WorldWideScience

Sample records for thermophilus bacteriophages isolated

  1. Draft genome sequences of three virulent Streptococcus thermophilus bacteriophages isolated from the dairy environment in the Veneto region of Italy

    DEFF Research Database (Denmark)

    Duarte, Viní­cius da Silva; Giaretta, Sabrina; Treu, Laura

    2018-01-01

    Streptococcus thermophilus, a very important dairy species, is constantly threatened by phage infection. We report the genome sequences of three S. thermophilus bacteriophages isolated from a dairy environment in the Veneto region of Italy. These sequences will be used for the development of new ...

  2. Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome

    International Nuclear Information System (INIS)

    Neve, Horst; Freudenberg, Wiebke; Diestel-Feddersen, Frederike; Ehlert, Regina; Heller, Knut J.

    2003-01-01

    The temperate Streptococcus thermophilus bacteriophage TP-J34 was identified in the lysogenic host strain J34. The majority of phage particles produced upon induction was defective and noninfectious, consisting of DNA-filled heads lacking tails. A physical map (45.6 kb) was established. Analysis of minor restriction bands of the DNA isolated from phage particles as well as the analysis of the protein pattern indicated that phage TP-J34 is a pac-type phage. This was confirmed by immunoelectron microscopy using antisera raised against virulent cos- and pac-type S. thermophilus phages. The lysogenic host J34 but not its noninducible derivate J34-12 contained phage DNA in the nonintegrated state and exhibited autolysis at elevated temperatures. Prophage-carrying strains grew homogeneously while 16 of 20 prophage-cured derivatives aggregated and sedimented rapidly. When phage TP-J34 was propagated lytically on a prophage-cured host strain, a 2.7-kb site-specific deletion occurred in the phage genome. This deletion was also identified in the prophage DNAs of relysogenized strains

  3. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  4. K. OXYTOCA BACTERIOPHAGES ISOLATION METHODS IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    G. R. Sadrtdinova

    2017-01-01

    Full Text Available The article presents the results of a study related to increasing the efficiency of phage isolation of bacteria of the species K. oxytoca, by developing the optimal composition of the medium used in the work. In scientific research, in almost all methods associated with the isolation of bacteriophages, meat-peptone broth and meat-peptone agar are used as the nutrient basis. The peculiarities of growth and cultivation of microorganisms create certain difficulties for the isolation of phages active against bacteria of the species K. oxytoca. The selection of components and the creation of an environment that would ensure the optimal growth of both the bacterial culture and the reproduction of the virus makes it possible to facilitate the isolation of bacteriophages. The number of bacterial strains used in the work was 7. All strains of cultures were obtained from the Museum of the Department of Microbiology, Virology, Epizootology and Veterinary and Sanitary Expertise of the Federal State Budget Educational Institution of Higher Education “Ulyanovsk State Agrarian University named after P.A. Stolypin”. The studies included 2 main stages. The first stage consisted in isolation of bacteriophages by the method of isolation from the external environment by the method of Adelson L.I., Lyashenko E.A. The material for the studies were samples: soil, sewage sample, fecal samples (2. Only 4 samples. According to the chosen method, the sowing of the putative phagolysate was carried out on meat-peptone agar (1.5% and the agar for isolating bacteriophages (Aph (1.5%. A positive result was the presence on the environment of negative colonies, clearly visible on the matt background of deep growth of bacteria. A negative result is a continuous growth (“lawn” of bacterial culture. As a control, the culture of the microorganism studied was used for the media. In the course of the conducted studies for the first stage, 2 bacteriophages were isolated, active

  5. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, Ligia R.; Teixeira, Jose A.; van der Mei, Henny C.; Oliveira, Rosario

    2006-01-01

    Isolation and characterization of the surface active components from the crude biosurfactant produced by Streptococcus thermophilus A was studied. A fraction rich in glycolipids was obtained by the fractionation of crude biosurfactant using hydrophobic interaction chromatography. Molecular (by

  6. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    DEFF Research Database (Denmark)

    Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute

    2017-01-01

    lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed....... thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had...... the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires...

  7. Bacteriophages

    International Nuclear Information System (INIS)

    Klieve, A.V.

    2005-01-01

    Bacteriophages or phages are bacterial viruses and are present in the rumen in large numbers. They are obligate pathogens of bacteria and are ubiquitous to the rumen ecosystem. Bacteriophages are capable of lysing their bacterial hosts within the rumen and are therefore regarded as contributing to protein recycling within the rumen, a process identified as reducing the efficiency of feed utilization. However, their presence may not be entirely detrimental to the ecosystem, and it has been argued that phages may also be involved in the maintenance of a balanced ecosystem and may play a role in recycling limiting nutrients within the rumen. Furthermore, phage therapy is enjoying a renaissance and the use of phages to control or eliminate detrimental or unwanted microbes from the gastro-intestinal tract, such as Shiga-toxin producing E. coli (food-borne disease), Streptococcus bovis (acidosis in grain-fed cattle) and methanogens (produce the greenhouse gas methane), is the focus of current investigation. In order to be able to study the interaction between individual bacteriophages and their bacterial hosts, it is necessary to: (a) isolate the phage of interest from other viruses in the source material; (b) to derive stock cultures of known phage concentration; (c) store the isolated phages; and (d) determine basic physical characteristics, such as morphology. These procedures are achieved using classical microbiological procedures and this will be the methodology described in this chapter. It is also necessary to determine nucleic acid characteristics of the phage genome and to fingerprint the phage population in the rumen using molecular biological techniques. These will be described and discussed in Chapter 4.2

  8. Bioremediation potential of a newly isolate solvent tolerant strain Bacillus thermophilus PS11

    Directory of Open Access Journals (Sweden)

    PAYEL SARKAR

    2012-01-01

    Full Text Available The increased generation of solvent waste has been stated as one of the most critical environmental problems. Though microbial bioremediation has been widely used for waste treatment but their application in solvent waste treatment is limited since the solvents have toxic effects on the microbial cells. A solvent tolerant strain of Bacillus thermophilus PS11 was isolated from soil by cyclohexane enrichment. Transmission electron micrograph of PS11 showed convoluted cell membrane and accumulation of solvents in the cytoplasm, indicating the adaptation of the bacterial strain to the solvent after 48h of incubation. The strain was also capable of growing in presence of wide range of other hydrophobic solvents with log P-values below 3.5. The isolate could uptake 50 ng/ml of uranium in its initial 12h of growth, exhibiting both solvent tolerance and metal resistance property. This combination of solvent tolerance and metal resistance will make the isolated Bacillus thermophilus PS11 a potential tool for metal bioremediation in solvent rich wastewaters.

  9. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  10. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  11. Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.

    Science.gov (United States)

    Li, Wan; Bian, Xin; Evivie, Smith Etareri; Huo, Gui-Cheng

    2016-09-01

    The CRISPR-Cas (CRISPR together with CRISPR-associated proteins) modules are the adaptive immune system, acting as an adaptive and heritable immune system in bacteria and archaea. CRISPR-based immunity acts by integrating short virus sequences in the cell's CRISPR locus, allowing the cell to remember, recognize, and clear infections. In this study, the homology of CRISPRs sequence in BIMs (bacteriophage-insensitive mutants) of Streptococcus thermophilus St-I were analyzed. Secondary structures of the repeats and the PAMs (protospacer-associated motif) of each CRISPR locus were also predicted. Results showed that CRISPR1 has 27 repeat-spacer units, 5 of them had duplicates; CRISPR2 has one repeat-spacer unit; CRISPR3 has 28 repeat-spacer units. Only BIM1 had a new spacer acquisition in CRISPR3, while BIM2 and BIM3 had no new spacers' insertion, thus indicating that while most CRISPR1 were more active than CRISPR3, new spacer acquisition occurred just in CRSPR3 in some situations. These findings will help establish the foundation for the study of CRSPR-Cas systems in lactic acid bacteria.

  12. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  13. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry.

