  11. Particle deposition from aqueous suspensions in turbulent pipe flow - a comparison of observed deposition rates and predicted arrival rates

    International Nuclear Information System (INIS)

    Rodliffe, R.S.

    1979-11-01

    At the present time, there appear to be only four adequately controlled and characterised experimental studies of particle deposition from single phase water in turbulent pipe flow. These are used to illustrate the ranges of applicability of methods for predicting particle arrival rates at tube walls. Arrival rates are predicted from mass transfer correlations and the theory of Reeks and Skyrme (1976) when transport is limited by Brownian diffusion and inertial behaviour, respectively. The regimes in which finite particle size limits the application of these methods are defined and preliminary consideration is given to the conditions under which gravitational settling may make a contribution to deposition in vertically mounted tubes. (author)

  12. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  13. Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.

    Science.gov (United States)

    Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa

    2018-06-06

    Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.

  14. Role of hydrotreating products in deposition of fine particles in reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chung, K.; Gray, M.R. [University of Alberta, Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2001-06-11

    Hydrotreating reactions may affect the deposition of fine particles, which can eventually lead to reactor plugging. The deposition of fine particles from gas oil was measured in an internally recirculating reactor at 375{degree}C under hydrogen. H{sub 2}S from hydrodesulfurization would convert corrosion products to metal sulfides. Iron sulfide deposited rapidly in the packed bed because the mineral surface did not retain a stabilizing layer of asphaltenic material. Addition of water, to test the role of hydrodeoxygenation, doubled the deposition of clay particles by reducing the surface coating of organic material. Neither ammonia or quinoline had any effect on particle deposition, therefore, hydrodenitrogenation did not affect particle behavior. 16 refs., 4 figs., 3 tabs.

  15. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory

    2010-01-01

    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  16. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  17. Deposition of particle-bound radionuclides in dry weather, fog, rain and snowfall

    International Nuclear Information System (INIS)

    Oberschachtsiek, D.; Sparmacher, H.; Kreh, R.; Adam, M.; Fuelber, K.; Stegger, J.; Bonka, H.

    1992-01-01

    Radionuclides emitted from nuclear plants and installations are transported in dry weather, because of turbulences and sedimentations, to plant parts above ground and near the ground and to other areas, and deposited there. The deposited activity is proportional to the activity concentration near the deposition area. In the case of particle-bound radionuclides it depends on the aerodynamic particle diameter, surface quality and other factors. In a large number of experiments deposition velocity was measured. In fog the particles to which radionuclides are bound grow by coagulation and condensation. The aerosol size spectrum changes with increasing distance from the place of emission. The type of the fog and the form of the emitted spectrum are important factors which influence this process. With normal activity distributions as a function of the aerodynamic particle diameter, the deposition velocity increases with the distance from the place of emission, up to a final value, due to the shift of the spectrum to larger diameters. (orig.) [de

  18. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  19. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  20. Study on particle deposition in vertical square ventilation duct flows by different models

    International Nuclear Information System (INIS)

    Zhang Jinping; Li Angui

    2008-01-01

    A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results

  1. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement ....... We find the Soret coefficient per unit length of DNA at various ionic strengths. It agrees, with novel precision, with results obtained in bulk for DNA too short to shield itself and with the thermodynamic model of thermophoresis.......We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  2. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    Science.gov (United States)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its

  3. Light-Induced Local Heating for Thermophoretic Manipulation of DNA in Polymer Micro- and Nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Larsen, Niels Bent; Kristensen, Anders

    2010-01-01

    We present a method for making polymer chips with a narrow-band near-infrared absorber layer that enables light-induced local heating of liquids inside fluidic micro- and nanochannels fabricated by thermal imprint in polymethyl methacrylate. We have characterized the resulting liquid temperature...... profiles in microchannels using the temperature dependent fluorescence of the complex [Ru(bpy)3]2+. We demonstrate thermophoretic manipulation of individual YOYO-1 stained T4 DNA molecules inside micro- and nanochannels....

  4. The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets

    Science.gov (United States)

    Ma, Yu-Lan; Li, Bang-Qing

    2018-03-01

    The main work is focused on the thermophoretic motion equation, which was derived from wrinkle wave motions in substrate-supported graphene sheets. Via the bilinear method, a class of wrinkle-like N-soliton solutions is constructed. The one-soliton, two-soliton and three-soliton are observed graphically. The shape, amplitude, open direction and width of the N-solitons are controllable through certain parameters.

  5. Deposition of biomass combustion aerosol particles in the human respiratory tract.

    Science.gov (United States)

    Löndahl, Jakob; Pagels, Joakim; Boman, Christoffer; Swietlicki, Erik; Massling, Andreas; Rissler, Jenny; Blomberg, Anders; Bohgard, Mats; Sandström, Thomas

    2008-08-01

    Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.

  6. Lattice-Boltzmann Method with Dynamic Grid Refinement for Simulating Particle Deposition on a Single Fibre

    Directory of Open Access Journals (Sweden)

    Helmut Schomburg

    2013-03-01

    Full Text Available In this work a numerical approach to predict the deposition behaviour of nano-scale particles on the surface of a single fibre by resolving the resulting dendrite-like particle structures in detail is presented. The gas flow simulation is carried out by a two-dimensional Lattice-Boltzmann method, which is coupled with a Lagrangian approach for the particle motion. To decrease calculation time and system requirements the Lattice-Boltzmann model is extended to allow for local grid refinement. Because of the a priori unknown location of deposition, the simulation procedure starts on a coarse mesh which is then locally refined in a fully adaptive way in regions of accumulated particles. After each deposition the fluid flow is recalculated in order to resolve the coupling of the flow with the growing particle structures correctly. For the purpose of avoiding unphysical blocking of flow by growing particle dendrites the Lattice-Boltzmann method is extended to permeable cells in these regions using the Brinkmann equation. This extended deposition model is compared to simpler approaches, where the deposit has no retroaction on the flow or is treated as a solid structure. It is clear that the permeable model is most realistic and allows considering the particle deposition on a fibre as two-dimensional problem. Comprehensive simulations were conducted for analysing the importance of different parameters, i.e. free-stream velocity and particle diameter on the deposit structure. The results of this sensitivity analysis agree qualitatively well with former published numerical and experimental results. Finally the structure of the particle deposit was quantitatively characterised by using a modified fractal dimension.

  7. The deposition of magnetite particles from high velocity water onto isothermal tubes

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1977-02-01

    The deposition rate of magnetite particles from a high velocity water slurry onto isothermal metal tubes was measured. The effects of velocity (5 to 100 m/s), slurry concentration (200 to 1000 mg Fe/kg H 2 O), temperature (25 to 90 deg C), pH (4 to 10 at 25 deg C), and tube material (nickel, Zircaloy-4) on deposition rate were studied. The data are interpreteω in terms of two steps in series for deposition: a mass transfer step followed by a deposition or ''inertial coasting'' step. Mass transfer of particles through the bulk water phase apparently limits the deposition of particles at high Reynolds number (10 5 ). (author)

  8. Particle migration leads to deposition-free fractionation

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    In membrane filtration, theporesizeofthemembranedeterminesthesizeof ‘particles’ that shouldbe rejected,leading to accumulation of particles on the membrane surface and changed particle retention in time.A process without accumulation and thereby constant retention as function of time would be well

  9. DIGESTIVE BIOAVAILABILITY TO A DEPOSIT FEDDER (ARENICOLA MARINA) OF POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH ANTHRPOGENIC PARTICLES

    Science.gov (United States)

    Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...

  10. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2018-05-01

    Full Text Available Feasibility of the electrophoresis deposition (EPD technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  11. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    Science.gov (United States)

    Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.

    2018-05-01

    Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  12. Deposition of cigarette smoke particles in the rat respiratory tract

    International Nuclear Information System (INIS)

    Chen, B.T.; Weber, R.E.; Yeh, H.C.; Lundgren, D.L.; Snipes, M.B.; Mauderly, J.L.

    1988-01-01

    Male and female rats were exposed to mainstream cigarette smoke to determine the fractional deposition. Deposition studies were conducted by placing the rats in plethysmography tubes for respiratory minute volume measurements and exposing them to 14 C-dotriacontane-labeled cigarette smoke at mass concentrations of 202 or 624 mg/m 3 for 25 min. Immediately after the exposure, the rats were sacrificed and the 14 C contents in various tissues and organs were analyzed. Results showed that the GI tract contained 16-31% of the total activity, indicating significant clearance from the large airways and nose to the GI tract during the exposure and during the 10-15 min between cessation of the exposure and the removal of the organs. Total deposition of the inhaled activity was 20.1 ± 1.6% for both exposure concentrations. The intrapulmonary deposition fractions (lung lobes plus airways below the lobar bronchi) were 12.4 ± 0.9% and 15.9 ± 1.4% for high and low concentrations, respectively, suggesting a slight enhancement in upper airway deposition for animals exposed to the higher smoke concentration. (author)

  13. Deposition of cigarette smoke particles in the rat respiratory tract

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B T; Weber, R E; Yeh, H C; Lundgren, D L; Snipes, M B; Mauderly, J L

    1988-12-01

    Male and female rats were exposed to mainstream cigarette smoke to determine the fractional deposition. Deposition studies were conducted by placing the rats in plethysmography tubes for respiratory minute volume measurements and exposing them to {sup 14}C-dotriacontane-labeled cigarette smoke at mass concentrations of 202 or 624 mg/m{sup 3} for 25 min. Immediately after the exposure, the rats were sacrificed and the 14{sub C} contents in various tissues and organs were analyzed. Results showed that the GI tract contained 16-31% of the total activity, indicating significant clearance from the large airways and nose to the GI tract during the exposure and during the 10-15 min between cessation of the exposure and the removal of the organs. Total deposition of the inhaled activity was 20.1 {+-} 1.6% for both exposure concentrations. The intrapulmonary deposition fractions (lung lobes plus airways below the lobar bronchi) were 12.4 {+-} 0.9% and 15.9 {+-} 1.4% for high and low concentrations, respectively, suggesting a slight enhancement in upper airway deposition for animals exposed to the higher smoke concentration. (author)

  14. Superpermeable membrane for particle control in divertor: the effect of impurity deposition

    International Nuclear Information System (INIS)

    Nakahara, Y.; Nakamura, Y.; Ohyabu, N.; Suzuki, H.; Busnyuk, A.; Alimov, V.

    2000-01-01

    The effect of impurity (stainless steel (SS) components, carbon) deposition onto niobium membrane surface on the membrane permeability to hydrogen particles is investigated with a plasma device. The deposition of SS components onto the upstream surface of the membrane at the membrane temperature (T M ) M M ≥800 deg. C. It appears to be due to the dissolution of the impurities deposited onto the upstream surface into the membrane bulk within the measurements

  15. Deposition of particles and iodine to outdoor surfaces and in the respiratory tract

    International Nuclear Information System (INIS)

    Garland, J.A.

    1988-01-01

    Dry deposition of particles depends strongly on particle size, and is also influenced by the geometry of the surface and weather parameters. Precipitation scavenging is also influenced to some degree by particle size, but hygroscopic properties of soluble particles are also likely to enhance deposition in precipitation. Similar comments apply in the respiratory tract, where particle size and solubility may influence the extent and site of deposition: the site is important for insoluble particles at least since it determines retention time in the body. Thus measurement of particle size and investigation of solubility would be valuable in interpreting deposition inhalation and air concentration observations. Iodine has several chemical forms in the air. It is valuable to sample in such a way that different forms are partitioned, although there is some uncertainty in their identification. The rate of deposition to vegetation depends strongly on the chemical form of the iodine, but the vapour forms of iodine that occur in the atmosphere may all be retained efficiently on inhalation

  16. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.

    2015-01-01

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions

  17. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    Science.gov (United States)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  18. Experimental studies on particle deposition by thermophoresis and inertial impaction from particulate high temperature gas flow

    International Nuclear Information System (INIS)

    Kim, S.S.; Kim, Y.J.

    1987-01-01

    In view of fouling and erosion of gas turbine blade, heat exchanger and pipelines, increasing attention has been paid to particle deposition (transport) in high temperature flow systems. This is also necessary to develop a cleaning or filtration devices. Using 'real time' laser-light reflectivity and scanning electron microscope technique, we quantitatively treat particle size effect and the interaction between Brownian diffusion, thermoporesis (particle drift down a temperature gradient), and inertial impaction of particles (0.2 to 30 μm in diameter) in laminar hot combustion gas-particles flow (ca. 1565 K)

  19. Source contributions to airborne particle deposition at the Yungang Grottoes, China

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Lynn G.; Christoforou, Christos S.; Gerk, Timothy J.; Cass, Glen R. [Environmental Engineering Science Department and Environmental Quality Laboratory, California Institute of Technology Pasadena, CA (United States); Casuccio, Gary S.; Cooke, Gary A.; Leger, Michael [R.J. Lee Group, Inc., Monroeville, PA (United States); Olmez, Ilhan [Nuclear Reactor Laboratory, Massachusetts Institute of Technology Cambridge, MA (United States)

    1995-04-28

    The Buddhist cave temple complex at Yungang in northern China is affected by a rapid accumulation of airborne particles that settle onto the thousands of statues contained within those caves. Experiments have been conducted to identify the most important air pollution sources that contribute to the dust deposition problem. The spatial distribution of the deposition rate of airborne particles within a 2 km x 2 km area surrounding the grottoes was measured during a 2-day period in April, 1991. Peak particle deposition rates of >60 {mu}g m{sup -2} s{sup -1} were found at locations within the village of Yungang itself and along the adjacent coal-haul highway. Moving away from the village and coal-haul highway, deposition rates decline to much lower values, indicating that the village and highway are significant sources of airborne particles. A comparison of the mineralogical composition of the dust deposits in the caves with the composition of local soil dust, paved road dust from the coal-haul highway and deteriorated cave ceiling rock material indicates that the dust deposits in the caves are a combination of the above sources, with the paved road dust from the coal-haul highway providing the closest match to the largest quantity of the material deposited in the caves

  20. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    Science.gov (United States)

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  2. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  3. The influence of magnetic field on the inertial deposition of a particle on a rotating disk

    International Nuclear Information System (INIS)

    Tsatsin, P O; Beskachko, V P

    2008-01-01

    The problem of inertial deposition attracts considerable attention in the connection with the separating of detrimental impurities and the refining of liquid metals. In the present investigation the deposition of particles suspended in a conducting melt on the rotating disk in the presence of axial uniform magnetic field is considered. The field of the fluid velocities is computed by means of the MHD-analogue of Karman reduction, which makes possible to reduce initial governing nonlinear partial differential equations to a two-point boundary value problem for the set of ordinary differential equations. The influence of magnetic field on dia-and paramagnetic particle deposition effect was estimated. The results reveal that magnetic field has significant effect on particle parameters, especially for magnetic particles

  4. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  5. Airflow structures and nano-particle deposition in a human upper airway model

    Science.gov (United States)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  6. Effect of uncertainty in nasal airway deposition of radioactive particles on effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R.A.; Birchall, A.; Jarvis, N.S

    1998-07-01

    In the current ICRP human respiratory tract (RT) model (ICRP Publication 66), the deposition of particles in various regions of the RT during natural breathing is modelled by considering the RT as a series of filters, resulting in deposition probabilities for distal portions of the RT being dependent on those of the proximal segments. Thus, uncertainties in regional deposition in proximal segments of the RT are reflected or propagated in uncertainties in deposition in the distal segments of the lung. Experimental data on aerosol particle deposition have demonstrated significant variability in nasal airway (NA) deposition for different individuals studied. This report summarises the impact of introducing variability in NA deposition efficiency on the calculation of effective doses using the ICRP 66 model for selected radionuclides. The computer software LUDEP, modified for this purpose, was used to customise deposition patterns, and effective doses were calculated for several radionuclides ({sup 111}In, {sup 106}Ru, {sup 60}Co, {sup 210}Po, {sup 238}U and {sup 239}Pu) chosen to represent isotopes with various decay schemes and half-lives. The results indicated significant but particle-size-specific effects of assumed NA deposition efficiencies on the calculated effective doses, which varied typically by factors of five to six. The majority of the variability was associated with direct effects on deposition patterns, but in some cases, alterations of radiation dose distribution within the various target organs also contributed to the variability. These results provide a basis for evaluating uncertainties due to inter-individual differences in deposition patterns for radiation protection and risk analysis. (author)

  7. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  8. Clearance patterns for 111In-oxide particles deposited in specific airways of beagle dogs

    International Nuclear Information System (INIS)

    Snipes, M.B.; Muggenburg, B.A.; Griffith, W.C.; Guilmette, R.A.

    1994-01-01

    The International Commission on Radiological Protection (ICRP) has incorporated long-term retention of radioactive particles in conducting airways into its newly approved respiratory tract dosimetry model. This model is purported to provide a better basis for assessing risk associated with human inhalation exposures to radioactive particles. However, applying the new model requires an understanding of particle retention patterns in conducting airways of the lung. Studies are being conducted at ITRI to quantify long-term retention patterns for particles deposited at specific sites in conducting airways of Beagle dogs. The dog was selected as a model because long-term retention and clearance patterns for particles deposited in the lungs of dogs and humans are similar

  9. Effects of temperature and particle size on deposition in land based turbines - article no. 051503

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, J.M.; Lewis, S.; Bons, J.P.; Ai, W.G.; Fletcher, T.H. [Brigham Young University, Provo, UT (United States). Dept. for Mechanical Engineering

    2008-09-15

    Four series of tests were performed in an accelerated deposition test facility to study the independent effects of particle size, gas temperature, and metal temperature on ash deposits from two candidate power turbine synfuels (coal and petcoke). The facility matches the gas temperature and velocity of modern first stage high pressure turbine vanes while accelerating the deposition process. Particle size was found to have a significant effect on capture efficiency with larger particles causing significant thermal barrier coating (TBC) spallation during a 4 h accelerated test. In the second series of tests, particle deposition rate was found to decrease with decreasing gas temperature. The threshold gas temperature for deposition was approximately 960{sup o}C. In the third and fourth test series, impingement cooling was applied to the back side of the target coupon to simulate internal vane cooling. Capture efficiency was reduced with increasing mass flow of coolant air; however, at low levels of cooling, the deposits attached more tenaciously to the TBC layer. Postexposure analyses of the third test series (scanning electron microscopy and X-ray spectroscopy) show decreasing TBC damage with increased cooling levels.

  10. Factors controlling deposits in recovery boilers -particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta. Hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E I; Mikkanen, P; Tapper, U; Ylaetalo, S; Jaervinen, R [VTT Chemical Technology, Espoo (Finland); Jokiniemi, J K; Pyykoenen, J; Eskola, A [VTT Energy, Espoo (Finland)

    1997-10-01

    In this project the aim is to find critical factors controlling the deposit formation in the recovery boilers. Focus is on particle formation, growth and deposition. During year 1995 the aerosol particle formation was studied by an experimental study within the recovery boiler furnace and by a sensitivity study with the ABC (Aerosol Behaviour in Combustion) computer code. During year 1996 the experimental studies on the aerosol particle formation continued within the furnace and the deposition mechanisms for carry over particles were included in the ABC code and sensitivity studies of the deposition were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or char bed, where metals are vaporised and oxidised to form tiny seed particles

  11. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  12. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    Science.gov (United States)

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  13. Effect of electron degeneracy on fast-particles energy deposition in dense plasma systems

    International Nuclear Information System (INIS)

    Johzaki, T.; Nakao, Y.; Nakashima, H.; Kudo, K.

    1997-01-01

    The effects of electron degeneracy on fast-particles energy deposition in dense plasmas are investigated by making transport calculations for the fast particles. It is found that the degeneracy substantially affects the profiles of energy deposition of 3.52-MeV α-particles. On the other hand, the effect on the energy deposition of 14.1-MeV neutrons is negligibly small because the recoil ions, which transfer the neutron energy to the plasma constituents, are produced in a whole plasma volume due to the long mean-free-path of neutrons. The coupled transport-hydrodynamic calculations show that these effects of degeneracy are negligible in the ignition and burn characteristics of central ignition D-T targets. (author)

  14. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    International Nuclear Information System (INIS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  15. Deposition of Fungal Particles in the Lung of Workers in a Spin Factory (Minia City/ Egypt)

    International Nuclear Information System (INIS)

    Moustafa, M.; Moustafa, M.; Hofmann, W.; Winkler-Heil, R.

    2010-01-01

    Elevated levels of particle air pollution have been associated with decreased lung function, increased respiratory symptoms such as cough, shortness of breath, wheezing and asthma attacks, as well as chronic obstructive pulmonary disease (COPD), cardiovascular diseases and lung cancer (World Health Organisation, 2002). Recently, characterization of biological particles has become an important issue because of the related health effects of exposure to bio aerosols in the indoor environment influencing the intensity of sick building syndrome symptoms, such as nasal and pharyngeal mucous membrane irritations, skin dryness, itchy eyes, breathlessness, wheezing, headache, concentration problems or fatigue. Dust particles often act as a carrier for biological particles either naturally occurring or artificially generated. In cotton-spinning mills cotton dust is the major carrier for biological particles that contribute to such respiratory problems and its effect on pulmonary function among workers employed in the factory. Therefore, the aim of our study was to determine the deposition of bio aerosol particles in the human respiratory tract applying a stochastic lung model using the standard breathing parameters (ICRP, 1994) for light exercise activity. We use the size distribution parameters of bio aerosols from our previous experimental study in a cotton spin factory in Minya city (Egypt). It was found that the number of deposited particles in the lung is higher in the carding and blowing department (high cotton dust exposure) than the predicted value for the spinning department (low cotton dust exposure). The results also reveal significant dependence of fungal deposition in the lung on their composition (genera and species), concentration and size where the number of deposited Aspergillus niger particles is higher than that of the Penicillium particles in both departments

  16. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee, E-mail: ktlau@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Anand, T. Joseph Sahaya [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Sorrell, Charles C. [School of Materials Science and Engineering, UNSW Australia, Sydney, NSW 2052 (Australia)

    2016-10-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  17. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    International Nuclear Information System (INIS)

    Lau, Kok-Tee; Anand, T. Joseph Sahaya; Sorrell, Charles C.

    2016-01-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  18. Experimental investigations on the deposition and remobilization of aerosol particles in turbulent flows

    International Nuclear Information System (INIS)

    Barth, Thomas

    2014-01-01

    Aerosol particle deposition and resuspension experiments in turbulent flows were performed to investigate the complex particle transport phenomena and to provide a database for the development and validation of computational fluid dynamics (CFD) codes. The background motivation is related to the source term analysis of an accidental depressurization scenario of a High Temperature Reactor (HTR). During the operation of former HTR pilot plants, larger amounts of radio-contaminated graphite dust were found in the primary circuit. This dust most likely arose due to abrasion between the graphitic core components and was deposited on the inner wall surfaces of the primary circuit. In case of an accident scenario, such as a depressurization of the primary circuit, the dust may be remobilized and may escape the system boundaries. The estimation of the source term being discharged during such a scenario requires fundamental knowledge of the particle deposition, the amount of contaminants per unit mass as well as the resuspension phenomena. Nowadays, the graphite dust distribution in the primary circuit of an HTR can be calculated for stationary conditions using one-dimensional reactor system codes. However, it is rather unknown which fraction of the graphite dust inventory may be remobilized during a depressurization of the HTR primary circuit. Two small-scale experimental facilities were designed and a set of experiments was performed to investigate particle transport, deposition and resuspension in turbulent flows. The facility design concept is based on the fluid dynamic downscaling of the helium pressure boundary in the HTR primary circuit to an airflow at ambient conditions in the laboratory. The turbulent flow and the particles were recorded by high-resolution, non-invasive imaging techniques to provide a spatio-temporal insight into the particle transport processes. The different investigations of this thesis can be grouped into three categories. Firstly, the

  19. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  20. Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China

    International Nuclear Information System (INIS)

    Cao Zongze; Yang Yuhua; Lu, Julia; Zhang Chengxiao

    2011-01-01

    Physical characterization and chemical analysis of settled dusts collected in Xi'an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m -2 yr -1 . The average deposition rate (76.7 g m -2 yr -1 ) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), ∼10% of the settled dusts having size 70% having size <30 μm; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area. - Research highlights: → High atmospheric dust deposition rate in Xi'an, Shaanxi, China. → Coal-burning power plan being a major source of particulate matter in Xi'an area. → High levels of toxic elements in the settled dusts. → Enrichment of heavy metals (e.g., Pb, Ni, Cu) in fine particles. - Atmospheric dust deposition rate is high and the levels of toxic elements associated with the settled dusts are elevated in Xi'an, Shaanxi, China.

  1. Effect of exercise on deposition and subsequent retention of inhaled particles

    International Nuclear Information System (INIS)

    Bennett, W.D.; Messina, M.S.; Smaldone, G.C.

    1985-01-01

    To investigate the effect of exercise and its associated increase in ventilation on the deposition and subsequent retention of inhaled particles, we measured the fractional and regional lung deposition of a radioactively tagged (/sup 99m/Tc) monodisperse aerosol (2.6 microns mass median aerodynamic diam) in normal human subjects at rest and while exercising on a bicycle ergometer. Breath-by-breath deposition fraction (DF) was measured throughout the aerosol exposures by Tyndallometry. Following each exposure gamma camera analysis was used to 1) determine the regional distribution of deposited particles and 2) monitor lung retention for 2.5 h and again at 24 h. We found that DF was unchanged between ventilation at rest (6-10 l/min) and exercise (32-46 l/min). Even though mouth deposition was enhanced with exercise, it was not large enough to produce a significant difference in the deposition fraction of the lung (DFL) between resting and exercise exposures. The central-to-peripheral distribution of deposited aerosol was larger for the exercise vs. resting exposure, reflecting a shift of particle deposition to more central bronchial airways. Apical-to-basal distribution was not different for the two exposures. Retention at 2.5 h and 24 h (R24) was reduced following the exercise vs. the resting exposure, consistent with greater bronchial deposition during exercise. The product of DFL and R24 gave a measure of fractional burden at 24 h (B24), i.e., the fraction of inhaled aerosol residing in the lungs 24 h after exposure. B24 was not significantly different between rest and exercise exposures

  2. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  3. Dynamics of particle loading in deep-bed filter. Transport, deposition and reentrainment

    Directory of Open Access Journals (Sweden)

    Przekop Rafał

    2016-09-01

    Full Text Available Deep bed filtration is an effective method of submicron and micron particle removal from the fluid stream. There is an extensive body of literature regarding particle deposition in filters, often using the classical continuum approach. However, the approach is not convenient for studying the influence of particle deposition on filter performance (filtration efficiency, pressure drop when non-steady state boundary conditions have to be introduced. For the purposes of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. For aggregates the effect of their structure on displacement is taken into account. The possibility of particles rebound from the surface of collector or reentrainment of deposits to fluid stream is calculated by energy balanced oscillatory model derived from adhesion theory. The results show the evolution of filtration efficiency and pressure drop of filters with different internal structure described by the size of pores. The size of resuspended aggregates and volume distribution of deposits in filter were also analyzed. The model enables prediction of dynamic filter behavior. It can be a very useful tool for designing filter structures which optimize maximum lifetime with the acceptable values of filtration efficiency and pressure drop.

  4. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  5. Deposition of particle/bound substances during radiation fog events; Deposition von partikelgebundenen Substanzen waehrend Strahlungsnebelereignissen

    Energy Technology Data Exchange (ETDEWEB)

    Trautner, F. [Inst. fuer Strahlenschutz, GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Tschiersch, J. [Inst. fuer Strahlenschutz, GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany)

    1993-11-01

    During autumnal and winterly radiation fog events size fractioned sampling of aerosol rime and fogwater was carried out. Samples were collected on polyethylene plates with a surface of 0.25 m{sup 2}. The deposited fog water quantity was as high as 15g/h.m{sup 2}. Deposition rate values were between 10{sup -4} and 10{sup -2} m/s. (orig./EW) [Deutsch] Waehrend herbstlichen und winterlichen Strahlungsnebelereignissen wurde direkt nach der groessenfraktionierenden Probennahme von Aerosol Reif und Nebelwasser auf Polyethylenplatten von 0,25 m{sup 2} Oberflaeche gesammelt. Die deponierte Nebelwassermasse betrug dabei bis zu 15 g/h . m{sup 2}. Fuer Elemente, die sowohl im Wasser als auch im Aerosol analysiert wurden erreichten die Depositionsgeschwindigkeiten Werte zwischen 10{sup -4} und 10{sup -2} m/s. (orig.)

  6. Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration

    CERN Document Server

    Pozorski, Jacek

    2017-01-01

    The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

  7. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  8. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  9. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    Science.gov (United States)

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight

  10. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....

  11. Particle behavior in an ECR plasma etch tool

    International Nuclear Information System (INIS)

    Blain, M.G.; Tipton, G.D.; Holber, W.M.; Westerfield, P.L.; Maxwell, K.L.

    1993-01-01

    Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions

  12. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    Science.gov (United States)

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  13. Deposition and retention of 67Ga-labelled diesel particles in Fischer-344 rats

    International Nuclear Information System (INIS)

    Wolff, R.K.; Sun, J.D.; Lopez, J.A.; Wolf, I.; Cheng, Y.S.; McClellan, R.O.