    Science.gov (United States)

    Owens, Jane; Barton, Mary D; Heuzenroeder, Michael W

    2013-02-22

    Six hundred and sixty one samples - primarily fresh chicken faeces - were processed to isolate wild type Campylobacter jejuni bacteriophages, via overlay agar methods using C. jejuni NCTC 12662. The aims of this study were to isolate and purify bacteriophages and then test for their ability to lyse field strains of C. jejuni in vitro. Of all samples processed, 130 were positive for bacteriophages. A distinct difference was observed between samples from different poultry enterprises. No bacteriophages could be isolated from indoor broilers. The majority of bacteriophages were isolated from free range poultry - both broilers and egg layers. Bacteriophages were purified and then selected for characterization based on their ability to produce clear lysis on plaque assay, as opposed to turbid plaques. Two hundred and forty one C. jejuni field isolates were tested for sensitivity to the bacteriophages. Lysis was graded subjectively and any minimal lysis was excluded. Using this system, 59.0% of the C. jejuni isolates showed significant sensitivity to at least one bacteriophage. The sensitivity to individual bacteriophages ranged from 10.0% to 32.5% of the C. jejuni isolates. Five bacteriophages were examined by electron microscopy and determined to belong to the Myoviridae family. The physical size, predicted genetic composition and genome size of the bacteriophages correlated well with other reported Campylobacter bacteriophages. The reasons for the observed difference between indoor broilers and free range poultry is unknown, but are postulated to be due to differences in the Campylobacter population in birds under different rearing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Isolating E.Coli Bacteriophage from Raw Sewage and Determining its Selectivity to the Host Cell

    Directory of Open Access Journals (Sweden)

    SM Imeni

    2016-05-01

    Full Text Available Introduction: Bacteriophages are viruses that infect and destroy prokaryote cells, specifically the bacteria. They act too selective, so as each bacteriophage affects only on specific type of bacteria. Due to their specific features, bacteriophages can be used as an appropriate substitute for antibiotics in infectious diseases treatment. Therefore, this study aimed to isolate E. coli-specific bacteriophage from raw sewage. Methods: Eight samples of raw sewage, each containing approximately 50 ml of raw sewage with 10 minute gap, were prepared from Zargandeh wastewater treatment plant, Tehran, Iran. The sewages were mixed with Brain-heart infusion medium (BHI as a liquid culture medium in order to let the microorganisms grow. Incubation, purification and determination of bacteria were followed repeatedly to isolate the bacteriophage. Then it was tested on E.coli (ATCC 25922, Enterococcus faecalis (ATCC 19433, Staphylococcus aureus (ATCC 2392, and Yersinia enterocolitica (ATCC 9610 in order to determine the bacteriophage selectivity. Results: The E.coli bacteriophages were successfully isolated from all the eight samples, that were completely able to lyse and destroy E.coli bacterial cells, though no effect was observed on other types of bacteria. Conclusion: The study findings revealed that bacteriophages act selectively. Considering the raise of antibiotic resistance in the world, bacteriophages can serve as a good substitute for antibiotics in treating infectious diseases.

  15. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  16. Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China.

    Science.gov (United States)

    Wei, Da-Qiao; Yu, Tian-Tian; Yao, Ji-Cheng; Zhou, En-Min; Song, Zhao-Qi; Yin, Yi-Rui; Ming, Hong; Tang, Shu-Kun; Li, Wen-Jun

    2012-11-01

    A Gram-negative and aerobic bacterium, designated YIM 77875(T), was isolated from a geothermal soil sample collected at Rehai National Park, Tengchong, Yunnan Province, south-west China. Bacterial growth occurred from 37 to 65 °C (optimum 50 °C), pH 6.0-8.0 (optimum pH 7.0) and 0-1 % NaCl (w/v). Cells were rod-shaped and colonies were convex, circular, smooth, yellow and non-transparent. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain YIM 77875(T) belongs to the genus Lysobacter. The 16S rRNA gene sequence similarity values between strain YIM 77875(T) and other species of the genus Lysobacter were all below 94.7 %. The polar lipids of strain YIM 77875(T) were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and five unknown phospholipids. The predominant respiratory quinone was Q-8 and the G+C content was 68.8 mol%. Major fatty acids were iso-C(16:0), iso-C(15:0) and iso-C(11:0). On the basis of the morphological and chemotaxonomic characteristics, as well as genotypic data, strain YIM 77875(T) represents a novel species, Lysobacter thermophilus sp. nov., in the genus Lysobacter. The type strain is YIM 77875(T) (CCTCC AB 2012064(T) = KCTC 32020(T)).

  17. Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells.

    Science.gov (United States)

    Marcial, Guillermo; Messing, Jutta; Menchicchi, Bianca; Goycoolea, Francisco M; Faller, Gerhard; Graciela, Font de Valdez; Hensel, Andreas

    2013-11-01

    EPS1190 was isolated from skim milk fermented with Stretococcus thermophilus CRL1190. The polysaccharide consisted of 33% glucose and 66% galactose with 1,4- and 1,4,6-galactose residues as main building blocks beside a high amount of 1,4-linked glucose. The polymer was characterized additionally concerning viscosity and zeta potential. EPS1190 stimulated cellular vitality and proliferation of human stomach AGS cells and human buccal KB cells significantly. EPS1190 stimulated phagocytosis rate of murine macrophages RAW264.7 significantly. NO-release or anti-inflammatory effects by inhibition of LPS-induced NO release were not observed. Confocal laser scanning microscopy revealed that EPS1190 is partially internalized into AGS cells via endosomes. The bioadhesive absorption of FITC-labeled EPS1190 into the mucus layer on the apical side of the epithelium using histological tissue sections from human stomach was observed. Specific interaction of EPS1190 with mucin can be excluded as shown by microviscosimetry studies. EPS1190 increased the adhesion of H. pylori to AGS cells, which resulted in increased secretion of proinflammatory cytokines TNFa, IL-6 and IL-8. Summarizing, EPS1190 seems to stimulate epithelial cell regeneration and immunological innate defense mechanisms, which again can rationalized the use of this polysaccharide as cytoprotective compound in probiotioc preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Pasteurella haemolytica bacteriophage: identification, partial characterization, and relationship of temperate bacteriophages from isolates of Pasteurella haemolytica (biotype A, serotype 1)

    International Nuclear Information System (INIS)

    Richards, A.B.; Renshaw, H.W.; Sneed, L.W.

    1985-01-01

    Pasteurella haemolytica (biotype A, serotype 1) isolates (n = 15) from the upper respiratory tract of clinically normal cattle, as well as from lung lesions from cases of fatal bovine pasteurellosis, were examined for the presence of bacteriophage after irradiation with UV light. Treatment of all P haemolytica isolates with UV irradiation resulted in lysis of bacteria due to the induction of vegetative development of bacteriophages. The extent of growth inhibition and bacterial lysis in irradiated cultures was UV dose-dependent. Bacterial cultures exposed to UV light for 20 s reached peak culture density between 60 and 70 minutes after irradiation; thereafter, culture density declined rapidly, so that by 120 minutes, it was approximately 60% of the original value. When examined ultrastructurally, lytic cultures from each isolate revealed bacteriophages with an overall length of approximately 200 nm and that appeared to have a head with icosahedral symmetry and a contractile tail. Cell-free filtrate from each noninduced bacterial isolate was inoculated onto the other bacterial isolates in a cross-culture sensitivity assay for the presence of phages lytic for the host bacterial isolates. Zones of lysis (plaques) did not develop when bacterial lawns grown from the different isolates were inoculated with filtrates from the heterologous isolates

  19. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages

    Directory of Open Access Journals (Sweden)

    Abbas Soleimani-Delfan

    2015-09-01

    Full Text Available One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668 and D. dadantii strain sip4 (accession no. HQ423669. Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  20. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    Science.gov (United States)

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  1. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-formin...

  2. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12.

    Science.gov (United States)

    Vargas, Luis A; Olson, Douglas W; Aryana, Kayanush J

    2015-04-01

    Acid tolerance and bile tolerance are important probiotic characteristics. Whey proteins contain branched-chain amino acids, which play a role in muscle building and are popular among athletes. Increasing emphasis is being placed on diets containing less carbohydrate, less fat, and more protein. The effect of incremental additions of whey protein isolate (WPI) on probiotic characteristics of pure cultures is not known. The objective of this study was to determine the influence of added WPI on acid tolerance and bile tolerance of pure cultures of Streptococcus thermophilus ST-M5 and Lactobacillus bulgaricus LB-12. The WPI was used at 0 (control), 1, 2 and 3% (wt/vol). Assessment of acid tolerance was conducted on pure cultures at 30-min intervals for 2h of acid exposure and bile tolerance at 1-h intervals for 5h of bile exposure. Use of 1, 2, and 3% WPI improved acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. The highest counts for acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 were obtained when 3% WPI was used. Use of 2 and 3% WPI improved bile tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 over 5h of bile exposure. The use of WPI is recommended to improve acid and bile tolerance of the yogurt culture bacteria Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6.

    Directory of Open Access Journals (Sweden)

    Danielle L Peters

    Full Text Available Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is 'phage therapy', the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6 was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.

  4. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter.

    Science.gov (United States)

    Hu, Jing; Yang, Qi-Qi; Ren, Yi; Zhang, Wen-Wu; Zheng, Gang; Sun, Cong; Pan, Jie; Zhu, Xu-Fen; Zhang, Xin-Qi; Wu, Min

    2015-01-01

    A novel facultatively anaerobic, Gram-stain-negative bacterium, designated strain HT7-2(T), was isolated from Ulva prolifera collected from the intertidal zone of Qingdao sea area, China, during its bloom. Cells were rod-shaped (1.9-3.5×0.4-0.6 µm), non-sporulating and motile by gliding. Strain HT7-2(T) was able to grow at 4-50 °C (optimum 40-42 °C), pH 5.5-8.5 (optimum pH 7.0), 0-8 % (w/v) NaCl (optimum 2-3 %) and 0.5-10 % (w/v) sea salts (optimum 2.5 %). The genomic DNA G+C content was 38.8 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HT7-2(T) belonged to the genus Maribacter with sequence similarity values of 94.5-96.6 %, and was most closely related to Maribacter aestuarii GY20(T) (96.6%). Chemotaxonomic analysis showed that the main isoprenoid quinone was MK-6 and the major fatty acids were iso-C15:0 and unknown equivalent chain-length 13.565. The polar lipids of strain HT7-2(T) consisted of one phosphatidylethanolamine, four unidentified lipids and one unidentified aminolipid. On the basis of the phenotypic, phylogenetic and chemotaxonomic characteristics, strain HT7-2(T) ( =CGMCC 1.12207(T) =JCM 18466(T)) is concluded to represent a novel species of the genus Maribacter, for which the name Maribacter thermophilus sp. nov. is proposed. An emended description of the genus Maribacter is also proposed. © 2015 IUMS.

  5. Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products

    DEFF Research Database (Denmark)

    Vendramin, Veronica; Treu, Laura; Campanaro, Stefano

    2017-01-01

    to identify the core and the variable genes, which vary among strains from 196 to 265. Additionally, correlation between the isolation site and the genetic distance was investigated at genomic level. Results highlight that the phylogenetic reconstruction differs from the geographical strain distribution...

  6. Characterization of bacteriophages infecting clinical isolates of Pseudomonas aeruginosa stored in a culture collection

    Directory of Open Access Journals (Sweden)

    C.C.S. Zanetti

    2013-08-01

    Full Text Available Some clinical isolates of Pseudomonas aeruginosa stored in our culture collection did not grow or grew poorly and showed lysis on the culture plates when removed from the collection and inoculated on MacConkey agar. One hypothesis was that bacteriophages had infected and killed those clinical isolates. To check the best storage conditions to maintain viable P. aeruginosa for a longer time, clinical isolates were stored at various temperatures and were grown monthly. We investigated the presence of phage in 10 clinical isolates of P. aeruginosa stored in our culture collection. Four strains of P. aeruginosa were infected by phages that were characterized by electron microscopy and isolated to assess their ability to infect. The best condition to maintain the viability of the strains during storage was in water at room temperature. Three Siphoviridae and two Myoviridae phages were visualized and characterized by morphology. We confirmed the presence of bacteriophages infecting clinical isolates, and their ability to infect and lyse alternative hosts. Strain PAO1, however, did not show lysis to any phage. Mucoid and multidrug resistant strains of P. aeruginosa showed lysis to 50% of the phages tested.

  7. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage

    OpenAIRE

    Agata Jurczak-Kurek; Tomasz Gąsior; Bożena Nejman-Faleńczyk; Sylwia Bloch; Aleksandra Dydecka; Gracja Topka; Agnieszka Necel; Magdalena Jakubowska-Deredas; Magdalena Narajczyk; Malwina Richert; Agata Mieszkowska; Borys Wróbel; Grzegorz Węgrzyn; Alicja Węgrzyn

    2016-01-01

    A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its...

  8. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according......In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  9. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Konečná, Hana; Pantůček, Roman; Rychlík, Ivan; Zdráhal, Zbyněk; Petráš, Petr; Doškař, Jiří

    2015-08-01

    Exfoliative toxin A (ETA)-coding temperate bacteriophages are leading contributors to the toxic phenotype of impetigo strains of Staphylococcus aureus. Two distinct eta gene-positive bacteriophages isolated from S. aureus strains which recently caused massive outbreaks of pemphigus neonatorum in Czech maternity hospitals were characterized. The phages, designated ϕB166 and ϕB236, were able to transfer the eta gene into a prophageless S. aureus strain which afterwards converted into an ETA producer. Complete phage genome sequences were determined, and a comparative analysis of five designed genomic regions revealed major variances between them. They differed in the genome size, number of open reading frames, genome architecture, and virion protein patterns. Their high mutual sequence similarity was detected only in the terminal regions of the genome. When compared with the so far described eta phage genomes, noticeable differences were found. Thus, both phages represent two new lineages of as yet not characterized bacteriophages of the Siphoviridae family having impact on pathogenicity of impetigo strains of S. aureus.

  10. Isolation and characterization of specific bacteriophage Va1 to Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Carla Fernández Espinel

    2017-04-01

    Full Text Available Vibrio alginolyticus is associated with diseases in aquaculture. The misuse of antibiotics has led to the search for alternatives in the treatment of bacterial diseases, among them the application of bacteriophages that infect and destroy bacteria selectively. In this way, a highly lytic V. alginolyticus bacteriophage, termed Va1, was isolated, with the aim to evaluate its physical chemical parameters. For this purpose, different temperature, pH, chloroform exposure and host range conditions were evaluated. The temperature stability of phage Va1 showed higher titers at 20 and 30 °C decreasing from 40 °C. With respect to pH, the highest titers for the bacteriophage were between 5 and 8, and chloroform exposure reduced viability of the Va1 phage by 25%. The one-step curve determined that the latency period and the burst size were 20 minutes and 192 PFU / infective center respectively. Under the transmission electron microscope, the Va1 phage showed an icosahedral head and a non-contractile tail, belonging to the Podoviridae family. In conclusion, Va1 phage presents potential characteristics for use in phage therapy.

  11. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  12. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    Science.gov (United States)

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  13. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater.

    Science.gov (United States)

    Eydal, Hallgerd S C; Jägevall, Sara; Hermansson, Malte; Pedersen, Karsten

    2009-10-01

    Viruses were earlier found to be 10-fold more abundant than prokaryotes in deep granitic groundwater at the Aspö Hard Rock Laboratory (HRL). Using a most probable number (MPN) method, 8-30 000 cells of sulphate-reducing bacteria per ml were found in groundwater from seven boreholes at the Aspö HRL. The content of lytic phages infecting the indigenous bacterium Desulfovibrio aespoeensis in Aspö groundwater was analysed using the MPN technique for phages. In four of 10 boreholes, 0.2-80 phages per ml were found at depths of 342-450 m. Isolates of lytic phages were made from five cultures. Using transmission electron microscopy, these were characterized and found to be in the Podoviridae morphology group. The isolated phages were further analysed regarding host range and were found not to infect five other species of Desulfovibrio or 10 Desulfovibrio isolates with up to 99.9% 16S rRNA gene sequence identity to D. aespoeensis. To further analyse phage-host interactions, using a direct count method, growth of the phages and their host was followed in batch cultures, and the viral burst size was calculated to be approximately 170 phages per lytic event, after a latent period of approximately 70 h. When surviving cells from infected D. aespoeensis batch cultures were inoculated into new cultures and reinfected, immunity to the phages was found. The parasite-prey system found implies that viruses are important for microbial ecosystem diversity and activity, and for microbial numbers in deep subsurface groundwater.

  14. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    Science.gov (United States)

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  15. Isolation and Characterization of a Virulent Bacteriophage AB1 of Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Jia Shiru

    2010-04-01

    Full Text Available Abstract Background Acinetobacter baumannii is an emerging nosocomial pathogen worldwide with increasing prevalence of multi-drug and pan-drug resistance. A. baumannii exists widely in natural environment, especially in health care settings, and has been shown difficult to be eradicated. Bacteriophages are often considered alternative agent for controlling bacterial infection and contamination. In this study, we described the isolation and characterization of one virulent bacteriophage AB1 capable of specifically infecting A. baumannii. Results A virulent bacteriophage AB1, specific for infecting a clinical strain A. baumannii KD311, was first isolated from marine sediment sample. Restriction analysis indicated that phage AB1 was a dsDNA virus with an approximate genome size of 45.2 kb to 46.9 kb. Transmission electron microscopy showed that phage AB1 had an icosahedral head with a non-contractile tail and collar or whisker structures, and might be tentatively classified as a member of the Siphoviridae family. Proteomic pattern of phage AB1, generated by SDS-PAGE using purified phage particles, revealed five major bands and six minor bands with molecular weight ranging from 14 to 80 kilo-dalton. Also determined was the adsorption rate of phage AB1 to the host bacterium, which was significantly enhanced by addition of 10 mM CaCl2. In a single step growth test, phage AB1 was shown having a latent period of 18 minutes and a burst size of 409. Moreover, pH and thermal stability of phage AB1 were also investigated. At the optimal pH 6.0, 73.2% of phages survived after 60 min incubation at 50°C. When phage AB1 was used to infect four additional clinical isolates of A. baumannii, one clinical isolate of Stenotrophomonas maltophilia, and Pseudomonas aeruginosa lab strains PAK and PAO1, none of the tested strains was found susceptible, indicating a relatively narrow host range for phage AB1. Conclusion Phage AB1 was capable of eliciting efficient lysis

  16. Isolation and partial characterization of carotenoid underproducing and overproducing mutants from an extremely thermophilic Thermus thermophilus HB27

    International Nuclear Information System (INIS)

    Hoshino, T.; Yoshino, Y.; Guevarra, E.D.; Ishida, S.; Hiruta, T.; Fujii, R.; Nakahara, T.