    1981-01-01

    Fischer-344 rats were exposed nose-only to 67 Ga radiolabeled diesel exhaust particles produced from a 1 cylinder engine and diluted 10:1 with filtered air. Volume median diameters of the particles were 0.14 to 0.16 μm measured using an electrical aerosol analyzer, a diffusion battery and a cascade impactor. Initial lung deposition was 7 +- 2% and 12 +- 2% in two separate experiments. Gallium-67 left the lung rapidly with a clearance half-time of about 10 days, indicating that the 67 Ga label dissociated from diesel particles

  14. Lung Deposition Calculations for Radioactive Aerosol Particles Originating from Caves and Uranium Mines

    International Nuclear Information System (INIS)

    Alfoldy, B.; Torok, Sz.; Winkler, R.

    2001-01-01

    Full text: The present study simulates lung deposition of radioactive aerosol particles originating from the atmosphere of a therapeutic cave (Szemlohegyi cave, Budapest) and several uranium mines. Particle deposition patterns and surface densities have been calculated by the stochastic lung model of Koblinger and Hofmann. In the model, deposition can be caused by the simultaneous effects of Brownian motion, inertial impaction and gravitational settling. The calculations were carried out by considering the aerosol particle size distribution and radon concentration of the atmosphere of the cave and mines. The deposition was computed in the whole lung, in characteristic parts of the respiratory system such as extrathoracic, tracheobronchial, acinar and alveolar regions and in the singe airway generations at different flow rates for adults. The adverse health effects of inhaled radionuclides strongly depend from the local deposition density values in cellular dimensions. Thus we will built in the results to a cellular effects model of Balashazy and Hofmann for the simulation of the pathological effects of inhaled radionuclides for risk assessment. (author)

  15. Modelling Measured Deposition and Resuspension Rates of Particles in Animal Buildings

    DEFF Research Database (Denmark)

    Lengweiler, P.; Moser, A.; Nielsen, Peter V.

    on the surfaces is shown as a function of time. High contents of organic dust in animal buildings can affect the health of both people and animals. Deposition on indoor surfaces is an important removal mechanism to reduce the airborne particle concentration. As a basis to develop methods to eliminate dust related...

  16. Speciated particle dry deposition to the sea surface: Results from ASEPS '97

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.

    1999-01-01

    on Precipitation Scavenging and Atmosphere-Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air-Sea Exchange...

  17. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  18. Electrostatic deposition of a micro solder particle using a single probe by applying a single rectangular pulse

    International Nuclear Information System (INIS)

    Nakabayashi, Daizo; Sawai, Kenji; Saito, Shigeki; Takahashi, Kunio

    2012-01-01

    Recently, micromanipulation techniques have been in high demand. A technique to deposit a metal microparticle onto a metal substrate by using a single metal probe has been proposed as one of the techniques. A solder particle with a diameter of 20–30 µm, initially adhering to the probe tip, is detached and deposited onto a substrate. The success rate of the particle deposition was 44% in the previous research, and is insufficient for industrial applications. In this paper, a technique of particle deposition by applying a single rectangular pulse is proposed, and the mechanism of the deposition is described. In the mechanism, an electric discharge between the probe and the particle when the particle reaches the substrate plays an important role in the particle deposition. Moreover, the mechanism of the proposed technique is verified by experiments of particle deposition, which are observed using a high-speed camera, a scanning electron microscope (SEM) and an oscilloscope. The success rate of the particle deposition has increased to 93% by the proposed technique. Furthermore, the damage to the particle by the electric discharge is evaluated using an RC circuit model, and the applicability of the proposed technique is discussed. (paper)

  19. Theoretical modeling of fine-particle deposition in 3-dimensional bronchial bifurcations

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.; Liao, N.S.

    1978-01-01

    A theoretical model is developed for the prediction of the peak to average particle deposition flux in the human bronchial airways. The model involves the determination of the peak flux by a round-nose 2-dimensional bifurcation channel and the average deposition flux by a curved-tube model. The ''hot-spot'' effect for all generations in the human respiratory system is estimated. Hot spots are usually associated with the sites of bronchoconstriction or even chronic bronchitis and lung cancer. Recent studies indicate that lung cancer in smokers may be caused by the deposition of radioactive particles produced by the burning of tobacco leaves. High local concentrations of Po-210 have been measured in epithelium from bronchial bifurcations of smokes. This Po-210 is the radioactive daughter of Pb-210 which is produced from a long chain of radioactive decay starting from uranium in the fertilizer-enriched soil. It is found that the peak deposition flux is higher than the average deposition flux by a factor ranging between 5 and 30, depending on the generation number. The importance of this peak to average deposition flux ratio on consideration of environmental safety studies is discussed

  20. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  1. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  2. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardena, Janaka, E-mail: j.gunawardena@qut.edu.au; Ziyath, Abdul M., E-mail: mohamed.ziyath@qut.edu.au; Bostrom, Thor E., E-mail: t.bostrom@qut.edu.au; Bekessy, Lambert K., E-mail: l.bekessy@qut.edu.au; Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au; Egodawatta, Prasanna, E-mail: p.egodawatta@qut.edu.au; Goonetilleke, Ashantha, E-mail: a.goonetilleke@qut.edu.au

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources.

  3. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    International Nuclear Information System (INIS)

    Gunawardena, Janaka; Ziyath, Abdul M.; Bostrom, Thor E.; Bekessy, Lambert K.; Ayoko, Godwin A.; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-01-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources

  4. Development of a dual-tracer real-time particle dry-deposition measurement technique for simple and complex terrain

    International Nuclear Information System (INIS)

    Sehmel, G.A.; Hodgson, W.H.; Campbell, J.A.

    1979-01-01

    Detectors are being developed and tested for measuring the airborne concentrations of lithium particles and SF 6 gas in real time. The airborne lithium detector will be used for real-time measurements of both particle dry-deposition velocities and resuspension rates. Both the lithium and SF 6 detectors will be used for measuring dry deposition in field experiments

  5. Particle re-entrainment from a powder deposit in an horizontal air flow

    International Nuclear Information System (INIS)

    Alloul, L.; Witschger, O.; Alloul, L.; Renoux, A.; Le Dur, D.; Monnatte, J.

    2000-01-01

    Particle re-entrainment from surfaces to turbulent air flow is an important subject in many different fields like nuclear safety, environmental air pollution, sediment transport by wind, surface contamination in semiconductor operations. Theoretical and experimental studies have been numerous and cover different aspects of the phenomena. Although a number of theoretical works have been devoted for describing the mechanisms of detachment of primary spherical particles form flat smooth surfaces in a turbulent flow, experimental data are still needed in order to comparison. Moreover, the knowledge of the effect of parameters related to the deposit (monolayer, multilayer, cone-like pile), the powder particles (particle-size distribution, adhesive properties), the surface (roughness,...),the airflow (velocity, acceleration, turbulence) or the environment (humidity,...) is still in an elementary stage. The main objective of our work is to contribute to the understanding and quantification of the parameters that govern the particle re-entrainment from a powder deposit in an turbulent horizontal airflow. Therefore, a new experimental facility called BISE (french acronym for wind tunnel for studying particle re-entrainment by airflow) has been designed and built in our laboratory. (authors)

  6. Deposition uniformity, particle nucleation and the optimum conditions for CVD in multi-wafer furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.

    1996-06-01

    A second-order perturbation solution describing the radial transport of a reactive species and concurrent deposition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak one-sided maximum; deposition rates fall as pressures are reduced but remain nearly constant at all pressures above the optimum value. The deposition rate is also maximized subject to dual constraints on the uniformity and particle nucleation rate. In this case, the optimum pressure, optimum temperature and optimum reactant fraction are similarly obtained, and the resulting maximum deposition rate is well defined. These results are also applicable to CVI processes used in composites manufacturing.

  7. Factors controlling alkali salt deposition in recovery boilers - particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta - hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.I.; Mikkanen, P.; Ylaetalo, S. [VTT Chemistry, Espoo (Finland); Jokiniemi, J.K.; Lyyraenen, J.; Pyykoenen, J.; Saastamoinen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    In this project, the aim was to find out those critical factors that control the deposit formation in the recovery boilers. We focus on the particle formation, growth and deposition as well as the single black liquor particle combustion behaviour. The final goal is the development of the predictive model to be used to describe deposit growth and subsequent behaviour as well as the dependence of deposition on black liquor characteristics and boiler operation conditions. During year 1995 an experimental study on the aerosol particle formation within the recovery boiler furnace and a sensitivity study with the Aerosol Behaviour in Combustion (ABC) code were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or smelt bed, where metals are vaporised and oxidised to form tiny seed particles. Trace amounts of metals were measured in all particle sizes and the sensitivity study with the ABC model gave further evidence of the seed formation was necessary primary step in the particle formation. At the furnace outlet the sintration ratio and the sulfation ratio of the particles were dependent on the furnace temperature and the residence time in the furnace. At ESP inlet three types of particles were observed (1) fine particles with the major mass mode at about 1-2 {mu}m, (2) large agglomerates in sizes larger than 8 {mu}m, and (3) spherical particles about 2-4 {mu}m in size. The fine particles were formed from vapours and the large agglomerates were formed from fine particles agglomerated on heat exchanger surfaces and re-entrained back to flue gas flow. The large agglomerates also contain vapours that have directly condensed to surfaces. The large spherical particles contain silicon and pass the process almost unchanged. (Abstract Truncated)

  8. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community.

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].

  9. Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China

    Energy Technology Data Exchange (ETDEWEB)

    Cao Zongze; Yang Yuhua [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 (China); Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Lu, Julia, E-mail: julialu@ryerson.c [Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 (China); Zhang Chengxiao, E-mail: cxzhang@snnu.edu.c [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 (China)

    2011-02-15

    Physical characterization and chemical analysis of settled dusts collected in Xi'an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m{sup -2} yr{sup -1}. The average deposition rate (76.7 g m{sup -2} yr{sup -1}) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), {approx}10% of the settled dusts having size <2.6, {approx}30% having size <10.5, and >70% having size <30 {mu}m; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area. - Research highlights: High atmospheric dust deposition rate in Xi'an, Shaanxi, China. Coal-burning power plan being a major source of particulate matter in Xi'an area. High levels of toxic elements in the settled dusts. Enrichment of heavy metals (e.g., Pb, Ni, Cu) in fine particles. - Atmospheric dust deposition rate is high and the levels of toxic elements associated with the settled dusts are elevated in Xi'an, Shaanxi, China.

  10. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  11. Deposition of inhaled particles in the respiratory tract as a function of age at exposure

    International Nuclear Information System (INIS)

    Thomas, R.G.; Healy, J.W.

    1985-01-01

    A respiratory tract deposition model was developed that would accommodate age 1 month to adulthood as an initial step in calculating radiation dose following inhalation during environmental exposures. The approach to changing respiratory tract and physiological parameters to be applicable to children was to derive an analytical function describing the ratio of the child value to the value for a reference adult with the desired characteristics. A computer program was written to carry out the tracing of airflow through the respiratory tract and deposition in each of the sections for monodispersed particles of known density and diameter. 7 references

  12. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  13. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    Science.gov (United States)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  14. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    Science.gov (United States)

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  15. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  16. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    Energy Technology Data Exchange (ETDEWEB)

    Uudeküll, Peep, E-mail: peep.uudekull@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kozlova, Jekaterina; Mändar, Hugo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Link, Joosep [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Sihtmäe, Mariliis [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Käosaar, Sandra [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Faculty of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Blinova, Irina; Kasemets, Kaja; Kahru, Anne [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Stern, Raivo [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Tätte, Tanel [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia)

    2017-05-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  17. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    International Nuclear Information System (INIS)

    Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile

    2017-01-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  18. ‘Sticky business’: The influence of streambed periphyton on particle deposition and infiltration

    Science.gov (United States)

    Salant, Nira L.

    2011-03-01

    Strong feedbacks exist between physical and ecological components of aquatic systems. Aquatic plants can alter flow and sedimentation patterns, in turn influencing habitat condition and organism responses. In this study, I investigate the interactions between streambed periphyton, particle deposition and infiltration, and flow hydraulics to determine the influence of these organisms on the local environment. In a series of flume experiments, I measured the effects of two contrasting forms of periphyton at several densities and growth stages on near-bed hydraulics, particle loss from the water column, surface deposition, and subsurface infiltration. Data show that periphyton assemblages altered the rate and quantity of particle deposition via several mechanisms, including shear stress modification, surface adhesion, and bed clogging. Although trends varied for different size classes within a suspension of fine sediment, diatoms and algae had distinctly different effects on hydraulics, deposition, and infiltration. In general, diatoms increased the rate of decline in suspended particle concentrations relative to non-periphyton surfaces by reducing shear stresses and enhancing surface deposition via adhesion. Increases in diatom biomass, however, reduced the quantity and depth of particle infiltration, presumably by clogging interstitial pore spaces, in turn lowering rates of concentration decline. In contrast, all algal growth stages had slower or similar rates of concentration decline compared to non-periphyton conditions, due to partial clogging by high biomass and a lack of adhesion at the bed surface. Clogging effects were counteracted at later growth stages, however, as late-stage algal structures increased shear stresses and downward advection, in turn increasing amounts of infiltration. Compiled data from several field studies and experiments demonstrate a positive relation between periphyton biomass and inorganic mass, but also show a wide range in the

  19. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  20. Particle resuspension from a multi-layer deposit by turbulent flow

    International Nuclear Information System (INIS)

    Fromentin, A.

    1989-09-01

    The aim of this work was to contribute to the understanding and quantification of particle resuspension from a bed exposed to a turbulent flow. The PARESS experiment has been set up and conducted. Multi-layer deposits of particles were created by allowing aerosols to settle on steel plates under conditions typical of a nuclear reactor containment following a severe accident. These were then exposed to a controlled turbulent airflow (U ∞ =5-25 m/s) in a wind tunnel and the evolution of the resuspension flux as a function of time was measured. The resuspension flux F r decreased with exposure time to the airflow t, according to a power law F r = a.t -b [kg/m 2 .s]. The parameters a and b depend on the flow velocity and the nature of the deposit. A new semi-empirical model, based on the comparison between the distributions of adhesive forces holding the particles on the deposit and aerodynamic forces tending to remove them, has been developed to simulate the stochastic nature of particle resuspension. This model is able to predict the experimentally observed decrease of the resuspension flux as a function of time and its dependence on flow velocity. Based on the results of the PARESS experiment, an empirical global relationship, which ignores the fine effects due to the nature of the different deposits, has been proposed. It appears that the resuspension flux is approximately proportinal to the cube of the flow velocity, and that a pseudo threshold velocity exists below which virtually no resuspension occurs. (author) 57 figs., 1 tab., 79 refs

  1. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  2. Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.

    Science.gov (United States)

    Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio

    2018-02-01

    The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.

  3. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    Science.gov (United States)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  4. Particle connectedness and cluster formation in sequential depositions of particles: integral-equation theory.

    Science.gov (United States)

    Danwanichakul, Panu; Glandt, Eduardo D

    2004-11-15

    We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

  5. Measurement of the deposition of aerosol particles to skin, hair and clothing

    International Nuclear Information System (INIS)

    Bell, K.F.

    1999-01-01

    In the event of a nuclear accident, there are several routes whereby human populations may receive a radioactive dose from material released to the environment. The dose from radioactive aerosol deposited onto the surfaces of the human body has previously been estimated by assuming that aerosol deposition velocities (defined as the flux of aerosol onto a surface divided by the aerosol concentration above the surface) onto human body surfaces are similar to the values for inanimate surfaces. However, Jones (1990) modelled the effects on health of fallout material deposited on skin and clothing and found that the number of early deaths from skin dose was sensitively dependent on aerosol deposition velocity. He also pointed out that there was a lack of experimentally derived data on aerosol deposition velocities to human body surfaces and that the above mentioned assumption may not be valid. The purpose of the present work is to measure aerosol deposition velocities onto human body surfaces, the resultant data to allow more accurate nuclear accident consequence modelling. Aerosol deposition velocities onto human body surfaces in simulated indoor conditions have been measured by releasing tracer aerosols of three mean particle diameters (2.6, 6.2 and 9.2μm) into a test chamber containing volunteers. The skin, hair and clothing of the volunteers were sampled and analysed for deposited aerosol by Neutron Activation Analysis. Aerosol deposition velocities onto skin in the range 1.3 - 15 x 10 -3 ms -1 were recorded, values which are approximately an order of magnitude higher than the equivalent values onto the floor of the test room. These values suggest that the exposure route of radioactive aerosol particles deposited on the skin may be more significant than hitherto had been assumed. The possible mechanisms leading to this relatively high deposition were investigated experimentally and the results suggested that a combination of factors such as the body's electrostatic

  6. Absorption by airborne and deposited particles in the 8-13 micrometer range

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K; Grassl, H

    1975-01-01

    The absorption of radiation by natural aerosol particles was measured in the 8 to 13 micrometer wavelength interval. A comparison was made between an in situ method and measurements of particles of deposited form. The results are in agreement to about 30 percent. The main feature of aerosol absorption within the infrared window is a strong absorption peak near 9 micrometers caused by sulfate or quartz particles present in all continental aerosol types. Consequences for the atmospheric heat balance are clear sky cooling rates growing from about 2 per cent in the tropics to about 20 per cent of the total cooling in arctic regions under normal conditions, additionally increasing with increasing relative humidity.

  7. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation.

    Science.gov (United States)

    Tiewcharoen, Supakit; Warakulwit, Chompunuch; Lapeyre, Veronique; Garrigue, Patrick; Fourier, Lucas; Elissalde, Catherine; Buffière, Sonia; Legros, Philippe; Gayot, Marion; Limtrakul, Jumras; Kuhn, Alexander

    2017-09-11

    Deposition of metals on TiO 2 semiconductor particles (M-TiO 2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO 2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    Science.gov (United States)

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.

    Science.gov (United States)

    Hahn, Melinda W; O'Meliae, Charles R

    2004-01-01

    The deposition and reentrainment of particles in porous media have been examined theoretically and experimentally. A Brownian Dynamics/Monte Carlo (MC/BD) model has been developed that simulates the movement of Brownian particles near a collector under "unfavorable" chemical conditions and allows deposition in primary and secondary minima. A simple Maxwell approach has been used to estimate particle attachment efficiency by assuming deposition in the secondary minimum and calculating the probability of reentrainment. The MC/BD simulations and the Maxwell calculations support an alternative view of the deposition and reentrainment of Brownian particles under unfavorable chemical conditions. These calculations indicate that deposition into and subsequent release from secondary minima can explain reported discrepancies between classic model predictions that assume irreversible deposition in a primary well and experimentally determined deposition efficiencies that are orders of magnitude larger than Interaction Force Boundary Layer (IFBL) predictions. The commonly used IFBL model, for example, is based on the notion of transport over an energy barrier into the primary well and does not address contributions of secondary minimum deposition. A simple Maxwell model based on deposition into and reentrainment from secondary minima is much more accurate in predicting deposition rates for column experiments at low ionic strengths. It also greatly reduces the substantial particle size effects inherent in IFBL models, wherein particle attachment rates are predicted to decrease significantly with increasing particle size. This view is consistent with recent work by others addressing the composition and structure of the first few nanometers at solid-water interfaces including research on modeling water at solid-liquid interfaces, surface speciation, interfacial force measurements, and the rheological properties of concentrated suspensions. It follows that deposition under these

  10. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  11. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    Directory of Open Access Journals (Sweden)

    Darrah K. Sleeth

    2016-03-01

    Full Text Available Extrathoracic deposition of inhaled particles (i.e., in the head and throat is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling. However, the International Organization for Standardization (ISO has recently adopted particle deposition sampling conventions (ISO 13138, including conventions for extrathoracic (ET deposition into the anterior nasal passage (ET1 and the posterior nasal and oral passages (ET2. For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm were used as a test dust in a low speed (0.2 m/s wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  12. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    Science.gov (United States)

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-07

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  13. Application of spherical fly-ash particles to study spatial deposition of atmospheric pollutants in northen-eastern Estonia

    International Nuclear Information System (INIS)

    Alliksaar, T.

    2000-01-01

    Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)

  14. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  15. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  16. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  17. Total deposition of inhaled particles related to age: comparison with age-dependent model calculations

    International Nuclear Information System (INIS)

    Becquemin, M.H.; Bouchikhi, A.; Yu, C.P.; Roy, M.

    1991-01-01

    To compare experimental data with age-dependent model calculations, total airway deposition of polystyrene aerosols (1, 2.05 and 2.8 μm aerodynamic diameter) was measured in ten adults, twenty children aged 12 to 15 years, ten children aged 8 to 12, and eleven under 8 years old. Ventilation was controlled, and breathing patterns were appropriate for each age, either at rest or at light exercise. Individually, deposition percentages increased with particle size and also from rest to exercise, except in children under 12 years, in whom they decreased from 20-21.5 to 14-14.5 for 1 μm particles and from 36.8-36.9 to 32.2-33.1 for 2.05 μm particles. Comparisons with the age-dependent model showed that, at rest, the observed data concerning children agreed with those predicted and were close to the adults' values, when the latter were higher than predicted. At exercise, child data were lower than predicted and lower than adult experimental data, when the latter agreed fairly well with the model. (author)

  18. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  19. Formation Process of Eosin Y-Adsorbing ZnO Particles by Electroless Deposition and Their Photoelectric Conversion Properties.

    Science.gov (United States)

    Nagaya, Satoshi; Nishikiori, Hiromasa; Mizusaki, Hideaki; Wagata, Hajime; Teshima, Katsuya

    2015-06-03

    The thin films consisting of crystalline ZnO particles were prepared on fluorine-doped tin oxide electrodes by electroless deposition. The particles were deposited from an aqueous solution containing zinc nitrate, dimethyamine-borane, and eosin Y at 328 K. As the Pd particles were adsorbed on the substrate, not only the eosin Y monomer but also the dimer and debrominated species were rapidly adsorbed on the spherical ZnO particles, which were aggregated and formed secondary particles. On the other hand, in the absence of the Pd particles, the monomer was adsorbed on the flake-shaped ZnO particles, which vertically grew on the substrate surface and had a high crystallinity. The photoelectric conversion efficiency was higher for the ZnO electrodes containing a higher amount of the monomer during light irradiation.

  20. In-flight monitoring of particle deposition in the environmental control systems of commercial airliners in China

    Science.gov (United States)

    Cao, Qing; Xu, Qiuyu; Liu, Wei; Lin, Chao-Hsin; Wei, Daniel; Baughcum, Steven; Norris, Sharon; Chen, Qingyan

    2017-04-01

    Severe air pollution and low on-time performance of commercial flights in China could increase particle deposition in the environmental control systems (ECSs) of commercial airliners. The particles deposited in the ECSs could negatively affect the performance of the airplanes. In addition, particles that penetrate into the aircraft cabin could adversely impact the health of passengers and crew members. This investigation conducted simultaneous measurements of particle mass concentration and size distribution inside and outside the cabin during 64 commercial flights of Boeing 737 and Airbus 320 aircraft departing from or arriving at Tianjin Airport in China. The results showed that the PM2.5 mass concentration deposition in the ECSs of these airplanes ranged from 50% to 90%, which was much higher than that measured in an airplane with a ground air-conditioning unit. The average deposition rates of particles with diameters of 0.5-1 μm, 1-2 μm, 2-5 μm, 5-10 μm, and >10 μm were 89 ± 8%, 85 ± 13%, 80 ± 13%, 73 ± 15%, and 80 ± 14%, respectively. The in-flight measurement results indicated that the particle concentration in the breathing zone was higher than that in the air-supply zone, which implies a significant contribution by particles in the interior of the cabin. Such particles come from human emissions or particle resuspension from interior surfaces.

  1. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  2. Comparison of cryogenic (hydrogen) and TESPEL (polystyrene) pellet particle deposition in a magnetically confined plasma

    Science.gov (United States)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; Panadero, N.; Ascabíbar, E.; Estrada, T.; García, R.; Hernández Sánchez, J.; López Fraguas, A.; Navarro, M.; Pastor, I.; Soleto, A.; TJ-II Team

    2017-10-01

    A cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun-type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection compared with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.

  3. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  4. Particle deposition modeling in the secondary side of a steam generator bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Mukin, Roman, E-mail: roman.mukin@psi.ch; Dehbi, Abdel, E-mail: abdel.dehbi@psi.ch

    2016-04-01

    A steam generator (SG) tube rupture (SGTR) model is studied in this paper. This model based on a experimental facility called Aerosol Trapping In a Steam Generator (ARTIST), which is a model of a scaled steam generator tube bundle consisting of 270 tubes and a guillotine tube to address aerosol deposition phenomena on two different scales: near the tube break, where the gas velocities and turbulence are very intensive, and far away from the break, where the flow velocities are three orders of magnitude lower. Owing to complexity of the flow, 3D simulations with highly resolved computational mesh near the break were done. First, the flow inside an isolated tube with a guillotine tube break has been studied in the framework of Reynolds Averaged Navier Stokes (RANS) approach. The next part is devoted to the simulation of an inclined gas jet entering the SG tube bundle via the guillotine tube breach with more advanced CFD tools. In particular, Detached Eddy Simulation (DES) and RANS are applied to tackle the wide range of flow scales. Flow field velocity comparison showed that DES results are reproducing wavy structure of the flow field in far field from the break observed in experiment. Particle transport and deposition is modelled by Lagrangian continuous random walk (CRW) model, which has been developed and validated previously. It is found that the DES combined with the CRW to supply fluctuating velocity components predicts deposition rates that are generally within the scatter of the measured data. Monodisperse, spherical SiO{sub 2} particles with AMMD = 1.4 μm were used as aerosol particles in simulations. To be economically feasible, the computations were made with the open source CFD code OpenFOAM. Comparison of the calculated flow with the experimental axial velocity distribution data at different vertical levels has been performed.

  5. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  6. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    Science.gov (United States)

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-30

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  7. Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    Science.gov (United States)

    Khan, Tanvir R.; Perlinger, Judith A.

    2017-10-01

    Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 µm, friction velocity was one of

  8. Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    Directory of Open Access Journals (Sweden)

    T. R. Khan

    2017-10-01

    Full Text Available Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001 (Z01, Petroff and Zhang (2010 (PZ10, Kouznetsov and Sofiev (2012 (KS12, Zhang and He (2014 (ZH14, and Zhang and Shao (2014 (ZS14, respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy; the influence of imprecision in input parameter values on the modeled Vd (uncertainty; and identification of the most influential parameter(s (sensitivity. The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs: grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy, we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp  =  0.001 to 1.0

  9. Deposition of colloidal particles in porous media; Depot de particules minerales de taille colloidale en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Coste, J.P.

    1998-12-09

    The aim of this study was to determine the deposition rates of colloidal particles in porous media in relation with particle stability. It combines experimental results and theoretical analysis and gives an original approach which allows to improve the predictions of particle deposition. The colloidal particles studied are several times smaller than the pore restrictions. Experimental results shows that the porous media surface is heterogeneous, whatever the preparation mean and the history of the porous media. The degree of surface heterogeneity depends both on salinity and porous media cleaning process. Heterogeneity is responsible for initial collection efficiency values higher that the theoretical predictions. When deposition occurs mainly on the less repulsive zones, the velocity dependence of the effective grain collection efficiency is close to the -2/3 value expected for the diffusion limited deposition regime. On the other hand, when these zones have been covered and thus behave as strongly repulsive, we obtain a collection efficiency on the more repulsive zones, with a slope close to -1, which is the value expected for the reaction limited deposition regime. The fraction of surface favorable for deposition can be assessed from attachment efficiency values. The attachment efficiency can be estimated from the measurement of particles stability. (author)

  10. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea.

    Science.gov (United States)

    Lai, Senchao; Xie, Zhiyong; Song, Tianli; Tang, Jianhui; Zhang, Yingyi; Mi, Wenying; Peng, Jinhu; Zhao, Yan; Zou, Shichun; Ebinghaus, Ralf

    2015-05-01

    Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (∑OPEs) was 47.1-160.9 pg m(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ∑OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8 ng m(-2) d(-1) for the ∑OPEs. Moreover, the dry deposition input of the ∑OPEs was estimated to be 4.98 ton y(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Small Airway Absorption and Microdosimetry of Inhaled Corticosteroid Particles after Deposition.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2017-10-01

    To predict the cellular-level epithelial absorbed dose from deposited inhaled corticosteroid (ICS) particles in a model of an expanding and contracting small airway segment for different particle forms. A computational fluid dynamics (CFD)-based model of drug dissolution, absorption and clearance occurring in the surface liquid of a representative small airway generation (G13) was developed and used to evaluate epithelial dose for the same deposited drug mass of conventional microparticles, nanoaggregates and a true nanoaerosol. The ICS medications considered were budesonide (BD) and fluticasone propionate (FP). Within G13, total epithelial absorption efficiency (AE) and dose uniformity (microdosimetry) were evaluated. Conventional microparticles resulted in very poor AE of FP (0.37%) and highly nonuniform epithelial absorption, such that <5% of cells received drug. Nanoaggregates improved AE of FP by a factor of 57-fold and improved dose delivery to reach approximately 40% of epithelial cells. True nanoaerosol resulted in near 100% AE for both drugs and more uniform drug delivery to all cells. Current ICS therapies are absorbed by respiratory epithelial cells in a highly nonuniform manner that may partially explain poor clinical performance in the small airways. Both nanoaggregates and nanoaerosols can significantly improve ICS absorption efficiency and uniformity.

  12. Turbulence in the trachea and its effect on micro-particle deposition

    Science.gov (United States)

    Geisler, Taylor; Shaqfeh, Eric; Iaccarino, Gianluca

    2017-11-01

    The health effects of inhaled aerosols are often predicted by extrapolating experimental data taken using nonhuman primate animal studies to humans. While the existence of a laminar-to-turbulent flow transition in the human larynx is widely reported in the literature, it was previously unknown, to our knowledge, whether a similar flow behavior exists in the airways of rhesus monkeys. By using Large Eddy Simulation (LES) in the CT-based airway models of rhesus monkeys we demonstrate the existence of such a flow transition at elevated inspiratory flow rates. The geometries comprise the nasal cavity, larynx, and trachea. We observe turbulence intensity values that peak after the larynx and decay throughout the trachea similar to that of humans. Deposition of inhaled micro-particles is also computed and validated using experiments in 3D-printed model airways with excellent agreement. Deposition in the turbulent regions of the airway (larynx and trachea) is shown to be substantial at elevated flow rates and to depend on the flow unsteadiness. These results provide insight into the fate of inhaled particles in rhesus monkey animal experiments and their connection to human inhalation.

  13. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  14. Review on urban vegetation and particle air pollution - Deposition and dispersion

    Science.gov (United States)

    Janhäll, Sara

    2015-03-01

    Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.

  15. The influence of inhalation technique on Technegas particle deposition and image appearance in normal volunteers

    International Nuclear Information System (INIS)

    Lloyd, J.J.; James, J.M.; Shields, R.A.; Testa, H.J.

    1994-01-01

    The aim of this work was to investigate the influence of inhalation technique on Technegas image quality and on fractional particle deposition. This was investigated in six normal volunteers using three different types of breathing pattern. Fractional deposition was determined by analysis of dynamic gamma camera images acquired during Technegas administration. Static lung images were subsequently acquired and assessed independently by three experienced observers. High-quality images were obtained in all cases although slight differences were noted. The images produced using a slow deep inspiration with a breath hold (i.e. the standard method) were of more uniform texture and also had the least gradient in activity from apex to base. The converse was true for a rapid inhalation technique. The average fractional deposition per breath was 55%, but this varied between individuals and with breathing pattern, being most influenced by the total duration of a breath. We conclude that for patient studies the standard inhalation technique is best, although variation to suit individual patients would be acceptable. (orig./MG)

  16. Particle and power deposition on divertor targets in EAST H-mode plasmas

    International Nuclear Information System (INIS)

    Wang, L.; Xu, G.S.; Guo, H.Y.; Chen, R.; Ding, S.; Gan, K.F.; Gao, X.; Gong, X.Z.; Jiang, M.; Liu, P.; Liu, S.C.; Luo, G.N.; Ming, T.F.; Wan, B.N.; Wang, D.S.; Wang, F.M.; Wang, H.Q.; Wu, Z.W.; Yan, N.; Zhang, L.

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs. (paper)

  17. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    Science.gov (United States)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine amines (Ʃamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  18. A robust upscaling of the effective particle deposition rate in porous media

    Science.gov (United States)

    Boccardo, Gianluca; Crevacore, Eleonora; Sethi, Rajandrea; Icardi, Matteo

    2018-05-01

    In the upscaling from pore to continuum (Darcy) scale, reaction and deposition phenomena at the solid-liquid interface of a porous medium have to be represented by macroscopic reaction source terms. The effective rates can be computed, in the case of periodic media, from three-dimensional microscopic simulations of the periodic cell. Several computational and semi-analytical models have been studied in the field of colloid filtration to describe this problem. They typically rely on effective deposition rates defined by complex fitting procedures, neglecting the advection-diffusion interplay, the pore-scale flow complexity, and assuming slow reactions (or large Péclet numbers). Therefore, when these rates are inserted into general macroscopic transport equations, they can lead to several conceptual inconsistencies and significant errors. To study more accurately the dependence of deposition on the flow parameters, in this work we advocate a clear distinction between the surface processes (that altogether defines the so-called attachment efficiency), and the pore-scale processes. With this approach, valid when colloidal particles are small enough, we study Brownian and gravity-driven deposition on a face-centred cubic (FCC) arrangement of spherical grains, and define a robust upscaling based on a linear effective reaction rate. The case of partial deposition, defined by an attachment probability, is studied and the limit of perfect sink is retrieved as a particular case. We introduce a novel upscaling approach and a particularly convenient computational setup that allows the direct computation of the asymptotic stationary value of effective rates. This allows to drastically reduce the computational domain down to the scale of the single repeating periodic unit. The savings are ever more noticeable in the case of higher Péclet numbers, when larger physical times are needed to reach the asymptotic regime and thus, equivalently, much larger computational domain and

  19. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  20. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  1. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  2. Transport and deposition of particles and radionuclides at the Puy de Dome, France

    International Nuclear Information System (INIS)

    Bourcier, L.

    2009-01-01

    Aerosol particles play a key role both on air quality and on the radiative balance of the Earth. Their sources, as well as their deposition are key stages in their life cycle. This work is a contribution in a better knowledge of the chemical composition of particles, cloud droplets and rain droplets. The specificity of our study is to couple, on three sampling sites (Puy de Dome (1465 m a.s.l.), Opme (660 m a.s.l.) and Cezeaux (400 m a.s.l.)), observations on the chemical composition and the radionuclides activity in cloud/rain/aerosol phases. We observed, in aerosol phase, ionic and carbonaceous concentrations and radionuclides activity higher in summer than in winter at the Puy de Dome, inverse of the seasonal variation observed at the Cezeaux for chemical compounds. From these observations, we offer a representative composition de each mass air type. This work is supplemented by a study of cloud and rain liquid, which allow us to study the scavenging of the pollutants by the rain. The chemical composition of the rain reveals a similar behaviour to that of the particles at the Puy de Dome, indicating that the role of activation and scavenging of particles is preponderant in the composition of the rain. This is confirmed by a study of the environmental and structural factors of the rain which do not seem to influence the washout ratio in a significant manner. Our work highlights the role of long range transport of pollutants in the composition of atmospheric liquid phase. (author)

  3. Electrokinetic deposition of waterborne, particlate FeO(OH) and MnO2 on stainless steel surfaces

    International Nuclear Information System (INIS)

    Hermansson, H.-P.

    1977-01-01

    The study forms part of a programme of research into corrosion product behaviour in progress at Studsvik Energiteknik AB. Attention is in this instance focused on the incluence of electrokinetic factors upon the deposition of particulate corrosion products. The work has involved the development of experimental apparatus and techniques and investigation of the deposition characteristics of FeO(OH) and MnO 2 at temperatures below 100 deg C. The experimental results indicate that the deposition rate of the compounds under review depends mainly upon the zeta potential (zeta) of particles and of the test section wall. The deposition rate attains a maximum when the zeta potential is at a minimum or zero. Deposition occurs when |zeta|< approximately 40 m. Outside this interval deposition is not observed. Furthermore, the deposition rate maximum depends upon the rate of change of pH both as regards its magnitude and its position on the pH scale. This dependence can be accounted for in terms of a general drain of material from the loop as deposition proceeds and a difference in zeta potential between particles and the wall surface of the test section. (author)

  4. Model for deposition and long-term disposition of 134Cs-labeled fused aluminosilicate particles inhaled by guinea pigs

    International Nuclear Information System (INIS)

    Snipes, M.B.; McClellan, R.O.

    1986-01-01

    When considering which laboratory animal species to use in inhalation studies, it is important to evaluate the similarities and differences in deposition and fate of the inhaled materials in various laboratory animals compared with humans. Beagle dogs have deposition and clearance patterns of inhaled particles similar to humans. However, some studies require smaller laboratory animals to be cost effective or to allow an adequate number of animals to address the scientific questions. This study evaluated the deposition and clearance of a relatively insoluble aerosol inhaled by guinea pigs. The test aerosol was monodisperse 134 Cs-labeled fused aluminosilicate particles inhaled during 75 minute inhalation exposure. The guinea pigs had deposition similar to rats but respiratory tract retention and clearance patterns were similar to dogs and humans. 5 references, 2 figures, 1 table

  5. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  6. Local energy deposited for alpha particles emitted from inhaled radon daughters

    International Nuclear Information System (INIS)

    Al-affan, I.A.M.; Haque, A.K.M.M.

    1989-01-01

    An analytical method has been developed to calculate the local energy deposited by alpha particles emitted from radon daughters deposited on the mucus surface in the lung airways. For the particular case of 218 Po (Ra A) and 214 Bi (Ra C'), microdose spectra have been evaluated in test spheres of 1 μm diameter which were taken to lie within airways of diameters 18 000, 3500 and 600 μm. In each case, the contributions of the near and far wall were computed separately. The average microdosimetric parameters y-bar F and y-bar D have also been calculated. For the two smaller airways, y-bar F and y-bar D values were found to be about 110 and 135 keV μm -1 for 218 Po and about 87 and 107 keV μm -1 for 214 Bi respectively. The corresponding values were about 10% higher for the largest airway. (author)

  7. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Messerer, A.; Schmatloch, V.; Poeschl, U.; Niessner, R.

    2007-01-01

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms -1 ), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  8. Particle deposition in human and canine tracheobronchial casts: Annual progress report

    International Nuclear Information System (INIS)

    Cohen, B.S.

    1987-01-01

    This work measures deposition patterns and efficiencies of aerosols within realistic, physical models of the tracheobronchial airways of humans and experimental animals over a range of particle sizes from 0.01 to 1.0 μm, for a variety of respiratory modes and rates. Full morphometric and flow distribution measurements were completed on casts of human and canine tracheobronchial airways, which extend from just below the larynx to airways 1 mm in diameter. They show basic similarities in the distribution of airflow, but also species differences which must be considered. The distribution of airflow was measured for minute volumes equivalent to 6, 11, 17 and 22 L min -1 for the human and 3, 6, 8 and 11 L min -1 for the canine for both constant and pulsatile inspiratory flow. Inertance was found to carry more of the flow to airways of the lower lobes at higher flow rates. Basic differences in airway branching pattern result in a more distinct change in airflow distribution as flow rate changes for the canine cast as compared with the human cast. These differences will contribute to differing patterns of mass transfer of inhaled particles in central airways of the two species. 8 refs., 2 figs., 5 tabs

  9. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  10. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  11. The use of large surface area for particle and power deposition

    International Nuclear Information System (INIS)

    Seigneur, A.; Guilhem, D.; Hogan, J.

    1993-01-01

    Since the parallel heat flux passing through the LCFS has increased dramatically with the size of machines one has to cope with very large particle and power fluxes on the limiters. Thus the size of the limiters has been increased by the use of inner bumper limiters (for example in JET, TFTR, TORE-SUPRA and JT60). The 'exponential-sine' model is widely used to estimate the heat flux (Q) to a wall for a plasma flux surface with incident angle θ. The model predict Q = q || (0) sinθ e -ρ/λ q + q(0) cosθ e -ρ/λ q , (where θ=0 o when the flux surface is exactly tangential to the limiting surface), ρ is the minor radius measured from the last closed flux surface (LCFS), λ q is the SOL decay length of the heat flux density and q(0) is the heat flux density at the last closed surface. If we approximate the heat flux as Q = q || (0) e -ρ/λ q sin(θ+α), with α ≡ tan -1 [q(0)/q || (0)], then α can be interpreted as an effective 'minimum angle of incidence'. Under conditions where the geometric angle θ has been made almost grazing (below 5 o ) the predictions of the simplest model (with α=0 o ) is not adequate to represent the observation made in TORE-SUPRA; a similar result is found in TFTR. Experimental observations of heat and particle deposition on the large area limiter on the inner wall of TORE-SUPRA are presented. These results have been analyzed with a Monte Carlo code (THOR) describing the diffusion of hydrogenic particles across the LCFS to the limiting objects in the Scrape Off Layer (SOL), and by impurity generation calculations using the full 'exponential-sine' model (α ≠ 0) used as input to an impurity (carbon) Monte Carlo code (BBQ). (author) 6 refs., 3 figs., 1 tab

  12. Estimating chemical composition of atmospheric deposition fluxes from mineral insoluble particles deposition collected in the western Mediterranean region

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2017-11-01

    Full Text Available In order to measure the mass flux of atmospheric insoluble deposition and to constrain regional models of dust simulation, a network of automatic deposition collectors (CARAGA has been installed throughout the western Mediterranean Basin. Weekly samples of the insoluble fraction of total atmospheric deposition were collected concurrently on filters at five sites including four on western Mediterranean islands (Frioul and Corsica, France; Mallorca, Spain; and Lampedusa, Italy and one in the southern French Alps (Le Casset, and a weighing and ignition protocol was applied in order to quantify their mineral fraction. Atmospheric deposition is both a strong source of nutrients and metals for marine ecosystems in this area. However, there are few data on trace-metal deposition in the literature, since their deposition measurement is difficult to perform. In order to obtain more information from CARAGA atmospheric deposition samples, this study aimed to test their relevance in estimating elemental fluxes in addition to total mass fluxes. The elemental chemical analysis of ashed CARAGA filter samples was based on an acid digestion and an elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES and mass spectrometry (MS in a clean room. The sampling and analytical protocols were tested to determine the elemental composition for mineral dust tracers (Al, Ca, K, Mg and Ti, nutrients (P and Fe and trace metals (Cd, Co, Cr, Cu, Mn, Ni, V and Zn from simulated wet deposition of dust analogues and traffic soot. The relative mass loss by dissolution in wet deposition was lower than 1 % for Al and Fe, and reached 13 % for P due to its larger solubility in water. For trace metals, this loss represented less than 3 % of the total mass concentration, except for Zn, Cu and Mn for which it could reach 10 %, especially in traffic soot. The chemical contamination during analysis was negligible for all the elements except for Cd

  13. Particle deposition and resuspension in gas-cooled reactors—Activity overview of the two European research projects THINS and ARCHER

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Lecrivain, G. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Jayaraju, S.T. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Hampel, U. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2015-08-15

    Highlights: • A summary on particle deposition and resuspension experiments is provided. • Similarities between single and multilayer particle deposits are found. • Numerical models for simulation of particle deposits are successfully developed. - Abstract: The deposition and resuspension behaviour of radio-contaminated aerosol particles is a key issue for the safety assessment of depressurization accidents of gas-cooled high temperature reactors. Within the framework of two European research projects, namely Thermal Hydraulics of Innovative Nuclear Systems (THINS) and Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D (ARCHER), a series of investigations was performed to investigate the transport, the deposition and the resuspension of aerosol particles in turbulent flows. The experimental and numerical tests can be subdivided into four different parts: (1) Monolayer particle deposition, (2) Monolayer particle resuspension, (3) Multilayer particle deposition and (4) Multilayer particle resuspension. The experimental results provide a new insight into the formation and removal of aerosol particle deposits in turbulent flows and are used for the development and validation of numerical procedures in gas-cooled reactors. Good agreement was found between the numerical and the experimental results.

  14. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  15. Contribution to the study of tracheobronchial and pulmonary deposits in 52 subjects after inhalation of radioactive particles

    International Nuclear Information System (INIS)

    Lange, Pierre.

    1980-03-01

    Particle deposits in the bronchopulmonary system can lead to three main types of disorder: pneumoconioses, bronchial cancers and most chronic bronchopulmonary diseases. The study of deposition is useful for the prevention, diagnosis and treatment of these illnesses. The air-borne contaminants laid down are cleared by different mechanisms corresponding roughly to distinct anatomical regions. Short-term clearance, known as tracheobronchial (TB) takes place in a few hours, while long-term clearance from the deep lung is much slower: according to the International Radiological Protection Commission, 60% of particles deposited in the bronchiolo-alveolar region take more than 500 days to eliminate. It is useful therefore to known in what proportions the particles are fixed in the tracheobronchial region and on the deep lung. This was the purpose of the present work. The distribution of the deposit between these two regions was measured in 52 subjects having breathed in radioactive particles (indium 111). A functional respiratory study was conducted at the same time to find out whether the two sets of experimental data are related in any way [fr

  16. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

    DEFF Research Database (Denmark)

    Koivisto, Antti J.; Jensen, Alexander C. Ø.; Kling, Kirsten I.

    2017-01-01

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm ...

  17. Environmental factors controlling the seasonal variability in particle sizedistribution of modern Saharan dust deposited off Cape Blanc

    NARCIS (Netherlands)

    Friese, C.A.; van der Does, M.; Merkel, U.; Iversen, M.H.; Fischer, G.; Stuut, J-B W.

    2016-01-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxyfor trade-wind speed. However, there are still large uncertainties with respect to the seasonality of theparticle sizes of deposited Saharan dust off northwestern Africa and the factors influencing

  18. Theoretical calculations of the deposition of non-spherical particles in the upper airways of the human lung

    International Nuclear Information System (INIS)

    Sturm, Robert; Hofmann, Werner

    2009-01-01

    In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)

  19. Deposition, translocation and effects of transuranic particles inhaled by experimental animals

    International Nuclear Information System (INIS)

    Craig, D.K.; Ballou, J.E.; Dagle, G.E.; Mahlum, D.D.; Park, J.F.; Sanders, C.L.; Sikov, M.R.; Stuart, B.O.

    1977-01-01

    Inhalation exposure constitutes the most likely route of entrance for transuranics into the body. Cancer is the most likely consequence of exposure, but several thousand workers have been exposed during the last 30 yrs without, so far, evidence of exposure-related effects. Several soluble and insoluble transuranic compounds have been studied in rodents and dogs, either alone or combined with exposure to other materials (e.g., PuO/sub 2/--UO/sub 2/ fuel and Na). These studies have provided a wide variety of spatial and temporal dose distribution patterns in the lung. The distribution and total initial deposition in the respiratory tract is a function of the physical characteristics of the inhaled aerosols (size distribution, shape, hygroscopicity) and of the morphology and physiology of the animal. Translocation rates, organ and tissue distribution and excretion in urine and feces, are a function of the physicochemical characteristics of the deposited material (solubility, specific activity, chemical compound, etc.). Differences in rate of translocation of the solubilized material, primarily to the liver and bone, determines the radiation dose to the various tissues involved. Insoluble particles of plutonium dioxide are transferred to the thoracic lymph nodes, which may be functionally destroyed as a consequence. Radiation pneumonitis and pulmonary fibrosis are the main causes of death in animals with cumulative radiation doses to the lung of a few thousand rads. The most significant long-term effect of inhaled transuranic compounds in animals is the development of lung and bone tumors. The main type of lung tumor in both dog and rat is the bronchioloalveolar carcinoma (adenocarcinoma). However, tumor type is a function of radiation dose and dose-distribution at high doses. Bone ranks next to lung as the tissue developing the most tumors following inhalation of transuranics

  20. Deposition, translocation, and effects of transuranic particles inhaled by experimental animals

    International Nuclear Information System (INIS)

    Craig, D.K.; Ballou, J.E.; Dagle, G.E.; Mahlum, D.D.; Park, J.F.; Sanders, C.L.; Sikov, M.R.; Stuart, B.O.

    1977-01-01

    Inhalation exposure constitutes the most likely route of entrance for transuranics into the body. Cancer is the most likely consequence of exposure, but several thousand workers have been exposed during the last 30 yrs without, so far, evidence of exposure-related effects. Several soluble and insoluble transuranic compounds have been studied in rodents and dogs, either alone or combined with exposure to other materials (e.g., PuO 2 --UO 2 fuel and Na). These studies have provided a wide variety of spatial and temporal dose distribution patterns in the lung. The distribution and total initial deposition in the respiratory tract is a function of the physical characteristics of the inhaled aerosols (size distribution, shape, hygroscopicity) and of the morphology and physiology of the animal. Translocation rates, organ and tissue distribution and excretion in urine and feces, are a function of the physicochemical characteristics of the deposited material (solubility, specific activity, chemical compound, etc.). Differences in rate of translocation of the solubilized material, primarily to the liver and bone, determines the radiation dose to the various tissues involved. Insoluble particles of plutonium dioxide are transferred to the thoracic lymph nodes, which may be functionally destroyed as a consequence. Radiation pneumonitis and pulmonary fibrosis are the main causes of death in animals with cumulative radiation doses to the lung of a few thousand rads. The most significant long-term effect of inhaled transuranic compounds in animals is the development of lung and bone tumors. The main type of lung tumor in both dog and rat is the bronchioloalveolar carcinoma (adenocarcinoma). However, tumor type is a function of radiation dose and dose-distribution at high doses. Bone ranks next to lung as the tissue developing the most tumors following inhalation of transuranics

  1. Influence of the particle morphology on the Cold Gas Spray deposition behaviour of titanium on aluminum light alloys

    International Nuclear Information System (INIS)

    Cinca, N.; Rebled, J.M.; Estradé, S.; Peiró, F.; Fernández, J.; Guilemany, J.M.

    2013-01-01

    Highlights: ► Study of the particle–substrate and particle–particle interfaces in the cold spray process. ► Use of irregular feedstock particles whereas normally FIB studies have been undergone for spherical particles. ► Deep Transmission Electron Microscopy characterization of the interfaces and within the particle. -- Abstract: The present work evaluates the deposition behaviour of irregular titanium powder particles impinged by Cold Gas Spraying onto an aluminium 7075-T6 alloy substrate. The influence of their irregular shape on the bonding phenomena, in particle–substrate and particle–particle interfaces are discussed in view of Transmission Electron Microscopy examinations of a Focused Ion Beam lift-out prepared sample. Key aspects will be the jetting-out, the occurrence of oxide layers and grain size refinement. Different structural morphologies could be featured; at the particle–substrate interface, both the aluminium alloy and the titanium side exhibit recrystallization. Titanium particles in intimate contact in small agglomerates during deposition, on the other hand, show grain refinement at their interfaces whereas the original structure is maintained outside those boundaries

  2. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  3. Real-time mass measurement of dust particles deposited on vessel wall in a divertor simulator using quartz crystal microbalances

    International Nuclear Information System (INIS)

    Tateishi, Mizuki; Koga, Kazunori; Katayama, Ryu; Yamashita, Daisuke; Kamataki, Kunihiro; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Ashikawa, Naoko; Masuzaki, Suguru; Nishimura, Kiyohiko; Sagara, Akio

    2015-01-01

    We are developing a dust monitoring method using quartz crystal microbalances (QCMs) equipped with a dust eliminating filter. Here we report a dust eliminating ratio of the filter and first measurement results of the QCMs in a divertor simulator. The volume of spherical dust in unit area on the filter and QCM under the filter were 2.09 × 10 −9 and 1.22 × 10 −10 m 3 m −2 , respectively. Thus, the dust eliminating ratio of the filter is 94.2%. The QCM without the filter gives deposition rate due to radicals and dust particles, whereas the QCM with the filter gives deposition rate predominantly due to radicals. From the results, we deduce information of mass fraction of dust particles in deposits

  4. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations

    Science.gov (United States)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.

    2017-12-01

    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  5. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations

    International Nuclear Information System (INIS)

    Despeisse, M.

    2006-03-01

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  6. Influence of anionic stabilization of alumina particles in 2-propanol medium on the electrophoretic deposition and mechanical properties of deposits

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Bartoníčková, E.; Hadraba, Hynek; Cihlář, J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3365-3371 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Anionic stabilization * Electric conductivity * Alumina * Electrophoretic deposition Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  7. Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Kang, Shichang; Liu, Yajun; Li, Yang; Huang, Jie; Qin, Xiang

    2016-08-01

    Cryoconite deposited on mountain glacier surfaces is significant for understanding regional atmospheric environments, which could influence the albedo and energy balance of the glacier basins, and maintain the glacial microbiology system. Field observations were conducted on the glaciers of western China, including Laohugou Glacier No.12 (LHG), Tanggula Dongkemadi Glacier (TGL), Zhadang Glacier (ZD), and Baishui Glacier No.1 in the Yulong Mountains (YL), as well as Urumqi Glacier No.1 in the Tianshan Mountains (TS) for comparison with locations in the Tibetan Plateau, in addition to laboratory TEM-EDX analysis of the individual cryoconite particles filtered on lacey carbon (LC) and calcium-coated carbon (Ca-C) TEM grids. This work provided information on the morphology and chemical composition, as well as a unique record of the particle's physical state, of cryoconite deposition on the Tibetan Plateau. The result showed that there is a large difference in the cryoconite particle composition between various locations on the Tibetan Plateau. In total, mineral dust particles were dominant (>50%) in the cryoconite at all locations. However, more anthropogenic particles (e.g., black carbon (BC) and fly ash) were found in YL (38%) and ZD (22%) in the Ca-C grids in the southern locations. In TGL, many NaCl and MCS particles (>10%), as well as few BC and biological particles (<5%), were found in cryoconite in addition to mineral dust. In TS, the cryoconite is composed primarily of mineral dust, as well as BC (<5%). Compared with other sites, the LHG cryoconite shows a more complex composition of atmospheric deposition with sufficient NaCl, BC, fly ash and biological particles (6% in LC grid). The higher ratio of anthropogenic particles in the southern Tibetan Plateau is likely caused by atmospheric pollutant transport from the south Asia to the Tibetan Plateau. Cryoconite in the northern locations (e.g., TGL, LHG, and TS) with higher dust and salt particle ratio are

  8. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  9. EFFECT OF CENTRAL FANS AND IN-DUCT FILTERS ON DEPOSITION RATES OF ULTRAFINE AND FINE PARTICLES IN AN OCCUPIED TOWNHOUSE

    Science.gov (United States)

    Airborne particles are implicated in morbidity and mortality of certain high-risk subpopulations. Exposure to particles occurs mostly indoors, where a main removal mechanism is deposition to surfaces. Deposition can be affected by the use of forced- air circulation through duct...

  10. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  11. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  12. Particle deposition on face-up flat plates in parallel airflow under the combined influences of thermophoresis and electrophoresis

    International Nuclear Information System (INIS)

    Lee, Handol; Yook, Sejin; Han, Seogyoung

    2012-01-01

    The deposition velocity is used to assess the degree of particulate contamination of wafers or photomasks. A numerical model was developed to predict the deposition velocity under the combined influences of thermophoresis and electrophoresis. The deposition velocity onto a face-up flat plate in parallel airflow was simulated by varying the temperature difference between the plate's surface and ambient air or by changing the strength of the electric field established above the plate. Both attraction and repulsion by thermophoresis or electrophoresis were considered. When the plate's surface was colder than ambient air, the surface of the face-up plate could be at risk of contamination by charged particles even with a repulsive applied electric force. When the temperature of the plate's surface was higher than the ambient temperature, the degree of particulate contamination on the surface of the face-up plate could be remarkably reduced in the presence of an electric field. The effect of repulsive thermophoresis, however, is expected to be reduced for very fine particles of high electric mobility or for micrometer-sized particles with large gravitational settling speed when the charged particles are influenced by an attractive electric force.

  13. Cluster-guided imaging-based CFD analysis of airflow and particle deposition in asthmatic human lungs

    Science.gov (United States)

    Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long

    2017-11-01

    The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.

  14. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    Science.gov (United States)

    Laptev, A. G.; Basharov, M. M.

    2018-05-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  15. Nanotune: A Novel Approach to Control the Deposition and Fate of Particles in Porous Media

    Science.gov (United States)

    Sethi, R.; Bianco, C.; Tosco, T.; Tiraferri, A.; Patiño Higuita, J. E.

    2017-12-01

    Nanoremediation is an innovative environmental nanotechnology aimed at reclaiming contaminated aquifers. It consists in the subsurface injection of a reactive colloidal suspension for the in-situ treatment of pollutants. The greatest challenges faced by engineers to advance nanoremediation are the effective delivery and the appropriate dosing of the nanoparticles into the subsoil. These are necessary for the correct emplacement of the in situ reactive zone and to minimize the overall cost of the reclamation and the potential secondary risks associated to the uncontrolled migration of the injected particles. In this study, a model assisted strategy, NanoTune, is developed to control the distribution of colloids in porous media. The proposed approach consists in the sequential injection of a stable suspension of reactive nanoparticles and of a destabilizing agent with the aim of creating a reactive zone within a targeted portion of the contaminated aquifer. The controlled and irreversible deposition of the particles is achieved by inducing the mixing of the two fluids in the desired portion of the aquifer. This approach is here exemplified by the delivery of humic acid-stabilized iron oxide nanoparticles (FeOx), a typical reagent for in situ immobilization of heavy metals. Divalent cations, which are known to cause rapid aggregation of the suspension because of their strong interaction with the humic acid coating, are used as destabilizing agents. The injection strategy is here applied in 1D columns to create a reactive zone for heavy metal removal in the central region of the sandy bed. The software MNMs was used to assess the correct sequence and duration of the injection of the different solutions in the 1D medium. Moreover, the numerical code MNM3D (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) was developed by the authors of this work to support the case-specific design of the injection strategy during field scale applications. The Nano

  16. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  17. Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Tanaka, Satoru; Kuno, Yoshio

    2001-01-01

    The deposition behavior of colloids during transport through heterogeneous media was observed by conducting column experiments to study migration of polystyrene latex particles (diameter=309 nm) through columns packed with artificially fractured granite rock (length=300 and 150 mm). The experiments were conducted under conditions of different ionic strengths and flow rates. The results were similar to those for colloid deposition in columns packed with glass beads reported previously; the colloid breakthrough curves showed three stages, characterized by different rates of change in the concentration of effluent. Colloid deposition on the fracture surfaces was described by considering strong and weak deposition sites. Scanning Electron Microscopy (SEM) observations indicated the existence of strong and weak sites on the fracture surfaces regardless of mineral composition. The observations also showed that the strong deposition sites tended to exist on surface irregularities such as cracks or protrusions. The degree of colloid deposition increased with increasing ionic strength and decreasing flow rate. The dependencies on ionic strength and flow rate agreed qualitatively with the DLVO theory and the previous experimental results, respectively. (author)

  18. Regional monitoring of metals in the Munich metropolitan area: Comparison of biomonitoring (standardized grass culture) with deposition and airborne particles

    International Nuclear Information System (INIS)

    Dietl, C.; Reifenhaeuser, W.; Vierle, O.; Peichl, L.; Faus-Kessler, Th.