    1994-01-01

    Twenty-two carotenoid underproducing and thirteen overproducing mutants were obtained from Thermus thermophilus HB27. The strain HB27 was found to produce at least seven colored carotenoids, believed to be identical to those produced by Thermus aquaticus YT1. Based on the results of the genetic analyses performed on twelve carotenoid underproducing mutants, they were classified into three groups; groups 1, 2 and 3. No colored carotenoid was extracted from the cells of mutants belonging to groups 2 and 3, although the accumulation of phytoene, a colorless carotenoid, was observed in group 2 strains. Group 1 was subdivided into groups 1-a and 1-b, where 1-a stains produced neither colored carotenoids nor phytoene and 1-b strains produced two polar colored carotenoids. All of the overproducing mutants produced about twelve times as much seven colored carotenoid mixtures as the parental strain. The mutation loci among all the overproducing mutants were very close to one another, possibly in the same gene. Carotenoid overproducing mutants showed an extensive resistance to UV-irradiation and showed poorer growth at higher temperatures. Carotenoid underproducing mutants were slightly more UV-sensitive but they grew almost normally at higher temperatures. These results suggest that carotenoids are secondary metabolites which are not essential for growth of T. thermophilus

  17. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani'.

    Directory of Open Access Journals (Sweden)

    Evelien M Adriaenssens

    Full Text Available The bacterium 'Dickeya solani', an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with 'Dickeya solani', the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics.

  18. In vitro characterization and in vivo properties of Salmonellae lytic bacteriophages isolated from free-range layers

    Directory of Open Access Journals (Sweden)

    L Fiorentin

    2004-06-01

    Full Text Available Occurrence of food poisoning related to Salmonella-contaminated eggs and chicken meat has been frequent in humans. Salmonella Enteritidis (SE and Salmonella Typhimurium (ST are included among the most important paratyphoid salmonellae associated with chicken meat and eggs. Elimination of Salmonella at the pre-harvest stage can play a significant role in preventing the introduction of this pathogen into the food chain and consequently in the reduction of food poisoning in humans. Bactericidal bacteriophages may provide a natural, nontoxic, feasible and non-expensive component of the multi-factorial approach for a pre-harvest control of Salmonella in poultry. Five bacteriophages lytic for SE PT4 and ST were obtained from 107 samples of feces of free-range layers in Brazil. All bacteriophages were characterized in vitro and in vivo, showing head and tail morphology and dsDNA as nucleic acids. Results of "in vivo" studies suggested that bacteriophages do not remain in Salmonella-free birds longer than one day, whereas they multiply in Salmonella-infected birds for longer periods. Besides, selection for phage-resistant SE PT4 did not seem to occur in the short term. Isolated bacteriophages will be investigated for their potential for pre-harvest biocontrol of SE PT4 in poultry.

  19. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Directory of Open Access Journals (Sweden)

    Martine C Holst Sørensen

    Full Text Available In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb, host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220 as well as receptors (CPS or flagella recognised by the isolated phages.

  20. Identification of virulence genes carried by bacteriophages obtained from clinically isolated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Karasartova, Djursun; Cavusoglu, Zeynep Burcin; Turegun, Buse; Ozsan, Murat T; Şahin, Fikret

    2016-12-01

    Bacteriophages play an important role in the pathogenicity of Staphylococcus aureus (S. aureus) either by carrying accessory virulence factors or several superantigens. Despite their importance, there are not many studies showing the actual distribution of the virulence genes carried by the prophages obtained from the clinically isolated Staphylococcus. In this study, we investigated prophages obtained from methicillin-resistant S. aureus (MRSA) strains isolated from hospital- and community-associated (HA-CA) infections for the virulence factors. In the study, 43 phages isolated from 48 MRSA were investigated for carrying toxin genes including the sak, eta, lukF-PV, sea, selp, sek, seg, seq chp, and scn virulence genes using polymerase chain reaction (PCR) and Southern blot. Restriction fragment length polymorphism was used to analyze phage genomes to investigate the relationship between the phage profiles and the toxin genes' presence. MRSA strains isolated from HA infections tended to have higher prophage presence than the MRSA strains obtained from the CA infections (97% and 67%, respectively). The study showed that all the phages with the exception of one phage contained one or more virulence genes in their genomes with different combinations. The most common toxin genes found were sea (83%) followed by sek (77%) and seq (64%). The study indicates that prophages encode a significant proportion of MRSA virulence factors.

  1. Lactococcus bacteriophages isolated from whey and their effects on commercial lactic starters

    Directory of Open Access Journals (Sweden)

    Maria Raquel de Godoy Oriani

    2004-08-01

    Full Text Available The incidence of phages of lactic acid bacteria in milk industry and their effects on acidification ability of commercial lactic acid starters were studied. Cheese whey samples (33 samples were collected from 17 factories. A total of 16 bacteriophages were isolated (12 specific for Lactococcus lactis, 3 for L. diacetylactis and one capable of lysing both species. The results showed that 10% reduction in acidification tests was not good indication of phage in the sample. The majority of samples showed reduction higher than 10%, although only 65% were phage positive. The isolated phages were quite stable and showed no reduction in infectivity even after 20 daily replications. A pool of bacteriophages was prepared from isolates and inoculated in 12 commercial lactic starters. After 8 hours of incubation, only 2 showed reduced acidification. Bacterial strains isolated from commercial starters were tested regarding the phage resistance. Considerable difference in phage sensitivity was observed among different starters (BD, D, O and L. diacetylactis. Five bacteriophages showed no infectivity on any isolates but one was infective for most of isolates.Para ampliar conhecimentos sobre a incidência de bacteriófagos de bactérias lácticas na indústria de leite do Estado de São Paulo e a sua influência sobre a capacidade acidificante de fermentos lácticos disponíveis em nosso mercado, o presente trabalho foi conduzido com o intuito de esclarecer a real situação dos laticínios no Estado. Foram coletadas 33 amostras de soro de queijo em 17 laticínios. Foram isolados 16 bacteriófagos, 12 específicos para Lactococcus lactis, 3 para L. diacetylactis e um capaz de lisar ambos os microrganismos. Os experimentos mostraram que, uma diminuição de 10% na acidez em presença de soro suspeito, ao contrário do estabelecido na literatura, não reflete a veracidade da presença de bacteriófagos na amostra, uma vez que a maioria apresentou redução acima

  2. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  3. Isolation and characterization of Enterobacteriaceae species infesting post-harvest strawberries and their biological control using bacteriophages.

    Science.gov (United States)

    Kurtböke, D Ipek; Palk, A; Marker, A; Neuman, C; Moss, L; Streeter, K; Katouli, M

    2016-10-01

    Strawberry is a significantly consumed fruit worldwide, mostly without being subjected to disinfection processes. During the harvest and transfer from farm to consumers as well as where organic farming practises have been employed, the surface of the fruit may become contaminated by pathogenic bacteria. Post-harvest strawberry fruits in punnets available for public consumption were thus screened for the presence of enteric bacteria in the Sunshine Coast region of Queensland, Australia. Some of the tested samples (13 %) were found to carry such bacteria and even in greater numbers if organic amendments were used (69 %). The bacteria were found to belong in the genera of Escherichia, Enterobacter, Raoultella, Klebsiella, Pantoea, Shigella, Citrobacter and Cronobacter within the family Enterobacteriaceae. Some of the isolates were found to adhere to Caco-2 cells representing human gut epithelium as well as carrying virulence and toxin genes. Resistance mostly against sulphafurazole, cefoxitin, ampicillin and nitrofurantoin was found among 14 different antimicrobial agents tested including 100 % resistance to cefoxitin and ampicillin in the genus Pantoea. In the second phase of the study, bacteriophages were isolated against the isolates and were subsequently applied to post-harvest fruits. A significant (P ≤ 0.001) reduction in the number of enteric bacteria was observed when a high-titre polyvalent bacteriophage suspension (×10(12) PFU/mL) was applied to the fruit surface. Bacteriophages also decreased the adhesion of the Escherichia coli isolates to Caco-2 cells. Findings might indicate that biological control using bacteriophages might be of significant value for the industry targeting to reduce pathogenic loads of bacteria on the fruit.