    2000-01-01

    In the Munich metropolitan area a close association of lead (Pb) and antimony (Sb) impacts with traffic was observed in 1992 and 1993. The intercorrelation of both metals was found by samples of standardised grass cultures and was reflected by deposition sampling, too. With respect to location-specific variations, however, both methods revealed differing gradients of Pb and Sb concentrations with increasing distance from traffic. It appeared that Sb variations according to traffic implications were particularly well indicated by means of biomonitoring, while Pb variations were not indicated adequately. As a result, a special qualification of grass to selectively collect metals on airborne dust according to particle sizes was suggested. Further investigations on the correlations between metal biomonitoring, metal deposition and airborne metals in 1994 - 1996 corroborated method-specific sampling features. They in turn showed that one interference is the individual prevalence of the metals on different particle sizes. (author)

  19. The effect of bed particle size and deposit morphology on the filtration of magnetite through granular graphite beds

    International Nuclear Information System (INIS)

    Barbieri, R.R.; Bercovich, E.J.; Liberman, S.J.

    1980-01-01

    Graphite filters are of great interest for water purification in nuclear power reactors' primary systems due to their possible operation at high temperature. The influence of the bed particle size on the retention of magnetite from aqueous suspensions at room temperature was studied. The filtration coefficient changes from 0.0 to 0.18 as the mean graphite particle diameter decreases from 1.2 to 0. mm. As the retention increases, there is also an increase in the differential pressure across the bed, so both effects must be considered in order to optimize filter's operation. The specific effective volume of the deposit was calculated with the Blake-Kozeny equation and the experimental specific volumes. These are much larger than the specific volume of solid magnetite. From the results, information regarding the morphology of the deposit in the filter is obtained. (M.E.L) [es

  20. Interactions of animal age and particle size with deposition and retention of inhaled 51Cr-labeled microspheres

    International Nuclear Information System (INIS)

    Hackett, P.L.; Sikov, M.R.; Skiens, W.E.; Cannon, W.C.; Hess, J.O.; Hall, D.

    1980-01-01

    Newborn, juvenile, weanling, and adult rats were exposed to aerosols of 51 Cr-labeled microspheres with AMADs of 0.91, 1.4, 2.3, 3.4, and 4.4 μm. Alveolar deposition was negligible in newborn rats for all particle sizes, and decreased to less than 6% at an AMAD of 2.3 μm in juveniles and weanlings, and an AMAD of 3.4 μm in adults

  1. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  2. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.

    Science.gov (United States)

    Quevedo, Ivan R; Olsson, Adam L J; Tufenkji, Nathalie

    2013-03-05

    A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well

  3. Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method

    International Nuclear Information System (INIS)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia

    2012-01-01

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO 2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV–Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO 2 films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO 2 films in air under illumination (440.6 μW/cm 2 ) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO 4 ). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS × 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS × 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  4. Impinging jet study of the deposition of colloidal particles on synthetic polymer (Zeonor)

    DEFF Research Database (Denmark)

    Vlček, Jakub; Lapčík, Lubomír; Cech, Jiri

    2014-01-01

    In this study, an impinging jet deposition experiments were performed on synthetic polymer (Zeonor) original and by micro-embossing modified substrates with exactly defined topology as confirmed by AFM and SEM. Deposition experiments were performed at ambient temperature and at selected flow regi...

  5. The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits

    Science.gov (United States)

    Mele, Daniela; Dioguardi, Fabio

    2018-03-01

    Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.

  6. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces

    International Nuclear Information System (INIS)

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. -- Highlights: • Physico-chemical parameters investigated in build-up samples from 32 road surfaces. • Mineralogical composition primarily governs the physico-chemical characteristics. • High clay forming mineral content in fine solids increases SSA and ECEC. • Characteristics influenced by quartz and amorphous content with particle size. • High quartz content in coarse particles contributes reduced metal adsorption. -- The mineralogical composition of solids is the governing factor influencing metal adsorption to solids in pollutant build-up on urban surfaces

  7. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-15

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle. - Graphical abstract: An improved design of TRISO particle with porous SiC inner layer to replace the inner porous pyrolytic carbon layer was proposed and prepared by FB-CVD method. This new design is aimed to reduce the total internal pressure of the particles by reducing the formation of CO and to reduce the risks of amoeba effect. - Highlights: • An improved design of TRISO particle with porous SiC inner layer was proposed. • Three methods of preparing porous SiC layer are proposed and experimentally studied. • The density of porous SiC layer can be controlled by adjusting experimental parameters. • Formation mechanisms of porous SiC layer were given based on the FB-CVD principle. • TRISO particles with porous SiC inner layer were mass produced successfully.

  8. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.; van Steen, M.S.H.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, C.

    2014-01-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic

  9. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    Science.gov (United States)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  10. Effect of enzyme-induced pulmonary emphysema in Syrian hamsters on the deposition and retention of inhaled particles

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hobbs, C.H.

    1974-01-01

    Experimental emphysema was induced in Syrian hamsters by intratracheal injection of elastase or by inhaled papain aerosols. Control hamsters were injected with saline or exposed to enzyme diluent aerosols. After 3 weeks, all groups were simultaneously exposed to an aerosol of relatively insoluble 137 Cs in fused clay particles with an activity median aerodynamic diameter of 1.4 to 1.6 and a geometric standard deviation of 1.6. The initial pulmonary deposition of particles (measured 3 hours after inhalation) was significantly lower in treated hamsters, 45 percent of controls with elastase and 65 percent with papain aerosols. The effect of both enzyme treatments on the retention of particles was similar in spite of the fact that the pulmonary lesions were not the same. Elastase I.T. caused a diffuse destruction and enlargement of alveoli with a loss of pulmonary elastic recoil. Papain aerosols caused a focal destruction and enlargement of alveoli with no loss of elastic recoil. The common feature of both lesions was an increased number of alveolar macrophages which may account for the early increased clearance of particles. The prolonged retention of particles may be due to focal accumulations of macrophages in distal alveoli. (U.S.)

  11. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Surface modification of 2014 aluminium alloy-Al2O3 particles composites by nickel electrochemical deposition

    International Nuclear Information System (INIS)

    Molina, J.M.; Saravanan, R.A.; Narciso, J.; Louis, E.

    2004-01-01

    A method to modify the surface of aluminium matrix composites (AMC) by electrochemical nickel deposition has been developed. Deposition was carried out in a stirred standard Watt's bath, whereas potential and time were varied to optimize coating characteristics. The method, that allowed to overcome the serious difficulties associated to electrochemical deposition of an inherently inhomogeneous material, was used to nickel coat composites of 2014 aluminium alloy-15 vol.% Al 2 O 3 particles. Coats with a good adherence and up to 60 μm thick were easily obtained. In order to improve surface properties, the coated composite was subjected to rather long (from 10 to 47.5 h) heat treatments at a temperature of 520 deg,C. The heat treatments improved the uniformity of the deposited layer and promoted the formation of Al-Ni intermetallics (mainly Al 3 Ni 2 , as revealed by X-ray diffraction and energy-dispersive X-ray analysis (EDX)). Experimental results indicate that growth of the intermetallic layer is diffusion limited

  13. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Chi; Phalen, R.F. [Univ. of California, Irvine, CA (United States); Chang, I. [Lovelace Inst., Albuquerque, NM (United States)] [and others

    1995-12-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.

  14. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    International Nuclear Information System (INIS)

    Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.

    1995-01-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny (∼ 1 nm) to particles larger than 100 μm. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar

  15. Deposition of SrTiO3 films by electrophoresis with thickness and particle size control

    International Nuclear Information System (INIS)

    Junior, W.D.M.; Pena, A.F.V.; Souza, A.E.; Santos, G.T.A.; Teixeira, S.R.; Senos, A.M.R.; Longo, E.

    2012-01-01

    The SrTiO3 (ST) is a material that exhibits semiconducting characteristics and interesting electrical properties. In room temperature has a structure of high cubic symmetry. The size of the crystallites of this material directly influences this symmetry, changing its network parameters. ST nanoparticles are obtained by hydrothermal method assisted by microwave (MAH). ST films are prepared by electrophoretic deposition (EPD). Approximately 1 g of the powder is dissolved in 100 ml of acetone and 1.5 ml of triethanolamine. The stainless steel substrates are arranged horizontally in the solution. The depositions are performed for 1-10 min and subjected to a potential difference of 20-100 V. The films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). The characterizations show that it is possible to control both the thickness and size of the crystallites of the film depending on the deposition parameters adopted. (author)

  16. Numerical simulation of DPF filter for selected regimes with deposited soot particles

    Science.gov (United States)

    Lávička, David; Kovařík, Petr

    2012-04-01

    For the purpose of accumulation of particulate matter from Diesel engine exhaust gas, particle filters are used (referred to as DPF or FAP filters in the automotive industry). However, the cost of these filters is quite high. As the emission limits become stricter, the requirements for PM collection are rising accordingly. Particulate matters are very dangerous for human health and these are not invisible for human eye. They can often cause various diseases of the respiratory tract, even what can cause lung cancer. Performed numerical simulations were used to analyze particle filter behavior under various operating modes. The simulations were especially focused on selected critical states of particle filter, when engine is switched to emergency regime. The aim was to prevent and avoid critical situations due the filter behavior understanding. The numerical simulations were based on experimental analysis of used diesel particle filters.

  17. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation.

    Science.gov (United States)

    Rahimi-Gorji, Mohammad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-07-01

    In the present investigation, detailed two-phase flow modeling of airflow, transport and deposition of micro-particles (1-10µm) in a realistic tracheobronchial airway geometry based on CT scan images under various breathing conditions (i.e. 10-60l/min) was considered. Lagrangian particle tracking has been used to investigate the particle deposition patterns in a model comprising mouth up to generation G6 of tracheobronchial airways. The results demonstrated that during all breathing patterns, the maximum velocity change occurred in the narrow throat region (Larynx). Due to implementing a realistic geometry for simulations, many irregularities and bending deflections exist in the airways model. Thereby, at higher inhalation rates, these areas are prone to vortical effects which tend to entrap the inhaled particles. According to the results, deposition fraction has a direct relationship with particle aerodynamic diameter (for dp=1-10µm). Enhancing inhalation flow rate and particle size will largely increase the inertial force and consequently, more particle deposition is evident suggesting that inertial impaction is the dominant deposition mechanism in tracheobronchial airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Particle and power deposition on divertor targets in EAST H-mode plasmas

    DEFF Research Database (Denmark)

    Wang, L.; Xu, G.S.; Guo, H.Y.

    2012-01-01

    ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM...

  19. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  20. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  1. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  2. Biological monitoring of the deposition and transport of radioactive aerosol particles in the Chernobyl NPP zone of influence

    International Nuclear Information System (INIS)

    Viktorova, N.V.; Garger, E.K.

    1991-01-01

    Plants are one of the main links in the trophic chains of radionuclide transport. The role of plants in such transport was studied mainly in relation to soluble compounds of radionuclides, or to global fallout in which radionuclides were in soluble or exchangeable forms. The specifics of the Chernobyl accident led to the radioactivity occurring in particular forms, and the kinetics of radionuclide migration within trophic chains sometimes vary considerably from what was established in earlier experiments. It is important to study the interaction between plants and ''hot particles'', whose physico-chemical properties determine their non-solubility, which is characteristic, for example, of the carbides and oxides of some metals. When particles come into contact with plant surface tissues, ''dissolving'' factors come into play such as changes in the acidity of the solution or interaction with complex-forming compounds and organic materials exuded by the leaves of some plants. Thanks to these factors, many plants are capable of extracting compounds of low solubility from the soil minerals. Making use of macro- and micro-radioautography, we set out to estimate the rate of conversion of low-solubility radionuclide particles into biologically mobile forms of radionuclides accessible to plants; to study the density of fuel particle fallout in the near-ground layer of the atmosphere and to assess how this varies at different distances from the fallout source over time (during the four years following the accident, 1986-1989); to study the size of the particles deposited on the leaves of plants at various strata, their activity, morphology and behaviour when kept in the form of herbarium exhibits; and to assess the contribution of alpha-active particles to the general amount of fallout and how it changes over time. (author)

  3. Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement

    International Nuclear Information System (INIS)

    Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.

    1991-01-01

    The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs

  4. Au-Nano-particle Deposition on alumina surfaces for environmental application-a density functional study

    International Nuclear Information System (INIS)

    Chatterjee, Abhijit

    2009-01-01

    Full text: It has been found that nanometer size gold particles on different oxide supports can act as catalysts, suggestions include quantum size effects, availability of low coordinated sites, and strain or combined effects of the gold particles and the oxide support. From photo dissociation spectroscopy and theory it has been inferred that the 2D / 3D structural transition occurs between five and seven atoms depending on charge state neutrals and singly positively charged ions. Here we will look into the interaction of gold particles over different sites of the aluminum -oxide surface to tune the catalytic activity of the novel material using first principle periodic calculations and compare them with the reactivity index to formulate a priori rule for metal cluster interaction. The catalytic application is aimed to CO adsorption type reactions for a greener environment. (author)

  5. Study of reduction permeability for deposit of fine particles and bacteria in porous media

    International Nuclear Information System (INIS)

    Restrepo Restrepo, Dora Patricia; Cardona Bernal, Felipe Andres; Usta Diaz, Martha Lucia

    2004-01-01

    This work shows a theoretical and practical description of the main variables and physical principles that lead to the obstruction by fine particles and therefore a reduction in permeability for unconsolidated porous media with almost a length foot. The results were also adjusted to theoretical model for the obstruction by fine particles in the entrance face. A first study about bacteria plugging was also carried out in order to try to understand it when these bacteria are in the water of injection of a normal process of water flooding

  6. 2D modeling of direct laser metal deposition process using a finite particle method

    Science.gov (United States)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  7. Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts

    Science.gov (United States)

    Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.

    2016-01-01

    Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between  ∼  2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  8. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  9. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    Science.gov (United States)

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Physical Properties and Lung Deposition of Particles Emitted from Five Major Indoor Sources.

    Czech Academy of Sciences Publication Activity Database

    Tuan, V.Vu.; Ondráček, Jakub; Ždímal, Vladimír; Schwarz, Jaroslav; Delgado-Saborit, J.M.; Harrison, R. M.

    2016-01-01

    Roč. 10, č. 1 (2016), s. 1-14 ISSN 1873-9318 EU Projects: European Commission(XE) 315760 - HEXACOMM Institutional support: RVO:67985858 Keywords : indoor sources * particle size * hygroscopic growth Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.184, year: 2016

  11. Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments.

    Science.gov (United States)

    Yao, Zhi-Cheng; Jin, Li-Jie; Ahmad, Zeeshan; Huang, Jie; Chang, Ming-Wei; Li, Jing-Song

    2017-05-30

    Ganoderma lucidum polysaccharide (GLP) is a functional food source deployed in preventative medicine. However, applications utilizing GLP are limited due to oxidative and acidic environmental damage. Advances in preserving GLP structure (and therefore function), in situ, will diversify their applications within biomedical fields (drug and antibacterial active delivery via the enteral route). In this study, GLP loaded sodium alginate (NaAlg) micro-particles (size range 225-355μm) were generated using the electrospray (ES) process. The loading capacity and encapsulation efficiency of GLP for composite particles (collected at different temperatures) were ∼23% and 71%, respectively. The collection substrate (CaCl 2 , 1-20w/v%) concentration was explored and preliminary findings indicated a 10w/v% solution to be optimal. The process was further modified by manipulating the collection environment temperature (∼25 to 50°C). Based on this, NaAlg/GLP micro-particles were engineered with variable surface morphologies (porous and crinkled), without effecting the chemical composition of either material (GLP and NaAlg). In-vitro release studies demonstrated pH responsive release rates. Modest release of GLP from micro-particles in simulated gastric fluid (pH ∼1.7) was observed, while rapid release was exhibited under simulated intestinal conditions (pH ∼7.4). Release of GLP from NaAlg beads was the greatest from samples prepared at elevated environmental temperatures. These findings demonstrate a facile route to fabricate GLP-NaAlg loaded micro-particles with various shapes, surface topographies and release characteristics via a one-step ES process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Particle deposition and deformation from high speed impaction of Ag nanoparticles

    International Nuclear Information System (INIS)

    Chitrakar, T.V.; Keto, J.W.; Becker, M.F.; Kovar, D.

    2017-01-01

    The impaction of a single Ag nanoparticle onto an (001) Ag substrate was studied as a function of particle diameter (2–9 nm) and impaction velocity (10–1500 m/sec) using molecular dynamics simulations. The final crystallographic structures were observed to transition from a polycrystalline to an epitaxial morphology as impaction velocity was increased and the velocity required to achieve epitaxy increased with particle size. To understand how the crystallographic structures evolved to their final state, the deformation mechanisms were then studied over a range of time scales, beginning immediately upon impaction. The observed mechanisms included disordering of the atoms and the initiation and propagation of partial dislocations. Deformation increased with impaction velocity due to increases in the degree of disordering and the partial dislocation density. At longer time scales, relaxation of the disordered particles produced epitaxial morphologies, whereas polycrystalline morphologies were observed following incomplete disordering. These results suggest that the microstructures of thick films produced by high speed impaction of nanoparticle aerosols are strongly influenced by processing parameters.

  13. Energy exchange in systems of particles with nonreciprocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  14. Land subsidence due to groundwater pumping and recharge: considering the particle-deposition effect in ground-source heat-pump engineering

    Science.gov (United States)

    Cui, Xianze; Liu, Quansheng; Zhang, Chengyuan; Huang, Yisheng; Fan, Yong; Wang, Hongxing

    2018-01-01

    With the rapid development and use of ground-source heat-pump (GSHP) systems in China, it has become imperative to research the effects of associated long-term pumping and recharge processes on ground deformation. During groundwater GSHP operation, small particles can be transported and deposited, or they can become detached in the grain skeleton and undergo recombination, possibly causing a change in the ground structure and characteristics. This paper presents a mathematical ground-deformation model that considers particle transportation and deposition in porous media based on the geological characteristics of a dual-structure stratum in Wuhan, eastern China. Thermal effects were taken into consideration because the GSHP technology used involves a device that uses heat from a shallow layer of the ground. The results reveal that particle deposition during the long-term pumping and recharge process has had an impact on ground deformation that has significantly increased over time. In addition, there is a strong correlation between the deformation change (%) and the amount of particle deposition. The position of the maximum deformation change is also the location where most of the particles are deposited, with the deformation change being as high as 43.3%. The analyses also show that flow of groundwater can have an effect on the ground deformation process, but the effect is very weak.

  15. Land subsidence due to groundwater pumping and recharge: considering the particle-deposition effect in ground-source heat-pump engineering

    Science.gov (United States)

    Cui, Xianze; Liu, Quansheng; Zhang, Chengyuan; Huang, Yisheng; Fan, Yong; Wang, Hongxing

    2018-05-01

    With the rapid development and use of ground-source heat-pump (GSHP) systems in China, it has become imperative to research the effects of associated long-term pumping and recharge processes on ground deformation. During groundwater GSHP operation, small particles can be transported and deposited, or they can become detached in the grain skeleton and undergo recombination, possibly causing a change in the ground structure and characteristics. This paper presents a mathematical ground-deformation model that considers particle transportation and deposition in porous media based on the geological characteristics of a dual-structure stratum in Wuhan, eastern China. Thermal effects were taken into consideration because the GSHP technology used involves a device that uses heat from a shallow layer of the ground. The results reveal that particle deposition during the long-term pumping and recharge process has had an impact on ground deformation that has significantly increased over time. In addition, there is a strong correlation between the deformation change (%) and the amount of particle deposition. The position of the maximum deformation change is also the location where most of the particles are deposited, with the deformation change being as high as 43.3%. The analyses also show that flow of groundwater can have an effect on the ground deformation process, but the effect is very weak.

  16. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Raho, Riccardo [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); CBN, Center for Biomolecular Nanotechnologies, Fondazione Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Lecce (Italy); Paladini, Federica; Lombardi, Fiorella Anna [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Boccarella, Sandro [Megatex S.p.A., Via Cima D' Aosta, 73040 Melissano, Lecce (Italy); Zunino, Benedetta [Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00198 Roma (Italy); Pollini, Mauro, E-mail: mauro.pollini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Silvertech Ltd., Via per Monteroni, 73100 Lecce (Italy)

    2015-10-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared.

  17. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications

    International Nuclear Information System (INIS)

    Raho, Riccardo; Paladini, Federica; Lombardi, Fiorella Anna; Boccarella, Sandro; Zunino, Benedetta; Pollini, Mauro

    2015-01-01

    Silver nanoparticles (AgNPs) have attracted intensive research interest and have been recently incorporated in polymers, medical devices, hydrogels and burn dressings to control the proliferation of microorganisms. In this study a novel silver antibacterial coating was deposited for the first time on hydrogel fibers through an in-situ photo-chemical reaction. Hydrogel blends obtained by mixing different percentages of silver-treated and untreated fibers were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four different fluids, such as phosphate buffered saline (PBS), simulated body fluid (SBF), chemical simulated wound fluid (cSWF), and deionized water (DI water), were used for evaluating the swelling properties. The results obtained confirmed that the presence of silver did not affect the properties of the hydrogel. Moreover, the results obtained through inductively coupled plasma mass spectrometry (ICP-MS) demonstrated very low silver release values, thus indicating the perfect adhesion of the silver coating to the substrate. Good antibacterial capabilities were demonstrated by any hydrogel blend on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through agar diffusion tests and optical density readings. - Highlights: • An innovative nano-silver deposition technique was adopted on hydrogel fibers. • Antibacterial effects was verified by agar diffusion and optical density tests. • The swelling properties were investigated using 4 different fluids. • Hydrogel blends with different percentages of silver-treated fibers were compared

  18. Influence of extreme events on health-related aerosol particle deposition in an urban site during summer

    Science.gov (United States)

    Belmonte, Paula; Castro, Amaya; Calvo, Ana Isabel; Alves, Célia; Duarte, Márcio; Alonso-Blanco, Elisabeth; Fraile, Roberto

    2014-05-01

    Urban populations are exposed to aerosol particles that enter in the human respiratory track posing an important risk to human health. Particle sampling conventions have been established, expressed as curves describing "penetration" to the region of interest in terms of the particle aerodynamic diameter. The inhalable, thoracic, traqueo-bronchial and respirable fractions have been estimated according to the International Standard ISO 7708:1995. This study presents the analysis of aerosol size distributions and its deposition in the human respiratory tract according to ISO 7708. The influence of ambient conditions in an urban area affected by heat waves and wildfires in the summer months has been analyzed. A laser spectrometer PCASP-X was used to characterize the aerosol size distributions. This device registers particle sizes between 0.1 and 10 microns in 31 channels. The spectrometer was installed in the city of León (Spain), between June and September 2012, and 24 measurements were carried out daily to determine the size of the ambient particles in the urban area. The measurements were averaged over 15-minute intervals. A weather station was installed at 3 m above the ground to register automatically data on precipitation, pressure, temperature, relative humidity wind speed and direction. The refractive index of the particles was estimated for each value of relative humidity, as the relative humidity of the ambient atmosphere affects the size and the complex refractive index of aerosols. Afterwards, raw size bins were corrected from the estimated refractive indices using a program based on Mie Theory. The regional government provided data on the exact location of summer wildfires in the province of Leon, as well as data on the land area affected. A persistent and intense thermal inversion of subsidence caused an intense pollution episode in the city during the main wildfire, which broke out at a distance of about 60 km from the sampling point. Furthermore, the

  19. Alpha-particle doses to human organs and tissues from internally-deposited 226Ra and 228Ra

    International Nuclear Information System (INIS)

    Keane, A.T.; Schlenker, R.A.

    1981-01-01

    Estimation of radiation doses to the soft tissues from internally-deposited 226 Ra and 228 Ra is relevant to an investigation of soft-tissue malignancies in radium-exposed persons being conducted at the Center for Human Radiobiology. Alpha-particle doses in a 50-year period following a single injection of 226 Ra or 228 Ra are presented for 31 soft tissues and organs of the adult human. The dose estimates were derived from the ICRP alkaline earth model fitted to data on retention of 226 Ra in soft tissues and bone, combined with reported ratios of 226 Ra to Ca in soft tissue and bone at natural levels and the distribution of Ca in the tissues of Reference Man (ICRP23). The median of the 31 organ and tissue doses from the α-particles of 226 Ra itself is 0.08 rad per injected μCi. An additional average dose of 0.01 rad per μCi 226 Ra daughter products produced in soft tissue or transferred from bone to soft tissue. Soft-tissue doses from α-particles of the 228 Ra decay series are about six times those from 226 Ra α-particles for equal injected activities of 228 Ra and 226 Ra, with the assumption that 228 Ra daughter products do not transfer from the organ in which they are produced. The 50-year dose to the red marrow of bone from α-particles originating in bone is 0.55 rad per μCi 226 Ra injected and 1.0 rad per μCi 228 Ra injected. For ingestion by dial painters of luminous compound containg 226 Ra or 228 Ra with a daughter-to-parent activity ratio of 0.5, the dose to the mucosal alyer of the lower large intestine from α-particles originating in the gut contents is about 0.1 rad per μCi systemic intake of 226 Ra or 228 Ra

  20. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  1. Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park.

    Science.gov (United States)

    Li, Haiyan; Shi, Anbang; Zhang, Xiaoran

    2015-06-01

    Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments (RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size (Pb>Cu>Zn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: Cd>Zn≈Pb>Cu. Copyright © 2015. Published by Elsevier B.V.

  2. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelashvili, V.; Padmanabhan, R.; Eisenstein, G. [Electrical Engineering Department, Technion, Haifa 3200 (Israel); Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Meyler, B.; Yofis, S.; Weindling, S.; Salzman, J. [Electrical Engineering Department, Technion, Haifa 3200 (Israel); Atiya, G.; Cohen-Hyams, Z.; Kaplan, W. D. [Department of Material Science and Engineering, Technion, Haifa 3200 (Israel); Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Ankonina, G. [Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Photovoltaic Laboratory, Technion, Haifa 3200 (Israel)

    2015-10-07

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology.

  3. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    International Nuclear Information System (INIS)

    Mikhelashvili, V.; Padmanabhan, R.; Eisenstein, G.; Meyler, B.; Yofis, S.; Weindling, S.; Salzman, J.; Atiya, G.; Cohen-Hyams, Z.; Kaplan, W. D.; Ankonina, G.

    2015-01-01

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology

  4. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Hofman, Jelle; Stokkaer, Ines; Snauwaert, Lies; Samson, Roeland

    2013-01-01

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  5. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Directory of Open Access Journals (Sweden)

    M. L. López

    2016-01-01

    Full Text Available This study reports measurements of deposition-mode ice-nucleating particle (INP concentrations at ground level during the period July–December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of −25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb on the INP concentration was analyzed. The number of INPs activated varied from 1 L−1 at RHamb of 25 % to 30 L−1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  6. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    International Nuclear Information System (INIS)

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyoung-Koo; Kaplan, S.N.; Perez-Mendez, V.; Mireshghi, Ali; Kitsuno, Yu

    1994-11-01

    Electrical transport properties of the authors PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material they have measured electron and hole mobilities ∼ 4 times larger, and μτ values 2-3 times higher than for their standard a-Si:H. The density of ionized dangling bonds (N D *) also showed a factor of 5-10 improvement. Due to its higher conductivity, the improved a- Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to ∼90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 μm-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles

  7. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    International Nuclear Information System (INIS)

    Hong, W.S.; Drewery, J.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.; Kitsuno, Y.

    1995-01-01

    Electrical transport properties of the PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material the authors measured electron and hole mobilities ∼4 times larger, and microτ values 2--3 times higher than for the standard a-Si:H. The density of ionized dangling bonds (N D *) also showed a factor of 5--10 improvement. Due to its higher conductivity, the improved a-Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to ∼90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 microm-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles

  8. Sediment transport modeling in deposited bed sewers: unified form of May's equations using the particle swarm optimization algorithm.

    Science.gov (United States)

    Safari, Mir Jafar Sadegh; Shirzad, Akbar; Mohammadi, Mirali

    2017-08-01

    May proposed two dimensionless parameters of transport (η) and mobility (F s ) for self-cleansing design of sewers with deposited bed condition. The relationships between those two parameters were introduced in conditional form for specific ranges of F s , which makes it difficult to use as a practical tool for sewer design. In this study, using the same experimental data used by May and employing the particle swarm optimization algorithm, a unified equation is recommended based on η and F s . The developed model is compared with original May relationships as well as corresponding models available in the literature. A large amount of data taken from the literature is used for the models' evaluation. The results demonstrate that the developed model in this study is superior to May and other existing models in the literature. Due to the fact that in May's dimensionless parameters more effective variables in the sediment transport process in sewers with deposited bed condition are considered, it is concluded that the revised May equation proposed in this study is a reliable model for sewer design.

  9. New Technologies Being Developed for the Thermophoretic Sampling of Smoke Particulates in Microgravity

    Science.gov (United States)

    Sheredy, William A.

    2003-01-01

    The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.

  10. Sem Analysis of particles from the 28, 000 B.P El Zaguan debris avalanche deposit, Nevado de Toluca volcano, Central Mexico: evidences of flow behavior during emplacement

    Science.gov (United States)

    Caballero, L.; Capra, L.

    2008-12-01

    The Zaguan deposit originated at 28, 000 yr. B.P from the flank collapse of the Nevado de Toluca volcano, a dacitic stratovolcano of the Transmexican Volcanic Belt. A Scanning Electron Microprobe analysis (SEM) was made to some clasts of this deposit to observe microtextures produced during transport and emplacement of the debris avalanche flow. Particles from 2, 0 and -2 Φ granulometric classes were randomly selected and their surface textures were described. The textures observed were divided in two groups, collision and shear structures indicating different clast interaction. Shear textures were observed predominantly on the basal part of the deposit and consisted of parallel ridges, parallel grooves, scratches and lips. Collision textures were mainly present in the upper part of the deposit and consisted of fractures, percussion marks, and broken or grinded crystals. These characteristics, coupled with field observation, like the presence of clast dikes and deformed lacustrine megaclasts, indicate that the basal part of the debris avalanche was moving in a partially liquefied state, were particles were not able to move freely because of the confinement exerted by the upper part of the flow, so shear stresses dominated. On the contrary, the particles in the upper part were able to move freely so the principal mechanism of interaction between particles was collision. These microscopic textures are in agreement with previously described behavior of emplacement of debris avalanches of volcanic origin, that suggest a stratified flow dominated by different transport and depositional mechanism depending on flow depth and possible fluid content at their base.

  11. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  12. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model

    Energy Technology Data Exchange (ETDEWEB)

    Pecorari, Eliana, E-mail: eliana.pecorari@unive.it [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy); Mantovani, Alice [OSMOTECH S.r.l., via Francesco Sforza, 15, 20122 Milano (Italy); Franceschini, Chiara [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy); Bassano, Davide [SAVE S.p.A., Marco Polo Venice airport viale G. Galilei 30/1, 30173 Tessera-Venezia (Italy); Palmeri, Luca [Department of Industrial Engineering, University of Padova, v. Marzolo 9, 35131 Padova (Italy); Rampazzo, Giancarlo [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy)

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po’ Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15–50%) has been observed during specific meteorological events

  13. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model

    International Nuclear Information System (INIS)

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-01

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po’ Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15–50%) has been observed during specific meteorological events

  14. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior

    DEFF Research Database (Denmark)

    Kleinhans, Ulrich; Wieland, Christoph; Frandsen, Flemming J.

    2018-01-01

    . The impaction of solid, molten or partially molten particles on surfaces is dependent on the particle and surface characteristics. For instance, a particulate deposit might capture incoming particles or be removed due to erosion, while a molten layer will collect all impacting particles, no matter...... if they are sticky or not. The main properties affecting the particle stickiness are the viscosity and surface tension for silicate-rich ashes. On the contrary, the stickiness of salt-rich ashes – typical for herbaceous biomass and wood- or waste-based fuels – is often described using the liquid melt fraction......, their required parameters are discussed and typical particle and surface properties found in combustion systems, are summarized. Eight different sticking criteria are implemented in a computational fluid dynamics code and computations are compared against measurements from an entrained flow reactor. Uniform...

  15. Storage in alluvial deposits controls the timing of particle delivery from large watersheds, filtering upland erosional signals and delaying benefits from watershed best management practices

    Science.gov (United States)

    Pizzuto, J. E.; Skalak, K.; Karwan, D. L.

    2017-12-01

    Transport of suspended sediment and sediment-borne constituents (here termed fluvial particles) through large river systems can be significantly influenced by episodic storage in floodplains and other alluvial deposits. Geomorphologists quantify the importance of storage using sediment budgets, but these data alone are insufficient to determine how storage influences the routing of fluvial particles through river corridors across large spatial scales. For steady state systems, models that combine sediment budget data with "waiting time distributions" (to define how long deposited particles remain stored until being remobilized) and velocities during transport events can provide useful predictions. Limited field data suggest that waiting time distributions are well represented by power laws, extending from 104 years, while the probability of storage defined by sediment budgets varies from 0.1 km-1 for small drainage basins to 0.001 km-1 for the world's largest watersheds. Timescales of particle delivery from large watersheds are determined by storage rather than by transport processes, with most particles requiring 102 -104 years to reach the basin outlet. These predictions suggest that erosional "signals" induced by climate change, tectonics, or anthropogenic activity will be transformed by storage before delivery to the outlets of large watersheds. In particular, best management practices (BMPs) implemented in upland source areas, designed to reduce the loading of fluvial particles to estuarine receiving waters, will not achieve their intended benefits for centuries (or longer). For transient systems, waiting time distributions cannot be constant, but will vary as portions of transient sediment "pulses" enter and are later released from storage. The delivery of sediment pulses under transient conditions can be predicted by adopting the hypothesis that the probability of erosion of stored particles will decrease with increasing "age" (where age is defined as the

  16. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova

    2016-01-01

    of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the tongue...... between particle size, electrostatic charge, and flowrate. Our results suggest that in silico models should be customized for specific applications, ensuring all relevant physical effects are accounted for in a self-consistent fashion....

  17. Simulating the energy deposits of particles in the KASCADE-grande detector stations as a preliminary step for EAS event reconstruction

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.; Haungs, A.

    2005-01-01

    The study of primary cosmic rays with energies higher than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at developing a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been simulated using the GEANT code and then the energy deposits have been parametrized for different incident energies and angles of EAS particles. Thus the results obtained for simulated events have the same level of consistency as the experimental data. This technique will allow an increased speed of lateral particle density reconstruction when studying real events detected by the KASCADE-Grande array. The particle densities in detectors have been reconstructed from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events creates the basis for the next stage of the study, the study of real events detected by the KASCADE-Grande array. (authors)

  18. Textural analysis of particles from El Zaguán debris avalanche deposit, Nevado de Toluca volcano, Mexico: Evidence of flow behavior during emplacement

    Science.gov (United States)

    Caballero, Lizeth; Capra, Lucia

    2011-02-01

    El Zaguán deposit originated at 28,000 yrs. B.P. from the flank collapse of Nevado de Toluca, a dacitic stratovolcano of the Transmexican Volcanic Belt. Scanning Electron Microprobe analyses (SEM) were performed on some particles from this deposit to observe microtextures produced during transport and emplacement of the debris avalanche flow. Particles from 2ϕ (250 μm), 0ϕ (1 mm) and - 2ϕ (4 mm) granulometric classes were randomly selected at different outcrops, and their surface textures were described. The observed textures are divided in two groups, Basal and Upper textures, each one indicating different clast interactions. Basal textures are observed predominantly in the lower part of the deposit and consist of parallel ridges, parallel grooves, scratches and lips. Upper textures are mainly present in the upper part of the deposit and consisted of fractures, percussion marks, and broken or grinded crystals. These characteristics, coupled with field observations such as the presence of clastic dikes and deformed lacustrine mega-blocks, indicate that the basal part of the debris avalanche was moving in a partially liquefied state. By contrast, the particles in the upper part were able to move freely, interacting by collision. These microscopic textures are in agreement with previously described emplacement behaviors in debris avalanches of volcanic origin, suggesting a stratified flow dominated by different transport and depositional mechanisms depending upon flow depth and possible fluid content at their base.

  19. Transport and Deposition of Micro-and Nano-Particles in Human Tracheobronchial Tree by an Asymmetric Multi-Level Bifurcation Model

    Directory of Open Access Journals (Sweden)

    Lin Tian

    2012-06-01

    Full Text Available Transport and deposition of particles in the upper tracheobronchial tree were analyzed using a multi-level asymmetric lung bifurcation model. The first three generations of tracheobronchial tree were included in the study. The laryngeal jet at the trachea entrance was modeled as an effective turbulence disturbance, and the study was focused on how to accurately simulate the airflow and predict the motion of the inhaled particles. Downstream in the lower level of the bronchial region, a laminar flow model was used, as smoother flow condition was expected. Transport and deposition of nano- and micro-scale spherical particles in the range of 0.01 μm to 30 μm were evaluated. The particle local deposition pattern and deposition rate in the lung bifurcation was discussed. The proposed multi-level asymmetric lung bifurcation model was found to be flexible, easy to use and computationally highly efficient. It was also shown that the selection of the anisotropic Reynolds stress transport turbulence model (RSTM was appropriate, and the use of the enhanced two-layer model boundary treatment was needed for accurate simulation of the turbulent airflow conditions in the upper airways.

  20. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    Science.gov (United States)

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  1. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    Science.gov (United States)

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events

  2. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.

    Science.gov (United States)

    Kolanjiyil, Arun V; Kleinstreuer, Clement

    2016-12-01

    Computational predictions of aerosol transport and deposition in the human respiratory tract can assist in evaluating detrimental or therapeutic health effects when inhaling toxic particles or administering drugs. However, the sheer complexity of the human lung, featuring a total of 16 million tubular airways, prohibits detailed computer simulations of the fluid-particle dynamics for the entire respiratory system. Thus, in order to obtain useful and efficient particle deposition results, an alternative modeling approach is necessary where the whole-lung geometry is approximated and physiological boundary conditions are implemented to simulate breathing. In Part I, the present new whole-lung-airway model (WLAM) represents the actual lung geometry via a basic 3-D mouth-to-trachea configuration while all subsequent airways are lumped together, i.e., reduced to an exponentially expanding 1-D conduit. The diameter for each generation of the 1-D extension can be obtained on a subject-specific basis from the calculated total volume which represents each generation of the individual. The alveolar volume was added based on the approximate number of alveoli per generation. A wall-displacement boundary condition was applied at the bottom surface of the first-generation WLAM, so that any breathing pattern due to the negative alveolar pressure can be reproduced. Specifically, different inhalation/exhalation scenarios (rest, exercise, etc.) were implemented by controlling the wall/mesh displacements to simulate realistic breathing cycles in the WLAM. Total and regional particle deposition results agree with experimental lung deposition results. The outcomes provide critical insight to and quantitative results of aerosol deposition in human whole-lung airways with modest computational resources. Hence, the WLAM can be used in analyzing human exposure to toxic particulate matter or it can assist in estimating pharmacological effects of administered drug-aerosols. As a practical

  3. Enhancing the activation of silicon carbide tracer particles for PEPT applications using gas-phase deposition of alumina at room temperature and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Valdesueiro, D. [Delft University of Technology, Department of Chemical Engineering, 2628 BL Delft (Netherlands); Garcia-Triñanes, P., E-mail: p.garcia@surrey.ac.uk [Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Meesters, G.M.H.; Kreutzer, M.T. [Delft University of Technology, Department of Chemical Engineering, 2628 BL Delft (Netherlands); Gargiuli, J.; Leadbeater, T.W.; Parker, D.J. [Positron Imaging Centre, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Seville, J.P.K. [Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Ommen, J.R. van, E-mail: j.r.vanommen@tudelft.nl [Delft University of Technology, Department of Chemical Engineering, 2628 BL Delft (Netherlands)

    2016-01-21

    We have enhanced the radio-activation efficiency of SiC (silicon carbide) particles, which by nature have a poor affinity towards {sup 18}F ions, to be employed as tracers in studies using PEPT (Positron Emission Particle Tracking). The resulting SiC–Al{sub 2}O{sub 3} core–shell structure shows a good labelling efficiency, comparable to γ-Al{sub 2}O{sub 3} tracer particles, which are commonly used in PEPT. The coating of the SiC particles was carried at 27±3 °C and 1 bar in a fluidized bed reactor, using trimethylaluminium and water as precursors, by a gas phase technique similar to atomic layer deposition. The thickness of the alumina films, which ranged from 5 to 500 nm, was measured by elemental analysis and confirmed with FIB-TEM (focused ion beam – transmission electron microscope), obtaining consistent results from both techniques. By depositing such a thin film of alumina, properties that influence the hydrodynamic behaviour of the SiC particles, such as size, shape and density, are hardly altered, ensuring that the tracer particle shows the same flow behaviour as the other particles. The paper describes a general method to improve the activation efficiency of materials, which can be applied for the production of tracer particles for many other applications too. - Highlights: • We deposited Al{sub 2}O{sub 3} films on SiC particles at ambient conditions in a fluidized bed. • The affinity of {sup 18}F ions towards Al{sub 2}O{sub 3}–SiC particle was improved compared to SiC. • We used the Al{sub 2}O{sub 3}–SiC activated particle as tracer in a PEPT experiment. • Tracer particles have suitable activity for accurate tracking. • The Al{sub 2}O{sub 3} film is thin enough not to alter the particle size, shape and density.

  4. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  5. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  6. Modelling and analyses do not support the hypothesis that charging by power-line corona increases lung deposition of airborne particles

    International Nuclear Information System (INIS)

    Jeffers, D.

    2007-01-01

    The National Radiological Protection Board's advisory Group on Non-ionising Radiation has recommended further study on the effects of electric charge on the deposition of 0.005-1 μm particles in the lung. Estimates have been made regarding the integrated ion exposure within the corona plume generated by a power line and by ionizers in an intensive care unit. Changes in the charge state of particles with sizes in the range 0.02-13 μm have been calculated for these exposures. The corona plume increases the charge per particle of 0.02 and 0.1 μm particles by the order of 0.1. The ionizers in the intensive care unit produced negative ions-as do power lines under most conditions. Bacteria can carry in the order of 1000 charges (of either sign) and it is shown that the repulsion between such a negatively charged bacterium and negative ions prevents further ion deposition by diffusion charging. Positively charged bacteria can, however, be discharged by the ions which are attracted to them. The data provide no support for the hypothesis that ion exposure, at the levels considered, can increase deposition in the lung. (authors)

  7. Preparation of SiC and Ag/SiC coatings on TRISO surrogate particles by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Lustfeld, Martin; Reinecke, Anne-Maria; Lippman, Wolfgang; Hurtado, Antonio; Ruiz-Moreno, Ana

    2014-01-01

    Recently published research results suggest significant advantages of using nanocrystalline instead of coarse grained SiC for nuclear applications. In this work it was attempted to prepare nanocrystalline SiC coatings on TRISO surrogate kernels using the pulsed laser deposition (PLD) process. As a plasma-based physical vapor deposition process, PLD allows the synthesis of dense and stoichiometric coatings in the amorphous or nanocrystalline phase. Two different types of TRISO surrogate kernels were used with outer diameters of 500 pm and 800 μm, respectively: plain Al_2O_3 kernels and ZrO_2 kernels coated with TRISO-like buffer and pyrolytic carbon (PyC) layers. In a second step, the PLD process was used for the preparation of multilayer coatings consisting of a Ag layer buried with a SiC layer. The samples were analyzed regarding their morphology, microstructure, crystalline phase and chemical composition using scanning electron microscopy (SEM), laser scanning microscopy (LSM), x-ray diffraction (XRD) and energy- dispersive x-ray spectroscopy (EDX). The samples will be used in future work for out-of-pile investigations of both thermal stability and Ag retention capability of nanocrystalline SiC layers. X-ray diflraction measurements did not confirm nano crystallinity of the SiC coatings, but rather indicated that the coatings were mainly amorphous possibly with a little fraction of the nanocrystalline phase. Further analyses showed that some of the SiC coatings had an adequate stoichiometric composition and that Ag/SiC multilayer coatings were successfully produced by PLD. Coatings on TRISO- like buffer and PyC layers exhibited good adhesion to the substrate while coatings on Al_2O_3 kernels were susceptible to delamination. The results suggest that PLD is generally suitable for SiC coating of TRISO particles. However, further optimization of the process parameters such as the coating temperature is needed to obtain fine- grained non-columnar SiC layers that are

  8. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  9. Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration

    Science.gov (United States)

    Temam, H. B.; Temam, E. G.

    2016-04-01

    Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.

  10. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    Science.gov (United States)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing 90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  11. Size-dependent photodegradation of CdS particles deposited onto TiO{sub 2} mesoporous films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia, E-mail: hx.wang@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering (Australia)

    2012-09-15

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO{sub 2} films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO{sub 2} films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO{sub 2} films in air under illumination (440.6 {mu}W/cm{sup 2}) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO{sub 4}). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS Multiplication-Sign 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS Multiplication-Sign 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  12. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    Science.gov (United States)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-12-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  13. Transport and deposition of nano-particles. Application to the free action of short-lived radon daughters

    International Nuclear Information System (INIS)

    Malet, J.

    1997-01-01

    Short-lived radon daughters ( 218 Po, 214 Pb, 214 Bi, and 214 Po) are important contributors to the natural average annual individual dose. The models describing the evolution of these aerosol in a house depend critically on a parameter, the 218 Po deposition velocity, which, although aerosol deposition has been extensively studied, is poorly known. A numerical and experimental study is thus carried out for a simple case: deposition in a cylindrical tube under laminar flow condition. The numerical results help understanding the difference between the transport and deposition of these radionuclides and those of non radioactive aerosols. Comparison of these well environment does not give satisfactory correlation, requiring the study of phenomena that may affect deposition. The first of these is the possible variation in the e 218 Po diffusion coefficient. Furthermore, experiments coupled with numerical calculations show that this variation could be due to 218 Po neutralization. The second phenomenon concerns the effect of the surface type, which is also shown experimentally. By modelling the neutralization and using results with a piratically smooth surface, good numerical/experimental correlations are obtained. Understanding this simple case than makes possible studying a more complex case: deposition in controlled turbulent flow. Two theories are thus experimentally validated. In addition, a 218 Po deposition velocity representative of our experimental conditions is determined. Finally, we report a feasibility study of radon daughters transport and deposition in a ventilated chamber taking into account all the involved phenomena. (author)

  14. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

    Science.gov (United States)

    Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T

    2017-05-01

    Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of

  15. Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

    Directory of Open Access Journals (Sweden)

    Meri Ruppel

    2013-01-01

    Full Text Available Spheroidal carbonaceous particles (SCP are a well-defined fraction of black carbon (BC, produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results.

  16. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Rovira, Joaquim [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Nadal, Martí [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Schuhmacher, Marta, E-mail: marta.schuhmacher@urv.cat [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain)

    2015-11-15

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM{sub 10}, PM{sub 2.5}, and PM{sub 1}) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population. - Highlights: • PM deposition in the respiratory tract was evaluated for three population groups. • Activity patterns and different microenvironments were used in our calculation. • Outdoor activities are the main contributors to PM deposited mass. • Children experienced the highest deposition dose in the pulmonary region. • Retired registered the highest deposited mass in the respiratory tract as a whole.

  17. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract

    International Nuclear Information System (INIS)

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas; Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta

    2015-01-01

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM 10 , PM 2.5 , and PM 1 ) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population. - Highlights: • PM deposition in the respiratory tract was evaluated for three population groups. • Activity patterns and different microenvironments were used in our calculation. • Outdoor activities are the main contributors to PM deposited mass. • Children experienced the highest deposition dose in the pulmonary region. • Retired registered the highest deposited mass in the respiratory tract as a whole.

  18. Pulmonary deposition of urban atmospheric aerosol. Assessments of the mass, number and surface of the deposited particles; Deposizione polmonare dell'aerosol atmosferico urbano in termini di massa, numero e superficie delle particelle

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, A.; Berico, M.; Castellani, C.M. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1998-07-01

    Pulmonary deposition of urban atmospheric aerosol has been calculated by means of the data derived from March 1995 measurement campaign of urban aerosol. The human respiratory tract model of the International Commission on Radiological Protection (n. 66) developed for radiation protection purposes has been used. The number and surface of the deposited particles, as well as the mass, have been also evaluated. [Italian] I dati relativi alla campagna di misure effettuata nel marzo 1995 sono stati rielaborati al fine di valutare la deposizione polmonare dell'aerosol atmosferico in area urbana. Le valutazioni di deposizione nel tratto respiratorio umano sono state condotte mediante l'utilizzo del modello del tratto respiratorio umano presentato per fini radioprotezionistici dalla International Commission on Radiological Protection (n. 66). Sono state effettuate valutazioni di deposizione in massa e in termini di numero e superficie delle particelle.

  19. A "TEST OF CONCEPT" COMPARISON OF AERODYNAMIC AND MECHANICAL RESUSPENSION MECHANISMS FOR PARTICLES DEPOSITED ON FIELD RYE GRASS (SECALE CERCELE). PART I. RELATIVE PARTICLE FLUX RATES

    Science.gov (United States)

    Resuspension of uniform latex micro spheres deposited on a single seed pod of field rye grass stalk and head was investigated experimentally in a wind tunnel. The experiment was designed to distinguish aerodynamic (viscous and turbulent) mechanisms from mechanical resuspension re...

  20. Testing the FOODBANCS hypothesis: Seasonal variations in near-bottom particle flux, bioturbation intensity, and deposit feeding based on 234Th measurements

    Science.gov (United States)

    McClintic, Mark A.; DeMaster, David J.; Thomas, Carrie J.; Smith, Craig R.

    2008-11-01

    Naturally occurring 234Th (24-d half-life) was used on the West Antarctic continental shelf to evaluate temporal variations in the flux of particulate material reaching the seabed, bioturbation intensity, the seasonal continuity of feeding by benthic fauna, and trends in particle selection during ingestion for six common detritivores (four surface deposit feeders and two subsurface deposit feeders). These measurements were made at three stations during the five FOODBANCS cruises (December 1999, March, June, and October 2000, and March 2001) to assess the nature of pelagic-benthic coupling on the shelf and to evaluate the seabed as a potential food bank for deposit feeders when surface primary production is minimal. Two summer regimes were sampled (March 2000 and March 2001) with the latter exhibiting a distinct 1-2-cm-thick phytodetritus layer in nearly all sediment core samples. At site B, the 234Th fluxes into the near-bottom (150/170 mab) sediment traps were indistinguishable for the December-March 2000, March-June 2000, and June-October 2000 sampling intervals (fluxes ranging from 170 to 280 dpm m -2 d -1). However, the sediment-trap 234Th flux measured for the October 2000-March 2001 interval (1000 dpm m -2 d -1) was ˜5-fold greater than during the other three sampling periods, consistent with the deposition of a phytodetritus layer. The steady-state 234Th fluxes derived from seabed inventories at site B were 2.4-2.7 times greater than the sediment-trap 234Th fluxes, indicating substantial scavenging of this particle-reactive radiotracer in the bottom 150 m of the water column and/or lateral transport near the seabed. The seabed 234Th inventories at the three stations showed no variation during the first four cruises, but were significantly greater during cruise FB-V (March 2001), when the phytodetritus layer occurred. Based on 234Th distributions in the seabed, bioturbation intensities (quantified using the diffusive mixing coefficient, Db) varied from 0

  1. Investigations of mussel-inspired polydopamine deposition on WC and Al{sub 2}O{sub 3} particles: The influence of particle size and material

    Energy Technology Data Exchange (ETDEWEB)

    Mondin, Giovanni, E-mail: giovanni.mondin@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Haft, Marcel, E-mail: m.haft@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Solid State Research, Helmholtzstr. 20, 01069 Dresden (Germany); Wisser, Florian M., E-mail: florian.wisser@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Leifert, Annika, E-mail: annika.leifert@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Mohamed-Noriega, Nasser, E-mail: nasser.mohamed-noriega@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Dörfler, Susanne, E-mail: susanne.doerfler@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Hampel, Silke, E-mail: s.hampel@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Solid State Research, Helmholtzstr. 20, 01069 Dresden (Germany); Grothe, Julia, E-mail: stefan.kaskel@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany); Kaskel, Stefan, E-mail: julia.grothe@chemie.tu-dresden.de [Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01069 Dresden (Germany)

    2014-12-15

    Polydopamine, formed by oxidation of dopamine, is a bioinspired polymer developed for multifunctional coatings by Lee et al. in 2007 by drawing inspiration from the adhesive proteins found in mussels. Due to their high versatility and substrate-independence, polydopamine coatings are gaining considerable attention in a plethora of research fields, particularly in the coating of particles, but systematic investigations of the polydopamine coating process are lacking in the literature. In this study, we explore by TEM and thermogravimetric analysis the polydopamine coating process on alumina microparticles, tungsten carbide microparticles and tungsten carbide nanoparticles. By choosing two substrates with similar size but different material (Al{sub 2}O{sub 3} and WC), as well as two substrates of the same material but different size (WC micro- and nanoparticles) we investigate the effects of both substrate material and substrate size, in order to gain some insights into the polydopamine particle coating process. As opposed to what is generally assumed in the literature, we found that the polydopamine coating thicknesses on particles, as well as the thickness growing trend, depend on the particles size and material. In particular, after 24 h of polymerization time the polydopamine coatings reached a thickness of 65 ± 10 nm in the case of Al{sub 2}O{sub 3} microparticles, 18 ± 4 nm in the case of WC microparticles and 33 ± 6 nm in the case of WC nanoparticles. - Highlights: • The coating of different particles with polydopamine was systematically investigated. • Al{sub 2}O{sub 3} microparticles and WC microparticles and nanoparticles were investigated. • The thickness of the polydopamine coating depends on the particle size. • The thickness of the polydopamine coating depends on the particle material.

  2. Spontaneous growth of whiskers from an interlayer of Mo sub 2 C beneath a diamond particle deposited in a combustion-flame

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Katsuyuki; Komatsu, Shojiro; Ishigaki, Takamasa; Matsumoto, Seiichiro; Moriyoshi, Yusuke (National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan))

    1992-02-01

    When diamond particles deposited on a molybdenum substrate in a C{sub 2}H{sub -}O{sub 2} combustion-flame were kept for one year in the ambient atmosphere at room temperature, spontaneous whisker growth from an interlayer of Mo{sub 2}C beneath the diamond particles took place. The whiskers were clarified by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM) in a polycrystal composed of MoO{sub 2}, MoOC, and Mo{sub 2}C. The growth mechanism of them is discussed from two different points of view as follows: One is that the oxidation of an interlayer of Mo{sub 2}C beneath a diamond particle effectively reduces the surface free energy between the interlayer and diamond particle; consequently, the whisker can grow by using a screw dislocation. The other is that the internal stress existing between a diamond particle and an Mo{sub 2}C interlayer provides a very reactive zone where the growth of whisker takes place through the oxidation of Mo{sub 2}C. (orig.).

  3. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.

    Science.gov (United States)

    Busser, G Wilma; Mei, Bastian; Muhler, Martin

    2012-11-01

    The deposition of hydrogen evolution sites on photocatalysts is a crucial step in the multistep process of synthesizing a catalyst that is active for overall photocatalytic water splitting. An alternative approach to conventional photodeposition was developed, applying the photocatalytic reforming of aqueous methanol solutions to deposit metal particles on semiconductor materials such as Ga₂O₃ and (Ga₀.₆ Zn₀.₄)(N₀.₆O₀.₄). The method allows optimizing the loading of the co-catalysts based on the stepwise addition of their precursors and the continuous online monitoring of the evolved hydrogen. Moreover, a synergetic effect between different co-catalysts can be directly established. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of deposition conditions on the properties of pyrolytic silicon carbide coatings for high-temperature gas-cooled reactor fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.

    1977-10-01

    Silicon carbide coatings on HTGR microsphere fuel act as the barrier to contain metallic fission products. Silicon carbide coatings were applied by the decomposition of CH 3 SiCl 3 in a 13-cm-diam (5-in.) fluidized-bed coating furnace. The effects of temperature, CH 3 SiCl 3 supply rate and the H 2 :CH 3 SiCl 3 ratio on coating properties were studied. Deposition temperature was found to control coating density, whole particle crushing strength, coating efficiency, and microstructure. Coating density and microstructure were also partially determined by the H 2 :CH 3 SiCl 3 ratio. From this work, it appears that the rate at which high quality SiC can be deposited can be increased from 0.2 to 0.5 μm/min

  5. Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant

    OpenAIRE

    Talovskaya, Anna Valerievna; Yazikov, Yegor (Egor) Grigoryevich; Filimonenko, Ekaterina Anatolievna; Samokhina, Nataljya Pavlovna; Shakhova, Tatiana Sergeevna; Parygina, Irina Alekseevna

    2016-01-01

    Local heating plants are the main pollution source of rural areas. Currently, there are few studies on the composition of local heating plants emissions. The article deals with the research results of air pollution level with solid airborne particles in the vicinity of local gas-fired heating plants of some districts of Tomsk region. The snow sampling was conducted for the purpose of solid airborne particles extraction from snow cover. The content of 28 chemical elements (heavy metals, rare e...