  4. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

    Directory of Open Access Journals (Sweden)

    Stephanie A. Fong

    2017-09-01

    Full Text Available Introduction:Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages are viruses that infect, replicate within, and lyse bacteria, causing bacterial death.Aim: To assess the activity of a phage cocktail in eradicating biofilms of ex vivo P.aeruginosa isolates from CRS patients.Methods: P. aeruginosa isolates from CRS patients with and without cystic fibrosis (CF across three continents were multi-locus sequence typed and tested for antibiotic resistance. Biofilms grown in vitro were treated with a cocktail of four phages (CT-PA. Biofilm biomass was measured after 24 and 48 h, using a crystal violet assay. Phage titrations were performed to confirm replication of the phages. A linear mixed effects model was applied to assess the effects of treatment, time, CF status, and multidrug resistance on the biomass of the biofilm.Results: The isolates included 44 strain types. CT-PA treatment significantly reduced biofilm biomass at both 24 and 48 h post-treatment (p < 0.0001, regardless of CF status or antibiotic resistance. Biomass was decreased by a median of 76% at 48 h. Decrease in biofilm was accompanied by a rise in phage titres for all except one strain.Conclusion: A single dose of phages is able to significantly reduce biofilms formed in vitro by a range of P.aeruginosa isolates from CRS patients. This represents an exciting potential and novel targeted treatment for P. aeruginosa biofilm infections and multidrug resistant bacteria.

  5. Partial characterization of a novel bacteriophage of Vibrio harveyi isolated from shrimp culture ponds in Thailand.

    Science.gov (United States)

    Pasharawipas, Tirasak; Thaikua, Surasak; Sriurairatana, Siriporn; Ruangpan, Lila; Direkbusarakum, Sataporn; Manopvisetcharean, Jaroon; Flegel, Timothy W

    2005-12-01

    A bacteriophage was isolated together with Vibrio harveyi (VH) 1114 a from a black tiger shrimp-rearing pond in Thailand. By negative staining transmission electron microscopy (TEM), the phage had an icosahedral head (diameter 60-62 nm), a rigid, non-contractile tail (9-10 nm x 100-120 nm) without a collar or terminal fibers and a genome of double stranded DNA of approximately 80 kb as determined by analysis of restriction enzyme digestion fragments. Since these features would place it in the family Siphoviridae, it was tentatively named V. harveyi siphoviridae-like phage or VHS1. VHS1 could also infect two VH reference strains LMD 22.30 and LMD 80.33 (=ATCC 14126) but yielded smaller plaques than with VH1114. The phage tolerated temperatures as high as 60 degrees C for up to 2h and overnight exposure to a broad range of pH. VHS1 lysogens of VH1114 were unstable, contained unaltered VHS1 DNA, were immune to VHS1 lysis and spontaneously released VHS1 in liquid cultures. Approximately 20 kb of the genome has been sequenced and deposited at GenBank but it mostly showed no significant homology with existing sequences in the database.

  6. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

    Science.gov (United States)

    Forsman, Päivi; Alatossava, Tapani

    1991-01-01

    The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513

  7. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

    NARCIS (Netherlands)

    Fong, Stephanie A.; Drilling, Amanda; Morales, Sandra; Cornet, Marjolein E.; Woodworth, Bradford A.; Fokkens, Wytske J.; Psaltis, Alkis J.; Vreugde, Sarah; Wormald, Peter-John

    2017-01-01

    Introduction:Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS) sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death.

  8. Bacteriophage Isolated from Sewage Eliminates and Prevents the Establishment of Escherichia Coli Biofilm

    Directory of Open Access Journals (Sweden)

    Karla Veloso Gonçalves Ribeiro

    2018-03-01

    Full Text Available Purpose: Biofilm growth exerts a negative impact on industry and health, necessitating the development of strategies to control. The objective of this work was study the lytic activity of the phage isolated from the sewage network in the formation and degradation of Escherichia coli biofilms. Methods: E. coli cultures were incubated in 96-well polystyrene microplates under controlled conditions to evaluate the biofilm formation. The E. coli cultures and established biofilms were treated with the suspensions of the vB_EcoM-UFV017 (EcoM017 bacteriophage obtained from sewage for 24 hours. The E. coli bacterial density was measured using absorbance at 600 nm and the biofilms were measured by crystal violet staining. Polystyrene coupons were used as support for Scanning Electron Microscopy and Confocal Microscopy to evaluate biofilm formation. Results: The E. coli strains formed biofilms in polystyrene microplates after 48 hours’ incubation. The highest EcoM017 phage titer, in the prevention and degradation experiments, reduced the bacterial growth and the quantity of biofilm formed by E. coli in 90.0% and 87.5%, respectively. The minimum dose capable of reducing the biofilms of this bacterium was 101 PFU/mL after 24 hours. The preformed E. coli biofilm mass was reduced 79% post exposure to the phage in the degradation assay. Microscopic analysis confirmed the results obtained in the plates assays. Conclusion: The EcoM017 phage prevented biofilm formation and degraded the E. coli-established ones. The EcoM017 phage isolated from sewage can reduce bacterial attachment and lyse the E. coli associated biofilm cells, offering biotechnological potential applicability for this phage.

  9. Use of lambda pMu bacteriophages to isolate lambda specialized transducing bacteriophages carrying genes for bacterial chemotaxis.

    Science.gov (United States)

    Kondoh, H; Paul, B R; Howe, M M

    1980-09-01

    A general method for constructing lambda specialized transducing phages is described. The method, which is potentially applicable to any gene of Escherichia coli, is based on using Mu DNA homology to direct the integration of a lambda pMu phage near the genes whose transduction is desired. With this method we isolated a lambda transducing phage carrying all 10 genes in the che gene cluster (map location, 41.5 to 42.5 min). The products of the cheA and tar genes were identified by using transducing phages with amber mutations in these genes. It was established that tar codes for methyl-accepting chemotaxis protein II (molecular weight, 62,000) and that cheA codes for two polypeptides (molecular weights, 76,000 and 66,000). Possible origins of the two cheA polypeptides are discussed.

  10. First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2018-02-01

    Full Text Available Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of 100 ± 5 nm and tail length of 150 ± 5 nm. ACP17 has eclipse and latent periods of 25 ± 5 min and 50 ± 5 min, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.

  11. [A STUDY OF THE ISOLATED BACTERIOPHAGE ΦAB-SP7 ADSORPTION ON THE CELL SURFACE OF THE AZOSPIRILLUM BRASILENSE SP7].

    Science.gov (United States)

    Guliy, O I; Karavaeva, O A; Velikov, V A; Sokolov, O I; Pavily, S A; Larionova, O S; Burov, A M; Ignatov, O V

    2016-01-01

    The bacteriophage ΦAb-Sp7 was isolated from the cells of the Azospirillum brasilense Sp7. The morphology, size of the gram-negative colonies, and range of lytic activity against other strains and species of the genus Azospirillum was tested. The isolated phage DNA was examined using electrophoretic and restriction analysis, and the size of the genome were established. The electron microscopy. resuIts show that the phage (capsid) has a strand-like form. The electron microscopy study of the bacteriophage ΦAb-Sp7 adsorption on the A. brasilense Sp7 bacterial surface was performed.

  12. The efficacy of sewage influent-isolated bacteriophages on Pseudomonas aeruginosa in a mixed-species biofilm

    KAUST Repository

    Yap, Scott

    2016-12-01

    The growth of environmentally persistent biofilms in cooling towers causes several associated problems, including microbiologically-induced corrosion (MIC) and biofouling. Current chemical control methods are not only ineffective against biofilms and costly to procure, they also have downstream environmental impacts when released untreated, or incur additional treatment costs. Bacteriophages are alternative biofilm control agents that have the potential to be more effective, cheaper to produce and yet have a more benign effect on the environment. In this study, biofilms grown under conditions simulating seawater fed cooling towers were characterized and the differences in growth and community make-up across time and different substrates were assessed. An MIC associated bacterium common in cooling tower water, P. aeruginosa, was chosen. Seven bacteriophage strains found to be effective against the chosen bacterium were isolated from wastewater influent. The relative effectiveness of these strains was measured against P. aeruginosa across different salinities. Separate biofilms fed with P. aeruginosa enriched seawater were characterized and the effectiveness of the isolated strains, singly and in cocktails, against the enriched biofilms was measured.

  13. Detection of a Bacteriophage Gene Encoding a Mu-like Portal Protein in Haemophilus parasuis Reference Strains and Field Isolates by Nested Polymerase Chain Reaction

    Science.gov (United States)

    A nested PCR assay was developed to determine the presence of a gene encoding a bacteriophage Mu-like portal protein, gp29, in 15 reference strains and 31 field isolates of Haemophilus parasuis. Specific primers, based on the gene’s sequence, were utilized. A majority of the virulent reference strai...