  6. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A comparative evaluation of drilling techniques for deposits containing free gold using radioactive gold particles as tracers

    International Nuclear Information System (INIS)

    Clarkson, R.

    1998-01-01

    In the summers of 1992 and 1994, the author designed and carried out a statistically valid research program using radioactivated gold particles as tracers (radiotracers). Two types of fully cased normal circulation (N / C) drills, two types of reverse circulation (R/C) drills and three solid auger drills were evaluated under a variety of field conditions. A frozen cylindrical core of compacted gravels containing four sizes ( 1.2, 0.60, 0.30 and 0.15 mm), (+l4,+28,+48and+100 mesh)of radiotracers was placed in 44 drill holes and the holes were re drilled. Scintillometers were used to track free gold losses due to spillage and blow-by around the collar (top) of the hole. Some gold particles were located in temporary traps in the drilling equipment and these particles would have contaminated subsequent samples (as carry-over). Several myths commonly attributed to particular drilling methods were dispelled. There was no significant difference between the recovery of the four sizes of gold particles with any of the drills tested. Observations and down-hole scintillometer records indicated that the free gold particles did not follow the bit down the hole and were either carried out of the hole or forced onto the sides of the hole at or above the depth at which the radioactive gold was positioned. A comparative evaluation of the results of these tests is presented

  8. Spatial distribution patterns of energy deposition and cellular radiation effects in lung tissue following simulated exposure to alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.

    1990-01-01

    Randomly oriented sections of rat tissue have been digitised to provide the contours of tissue-air interfaces and the locations of individual cell nuclei in the alveolated region of the lung. Sources of alpha particles with varying irradiation geometries and densities are simulated to compute the resulting random pattern of cellular irradiation, i.e. spatial coordinates, frequency, track length, and energy of traversals by the emitted alpha particles. Probabilities per unit track lengths, derived from experimental data on in vitro cellular inactivation and transformation, are then applied to the results of the alpha exposure simulations to yield an estimate of the number of both dead and viable transformed cells and their spatial distributions. If lung cancer risk is linearly related to the number of transformed cells, the carcinogenic risk for hot particles is always smaller than that for a uniform nuclide distribution of the same activity. (author)

  9. Determination of air exchange rates of rooms and deposition factors for fine particles by means of photoelectric aerosol sensors

    International Nuclear Information System (INIS)

    Skillas, G.; Siegmann, H.C.; Hueglin, Ch.

    1999-01-01

    Indoor and outdoor concentrations or airborne fine particles from internal combustion engines have been measured over periods of 24 h with a time resolution of 10 s. With this time series, the ventilation air exchange rate of different rooms has been computed using a novel approach to the solution of the mass balance equation. A 'mixing time' parameter has been introduced in order to account for the initial non-homogeneous distribution of the pollutants in the rooms. It is demonstrated that this method can be used to determine the impact of health relevant outdoor particles on the indoor particle concentration. This yields information on the protection a building offers against pollutants entering from outdoors. (author)

  10. Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Pan Qinmin; Wang Min; Wang Hongbo; Zhao Jianwei; Yin Geping

    2008-01-01

    A novel method to modify the surfaces of transition metal oxides (MO) film-electrode was proposed in this study. At first, a monolayer of terephthalic acid was covalently bonded to the surfaces of Cu 2 O films. Then silver (Ag) particles were electrodeposited on the monolayer-grafted films by a potential-step process. The resulting Ag-Cu 2 O films exhibited improved electrochemical performance as negative electrodes in lithium-ion batteries compared to the original Cu 2 O films. An increase in electrical contact between Cu 2 O particles was considered to be responsible for the improvement in the electrochemical properties

  11. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  12. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand.

    Science.gov (United States)

    Phenrat, Tanapon; Kim, Hye-Jin; Fagerlund, Fritjof; Illangasekare, Tissa; Lowry, Gregory V

    2010-11-25

    Controlled emplacement of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) particles at high particle concentration (1-10 g/L) is needed for effective in situ subsurface remediation using NZVI. Deep bed filtration theory cannot be used to estimate the transport and deposition of concentrated polyelectrolyte-modified NZVI dispersions (>0.03 g/L) because particles agglomerate during transport which violates a fundamental assumption of the theory. Here we develop two empirical correlations for estimating the deposition and transport of concentrated polyelectrolyte-modified NZVI dispersions in saturated porous media when NZVI agglomeration in porous media is assumed to reach steady state quickly. The first correlation determines the apparent stable agglomerate size formed during NZVI transport in porous media for a fixed hydrogeochemical condition. The second correlation estimates the attachment efficiency (sticking coefficient) of the stable agglomerates. Both correlations are described using dimensionless numbers derived from parameters affecting deposition and agglomeration in porous media. The exponents for the dimensionless numbers are determined from statistical analysis of breakthrough data for polyelectrolyte-modified NZVI dispersions collected in laboratory scale column experiments for a range of ionic strength (1, 10, and 50mM Na(+) and 0.25, 1, and 1.25 mM Ca(2+)), approach velocity (0.8 to 55 × 10(-4)m/s), average collector sizes (d(50)=99 μm, 300 μm, and 880 μm), and polyelectrolyte surface modifier properties. Attachment efficiency depended on approach velocity and was inversely related to collector size, which is contrary to that predicted from classic filtration models. High ionic strength, the presence of divalent cations, lower extended adsorbed polyelectrolyte layer thickness, decreased approach velocity, and a larger collector size promoted NZVI agglomeration and deposition and thus limited its mobility in porous media. These effects

  13. Characterization of 13 and 30 mum thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    CERN Document Server

    Despeisse, M; Commichau, S C; Dissertori, G; Garrigos, A; Jarron, P; Miazza, C; Moraes, D; Shah, A; Wyrsch, N; Viertel, Gert M; 10.1016/j.nima.2003.11.022

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30mum thick a-Si:H films deposited on top of an ASIC containing a linear array of high- speed low-noise transimpedance amplifiers designed in a 0.25mum CMOS technology. Experimental results presented have been obtained with a 600nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed.

  14. Computational Fluid Dynamics Simulations of Inhaled Nano-and Micro-Particle Deposition in the Rhesus Monkey Nasal Passages

    Science.gov (United States)

    2016-12-01

    reconstruction of the adult model was originally developed by Kepler et al. (1998) from serial Magnetic Resonance Imaging ( MRI ) sections of the right...upper airways and MRI imaging of a lung cast to form a contiguous reconstruction from the nostrils through 19 airway generations of the lung. For this...and Musante, C. J. (2001). A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies. Inhal. Toxicol. 13:307-324

  15. The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China

    Science.gov (United States)

    Qi, Jianhua; Liu, Xiaohuan; Yao, Xiaohong; Zhang, Ruifeng; Chen, Xiaojing; Lin, Xuehui; Gao, Huiwang; Liu, Ruhai

    2018-01-01

    Asian dust has been reported to carry anthropogenic reactive nitrogen during transport from source areas to the oceans. In this study, we attempted to characterize NH4+ and NO3- in atmospheric particles collected at a coastal site in northern China during spring dust events from 2008 to 2011. Based on the mass concentrations of NH4+ and NO3- in each total suspended particle (TSP) sample, the samples can be classified into increasing or decreasing types. In Category 1, the concentrations of NH4+ and NO3- were 20-440 % higher in dust day samples relative to samples collected immediately before or after a dust event. These concentrations decreased by 10-75 % in the dust day samples in Categories 2 and 3. Back trajectory analysis suggested that multiple factors, such as the transport distance prior to the reception site, the mixing layer depth on the transport route and the residence time across highly polluted regions, might affect the concentrations of NH4+ and NO3-. NH4+ in the dust day samples was likely either in the form of ammonium salts existing separately to dust aerosols or as the residual of incomplete reactions between ammonium salts and carbonate salts. NO3- in the dust day samples was attributed to various formation processes during the long-range transport. The positive matrix factorization (PMF) receptor model results showed that the contribution of soil dust increased from 23 to 36 % on dust days, with decreasing contributions from local anthropogenic inputs and associated secondary aerosols. The estimated deposition flux of NNH4++NO3- varied greatly from event to event; e.g., the dry deposition flux of NNH4++NO3- increased by 9-285 % in Category 1 but decreased by 46-73 % in Category 2. In Category 3, the average dry deposition fluxes of particulate nitrate and ammonium decreased by 46 % and increased by 10 %, respectively, leading to 11-48 % decrease in the fluxes of NNH4++NO3-.

  16. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  17. Euler-Lagrangian Model of Particle Motion and Deposition Effects in Electro-Static Fields based on OpenFoam

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-06-01

    Full Text Available In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.

  18. Optical transmission through aerosol deposits on diffusely reflective filters: a method for measuring the absorbing component of aerosol particles

    International Nuclear Information System (INIS)

    Rosen, H.; Novakov, T.

    1983-01-01

    It is unclear why the backscattered radiation from nonabsorbing particles should not make a significant contribution to the optical attenuation measurement. This is especially true where the absorbing component represents only a very small fraction of the aerosol mass. In this Letter we present a simple theoretical model which accounts for all these observations and points out the critical role of the filter substrate as an almost perfect diffuse reflector in the technique

  19. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa 'Beaupre', Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment

    International Nuclear Information System (INIS)

    Freer-Smith, P.H.; Beckett, K.P.; Taylor, Gail

    2005-01-01

    Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp<1.0 μm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location

  20. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    Science.gov (United States)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  1. Plans for checking hadronic energy depositions in the ATLAS calorimeters with early LHC data using charged particles

    CERN Document Server

    Davidson, N; The ATLAS collaboration

    2009-01-01

    The first data from the ATLAS detector at the Large Hadron Collider (LHC) is due to be collected later this year. This first phase will play a vital role in understanding the detector and its response, in-situ. Jet reconstruction is important for identifying new physics as well as making precision measurements of standard model physics. The fine granularity of the ATLAS calorimeters can be used to gain information about a jet's shape and the classification of energy deposits, which allows a better estimate of the jet energy to be made and in particular correction for the non-compensating nature of the calorimeter using so-called calibration weights. The classification algorithm and weights are presently calculated using simulation. In this presentation we describe an important step in the validation of ATLAS's jet calibration using charged tracks reconstructed in the inner detector and their inter-calibration with the clusters reconstructed in the calorimeters.

  2. Energy deposition by a {sup 106}Ru/{sup 106}Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2011-09-15

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  3. Influence of air-particle deposition protocols on the surface topography and adhesion of resin cement to zirconia.

    Science.gov (United States)

    Sarmento, Hugo R; Campos, Fernanda; Sousa, Rafael S; Machado, Joao P B; Souza, Rodrigo O A; Bottino, Marco A; Ozcan, Mutlu

    2014-07-01

    This study evaluated the influence of air-particle abrasion protocols on the surface roughness (SR) of zirconia and the shear bond strength (SBS) of dual-polymerized resin cement to this ceramic. Sintered zirconia blocks (n = 115) (Lava, 3M ESPE) were embedded in acrylic resin and polished. The specimens were divided according to the 'particle type' (Al: 110 µm Al2O3; Si: 110 µm SiO2) and 'pressure' factors (2.5 or 3.5 bar) (n = 3 per group): (a) Control (no air-abrasion); (b) Al2.5; (c) Si2.5; (d) Al3.5; (e) Si3.5. SR (Ra) was measured 3-times from each specimen after 20 s of air-abrasion (distance: 10 mm) using a digital optical profilometer. Surface topography was evaluated under SEM analyses. For the SBS test, 'particle type', 'pressure' and 'thermocycling' (TC) factors were considered (n = 10; n = 10 per group): Control (no air-abrasion); Al2.5; Si2.5; Al3.5; Si3.5; ControlTC; Al2.5TC; Si2.5TC; Al3.5TC; Si3.5TC. After silane application, resin cement (Panavia F2.0) was bonded and polymerized. Specimens were thermocycled (6.000 cycles, 5-55°C) and subjected to SBS (1 mm/min). Data were analyzed using ANOVA, Tukey's and Dunnett tests (5%). 'Particle' (p = 0.0001) and 'pressure' (p = 0.0001) factors significantly affected the SR. All protocols significantly increased the SR (Al2.5: 0.45 ± 0.02; Si2.5: 0.39 ± 0.01; Al3.5: 0.80 ± 0.01; Si3.5: 0.64 ± 0.01 µm) compared to the control group (0.16 ± 0.01 µm). For SBS, only 'particle' factor significantly affected the results (p = 0.015). The SiO2 groups presented significantly higher SBS results than Al2O3 (Al2.5: 4.78 ± 1.86; Si2.5: 7.17 ± 2.62; Al3.5: 4.97 ± 3.74; Si3.5: 9.14 ± 4.09 MPa) and the control group (3.67 ± 3.0 MPa). All TC specimens presented spontaneous debondings. SEM analysis showed that Al2O3 created damage in zirconia in the form of grooves, different from those observed with SiO2 groups. Air-abrasion with 110 µm Al2O3 resulted in higher roughness, but air-abrasion protocols with SiO2

  4. Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface

    Science.gov (United States)

    Bai, Y. J.; Liu, W. Z.; Chen, A.; Shi, L.; Liu, X. H.; Zi, J.

    2018-05-01

    It is well known that surface-plasmon enhanced photo-electrochemical effect or photo-thermal effect of metallic particles on a semiconductor substrate or in a suspension may result in color changes. Such character could be potentially applicable to colorimetric sensors, optical filters, and data storage devices. However, usually the response time for color changes is too long to be practically applied. In this letter, we found that the response rate of color changes could be controlled by the annealing condition of the semiconductor substrate, and changes larger than 10% in spectra were observed after only 1-min exposure to light. Furthermore, such fast response was applied to realize wavelength-dependent "write" and "read" applications with high spatial resolution.

  5. Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method

    International Nuclear Information System (INIS)

    Sa, Min-Woo; Kim, Jong Young

    2016-01-01

    In recent years, traditional scaffold fabrication techniques such as gas foaming, salt leaching, sponge replica, and freeze casting in tissue engineering have significantly limited sufficient mechanical property and cell interaction effect due to only random pores. Fused deposition modeling is the most apposite technology for fabricating the 3D scaffolds using the polymeric materials in tissue engineering application. In this study, 3D slurry mould was fabricated with a blended biphasic calcium phosphate (BCP)/Silica/Alginic acid sodium salt slurry in PCL mould and heated for two hours at 100 .deg. C to harden the blended slurry. 3D dual-pore BCP/Silica scaffold, composed of macro pores interconnected with micro pores, was successfully fabricated by sintering at furnace of 1100 .deg. C. Surface morphology and 3D shape of dual-pore BCP/Silica scaffold from scanning electron microscopy were observed. Also, the mechanical properties of 3D BCP/Silica scaffold, according to blending ratio of alginic acid sodium salt, were evaluated through compression test

  6. Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Min-Woo; Kim, Jong Young [Andong National Univ., Andong (Korea, Republic of)

    2016-10-15

    In recent years, traditional scaffold fabrication techniques such as gas foaming, salt leaching, sponge replica, and freeze casting in tissue engineering have significantly limited sufficient mechanical property and cell interaction effect due to only random pores. Fused deposition modeling is the most apposite technology for fabricating the 3D scaffolds using the polymeric materials in tissue engineering application. In this study, 3D slurry mould was fabricated with a blended biphasic calcium phosphate (BCP)/Silica/Alginic acid sodium salt slurry in PCL mould and heated for two hours at 100 .deg. C to harden the blended slurry. 3D dual-pore BCP/Silica scaffold, composed of macro pores interconnected with micro pores, was successfully fabricated by sintering at furnace of 1100 .deg. C. Surface morphology and 3D shape of dual-pore BCP/Silica scaffold from scanning electron microscopy were observed. Also, the mechanical properties of 3D BCP/Silica scaffold, according to blending ratio of alginic acid sodium salt, were evaluated through compression test.

  7. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.

    Science.gov (United States)

    Barst, Benjamin D; Ahad, Jason M E; Rose, Neil L; Jautzy, Josué J; Drevnick, Paul E; Gammon, Paul R; Sanei, Hamed; Savard, Martine M

    2017-12-01

    We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17-25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Electrochemically deposited Cu{sub 2}O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokefalos, Christos K. [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Hasan, Maksudul, E-mail: maksudul.hasan@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, England (United Kingdom); Foord, John S., E-mail: john.foord@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom)

    2017-06-30

    Highlights: • Fabrication of low-cost photocathode by electrochemical method is described. • Boron-doped diamond is presented as catalyst support. • NiO nanoparticles on Cu{sub 2}O surface enhances photocurrent and electrode stability. • Synergy of metallic interaction between Cu and Ni leads to high efficiency. - Abstract: Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu{sub 2}O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu{sub 2}O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu{sub 2}O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu{sub 2}O/BDD showed a much higher current density (−0.33 mA/cm{sup 2}) and photoconversion efficiency (0.28%) compared to the unmodified Cu{sub 2}O/BDD electrode, which are only −0.12 mA/cm{sup 2} and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu{sub 2}O surface is a crucial parameter in this regard.

  9. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room.

    Science.gov (United States)

    Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-11-15

    Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Deposition of nano-size particles on reticulated vitreous carbon using colloidal precursors : three-dimensional anodes for borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2006-07-01

    In addition to their inherently larger specific surface area, mesoscopic materials also possess a higher density of surface constrained sites, which could serve as active sites in catalysis as well as facilitate the surface diffusion of small molecules and ions relevant to various catalytic steps. This study investigated the organosol method for the deposition of platinum (Pt), iridium (Ir), gold (Au) and nickel (Ni) nano-particles on reticulated vitreous carbon to evaluate the electrocatalytic activity for BH{sub 4} oxidation by both fundamental electrochemical studies and fuel cell experiments. The application of the organosol nanometal preparation technique was based on the quaternary ammonium compound N(C{sub 8}H{sub 17}){sub 4}B(C{sub 2}H{sub 5}){sub 3}H acting as both reductant and colloid stabilizer. A current assisted variant was also studied where the reticulated vitreous carbon substrate served as the cathode operating at superficial current densities between 1.0 and 2.5 mA per cm{sup 2}. The organosol method produced a low catalyst load on reticulated vitreous carbons between 0.01 and 0.12 mg per cm{sup 2}. The electrodes were evaluated for catalytic activity toward the electro-oxidation of BH{sub 4} by cyclic voltammetry, chronopotentiometry and fuel cell experiments. Borohydride fuel cells with liquid electrolyte (2 M NaOH) were assembled using a 3-dimensional anode, a cation exchange membrane and a commercial oxygen cathode. Results showed that the anode catalyst mass activity was higher for the 3-D design compared to the case when a gas diffusion electrode served as the anode. It was concluded that the extended reaction zone of the three-dimensional anode with liquid electrolyte improved the catalyst utilization efficiency by allowing the reduction of the catalyst load. 6 refs., 1 fig.

  11. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples.

    Science.gov (United States)

    Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing

    2018-09-26

    A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg +  on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg +  may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg +  are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg +  ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Measurements of phoretic velocities of aerosol particles in microgravity conditions

    Science.gov (United States)

    Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.

    2006-11-01

    Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.

  13. Method and apparatus for debris mitigation for an electrical discharge source

    Science.gov (United States)

    Klebanoff, Leonard E [San Clemente, CA; Rader, Daniel J [Albuquerque, NM; Silfvast, William T [Helena, CA

    2006-01-24

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  14. Metod And Apparatus For Debris Mitigation For An Electrical Discharge Source

    Science.gov (United States)

    Klebanoff, Leonard E.; Silfvast, William T.; Rader, Daniel J.

    2005-05-03

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  15. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  16. Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process

    Directory of Open Access Journals (Sweden)

    Satoru Yoshimura

    2017-06-01

    Full Text Available Indium nano-particle irradiations onto zeolite powders were carried out using a pulse arc plasma source system. X-ray photoelectron spectroscopic and scanning electron microscopic studies of an indium irradiated zeolite sample revealed that indium nano-particles were successfully deposited on the sample. Besides, the sample was found to be capable of catalyzing an organic chemical reaction (i.e., Friedel-Crafts alkylation. Then, we examined whether or not the catalytic ability depends on the irradiated indium dose, having established the optimal indium dose for inducing the catalytic effect.

  17. Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame

    International Nuclear Information System (INIS)

    Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.

    2001-01-01

    Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution

  18. Influence of thermophoresis on particle removal in a moving granular bed filter and heat exchanger

    International Nuclear Information System (INIS)

    Rudnick, S.N.; First, M.W.; Price, J.M.

    1981-01-01

    Bench-scale investigations were made to determine the influence of thermophoresis on particle removal in a moving granular bed filter. A continuous flow of 2-mm diameter ceramic granules at ambient temperature entered the top of the filter and moved slowly downward under the influence of gravity countercurrent to the gas stream. At an inlet gas temperature of 240 0 C, gas mass velocity of 0.12 kg/(s.m 2 ), and granule velocities up to 0.015 cm/s, clean bed collection efficiency for a submicrometer sodium chloride aerosol was found to increase the more the gas was cooled, indicating that thermophoretic forces were playing a measurable role in particle collection

  19. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO{sub 2} nano particle

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Aghakhani, Masood [Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-01-15

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO{sub 2} nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  20. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO2 nano particle

    International Nuclear Information System (INIS)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh; Aghakhani, Masood

    2015-01-01

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO 2 nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  1. Lithogenic and biogenic particle deposition in an Antarctic coastal environment (Marian Cove, King George Island): Seasonal patterns from a sediment trap study

    Science.gov (United States)

    Khim, B. K.; Shim, J.; Yoon, H. I.; Kang, Y. C.; Jang, Y. H.

    2007-06-01

    Particulate suspended material was recovered over a 23-month period using two sediment traps deployed in shallow water (˜30 m deep) off the King Sejong Station located in Marian Cove of King George Island, West Antarctica. Variability in seasonal flux and geochemical characteristics of the sediment particles highlights seasonal patterns of sedimentation of both lithogenic (terrigenous) and biogenic particles in the coastal glaciomarine environment. All components including total mass flux, lithogenic particle flux and biogenic particle flux show distinct seasonal variation, with high recovery rates during the summer and low rates under winter fast ice. The major contributor to total mass flux is the lithogenic component, comprising from 88% during the summer months (about 21 g m -2 d -1) up to 97% during the winter season (about 2 g m -2 d -1). The lithogenic particle flux depends mainly on the amount of snow-melt (snow accumulation) delivered into the coastal region as well as on the resuspension of sedimentary materials. These fine-grained lithogenic particles are silt-to-clay sized, composed mostly of clay minerals weathered on King George Island. Biogenic particle flux is also seasonal. Winter flux is ˜0.2 g m -2 d -1, whereas the summer contribution increases more than tenfold, up to 2.6 g m -2 d -1. Different biogenic flux between the two summers indicates inter-annual variability to the spring-summer phytoplankton bloom. The maximum of lithogenic particle flux occurs over a short period of time, and follows the peak of biogenic particle flux, which lasts longer. The seasonal warming and sea-ice retreat result in change in seawater nutrient status and subsequent ice-edge phytoplankton production. Meanwhile, the meltwater input to Marian Cove from the coastal drainage in January to February plays a major role in transporting lithogenic particles into the shallow water environment, although the tidal currents may be the main agents of resuspension in this

  2. 钛沉积工艺制备TiN/cBN和TiC/金钢石涂层颗粒%Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process

    Institute of Scientific and Technical Information of China (English)

    Walid M. DAOUSH; Hee S. PARK; Soon H. HONG

    2014-01-01

    Cubic boron nitride particles coated by titanium nitride (TiN/cBN) as well as diamond particles coated by titanium carbide (TiC/diamond) were prepared by Ti molten salt deposition followed by heat-treatment process. cBN or diamond particles were mixed separately with Ti powders and molten salts (KCl, NaCl and K2TiF6). The mixture was heated at 900 °C under argon atmosphere. The produced particles were heat-treated under hydrogen at 1000 °C. The morphologies and chemical compositions of the produced particles were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and focused ion beam (FIB). The results show that the cBN and the diamond particles are coated by nano-sized Ti layers. By heat-treatment of the Ti/cBN and TiC/diamond coated particles under hydrogen atmosphere, the deposited Ti layers were interacted by the in-situ transformation reaction with the surfaces of cBN and diamond particles and converted to titanium compounds (TiN and TiC), respectively.%用钛熔盐沉积及热处理工艺分别制备碳化钛涂覆的立方碳化硼颗粒(TiN/cBN)及碳化钛涂覆的金刚石颗粒(TiC/金刚石)。将cBN或金刚石颗粒分别与钛粉和KCl、NaCl和K2TiF6熔盐混合。将所得混合物在Ar气氛中加热至900°C,然后在H2气氛中于1000°C进行热处理。采用扫描电镜、X射线衍射和聚焦离子束技术对所制得颗粒进行表征。结果表明:cBN和金刚石颗粒表面已覆盖了纳米钛层。对Ti/cBN和TiC/金刚石涂层颗粒进行热处理后,颗粒表面沉积的Ti层与cBN和金刚石颗粒发生了原位化学反应,分别转化为钛化合物TiN和TiC。

  3. Soiling of window glass of building façades: a new Dose-Response Function based on the mass of deposited particles

    Science.gov (United States)

    Ionescu, Anda; Lefèvre, Roger

    2017-04-01

    Materials used in building façades are subject to different types of weathering, an important one being soiling. The material studied here is the silica-soda-lime glass, used for windows and contemporaneous façades. Glass weathering in a polluted environment, sheltered from rain, is dominated by soiling. This phenomenon can be expressed either by an optical parameter, the haze, or by the mass of Deposited and Neoformed Particles by unit of glass surface (DNPs). By contrast to the haze, which is an optical parameter requiring an expensive technology (spectrophotometry), measuring DNPs is much simpler: the glass sample is weighed before and after exposure and the result, divided by the sample surface. After the development of a previous Dose-Response Function (DRF) expressing soiling evolution through haze, this study focuses on the development of a new DRF for soiling expressed in terms of DNPs mass, sheltered from rain. The development of this DRF follows a statistical approach. The general form proposed for the DRF is: DNPs=A(dose1, dose2, …., dosen).g(t) where g(t) represents the temporal trend obtained from standardized data. Data standardization has been employed in order to obtain a general trend independent of the environmental characteristics of the monitoring site. According to previous studies and physical considerations, the analytical form of the temporal trend g(t) was expressed by a function admitting an horizontal asymptote: the saturation level of soling. Ten monitoring campaigns (performed at different European sites) were used; the longest one runs up to 2102 days and the shortest ones, up to 365 days, with 14 to 5 records, respectively. Two different models were fitted by a non-linear regression: the Hill's model and a decreasing exponential model. Both models performed well (R2 ranging from 0.73 to 0.76) and they were further tested in order to get the final form of the DRF. The amplitude function A was considered as a linear combination of

  4. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  5. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  6. Problems of Electromagnetic Filtration of Technological Liquid on the Basis of Iron-Containing Particle Deposition in High-Gradient Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. A. Muradova

    2006-01-01

    Full Text Available Conventional methods for separation of liquid systems are out of use for cleaning liquid products of chemical technology from finely dispersed micro-quantity of iron-containing particles. Majority of these impurities is characterized by magneto-receptive behavior, in other words they exhibit a capability for magnetic precipitation; so application of magnetic precipitating filters shows promise for a removal of such particles.

  7. Mineralogy and characterization of deposited particles of the aero sediments collected in the vicinity of power plants and the open pit coal mine: Kolubara (Serbia).

    Science.gov (United States)

    Cvetković, Željko; Logar, Mihovil; Rosić, Aleksandra

    2013-05-01

    In this paper, particular attention was paid to the presence of aerosol solid particles, which occurred mainly as a result of exploitation and coal combustion in the thermal power plants of the Kolubara basin. Not all of the particles created by this type of anthropogenic pollution have an equal impact on human health, but it largely depends on their size and shape. The mineralogical composition and particle size distribution in the samples of aero sediments were defined. The samples were collected close to the power plant and open pit coal mine, in the winter and summer period during the year 2007. The sampling was performed by using precipitators placed in eight locations within the territory of the Lazarevac municipality. In order to characterize the sedimentary particles, several methods were applied: microscopy, SEM-EDX and X-ray powder diffraction. The concentration of aero sediments was also determined during the test period. Variety in the mineralogical composition and particle size depends on the position of the measuring sites, geology of the locations, the annual period of collecting as well as possible interactions. By applying the mentioned methods, the presence of inhalational and respiratory particles variously distributed in the winter and in the summer period was established. The most common minerals are quartz and feldspar. The presence of gypsum, clay minerals, calcite and dolomite as secondary minerals was determined, as well as the participation of organic and inorganic amorphic matter. The presence of quartz as a toxic mineral has a particular impact on human health.

  8. Particle growth mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Konstantinovic, Zorica; Muro, Montserrat Garcia del; Varela, Manuel; Batlle, Xavier; Labarta, AmIlcar

    2006-01-01

    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO 2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08 Ag Au c (Ag)∼0.28 and x c (Au)∼0.52)

  9. Characterization of 13 and 30 μm thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    International Nuclear Information System (INIS)

    Despeisse, M.; Anelli, G.; Commichau, S.; Dissertori, G.; Garrigos, A.; Jarron, P.; Miazza, C.; Moraes, D.; Shah, A.; Wyrsch, N.; Viertel, G.

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30 μm thick a-Si:H films deposited on top of an ASIC containing a linear array of high-speed low-noise transimpedance amplifiers designed in a 0.25 μm CMOS technology. Experimental results presented have been obtained with a 600 nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed

  10. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact - evidence from ejecta deposits in Belize and Mexico

    DEFF Research Database (Denmark)

    Vajda, Vivi; Ocampo, Adriana; Ferrow, Embaie

    2015-01-01

    deposits occur in Belize and southern Mexico where the so called Albion island spheroid bed is superimposed on the target rock (the Barton Creek Formation). We analysed the spheroid bed via Mössbauer spectroscopy, petrology, XRD, and palynology at several sites ~ 350-500 km distance from the crater centre....... Our results show that the relative concentrations of Fe in nano-phase goethite (α-FeOOH) are very high in the spheroid bed samples from Albion Island (Belize) and from Ramonal South (Mexico), but are low to absent in the spheroid bed at Ramonal North, and in the Cretaceous target rock. Moreover, our......Life on Earth was sharply disrupted 66 Ma ago as an asteroid hit the sea-floor in what is today Yucatan Peninsula, Mexico. Approximately 600 km3 of sedimentary rock were vapourized, ejected into the atmosphere and subsequently deposited globally as an ejecta apron and fallout layer. Proximal ejecta...

  11. Synthesis and tissue distribution studies of two novel esters of haloperidol and the application of radiolabelling techniques using short-lived radionuclides in the study of the deposition characteristics of suspended aerosol particles

    International Nuclear Information System (INIS)

    Smith, M.F.

    1982-01-01

    In the present work, the Schotten-Baumann reaction conditions were modified to esterify the tertiary hydroxyl group of haloperidol. The rapid synthesis (less than 20 min) makes this procedure applicable to the preparation of esters of haloperidol containing fluorine-18 (t/sup (1/2)/ 110 min), a γ-emitting radioisotope useful in external scintigraphy. In vivo distribution studies of the synthesized tritiated esters and haloperidol in the rat demonstrated that neither ester prodrug achieved overall higher brain concentration levels than haloperidol. In this study, radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to utilize insoluble particles suspended in the aerosol formulation. The suspended micro-aggregated bovine albumin microspheres were labelled with iodine-131 (t/sup (1/2)/ 8 days). The techniques developed illustrate the use of short-lived radionuclides for: 1) quantitation of each metered dose; 2) characterization of particle size distribution by the aerosol; and 3) determination of the extent of deposition of the particles in the aerosol and all of its components

  12. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska: highlighting the significance of particle aggregation

    Science.gov (United States)

    Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.

    2013-01-01

    The 2009 eruption of Redoubt Volcano included 20 tephra-producing explosions between March 15, 2009 and April 4, 2009 (UTC). Next-Generation radar (NEXRAD) data show that plumes reached heights between 4.6 km and 19 km asl and were distributed downwind along nearly all azimuths of the volcano. Explosions lasted between 0.8 mm thick), including communities along the Kenai Peninsula (80–100 km) and the city of Anchorage (170 km). Trace ash (mass of tephra-fall deposits at 54.6 × 109 kg with a total DRE volume of 20.6 × 106 m3.

  13. CT-guided aspiration cytology of advanced silicosis and confirmation of the deposited zeolite nano particles through X ray diffraction: A novel approach.

    Science.gov (United States)

    Bandyopadhyay, Arghya; Majumdar, Kaushik; Chakraborty, Abhijit; Mitra, Partha; Nag, Subhomoy

    2016-03-01

    Silicosis is a common occupational lung disease, resulting in fibrotic nodular lesions in the upper lobes of the lung parenchyma. Most of the pneumoconioses are diagnosed on the basis of relevant history and clinico-radiological correlation. Image-guided aspiration cytology appears to be poorly yielding and is not usually considered as a diagnostic modality. However, silicosis may sometimes offer a diagnostic challenge because of its radiological resemblance and clinical overlap with pulmonary tuberculosis and neoplastic lesions. We present a unique situation where image-guided fine needle aspiration cytology (FNAC) has been advised on the basis of nodular upper lobe opacities. The cytology smears revealed hypocellular granular material, while phase contrast and polarized light microscopy highlighted crystalline particles. History of silica dust exposure long back was available after the cytological evaluation, suggesting the diagnosis of pulmonary silicosis. X ray diffraction (XRD) crystallography was also possible on cytology smears, confirming zeolite nano particles of size as small as 40 - 50 nm as the concerned agent for the first time. Cytological evaluation by phase contrast and polarized light microscopy may be useful for the confirmation of silicosis, supplemented by clinical history and radiological evaluation. XRD on smears may help in determination of chemical nature and particle size. © 2015 Wiley Periodicals, Inc.

  14. Deposition of CsI aerosol in horizontal straight pipes in WIND project

    International Nuclear Information System (INIS)

    Sugimoto, J.; Maruyama, Y.; Igarashi, M.; Hidaka, A.; Maeda, A.; Harada, Y.; Hashimoto, K.

    1996-01-01

    In the WIND Project at Japan Atomic Energy Research Institute, the aerosol behaviors such as deposition, revaporization and resuspension have been investigated under the severe accident conditions. The present paper describes the deposition of CsI aerosol in horizontal straight pipes. The test results showed that the aerosol deposition depended on thermo-fluid dynamic characteristics of the carrier gas. In the test with the temperature gradient of the pipe, the deposition of CsI was remarkable within the downstream side, where the temperature of the gas was higher than that of the pipe wall. It is thus supposed that the major mechanism of the deposition was thermophoresis caused by the temperature gradient within the gas phase. However, circumferential distribution of the deposited CsI was influenced by the argon flow rate. In laminar flow case, larger amount of CsI was deposited on the ceiling than the floor area. Three-dimensional thermo-fluid dynamic analysis suggested that much sharper radial temperature gradient was developed within the gas near the ceiling area due to the formation of a natural convective secondary flow. This could result in the promotion of the thermophoretic aerosol deposition. On the other hand, slight circumferential distribution was observed in case of the high flow rate, probably due to a uniform temperature field. It was also found that the close coupling of the FP behavior and the detailed thermohydraulic analyses is essential in order to accurately predict the CsI deposition in the pipe. The findings on aerosol behaviors will also be utilized for the evaluation of sodium aerosol behaviors of fast reactors. (author)

  15. Spatially Modeling the Impact of Terrain on Wind Speed and Dry Particle Deposition Across Lake Perris in Southern California to Determine In Situ Sensor Placement

    Science.gov (United States)

    Brooks, A. N.

    2014-12-01

    While developed countries have implemented engineering techniques and sanitation technologies to keep water resources clean from runoff and ground contamination, air pollution and its contribution of harmful contaminants to our water resources has yet to be fully understood and managed. Due to the large spatial and temporal extent and subsequent computational intensity required to understand atmospheric deposition as a pollutant source, a geographic information system (GIS) was utilized. This project developed a multi-step workflow to better define the placement of in situ sensors on Lake Perris in Southern California. Utilizing a variety of technologies including ArcGIS 10.1 with 3D and Spatial Analyst extensions and WindNinja, the impact of terrain on wind speed and direction was simulated and the spatial distribution of contaminant deposition across Lake Perris was calculated as flux. Specifically, the flux of particulate matter (PM10) at the air - water interface of a lake surface was quantified by season for the year of 2009. Integrated Surface Hourly (ISH) wind speed and direction data and ground station air quality measurements from the California Air Resources Board were processed and integrated for use within ModelBuilder. Results indicate that surface areas nearest Alessandro Island and the dam of Lake Perris should be avoided when placing in situ sensors. Furthermore, the location of sensor placement is dependent on seasonal fluctuations of PM10 which can be modeled using the techniques used in this study.

  16. Surface deposition from radioactive plumes

    International Nuclear Information System (INIS)

    Garland, J.A.

    1980-01-01

    Accidents involving nuclear plants may release radioactive particles and gases to the atmosphere. Dry deposition of particles has been investigated mainly in the laboratory and a general understanding of the transfer mechanisms has been established. However there is apparently a substantial discrepancy between the few field observations of dry deposition of particles and laboratory measurements, particularly for 0.1 - 1 μm particles for which laboratory work shows very small deposition rates. In addition there are few estimates of deposition rates for forest and some other kinds of terrain. The most important gas in the context of a nuclear accident is I-131 and the behaviour of this gas at grass surfaces has received much attention. However smaller quantities of other gases and vapours may be released and the surface absorption of these species may require further investigation. In addition there is little knowledge of the behaviour of gases over many types of surface. The rate of deposition of particles and gases is influenced by many parameters including wind speed and the temperature stratification of the lower atmosphere. Conditions which give poor atmospheric dispersion usually give lower deposition velocities. Transfer to man depends on the availability of deposited materials on crops and grass. A wide range of isotopes including iodine and several metallic fission products are lost with a half life for residence on grass ranging from a few days to a few tens days, depending on climatic conditions

  17. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods

    International Nuclear Information System (INIS)

    Medina-Valtierra, Jorge; Garcia-Servin, Josafat; Frausto-Reyes, Claudio; Calixto, Sergio

    2006-01-01

    Anatase thin films ( 2 were prepared by sol-gel method. TiO 2 -anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO 2 was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones

  18. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO{sub 2} particles deposited on glass microrods

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Valtierra, Jorge [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: jormeval@yahoo.com; Garcia-Servin, Josafat [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: josgaser@yahoo.com.mx; Frausto-Reyes, Claudio [Centro de Investigaciones en Optica, A.C., Unidad Aguascalientes, Prol. Constitucion No. 607, Reserva de Loma Bonita, Aguascalientes, Ags., 20200 (Mexico)]. E-mail: cfraus@cio.mx; Calixto, Sergio [Centro de Investigaciones en Optica, A.C., Loma del Bosque No. 115, Col. Lomas del Campestre, Leon, Gto., 37150 (Mexico)]. E-mail: scalixto@cio.mx

    2006-03-15

    Anatase thin films (<200 nm in thickness) embedding Degussa P25 TiO{sub 2} were prepared by sol-gel method. TiO{sub 2}-anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO{sub 2} was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones.

  19. Controlled deposition of size-selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential with particle size

    Science.gov (United States)

    Khojasteh, Malak; Haghighat, Shima; Dawlaty, Jahan M.; Kresin, Vitaly V.

    2018-05-01

    Emulating water oxidation catalyzed by the oxomanganese clusters in the photosynthetic apparatus of plants has been a long-standing scientific challenge. The use of manganese oxide films has been explored, but while they may be catalytically active on the surface, their poor conductivity hinders their overall performance. We have approached this problem by using manganese oxide nanoparticles with sizes of 4, 6 and 8 nm, produced in a sputter-gas-aggregation source and soft-landed onto conducting electrodes. The mass loading of these catalytic particles was kept constant and corresponded to 45%–80% of a monolayer coverage. Measurements of the water oxidation threshold revealed that the onset potential decreases significantly with decreasing particle size. The final stoichiometry of the catalytically active nanoparticles, after exposure to air, was identified as predominantly MnO. The ability of such a sub-monolayer film to lower the reaction threshold implies that the key role is played by intrinsic size effects, i.e., by changes in the electronic properties and surface fields of the nanoparticles with decreasing size. We anticipate that this work will serve to bridge the knowledge gap between bulk thick film electrocatalysts and natural photosynthetic molecular-cluster complexes.

  20. Particle-in-cell vs straight-line airflow Gaussian calculations of concentration and deposition of airborne emissions out to 70 km for two sites of differing meteorological and topographical character

    International Nuclear Information System (INIS)

    Lange, R.; Dickerson, M.A.; Peterson, K.R.; Sherman, C.A.; Sullivan, T.J.

    1976-01-01

    Two numerical models for the calculation of air concentration and ground deposition of airborne effluent releases are compared. The Particle-in-Cell (PIC) model and the Straight-Line Airflow Gaussian model were used for the simulation. Two sites were selected for comparison: the Hudson River Valley, New York, and the area around the Savannah River Plant, South Carolina. Input for the models was synthesized from meteorological data gathered in previous studies by various investigators. It was found that the PIC model more closely simulated the three-dimensional effects of the meteorology and topography. Overall, the Gaussian model calculated higher concentrations under stable conditions with better agreement between the two methods during neutral to unstable conditions. In addition, because of its consideration of exposure from the returning plume after flow reversal, the PIC model calculated air concentrations over larger areas than did the Gaussian model

  1. An investigation of the deposition of traffic generated particles on vegetable surfaces and abiotic surfaces; Untersuchung der Abscheidung verkehrsgenerierter Partikeln an pflanzlichen und abiotischen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, David

    2011-07-01

    Motorized traffic is one of the most important emittents of particular airpollution, which are mainly known as fine dust. Fine dust is prior generated by combustions processes in the engine, but also by abrasion of brakes, tires and pavement. Several national and international researchgroups have found a close relation between exposition to fine dust and a set of pulmonary and cardiovascular diseases. For protection of human health a set of rules have been enacted, which should have lead to a reduction of fine dust. In addition to rules restricting fine dust concentration in the air, boundary values for fine dust emission of vehicles were set up. Due to the high and rising amount of traffic legal boundary values were exceeded at many places, which make more measures necessary to reduce fine dust concentration. Driving bans and technical measures are two possible ways following boundary values, but causes restrictions and costs. Due to this alternatives were searched to follow boundary values. In the scope of a research project founded by the federal highway administration the contribution of street greening to reduce fine dust concentration was obtained. To answer this question eight kinds of plants were examined in lab-scale experiments. In addition to this experiments on-site measurements were performed at two highways with real vegetation-structures. Further on a computer based modell was developed to describe separation of particles on leaves numerical. In face of the several experiments performed at the end of the project no clear answer can be given to the underlying question. A part of lab-scale experiments showed, that plants are able to separate particles onto their leaves in different dimensions. Other experiments could not confirm this and lead to no clear statements. Performed calculations of simulated leaves and hedges prior showed a separation of particles with a size lying above the relevant size range for immission. Just as a part of lab

  2. Deposition and lung clearence of insoluble particles following acute inhalation of trichloroethylene; Andamento della deposizione e della clearance respiratoria nel ratto di aerosol insolubile in seguito ad inalazione acuta di tricloroetilene

    Energy Technology Data Exchange (ETDEWEB)

    Calamosca, M.; Pettinato, G.

    1993-12-31

    The effects of acute inhalation of trichloroethylene (TCE), emitted by automobiles as a combustion by-product, on the rat respiratory tract were investigated. In a previous work on mice, the observed damage proved to be limited to Clara cells (CC) and dose-dependent. Injury was correlated with the metabolic properties of CC, where TCE is converted to toxic intermediate metabolites. Since rat CC are located in the distal bronchial tree, a damage at this level is supposed to affect also the mechanical clearance of insoluble particles. Sprague-Dawley, female rats were exposed for 30 min, to a concentration of 3500 ppm TCE, to investigate the occurrence of an impairment of the mucousciliary/alveolar macrophagic (AM) removal system eventually correlated with epithelial damage. Nasopharyngeal and bronchopulmonary clearance patterns were obtained from the retention of a radio-labeled carnauba wax control aerosol, the rats inhaled 24 h after exposure to TCE. Sequential sacrifices, close together in time, were performed up to 24 h to detect the rapid clearance phase in all the different regions of the respiratory tract; from then on the retention was assessed in vivo by measuring the rats up to 600 h. A new mechanistic model was designed and applied to the retention data to achieve the parameters of relative deposition and the rates of clearance. Even if a major deposition in the bronchial region of the TCE test occurred, no significant differences were detected between all the parameters describing the clearance both of the bronchoalveolar and nasopharyngeal regions.

  3. Deposition of acidifying compounds

    International Nuclear Information System (INIS)

    Fowler, D.; Cape, J.N.; Sutton, M.A.; Mourne, R.; Hargreaves, K.J.; Duyzer, J.H.; Gallagher, M.W.

    1992-01-01

    Inputs of acidifying compounds to terrestrial ecosystems include deposition of the gases NO 2 , NO, HNO 2 , HNO 3 , NH 3 and SO 2 and the ions NO 3- , NH 4+ , SO 4 2- and H + in precipitation, cloud droplets and particles. Recent research has identified particular ecosystems and regions in which terrestrial effects are closely linked with specific deposition processes. This review paper identifies areas in which important developments have occurred during the last five years and attempts to show which aspects of the subject are most important for policy makers. Amongst the conclusions drawn, the authors advise that current uncertainties in estimates of S and N inputs by dry deposition should be incorporated in critical load calculations, and that, in regions dominated by wet deposition, spatial resolution of total inputs should be improved to match the current scales of information on landscape sensitivity to acidic inputs. 44 refs., 9 figs

  4. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  5. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Mu Cheng; Xu Dongsheng; Zhang Jianping

    2010-01-01

    Surface-enhanced Raman spectroscopy (SERS) with enormous enhancements has shown great potential in ultrasensitive detection technologies, but the fabrication of large-scale, controllable and reproducible substrates with high SERS activity is a major challenge. Here, we report the preparation of Au nanoparticle arrays for SERS-active substrates with tunable particle sizes and interparticle gaps, and the enhancement factor of the SERS signal obtained from 4-mercaptopyridine probe molecules was as high as 10 7 . The experimental data points show the increase of enhancement factor as a function of the ratio of diameter to interparticle gap, which can be explained by the averaged electromagnetic field enhancement model. Furthermore, we demonstrated that this type of substrate merits its high uniformity, high reproducibility and excellent long-term stability. As the fabrication protocol of such a SERS substrate is simple and inexpensive, this substrate may anticipate a wide range of applications in SERS-based sensors.

  6. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p improved the bond strength quality and values.

  7. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    Science.gov (United States)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  8. Slowing of charged particles by particle methods

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-03-01

    We review some facts about particle methods for solving linear hyperbolic equations. We show how one gets an evaluation of integral quantities like: ∫ u(x,t) zeta(x,t) dxdt where u denotes the solution and zeta an arbitrary weight function. Then, we apply the method to the equation describing charged particle transport in a plasma with emphasis on the evaluation of energy deposition on ions and electrons [fr

  9. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  10. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  11. Direct uptake by vegetation of deposited materials

    International Nuclear Information System (INIS)

    Eriksson, Aa.

    1977-01-01

    Interception and retention in pasture grass of nuclides in ionic form and of labelled particles (40-63, 63-100, 100-200 μ in size) were studied experimentally during 1968-70. The results obtained are compared with data from grazing experiments during 1970-72. The data showed that the relative amount of material intercepted by the vegetation decreased markedly in the following order: wet-deposited nuclides > wet-deposited particles > particles dry-deposited on grass wet rain > particles dry-deposited on grass superficially wet > particles dry-deposited on dry grass, and small particles > larger particles. At high relative humidity of the air much more of a deposition could be intercepted than at low relative humidity. The retention of intercepted material was influenced by type of material and by precipitation. Intense rains shortened the half residence time considerably. Dry-deposited materials intercepted in grass suffered marked losses by falloff during the first few days after deposition, which was followed by a phase with a longer half residence time. (author)

  12. Aerosol Deposition in Health and Disease

    Science.gov (United States)

    2012-01-01

    Abstract The success of inhalation therapy is not only dependent upon the pharmacology of the drugs being inhaled but also upon the site and extent of deposition in the respiratory tract. This article reviews the main mechanisms affecting the transport and deposition of inhaled aerosol in the human lung. Aerosol deposition in both the healthy and diseased lung is described mainly based on the results of human studies using nonimaging techniques. This is followed by a discussion of the effect of flow regime on aerosol deposition. Finally, the link between therapeutic effects of inhaled drugs and their deposition pattern is briefly addressed. Data show that total lung deposition is a poor predictor of clinical outcome, and that regional deposition needs to be assessed to predict therapeutic effectiveness. Indeed, spatial distribution of deposited particles and, as a consequence, drug efficiency is strongly affected by particle size. Large particles (>6 μm) tend to mainly deposit in the upper airway, limiting the amount of drugs that can be delivered to the lung. Small particles (<2 μm) deposit mainly in the alveolar region and are probably the most apt to act systemically, whereas the particle in the size range 2–6 μm are be best suited to treat the central and small airways. PMID:22686623

  13. Exogenous deposits

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Exogenous deposits forming as a result of complex exogenous processes, passed under the influence of outside forces on the Earth surface. To them relate physical and chemical weathering, decomposition and decay of mineral masses, redistribution and transportation of material, forming and deposit of new minerals and ores steady on the earth surface conditions

  14. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations; Etude et caracterisation d'un capteur en silicium amorphe hydrogene depose sur circuit integre pour la detection de particules et de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Despeisse, M

    2006-03-15

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  15. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  16. Development of a Guinea Pig Lung Deposition Model

    Science.gov (United States)

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  17. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  18. The effect of fog on radionuclide deposition velocities

    International Nuclear Information System (INIS)

    Gibb, R.; Carson, P.; Thompson, W.

    1997-01-01

    Current nuclear power station release models do not evaluate deposition under foggy atmospheric conditions. Deposition velocities and scavenging coefficients of radioactive particles entrained in fog are presented for the Point Lepreau area of the Bay of Fundy coast. It is recommended to calculate deposition based on fog deposition velocities. The deposition velocities can be calculated from common meteorological data. The range of deposition velocities is approximately 1 - 100 cm/s. Fog deposition is surface roughness dependent with forests having larger deposition and deposition velocities than soil or grasses. (author)

  19. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    Science.gov (United States)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  20. Regional aerosol deposition in human upper airways

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  1. Regional aerosol deposition in human upper airways

    International Nuclear Information System (INIS)

    Swift, D.L.

    1991-01-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po 218 particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po 218 particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po 218 particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig

  2. Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation

    Science.gov (United States)

    McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul

    1997-01-01

    Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.

  3. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  4. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  5. Transport and deposition of nano-particles. Application to the free action of short-lived radon daughters; Transport et depot des aerosols nanometriques. Application a la fraction libre des descendants a vie courte du radon

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J

    1997-10-10

    Short-lived radon daughters ({sup 218}Po, {sup 214}Pb, {sup 214}Bi, and {sup 214}Po) are important contributors to the natural average annual individual dose. The models describing the evolution of these aerosol in a house depend critically on a parameter, the {sup 218}Po deposition velocity, which, although aerosol deposition has been extensively studied, is poorly known. A numerical and experimental study is thus carried out for a simple case: deposition in a cylindrical tube under laminar flow condition. The numerical results help understanding the difference between the transport and deposition of these radionuclides and those of non radioactive aerosols. Comparison of these well environment does not give satisfactory correlation, requiring the study of phenomena that may affect deposition. The first of these is the possible variation in the e {sup 218}Po diffusion coefficient. Furthermore, experiments coupled with numerical calculations show that this variation could be due to {sup 218}Po neutralization. The second phenomenon concerns the effect of the surface type, which is also shown experimentally. By modelling the neutralization and using results with a piratically smooth surface, good numerical/experimental correlations are obtained. Understanding this simple case than makes possible studying a more complex case: deposition in controlled turbulent flow. Two theories are thus experimentally validated. In addition, a {sup 218}Po deposition velocity representative of our experimental conditions is determined. Finally, we report a feasibility study of radon daughters transport and deposition in a ventilated chamber taking into account all the involved phenomena. (author)

  6. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  7. Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations

    Science.gov (United States)

    Padrino, Juan C.; Sprittles, James; Lockerby, Duncan

    2017-11-01

    Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).

  8. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  9. Formation, Sintering and Removal of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi

    conditions in laboratory-scale setups. Deposit formation was simulated in an Entrained Flow Reactor, to investigate the effect of operating conditions and ash chemistry on the rate of deposit formation. Experiments were performed using model biomass fly ash, prepared from mixtures of K2Si4O9, KCl, K2SO4, Ca....... Moreover, biomass ash deposits may cause severe corrosion of boiler surfaces. Therefore, reducing deposit formation and timely deposit removal are essential for optimal boiler operation. The formation, sintering and removal of boiler deposits has been investigated in this PhD project, by simulating boiler...... temperature increased the sticking probability of the fly ash particles/deposit surface, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, it was observed...

  10. Electroless plating apparatus for discrete microsized particles

    International Nuclear Information System (INIS)

    Mayer, A.

    1978-01-01

    Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur

  11. Electrolytic plating apparatus for discrete microsized particles

    International Nuclear Information System (INIS)

    Mayer, A.

    1976-01-01

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur. 4 claims, 2 figures

  12. Scanning electron microscopy applied to the study of solid pollution particles deposited on monumental stone; La microscopia electronica de barrido aplicada al estudio de particulas solidas de contaminacion depositadas sobre la piedra momumental

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Pache, F.; Alonso, F.J.; Esbert, R.M. [Departamento de Geologia, Universidad de Oviedo (Spain)

    1996-06-01

    Solid pollution particles play an important role in the decay of monumental stone. Scanning electron microscopy (SEM) in conjunction with microanalysis (EDX) are a very valuable study tool. In the present paper, particular attention is paid to sample collection and preparation. Examples of particles providing information on the source of decay are submitted. (Author) 9 refs.

  13. Deposition of corrosion products in-core

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1994-11-01

    Data on corrosion product deposits on fuel sheaths are presented for a variety of operating conditions and water chemistries: boiling and non-boiling water; surface heat flux; pH, dissolved hydrogen concentration. Corrosion product behaviour in-core may be interpreted in terms of the solubility of magnetite and how it changes with water chemistry and temperature. A hypothesis of the deposition and release mechanisms was proposed in the 1970s in which particles deposited onto the sheath and subsequently dissolved in the heated water while being irradiated. Some of the deposition data may be interpreted using a model of these mechanisms. (author). 5 refs., 6 tabs., 8 figs

  14. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  15. Infraordinary Deposits

    DEFF Research Database (Denmark)

    2016-01-01

    The exhibition Infraordinary Deposits presents three works in progress by PhD Fellow Espen Lunde Nielsen from the on-going PhD project Architectural Probes of the Infraordinary: Social Coexistence through Everyday Spaces. The infraordinary is understood as the opposite of the extraordinary...... and as that which is ‘worn half-invisible’ by use. Nevertheless, these unregarded spaces play a vital role to the social dimension of the city. The selected projects (‘urban biopsies’) on display explore how people coexist through these spaces and within the city itself, either through events in real......, daily 8.45 – 15.00 Where: Aarhus School of Architecture, The Canteen, Nørreport 18, 8000 Aarhus C...

  16. Regional aerosol deposition in human upper airways

    International Nuclear Information System (INIS)

    Swift, D.L.

    1989-01-01

    During the report period significant progress on the quantitative understanding of regional upper airway deposition of airborne particle has been realized. Replicate models of the human upper airways obtained from post-mortem casting of the nasal, oral, pharyngeal, laryngeal and upper tracheal regions and in vivo magnetic resonance imaging (MRI) of the same regions of adults and children have been employed to determine the overall and local deposition characteristics of aerosols in the ultrafine (1--100 μm diameter) and fine (0.8--12 μm diameter) region. Studies have been carried out for both nasal and oral breathing during inspiratory and expiratory flow at constant flow rates representative of rest and states of exercise. The results of these investigations indicate that particles in the size range of ''unattached'' radon progeny (1--3 nm) are deposited in both the nasal and oral passages with high efficiency (60--80%) for both inspiration and expiration, with the nasal deposition being somewhat greater (5--10%) than oral deposition. The effect of flow rate on upper airway deposition for both pathways is not great; data analysis indicates that the deposition for all flow rates from 4--50 liters/minute can be grouped by plotting deposition vs Q- 1/8 , where Q is flow rate, a far weaker dependency than observed for inertial deposition. Diffusional transport is the primary mechanism of deposition, and size dependence can be accounted for by plotting, deposition percent vs D n where D is particle diffusion coefficient and n ranges from 0.5--0.66. 2 refs

  17. Particle detection

    International Nuclear Information System (INIS)

    Charpak, G.

    2000-01-01

    In this article G.Charpak presents the principles on which particle detection is based. Particle accelerators are becoming more and more powerful and require new detectors able to track the right particle in a huge flux of particles. The gigantic size of detectors in high energy physics is often due to the necessity of getting a long enough trajectory in a magnetic field in order to deduce from the curvature an accurate account of impulses in the reaction. (A.C.)

  18. Strange particles

    International Nuclear Information System (INIS)

    Chinowsky, W.

    1989-01-01

    Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)

  19. Ground deposition pattern of an explosive radiological dispersal device (RDD)

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I.; Sattinger, D.; Berenstein, Z.; Neuman, R.; Banaim, P.; Pinhas, M.; Yaar, I.

    2014-01-01

    Activity deposition pattern of outdoor explosive RDD experiments were discussed and analyzed. In cases of fine, respirable size, aerosols dispersion, most of the activity deposited inside a circle of up to 4 fireball radii around the detonation point. About an order of magnitude less was deposited in the rest of the wide open area, in the downwind direction. The effects of different RA particles size distribution on the ground deposition pattern is still being studying under the framework of GF project

  20. Advance in research on aerosol deposition simulation methods

    International Nuclear Information System (INIS)

    Liu Keyang; Li Jingsong

    2011-01-01

    A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)

  1. Plasma wall particle balance in Tore Supra

    International Nuclear Information System (INIS)

    Grisolia, C.; Ghendrih, P.; Pegourie, B.; Grosman, A.