  14. Complete Genome Sequence of the Pigmented Streptococcus thermophilus Strain JIM8232

    Science.gov (United States)

    Delorme, Christine; Bartholini, Claire; Luraschi, Mélanie; Pons, Nicolas; Loux, Valentin; Almeida, Mathieu; Guédon, Eric; Gibrat, Jean-François; Renault, Pierre

    2011-01-01

    Streptococcus thermophilus is a dairy species commonly used in the manufacture of cheese and yogurt. Here, we report the complete sequence of S. thermophilus strain JIM8232, isolated from milk and which produces a yellow pigment, an atypical trait for this bacterium. PMID:21914889

  15. Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products.

    Science.gov (United States)

    Deng, Kaibo; Fang, Wei; Zheng, Baodong; Miao, Song; Huo, Guicheng

    2018-03-01

    Bacteriophage infection is a large factor in dairy industrial production failure on the basis of pure inoculation fermentation, and developing good commercial starter cultures from wild dairy products and improving the environmental vigor of starter cultures by enhancing their phage resistance are still the most effective solutions. Here we used a spontaneous isolation method to obtain bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus strains that are used in traditional Chinese fermented dairy products. We analyzed their phenotypes, fermentation characteristics, and resistance mechanisms. The results showed that bacteriophage-insensitive mutants (BIM) BIM8 and BIM12 had high bacteriophage resistance while exhibiting fermentation and coagulation attributes that were as satisfying as those of their respective parent strains KLDS1.1016 and KLDS1.1028. According to the attachment receptor detection, mutants BIM8 and BIM12 exhibited reduced absorption to bacteriophage phiLdb compared with their respective bacteriophage-sensitive parent strains because of changes to the polysaccharides or teichoic acids connected to their peptidoglycan layer. Additionally, genes, including HSDR, HSDM, and HSDS, encoding 3 subunits of a type I restriction-modification system were identified in their respective parent strains. We also discovered that HSDR and HSDM were highly conserved but that HSDS was variable because it is responsible for the DNA specificity of the complex. The late lysis that occurred only in strain KLDS1.1016 and not in strain KLDS1.1028 suggests that the former and its mutant BIM8 also may have an activatable restriction-modification mechanism. We conclude that the L. bulgaricus BIM8 and BIM12 mutants have great potential in the dairy industry as starter cultures, and their phage-resistance mechanism was effective mainly due to the adsorption interference and restriction-modification system. Copyright © 2018 American Dairy Science

  16. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    OpenAIRE

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns.

  17. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE Foods

    Directory of Open Access Journals (Sweden)

    Chenxi Huang

    2018-05-01

    Full Text Available Salmonella infection is an important foodborne consumer health concern that can be mitigated during food processing. Bacteriophage therapy imparts many advantages over conventional chemical preservatives including pathogen specificity, natural derivation, potency, and providing a high degree of safety. The objective of this study aimed to isolate and characterize a phage that effectively control Salmonella food contamination. Out of 35 isolated phages, LPSE1 demonstrated a broad Salmonella host range, robust lytic ability, extensive pH tolerance, and prolonged thermal stability. The capacity for phage LPSE1 to control Salmonella Enteritidis-ATCC13076 in milk, sausage, and lettuce was established. Incubation of LPSE1 at 28°C in milk reduced recoverable Salmonella by approximately 1.44 log10 CFU/mL and 2.37 log10 CFU/mL at MOI of 1 and 100, respectively, as relative to the phage-excluded control. Upon administration of LPSE1 at an MOI of 1 in sausage, Salmonella count decreased 0.52 log10 at 28°C. At MOI of 100, the count decreased 0.49 log10 at 4°C. Incubation of LPSE1 on lettuce reduced recoverable Salmonella by 2.02 log10, 1.71 log10, and 1.45 log10 CFU/mL at an MOI of 1, 10, and 100, respectively, as relative to the negative control. Taken together, these findings establish LPSE1 as an effective weapon against human pathogenic Salmonella in various ready to eat foods.

  18. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase.

    Directory of Open Access Journals (Sweden)

    Chun-Ru Hsu

    Full Text Available BACKGROUND: Klebsiella pneumoniae is one of the major pathogens causing hospital-acquired multidrug-resistant infections. The capsular polysaccharide (CPS is an important virulence factor of K. pneumoniae. With 78 capsular types discovered thus far, an association between capsular type and the pathogenicity of K. pneumoniae has been observed. METHODOLOGY/PRINCIPAL FINDINGS: To investigate an initially non-typeable K. pneumoniae UTI isolate NTUH-K1790N, the cps gene region was sequenced. By NTUH-K1790N cps-PCR genotyping, serotyping and determination using a newly isolated capsular type-specific bacteriophage, we found that NTUH-K1790N and three other isolates Ca0507, Ca0421 and C1975 possessed a new capsular type, which we named KN2. Analysis of a KN2 CPS(- mutant confirmed the role of capsule as the target recognized by the antiserum and the phage. A newly described lytic phage specific for KN2 K. pneumoniae, named 0507-KN2-1, was isolated and characterized using transmission electron microscopy. Whole-genome sequencing of 0507-KN2-1 revealed a 159 991 bp double-stranded DNA genome with a G+C content of 46.7% and at least 154 open reading frames. Based on its morphological and genomic characteristics, 0507-KN2-1 was classified as a member of the Myoviridae phage family. Further analysis of this phage revealed a 3738-bp gene encoding a putative polysaccharide depolymerase. A recombinant form of this protein was produced and assayed to confirm its enzymatic activity and specificity to KN2 capsular polysaccharides. KN2 K. pneumoniae strains exhibited greater sensitivity to this depolymerase than these did to the cognate phage, as determined by spot analysis. CONCLUSIONS/SIGNIFICANCE: Here we report that a group of clinical strains possess a novel Klebsiella capsular type. We identified a KN2-specific phage and its polysaccharide depolymerase, which could be used for efficient capsular typing. The lytic phage and depolymerase also have potential as

  19. Bacteriophage populations

    International Nuclear Information System (INIS)

    Klieve, A.V.; Gilbert, R.A.

    2005-01-01

    Bacteriophages are ubiquitous to the rumen ecosystem; they have a role in nitrogen metabolism through bacterial lysis in the rumen, they may help to regulate bacterial population densities, be an agent for genetic exchange and be of use in biocontrol of bacterial populations through phage therapy. In Chapter 2.1, classical methodologies to enable the isolation, enumeration, storage and morphological characterization of phages were presented. In addition to these classic procedures, molecular biological techniques have resulted in a range of methodologies to investigate the type, topology and size of phage nucleic acids, to fingerprint individual phage strains and to create a profile of ruminal phage populations. Different phage families possess all the currently identified combinations of double-stranded or single-stranded RNA or DNA and may also possess unusual bases such as 5-hydroxymethylcytosine (found in T-even phage) or 5- hydroxymethyluracil and uracil in place of thymidine. In all morphological groups of phage except the filamentous phages, the nucleic acid is contained within a head or polyhedral structure, predominantly composed of protein. Filamentous phages have their nucleic acid contained inside the helical filament, occupying much of its length. Many of the procedures used with phage nucleic acids and double-stranded (ds) DNA, in particular, are not specific to ruminal phages but are the same as in other areas where nucleic acids are investigated and are covered elsewhere in the literature and this chapter. Most applications with rumen phages are similar to those reported for phages of non-ruminal bacteria and are covered in general texts such as Maniatis et al. In this chapter, we will concentrate on aspects of methodology as they relate to ruminal phages

  20. Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX

    International Nuclear Information System (INIS)

    Thurm, P.; Garro, A.J.

    1975-01-01

    Bacillus subtilis mutants with lesions in PBSX prophage genes have been isolated. One of these appears to be a regulatory mutant and is defective for mitomycin C-induced derepression of PBSX; the others are defective for phage capsid formation. All of the PBSX structural proteins are synthesized during induction of the capsid defective mutants; however, several of these proteins exhibit abnormal serological reactivity with anti-PBSX antiserum. The two head proteins X4 and X7 are not immunoprecipitable in a mutant which fails to assemble phage head structures. In the tail mutant, proteins X5 and X6 are not immunoprecipitable, tails are not assembled, and a possible tail protein precursor remains uncleaved. The noninducible mutant does not synthesize any PBSX structural proteins after exposure to mitomycin C. The mutation is specific for PBSX since phi 105 and SPO2 lysogens of the mutant are inducible. All of the known PBSX-specific mutations were shown to be clustered between argC and metC on the host chromosome. In addition, the metC marker was shown to be present in multiple copies in cells induced for PBSX replication. This suggests that the derepressed prophage replicates while still integrated and that replication extends into the adjacent regions of the host chromosome

  1. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle.

    Science.gov (United States)

    Li, Longping; Zhang, Zhiying

    2014-09-01

    Mastitis in dairy cattle continues to be an economically important disease. However, control is complicated by a high prevalence of resistance to antibiotics. Phage therapy, therefore, is considered as an alternative way of controlling bacterial infections and contaminations. In this study, we have described isolation and characterization of a highly virulent phage SPW from wastewater of dairy farm, which possesses a strong lytic capability against mastitis-associated Staphylococcus aureus, the most important pathogen in bovine clinical and subclinical mastitis. The phage SPW produced large, round and clear plaques on bacterial culture plates. TEM showed phage SPW has an icosahedral head 62.5 nm in diameter and long tail of 106 nm, head and tail were held together by a connector of 18 ± 1.5 nm long and can be classified as a member of the Myoviridae family. Restriction analysis indicated that phage SPW was a dsDNA virus with an approximate genome size of 65-69 kb. One-step growth kinetics showed a short latency period of about 10-15 min and a rise period of 50 min and a relatively small burst size was 44 ± 3 phages particles/infected cell. Moreover, adsorption rates were not influenced by calcium ions and phage SPW was relatively stable in a wide range of temperature and pH values, and resistant to chloroform and isopropanol. The optimal multiplicity of infection (MOI) was 0.01. When phage SPW was used to infect five other clinically isolated pathogenic isolates, it showed relatively wide spectrum host range. Phage SPW was capable of eliciting efficient lysis of S. aureus, revealing it potentially as an effective approach to prophylaxis or treatment of S. aureus-associated mastitis in dairy cows.

  2. Bacteriophages of Yersinia pestis.

    Science.gov (United States)

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  3. Occurrence, isolation and DNA identification of Streptococcus ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Streptococcus thermophilus involved in Algerian ... among reference, and wild strains of S. thermophilus and for their differentiation from Enterococcus spp. ..... Isolation and characterization of Lactobacillus delbrueckii ssp.

  4. Bacteriophage Assembly

    Directory of Open Access Journals (Sweden)

    Anastasia A. Aksyuk

    2011-02-01

    Full Text Available Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  5. Propagating the missing bacteriophages: a large bacteriophage in a new class

    Directory of Open Access Journals (Sweden)

    Hardies Stephen C

    2007-02-01

    Full Text Available Abstract The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly. As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter, tail (486 × 26 nm, corkscrew-like tail fibers (187 × 10 nm and genome (221 Kb that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage, has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.

  6. Lactobacillus plantarum and Streptococcus thermophilus as starter cultures for a donkey milk fermented beverage.

    Science.gov (United States)

    Turchi, Barbara; Pedonese, Francesca; Torracca, Beatrice; Fratini, Filippo; Mancini, Simone; Galiero, Alessia; Montalbano, Benedetta; Cerri, Domenico; Nuvoloni, Roberta

    2017-09-01

    Donkey milk is recently gaining attention due to its nutraceutical properties. Its low casein content does not allow caseification, so the production of a fermented milk would represent an alternative way to increase donkey milk shelf life. The aim of this study was to investigate the possibility of employing selected Streptococcus thermophilus and Lactobacillus plantarum isolates for the production of a novel donkey milk fermented beverage. Lysozyme resistance and the ability to acidify donkey milk were chosen as main selection parameters. Different fermented beverages (C1-C9) were produced, each with a specific combination of isolates, and stored at refrigerated conditions for 35days. The pH values and viability of the isolates were weekly assessed. In addition, sensory analysis was performed. Both S. thermophilus and L.plantarum showed a high degree of resistance to lysozyme with a Minimum Bactericidal Concentration>6.4mg/mL for 100% of S. thermophilus and 96% of L. plantarum. S. thermophilus and L. plantarum showed the ability to acidify donkey milk in 24h at 37°C, with an average ΔpH value of 2.91±0.16 and 1.78±0.66, respectively. Four L. plantarum and two S. thermophilus were chosen for the production of fermented milks. Those containing the association S. thermophilus/L. plantarum (C1-C4) reached a pH lower than 4.5 after 18h of fermentation and showed microbial loads higher than 7.00logcfu/mL until the end of the storage period. Moreover, comparing the microbial loads of samples containing both species and those containing S. thermophilus alone (C5), we highlighted the ability of L. plantarum to stimulate S. thermophilus replication. This boosted replication of S. thermophilus allowed to reach an appropriate pH in a time frame fitting the production schedule. This was not observed for samples containing a single species (C5-C9). Thus, L. plantarum strains seem to be good candidates in the production of a novel type of fermented milk, not only for their

  7. Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant Staphylococcus aureus and Potential Use as a Fomite Decontaminant.

    Directory of Open Access Journals (Sweden)

    Kyle C Jensen

    Full Text Available Staphylococcus aureus (SA is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.

  8. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents.

    Science.gov (United States)

    Bhunchoth, A; Phironrit, N; Leksomboon, C; Chatchawankanphanich, O; Kotera, S; Narulita, E; Kawasaki, T; Fujie, M; Yamada, T

    2015-04-01

    To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages. © 2015 The Society for Applied Microbiology.

  9. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia.

    Science.gov (United States)

    Yu, Jie; Sun, Zhihong; Liu, Wenjun; Xi, Xiaoxia; Song, Yuqin; Xu, Haiyan; Lv, Qiang; Bao, Qiuhua; Menghe, Bilige; Sun, Tiansong

    2015-10-26

    Streptococcus thermophilus is a major dairy starter used for manufacturing of dairy products. In the present study, we developed a multilocus sequence typing (MLST) scheme for this important food bacterium. Sequences of 10 housekeeping genes (carB, clpX, dnaA, murC, murE, pepN, pepX, pyrG, recA, and rpoB) were obtained for 239 S. thermophilus strains, which were isolated from home-made fermented dairy foods in 18 different regions of Mongolia and China. All 10 genes of S. thermophilus were sequenced, aligned, and defined sequence types (STs) using the BioNumerics Software. The nucleotide diversity was calculated by START v2.0. The population structure, phylogenetic relationships and the role of recombination were inferred using ClonalFrame v1.2, SplitsTree 4.0 and Structure v2.3. The 239 S. thermophilus isolates and 18 reference strains could be assigned into 119 different STs, which could be further separated into 16 clonal complexes (CCs) and 38 singletons. Among the 10 loci, a total of 132 polymorphic sites were detected. The standardized index of association (IAS=0.0916), split-decomposition and ρ/θ (relative frequency of occurrence of recombination and mutation) and r/m value (relative impact of recombination and mutation in the diversification) confirms that recombination may have occurred, but it occurred at a low frequency in these 10 loci. Phylogenetic trees indicated that there were five lineages in the S. thermophilus isolates used in our study. MSTree and ClonalFrame tree analyses suggest that the evolution of S. thermophilus isolates have little relationship with geographic locality, but revealed no association with the types of fermented dairy product. Phylogenetic analysis of 36 whole genome strains (18 S. thermophilus, 2 S. vestibularis and 16 S. salivarius strains) indicated that our MLST scheme could clearly separate three closely related species within the salivarius group and is suitable for analyzing the population structure of the

  10. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Glonti, T; Chanishvili, N; Taylor, P W

    2010-02-01

    To identify enzymes associated with bacteriophages infecting cystic fibrosis (CF) strains of Pseudomonas aeruginosa that are able to degrade extracellular alginic acids elaborated by the host bacterium. Plaques produced by 21 Ps. aeruginosa-specific phages were screened for the presence of haloes, an indicator of capsule hydrolytic activity. Four phages produced haloed plaques, and one (PT-6) was investigated further. PT-6 was shown by electron microscopy to belong to Podoviridae family C1, to reduce the viscosity of four alginate preparations using a rolling ball viscometer and to release uronic acid-containing fragments from the polymers, as judged by spectrophotometry and thin layer chromatography. The alginase was partially purified by gel filtration chromatography and shown to be a 37 kDa polypeptide. Infection of CF strains of Ps. aeruginosa by phage PT-6 involves hydrolysis of the exopolysaccharide secreted by the host. The alginase produced by PT-6 has the potential to increase the well-being of CF suffers by improving the surface properties of sputum, accelerating phagocytic uptake of bacteria and perturbing bacterial growth in biofilms.

  11. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact.