    1992-01-01

    A comprehensive study of the particle balance between the carbon wall and the plasma is presented. One finds that the effective particle content of the wall which governs the plasma equilibrium density departs from the deposited number of particles. This effect is dominant for the fully desaturated wall. A scaling law of the plasma density in terms of the wall effective particle content has been obtained. Moreover, the experimental data allows to estimate the plasma particle confinement time. Values ranging from 0.2 s to 0.5 s are found depending on the density. An analytical functional dependence of the particle confinement time is obtained

  2. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics...... within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles...

  3. Investigation of surface deposition pertaining to the calculation of the deposition of aerosols released in core-meltdown accidents in power reactors

    International Nuclear Information System (INIS)

    Roed, J.

    1981-10-01

    Deposition of fall-out particles of cesium-137 on vertical building surfaces has been measured. The deposition is combined with the corresponding concentration in air of fall-out particles to give the dry deposition velocity. The dry deposition velocity on plane collectors like building surfaces, plane bare soil, roads, etc. is compared to the velocity on rough surfaces like grass, clover, etc. This is done on the basis of our own measurements and the relevant literature. (author)

  4. Deposition of contaminant aerosol on human skin

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roed, Jørn; Byrne, M.A.

    2006-01-01

    Over recent years, it has been established that deposition of various types of pollutant aerosols (e.g., radioactive) on human skin can have serious deleterious effects on health. However. only few investigations in the past have been devoted to measurement of deposition velocities on skin...... of particles of the potentially problematic sizes. An experimental programme has shown the deposition velocities on skin of particles in the ca. 0.5-5 mu m AMAD range to be high and generally associated with great variations. A series of investigations have been made to identify some of the factors that lead...... to this variation. Part of the variation was found to be caused by differences between individuals, whereas another part was found to be related to environmental factors, The identification of major influences on skin contaminant deposition is important in estimating health effects as well as in identifying means...

  5. Preparation of ultrafine iron particles by chemical vapor deposition of Fe(CO) sub 5. Fe(CO) sub 5 wo gebryo to suru kiso kagaku hanno ni yoru tetsuchobiryushi no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y; Kageyama, Y. (Mitsubishi Petrochemical Co. Ltd., Tokyo (Japan)): Iwata, M. (Nagoya University, Nagoya (Japan). Faculty of Engineering)

    1991-11-10

    An ultrafine iron particle preparing process was developed, which wses gaseous phase pyrolysis in magnetic field of iron pentacarbonyl, Fe(CO){sub 5}, based on the fact that Fe(CO){sub 5} has peculiar characters that its boiling point is as low as 103{degree}C, and starts decomposing in a low temperature zone of 100{degree}C or lower. Vaporizing and introducing into a reactor an fe(CO){sub 5}, andPyrolyzing it at 200-600{degree}C while being diluted with nitrogen and applied with a magnetic field produced uitrafine iron particles of a necklace-like chain comprisinh primary particles having diameter of 15 to 25 nm with 10 to 40 of them linked in a straight chain. It was found that the specific surface area is 30-50 m{sup 2}/g, with the diameter converted from the specific surface area being relatively close to the average diameter obtained from TEM photograph, and that the particle has few pores. Magnetically the iron powder has a coercivity of 123-131 KA/m and a specific saturation magnetization of 120-140 Am{sup 2}/kg, and is expected to be applied as a high density magnetic recording medium. 5 refs.,8 figs., 3 tabs.

  6. Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

    Science.gov (United States)

    Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.

    2017-11-01

    In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.

  7. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  8. Particle therapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1993-01-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  9. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  10. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  11. Magnetic particles

    Science.gov (United States)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  12. Chromosome aberrations in workers with exposure to α-particle radiation from internal deposits of plutonium: expectations from in vitro studies and comparisons with workers with predominantly external γ-radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Curwen, Gillian B.; Tawn, E.J. [The University of Manchester, Centre for Integrated Genomic Medical Research (CIGMR), School of Population Health, Faculty of Medical and Human Sciences, Manchester (United Kingdom); Sotnik, Natalia V.; Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region 456780 (Russian Federation); Cadwell, Kevin K. [Medical School, Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne (United Kingdom); Hill, Mark A. [University of Oxford, CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Oxford (United Kingdom)

    2015-05-15

    mFISH analysis of chromosome aberration profiles of 47 and 144 h lymphocyte cultures following exposure to 193 mGy α-particle radiation confirmed that the frequency of stable aberrant cells and stable cells carrying translocations remains constant through repeated cell divisions. Age-specific rates and in vitro dose-response curves were used to derive expected translocation yields in nine workers from the Mayak nuclear facility in Russia. Five had external exposure to γ-radiation, two of whom also had exposure to neutrons, and four had external exposure to γ-radiation and internal exposure to α-particle radiation from incorporated plutonium. Doubts over the appropriateness of the dose response used to estimate translocations from the neutron component made interpretation difficult in two of the workers with external exposure, but the other three had translocation yields broadly in line with expectations. Three of the four plutonium workers had translocation yields in line with expectations, thus supporting the application of the recently derived in vitro α-particle dose response for translocations in stable cells. Overall this report demonstrates that with adequate reference in vitro dose-response curves, translocation yield has the potential to be a useful tool in the validation of red bone marrow doses resulting from mixed exposure to external and internal radiation. (orig.)

  13. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  14. Reducing tube bundle deposition with alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Frattini, P.L.

    1998-01-01

    Particle deposition rates have been measured in a high-temperature loop for magnetite and hematite depositing onto Inconel-600 under flow-boiling conditions with pH controlled using one of the following amines: morpholine, ammonia, ethanolamine, or dimethylamine. Hematite particles deposited at rates an order of magnitude greater than those measured for magnetite, although the hematite deposition rate dropped when the loop was operated under reducing conditions. The magnetite deposition rate was influenced by the amine used to control the pH, with the relative rate decreasing in the following series: morpholine (1) : ethanolamine (0.72) ammonia (0.51) : dimethylamine (0.25). These trends in deposition rate are discussed in terms of the surface chemistry of the corrosion products. Deposition rates for both magnetite and hematite increased significantly once the mixture quality exceeded about 0.3, which may be related to a change in the heat transfer mechanism from nucleate boiling to two-phase forced convection through a thin film. (author)

  15. Reducing tube bundle deposition using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Frattini, P.L.

    1999-07-01

    Particle deposition rates were measured in a high-temperature loop for magnetite and hematite depositing onto Inconel-600 under flow-boiling conditions with pH controlled, using one of the following amines: morpholine, ammonia, ethanolamine, or dimethylamine. Hematite particles deposited at rates 10 times greater than those measured for magnetite although the hematite deposition rate dropped when the loop was operated under reducing conditions. The magnetite deposition rate was influenced by the amine used to control the pH, with the relative rate decreasing in the following series: morpholine (1) : ethanolamine (0.72) : ammonia (0.51) dimethylamine (0.25). These trends in deposition rate are discussed in terms of the surface chemistry of the corrosion products. Deposition rates for both magnetite and hematite increased significantly once the mixture quality exceeded about 0.3, which may be related to a change in the heat-transfer mechanism from nucleate boiling to 2-phase forced-convection through a thin film. (author)

  16. Isolation of technogenic magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Catinon, Mickaël, E-mail: mickael.catinon@gmail.com [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Ayrault, Sophie, E-mail: sophie.ayrault@lsce.ispl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Boudouma, Omar, E-mail: boudouma@ccr.jussieu.fr [Service du MEB, UFR928, Université Pierre et Marie Curie, 75252 Paris VI (France); Bordier, Louise, E-mail: Louise.Bordier@lsce.ipsl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Agnello, Gregory, E-mail: contact@evinrude.fr [Evinrude, Espace St Germain, 38200 Vienne (France); Reynaud, Stéphane, E-mail: stephane.reynaud@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Tissut, Michel, E-mail: michel.tissut@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France)

    2014-03-01

    Technogenic magnetic particles (TMPs) emitted by various industrial sources, such as smelting plants, end up after atmospheric transfer on the soil surface. In the present study, we characterised the origin and composition of such particles emitted by a large iron smelting plant and deposited on particular substrates, namely tombstones, which act as a very interesting and appropriate matrix when compared to soil, tree bark, lichens or attic dust. The isolation and subsequent description of TMPs require a critical step of separation between different components of the sample and the magnetic particles; here, we described an efficient protocol that fulfils such a requirement: it resorts to water suspension, sonication, repeated magnetic extraction, sedimentation, sieving and organic matter destruction at 550 °C in some instances. The isolated TMPs displayed a noticeable crystalline shape with variable compositions: a) pure iron oxides, b) iron + Cr, Ni or Zn, and c) a complex structure containing Ca, Si, Mg, and Mn. Using Scanning Electron Microscope Energy Dispersive X-ray (SEM–EDX), we obtained profiles of various and distinct magnetic particles, which allowed us to identify the source of the TMPs. - Highlights: • The developed method offers a low-cost approach of large-scale dry deposition. • Tombstones are excellent supports for sampling these atmospheric deposits. • Smelted elements crystallise after cooling, giving typical technogenic magnetic particles (TMPs). • Coupling microscopic and bulk analyses allows identifying TMP origin. • Magnetic TMPs issued from steel industry were separated by a new technique.

  17. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  18. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  19. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  20. Differences in the deposition of radionuclides to leafy vegetables

    International Nuclear Information System (INIS)

    Tschiersch, J.; Shinonaga, T.; Heuberger, H.; Bunzl, K.; Pliml, A.; Dietl, F.; Keusch, M.

    2003-01-01

    To quantify the variability in deposition to several species, the dry deposition of gaseous elemental radio-iodine and particulate radio-caesium on mature leafy vegetables was studied inside a deposition chamber by comparative experiments. The simultaneous exposition of endive, head lettuce, red oak leaf lettuce, curly kale, white cabbage and spinach was performed under homogeneous and controlled conditions ( 131 vertical stroke 2 -portion, particle median, stomata opening, air humidity and temperature). Significant differences were observed for the 131 vertical stroke deposition on spring vegetables: the deposition on spinach was roughly 3times that on leaf lettuce, 4times that on endive and 9times that on head lettuce. For 134 Cs, there was no significant difference between spinach and leaf lettuce, about twice the amount was deposited on both species as on endive and 3times as on head lettuce. All summer vegetables showed differences in deposition. For Iodine, the deposition on spinach was roughly 3times (6times) that on curly kale and 35times (100times) that on white cabbage in the 2 experiments. For Caesium, the deposition to curly kale was highest, about twice that on spinach and 35times (80times) that on white cabbage. The deposition was always the lowest on the closed heads of white cabbage and head lettuce. The many open stomata of spinach increased the efficiency of gaseous deposition. In addition, rough and crimpy leafs increased the particle deposition efficiency. The estimation of the deposition velocity showed that dry deposition was in average about 8times higher for 131 vertical stroke than for 134 Cs. The influence of the particle size on the deposition velocity was small in the considered size range. Washing could reduce the contamination by about 10% for 131 vertical stroke and 45% for 134 Cs. (orig.) [de

  1. SYMPOSIUM: Particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-07-15

    Typical elementary particle experiments consist of a source of interactions (an external beam and a fixed target or two colliding beams) and a detector system including most of the following components: a tracking system and analysis magnet, calorimetry (measurement of energy deposition), hadron and electron identification, muon detection, trigger counters and processors, and data acquisition electronics. Experiments aimed at future high luminosity hadron collider (proton-proton or proton-antiproton) projects such as an upgraded Tevatron at Fermilab, the Large Hadron Collider (LHC) idea at CERN, and the proposed US Superconducting Supercollider (SSC), must ideally cover the entire solid angle and be capable of not only surviving the collisions, but also providing high resolution event information at incredible interaction rates. The Symposium on Particle Identification at High Luminosity Hadron Colliders held at Fermilab from 5-7 April (sponsored by Fermilab, the US Department of Energy, and the SSC Central Design Group) focused on this single facet of detector technology.

  2. DURIP 99 - Instrumentation for Deposition and Etching of Ferromagnetic Nanoparticles

    National Research Council Canada - National Science Library

    Kummel, Andrew

    2000-01-01

    .... Since silver is much more difficult to etch than iron due to the lack of volatile silver halides, this spontaneous coating of Fe by Ag explains the difficulty in etching Fe particles deposited on Ag substrates. (b...

  3. Atmospheric Deposition of Phosphorus to the Everglades: Concepts, Constraints, and Published Deposition Rates for Ecosystem Management

    Directory of Open Access Journals (Sweden)

    Garth W. Redfield

    2002-01-01

    Full Text Available This paper summarizes concepts underlying the atmospheric input of phosphorus (P to ecosystems, published rates of P deposition, measurement methods, and approaches to future monitoring and research. P conveyed through the atmosphere can be a significant nutrient source for some freshwater and marine ecosystems. Particle sources and sinks at the land-air interface produce variation in P deposition from the atmosphere across temporal and spatial scales. Natural plant canopies can affect deposition rates by changing the physical environment and surface area for particle deposition. Land-use patterns can alter P deposition rates by changing particle concentrations in the atmosphere. The vast majority of P in dry atmospheric deposition is conveyed by coarse (2.5 to 10 μm and giant (10 to 100 μm particles, and yet these size fractions represent a challenge for long-term atmospheric monitoring in the absence of accepted methods for routine sampling. Most information on P deposition is from bulk precipitation collectors and wet/dry bucket sampling, both with questionable precision and accuracy. Most published annual rates of P deposition are gross estimates derived from bulk precipitation sampling in locations around the globe and range from about 5 to well over 100 mg P m–2 year–1, although most inland ecosystems receive between 20 and 80 mg P m–2 year–1. Rates below 30 mg P m–2 year–1 are found in remote areas and near coastlines. Intermediate rates of 30 to 50 mg P m–2 year–1 are associated with forests or mixed land use, and rates of 50 to 100 mg P m–2 year–1 or more are often recorded from urban or agricultural settings. Comparison with other methods suggests that these bulk precipitation estimates provide crude boundaries around actual P deposition rates for various land uses. However, data screening cannot remove all positive bias caused by contamination of bucket or bulk collectors. As a consequence, continued sampling

  4. Scaling in patterns produces by cluster deposition

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Oddershede, Lene

    1997-01-01

    Cluster deposition on flat substrates can lead to surprising patterns. This pattern formation can be related either to phenomena taking place at the substrate surface or to dynamics in the cluster beam. We describe the observation of a pattern of particles each being an aggregate of Cu clusters. ...

  5. Deposition of grids on plastic detectors

    CERN Document Server

    Birabeau, J P; Mendola, Onofrio

    1972-01-01

    In order to facilitate the locating of tracks of charged particles in cellulose-nitrate and polycarbonate (Makrofol, Lexan) foils, a method has been developed for the photo-deposition of translucent coordinate grids on these materials. The grids are resistant to the strongly caustic solutions used in developing tracks in plastic foils. (9 refs) .

  6. Regional aerosol deposition in human upper airways

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 [mu]m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 [mu]m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 [mu]m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  7. Inhalation of nanoplatelets - Theoretical deposition simulations.

    Science.gov (United States)

    Sturm, Robert

    2017-12-01

    Primary objective of the contribution was the theoretical prediction of nanoplatelet deposition in the human respiratory tract. Modeling was founded on the hypothetical inhalation of graphene nanoplatelets (GNP) measuring 0.01 and 0.1μm in thickness and adopting a projected area diameter of 1-30μm. Particle uptake was assumed to take place with inhalation flow rates of 250, 500, 750, and 1000cm 3 s -1 , respectively. For an appropriate description of pulmonary particle behavior, transport of GNP in a stochastic lung structure and deposition formulae based on analytical and numerical studies were presupposed. The results obtained from the theoretical approach clearly demonstrate that GNP with a thickness of 0.01μm deposit in the respiratory tract by 20-50%, whereas GNP with a thickness of 0.1μm exhibit a deposition of 20-90%. Larger platelets deposit with higher probability than small ones. Increase of inhalation flow rate is accompanied by decreased deposition in the case of thin GNP, whilst thicker GNP are preferably accumulated in the extrathoracic region. Generation-specific deposition ranges from 0.05 to 7% (0.01μm) and from 0.05 to 9%, with maximum values being obtained in airway generation 20. In proximal airway generations (0-10), deposition is increased with inhalation flow rate, whereas in intermediate to distal generations a reverse effect may be observed. Health consequences of GNP deposition in different lung compartments are subjected to an intense debate. Copyright © 2017. Published by Elsevier GmbH.

  8. Residual Defect Density in Random Disks Deposits.

    Science.gov (United States)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.

  9. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen

    1992-01-01

    We shall discuss the principles of the main techniques applied to particle detection (including front-end electronics), the construction and performance of some of the devices presently in operation and a few ideas on future developments.

  10. Auroral particles

    International Nuclear Information System (INIS)

    Evans, D.S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries

  11. Regional lung deposition of aged and diluted sidestream tobacco smoke

    International Nuclear Information System (INIS)

    Hofmann, W; Winkler-Heil, R; McAughey, J

    2009-01-01

    Since aged and diluted smoke particles are in general smaller and more stable than mainstream tobacco smoke, it should be possible to model their deposition on the basis of their measured particle diameters. However in practice, measured deposition values are consistently greater than those predicted by deposition models. Thus the primary objective of this study was to compare theoretical predictions obtained by the Monte Carlo code IDEAL with two human deposition studies to attempt to reconcile these differences. In the first study, male and female volunteers inhaled aged and diluted sidestream tobacco smoke at two steady-state concentrations under normal tidal breathing conditions. In the second study, male volunteers inhaled aged and diluted sidestream smoke labelled with 212 Pb to fixed inhalation patterns. Median particle diameters in the two studies were 125 nm (CMD) and 210 nm (AMD), respectively. Experimental data on total deposition were consistently higher than the corresponding theoretical predictions, exhibiting significant inter-subject variations. However, measured and calculated regional deposition data are quite similar to each other, except for the extra-thoracic region. This discrepancy suggests that either the initial particle diameter decreases upon inspiration and/or additional deposition mechanisms are operating in the case of tobacco smoke particles.

  12. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  13. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    field has a dual effect on the packing density of particles in the deposits formed by .... Saturated calomel electrode (SCE) and a platinum wire mesh were used as .... density of the deposit, the smaller the volume of liquid phase, which should be.

  14. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    Science.gov (United States)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  15. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method

    International Nuclear Information System (INIS)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-01-01

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone > nylon cyclone > IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage.

  16. Dispersion, deposition and resuspension of atmospheric contaminants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The following topics are discussed: dry deposition, oil shale fugitive air emissions, particle resuspension and translocation, theoretical studies and applications, and processing of emissions by clouds and precipitation. The concentration of contaminant species in air is governed by the rate of input from sources, the rate of dilution or dispersion as a result of air turbulence, and the rate of removal to the surface by wet and dry deposition processes. Once on the surface, contaminants also may be resuspended, depending on meteorological and surface conditions. An understanding of these processes is necessary for accurate prediction of exposures of hazardous or harmful contaminants to humans, animals, and crops. In the field, plume dispersion and plume depletion by dry deposition were studied by the use of tracers. Dry deposition was investigated for particles of both respiration and inhalation interest. Complementary dry deposition studies of particles to rock canopies were conducted under controlled conditions in a wind tunnel. Because of increasing concern about hazardous, organic gases in the atmosphere some limited investigations of the dry deposition of nitrobenzene to a lichen mat were conducted in a stirred chamber. Resuspension was also studied using tracers and contaminated surfaces and in the wind tunnel. The objective of the resuspension studies was to develop and verify models for predicting the airborne concentrations of contaminants over areas with surface contamination, develop resuspension rate predictors for downwind transport, and develop predictors for resuspension input to the food chain. These models will be of particular relevance to the evaluation of deposition and resuspension of both radionuclides and chemical contaminants

  17. Simulating the initial growth of a deposit from colloidal suspensions

    International Nuclear Information System (INIS)

    Oliveira, T J; Aarão Reis, F D A

    2014-01-01

    We study the short time properties of a two-dimensional film growth model in which incident particles execute advective-diffusive motion with a vertical step followed by D horizontal steps. The model represents some features of the deposition of anisotropic colloidal particles of the experiment of Yunker et al (2013 Phys. Rev. Lett. 110 035501), in which wandering particles are attracted to particle-rich regions in the deposit. Height profiles changing from rough to columnar structure are observed as D increases from 0 (ballistic deposition) to 8, with striking similarity to the experimental ones. The effective growth exponents match the experimental estimates and the scaling of those exponents on D shows a remarkable effect of the range of the particle-deposit interaction. The nearly ellipsoidal shape of colloidal particles is represented for the calculation of roughness exponents in conditions that parallel the experimental ones, giving a range of estimates that also includes the experimental values. The effective dynamic exponents calculated from the autocorrelation function are shown to be suitable to decide between a true dynamic scaling or transient behavior, particularly because the latter leads to deviations in an exponent relation. These results are consistent with arguments on short time unstable (columnar) growth of Nicoli et al (2013 Phys. Rev. Lett. 111 209601), indicating that critical quenched KPZ dynamics does not explain that colloidal particle deposition problem. (paper)

  18. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  19. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  20. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  1. A theoretical model for prediction of deposition efficiency in cold spraying

    International Nuclear Information System (INIS)

    Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.

    2005-01-01

    The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle

  2. Suppression of coffee ring: (Particle) size matters

    Science.gov (United States)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  3. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  4. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  5. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  6. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  7. Dry deposition and resuspension of particulate matter in city environments

    International Nuclear Information System (INIS)

    Jensen, N.O.

    1984-06-01

    The report describes, mostly in qualitative terms, the deposition and resuspension of particles and how the mechanics depend on particle size. The effect of rough surfaces is discussed. It is concluded that knowledge on the subject, at relevant large Reynolds numbers, is indeed lacking. Various methods for measurements of deposition is mentioned and further the report gives some general ideas on how a suitable full scale experiment should be laid out in order to produce some data on the problems of dry deposition to city surfaces. (author)

  8. Elementary particles

    International Nuclear Information System (INIS)

    Prasad, R.

    1984-01-01

    Two previous monographs report on investigations into the extent to which a unified field theory can satisfactorily describe physical reality. The first, Unified field Theory, showed that the paths within a non-Riemannian space are governed by eigenvalue equations. The second, Fundamental Constants, show that the field tensors satisfy sets of differential equations with solutions which represent the evolution of the fields along the paths of the space. The results from the first two monographs are used in this one to make progress on the theory of elementary particles. The five chapters are as follows - Quantum mechanics, gravitation and electromagnetism are aspects of the Unified theory; the fields inside the particle; the quadratic and linear theories; the calculation of the eigenvalues and elementary particles as stable configurations of interacting fields. It is shown that it is possible to construct an internal structure theory for elementary particles. The theory lies within the framework of Einstein's programme-to identify physical reality with a specified geometrical structure. (U.K.)

  9. Pinpointing particles

    International Nuclear Information System (INIS)

    Miller, David J.

    1987-01-01

    The Conference on Position-Sensitive Detectors held at London's University College from 7-11 September highlighted the importance and the growing applications of these precision devices in many branches of science, underlining once again the high spinoff potential for techniques developed inside particle physics

  10. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  11. Pinpointing particles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David J.

    1987-10-15

    The Conference on Position-Sensitive Detectors held at London's University College from 7-11 September highlighted the importance and the growing applications of these precision devices in many branches of science, underlining once again the high spinoff potential for techniques developed inside particle physics.

  12. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  13. 'Hot' particles in the atmosphere (Vilnius, 1986)

    International Nuclear Information System (INIS)

    Lujanas, V.; Shpirkauskaite, N.

    1992-01-01

    After the Chernobyl accident in the atmosphere above Vilnius the alpha-and beta- 'hot' particles were discovered. The amount of particles and their size were measured by the alpha-radiography. After the exposition of nuclear plates the 'auroras' of the beta hot particles were of the size 0.37-22.2 μm. The change in time of the beta- 'hot' particles amount in the ground level air from the 25th of April to the 9th of May, 1986 was given. The amount of this particles deposited in the adult man respiratory tract was calculated. The energy of the discovered 8 'hot' alpha-particles ranged from 4.2 to 6.6 MeV. All the samples in which alpha- 'hot' particles found were taken in anticyclone conditions. (author). 1 tab., 1 ref

  14. Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials

    Science.gov (United States)

    Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.

    2018-03-01

    The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.

  15. Deposition of radon progeny in nonhuman primate nasal airways

    International Nuclear Information System (INIS)

    Yeh, H.C.; Cheng, Y.S.; Morgan, K.T.

    1992-01-01

    Radon progeny are usually associated with ultrafine particles ranging in diameter from 0.001 to 0.005 μm for open-quotes unattachedclose quotes progeny and from 0.005 to 0.2 μm for those attached to indoor aerosols. To assess the health effects of inhaling indoor radon progeny, it is necessary to study the regional deposition of these inhaled ultrafine particles. Laboratory animals are often used in studies of the toxicity of inhaled particles and vapors. Information on the deposition of particles larger than 0.2 μm in the nasal passages of laboratory animals is available; however, there is little information on the deposition of particles smaller than 0.2 μm. In this report, we describe the use of nasal casts of a rhesus monkey to measure total deposition of ultrafine aerosols, including unattached 220 Rn progeny, in a unidirectional-flow inhalation exposure system. Deposition data were obtained for monodisperse silver aerosols with particle sizes ranging from 0.005 to 0.2 μm, at several inspiratory and expiratory flow rates that represented normal breathing as well as hypo- and hyperventiliation. In addition, we studied the deposition of unattached 22- Rn progeny, at particle sizes from 0.001 to 0.003 μm. The deposition efficiency decreased with increasing particle size, indicating that diffusion was the dominant deposition mechanism. The effect of flow rate was essentially negligible. Based on assumptions that turbulent flow and complete mixing of aerosols occur in the nasal airways, a general equation E = 1-exp (-a D b Q c ) for d p ≤ 0.2 μm, was derived, where E is the deposition efficiency, d p is the particle diameter, D is the diffusion coefficient, and Q is the flow rate. Constants a, b, and c are estimated from experimental data, for either inspiration or expiration. This mathematical expression will be useful for making modifications to both deposition and dosimetry models

  16. Aerosol Deposition and Solar Panel Performance

    Science.gov (United States)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  17. Kinetic calculation of plasma deposition in castellated tile gaps

    International Nuclear Information System (INIS)

    Dejarnac, R.; Gunn, J.P.

    2007-01-01

    Plasma-facing divertors and limiters are armoured with castellated tiles to withstand intense heat fluxes. Recent experimental studies show that a non-negligible amount of deuterium is deposited in the gaps between tiles. We present here a numerical study of plasma deposition in this critical region. For this purpose we have developed a particle-in-cell code with realistic boundary conditions determined from kinetic calculations. We find a strong asymmetry of plasma deposition into the gaps. A significant fraction of the plasma influx is expelled from the gap to be deposited on the leading edge of the downstream tile

  18. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  19. Dry deposition of radionuclides on leafy vegetables

    International Nuclear Information System (INIS)

    Heuberger, H.; Tschiersch, J.; Shinonaga, T.; Bunzl, K.; Pliml, A.; Dietl, F.; Keusch, M.

    2004-01-01

    The dry deposition of gaseous elemental radio-iodine and particulate radio-caesium on mature leafy vegetable was studied in chamber experiments. The simultaneous exposition of endive, head lettuce, red oak leaf lettuce and spinach (spring leafy vegetable) rsp. curly kale, white cabbage and spinach (summer leafy vegetable) was performed under homogeneous and controlled conditions. The sample collective of each species was such large that for the expected variation of the results a statistically firm analysis was possible. Significant differences were observed for the 131 I deposition on spring vegetable: the deposition on spinach was roughly 3times that on leaf lettuce, 4times that on endive and 9times that on head lettuce. For 134 Cs, there was no significant difference between spinach and leaf lettuce, about twice the amount was deposited on both species as on endive and 3times as on head lettuce. All summer vegetables showed differences in deposition. For lodine, the deposition on spinach was roughly 3times (6times) that on curly kale and 35times (100times) that on white cabbage in the 2 experiments. For caesium, the deposition to curly kale was highest, about twice that on spinach and 35times (80times) that on white cabbage. The deposition velocity could be estimated, in average it was about 8times higher for 131 I than for 134 Cs. The influence of the particle size on the deposition velocity was small in the considered size range. Washing could reduce the contamination by about 10% for 131 I and 45% for 134 Cs. (orig.)

  20. Difference in inhaled aerosol deposition patterns in the lungs due to three different sized aerosols

    International Nuclear Information System (INIS)

    Miki, M.; Isawa, T.; Teshima, T.; Anazawa, Y.; Motomiya, M.

    1992-01-01

    Deposition patterns of inhaled aerosol in the lungs were studied in five normal subjects and 20 patients with lung disease by inhaling radioaerosols with three different particle size distributions. Particle size distributions were 0.84, 1.04 and 1.93 μm in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, 1.71 and 1.52, respectively. Deposition patterns of inhaled aerosols were compared qualitatively and quantitatively by studying six different parameters: alveolar deposition ratio (ALDR), X max , X mean , standard deviation (S.D.), s