    Directory of Open Access Journals (Sweden)

    Samantha J Hau

    Full Text Available Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage's absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates

  12. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber

    NARCIS (Netherlands)

    Busscher, HJ; vanHoogmoed, CG; GeertsemaDoornbusch, GI; vanderKuijlBooij, M; vanderMei, HC

    1997-01-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy

  13. Genome Sequences of Four Italian Streptococcus thermophilus Strains of Dairy Origin

    DEFF Research Database (Denmark)

    Treu, Laura; Vendramin, Veronica; Bovo, Barbara

    2014-01-01

    This report describes the genome sequences of four Streptococcus thermophilus strains, namely, TH982, TH985, TH1477, and 1F8CT, isolated from different dairy environments from the Campania and the Veneto regions in Italy. These data are aimed at increasing the genomic information available on thi...

  14. Whole-genome sequence of the bacteriophage-sensitive strain Campylobacter jejuni NCTC12662

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Sørensen, Martine C.H.; Brøndsted, Lone

    2017-01-01

    Campylobacter jejuni NCTC12662 has been the choice bacteriophage isolation strain due to its susceptibility to C. jejuni bacteriophages. This trait makes it a good candidate for studying bacteriophage-host interactions. We report here the whole-genome sequence of NCTC12662, allowing future...

  15. Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30

    Directory of Open Access Journals (Sweden)

    Sri Lakshmi Ramya Krishna Kanamarlapudi

    2017-01-01

    Full Text Available An exopolysaccharide (EPS producing strain CC30 was isolated from raw milk and identified as Streptococcus thermophilus with morphological and 16S sequencing analysis. The strain was shown to produce 1.95 g/L of EPS when grown in skim milk lactose medium at 30°C by increasing the viscosity of the medium. The EPS was isolated and purified, and it was shown to consist of glucose and galactose in 1 : 1 ratio, with molecular weights ranging from 58 to 180 kDa. FTIR spectroscopy indicated the EPS to have amide, hydroxyl, and carboxyl groups. Under Atomic Force Microscopy, EPS showed spike-like lumps of EPS. Scanning Electron Microscopy (SEM studies showed that it had irregular lumps with a coarse surface. The EPS displayed pseudoplastic nature. Thermogravimetric analysis (TGA reported a degradation temperature of 110.84°C. The purified EPS exhibited reducing activity, hydrogen peroxide radical scavenging activity, and emulsification activity. The results of the present study indicated that EPS producing Streptococcus thermophilus could serve as a promising candidate for further exploitation in food industry.

  16. Preparation of low galactose yogurt using cultures of Gal(+) Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Anbukkarasi, Kaliyaperumal; UmaMaheswari, Thiyagamoorthy; Hemalatha, Thiagarajan; Nanda, Dhiraj Kumar; Singh, Prashant; Singh, Rameshwar

    2014-09-01

    Streptococcus thermophilus is an important lactic starter used in the production of yogurt. Most strains of S. thermophilus are galactose negative (Gal(-)) and are able to metabolize only glucose portion of lactose and expel galactose into the medium. This metabolic defect leads to the accumulation of free galactose in yogurt, resulting in galactosemia among consumers. Hence there is an absolute need to develop low galactose yogurt. Therefore, in this study, three galactose positive (Gal(+)) S. thermophilus strains from National Collection of Dairy Cultures (NCDC) viz. NCDC 659 (AJM), NCDC 660 (JM1), NCDC 661 (KM3) and a reference galactose negative (Gal(-)) S. thermophilus NCDC 218 were used for preparation of low galactose yogurt. In milk fermented using S. thermophilus isolates alone, NCDC 659 released less galactose (0.27 %) followed by NCDC 661 (0.3 %) and NCDC 660 (0.45 %) after 10 h at 42 °C. Milk was fermented in combination with Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04, in which NCDC 659 released least galactose upto 0.49 % followed by NCDC 661 (0.51 %) and NCDC 660 (0.60 %) than reference Gal(-) NCDC 218(0.79 %). Low galactose yogurt was prepared following standard procedure using Gal(+) S. thermophilus isolates and Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04 in 1:1 ratio. Among which low galactose yogurt by NCDC 659 combination contained less galactose 0.37 % followed by NCDC 661 (0.51 %), NCDC 660 (0.65 %) and reference Gal(-) NCDC 218 (0.98 %) after 4 h of fermentation. This study clearly reveals that Gal(+) S. thermophilus isolates can be paired with Gal(-) L. delbrueckii subsp. bulgaricus for developing low galactose yogurt.

  17. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    Science.gov (United States)

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  18. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact

    Science.gov (United States)

    Hau, Samantha J.; Sun, Jisun; Davies, Peter R.; Frana, Timothy S.; Nicholson, Tracy L.

    2015-01-01

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC) genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage’s absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates may harbor a

  19. Isolation and characterization of a "phiKMV-like" bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia.

    Directory of Open Access Journals (Sweden)

    Zhenhui Cao

    Full Text Available The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink both in vitro and in vivo. Five Pseudomonas aeruginosa (P. aeruginosa strains were isolated from lungs of mink with suspected hemorrhagic pneumonia and their identity was confirmed by morphological observation and 16S rDNA sequence analysis. Compared to P. aeruginosa strains isolated from mink with hemorrhagic pneumonia in 2002, these isolates were more resistant to antibiotics selected. A lytic phage vB_PaeP_PPA-ABTNL (PPA-ABTNL of the Podoviridae family was isolated from hospital sewage using a P. aeruginosa isolate as host, showing broad host range against P. aeruginosa. A one-step growth curve analysis of PPA-ABTNL revealed eclipse and latent periods of 20 and 35 min, respectively, with a burst size of about 110 PFU per infected cell. Phage PPA-ABTNL significantly reduced the growth of P. aeruginosa isolates in vitro. The genome of PPA-ABTNL was 43,227 bp (62.4% G+C containing 54 open reading frames and lacked regions encoding known virulence factors, integration-related proteins and antibiotic resistance determinants. Genome architecture analysis showed that PPA-ABTNL belonged to the "phiKMV-like Viruses" group. A repeated dose inhalational toxicity study using PPA-ABTNL crude preparation was conducted in mice and no significantly abnormal histological changes, morbidity or mortality were observed. There was no indication of any potential risk associated with using PPA-ABTNL as a therapeutic agent. The results of a curative treatment experiment demonstrated that atomization by ultrasonic treatment could efficiently deliver phage to the lungs of mink and a dose of 10 multiplicity of infection was optimal for treating mink hemorrhagic pneumonia. Our work demonstrated the potential for phage to fight P. aeruginosa involved in mink lung infections when administered by means of ultrasonic nebulization.

  20. Study of Streptococcus thermophilus population on a world-wide and historical collection by a new MLST scheme.

    Science.gov (United States)

    Delorme, Christine; Legravet, Nicolas; Jamet, Emmanuel; Hoarau, Caroline; Alexandre, Bolotin; El-Sharoud, Walid M; Darwish, Mohamed S; Renault, Pierre

    2017-02-02

    We analyzed 178 Streptococcus thermophilus strains isolated from diverse products, from around the world, over a 60-year period with a new multilocus sequence typing (MLST) scheme. This collection included isolates from two traditional cheese-making sites with different starter-use practices, in sampling campaigns carried out over a three years period. The nucleotide diversity of the S. thermophilus population was limited, but 116 sequence types (ST) were identified. Phylogenetic analysis of the concatenated sequences of the six housekeeping genes revealed the existence of groups confirmed by eBURST analysis. Deeper analyses performed on 25 strains by CRISPR and whole-genome analysis showed that phylogenies obtained by MLST and whole-genome analysis were in agreement but differed from that inferred by CRISPR analysis. Strains isolated from traditional products could cluster in specific groups indicating their origin, but also be mixed in groups containing industrial starter strains. In the traditional cheese-making sites, we found that S. thermophilus persisted on dairy equipment, but that occasionally added starter strains may become dominant. It underlined the impact of starter use that may reshape S. thermophilus populations including in traditional products. This new MLST scheme thus provides a framework for analyses of S. thermophilus populations and the management of its biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Recombinant Antibodies for the Detection of Bacteriophage MS2 and Ovalbumin

    National Research Council Canada - National Science Library

    O'Connell, Kevin

    2002-01-01

    ...) genes are expressed on the surface of bacteriophage (bacterial virus) particles. We describe here the isolation of additional recombinant antibodies that bind two simulants of biothreat agents...

  2. Characterization of Four Novel Bacteriophages Isolated from British Columbia for Control of Non-typhoidal Salmonella in Vitro and on Sprouting Alfalfa Seeds

    Directory of Open Access Journals (Sweden)

    Karen Fong

    2017-11-01

    Full Text Available Alfalfa sprouts have been linked to numerous North American outbreaks of Salmonella in recent years. Conventionally, treatments involving chlorine, heat, and irradiation are used for alfalfa seed sanitation. However, such treatments may be highly variable in their efficacy for pathogen control and/or detrimental to sprout quality, therefore negatively perceived by consumers advocating for natural alternatives. The usage of bacteriophages for pathogen control in sprouts has been previously explored, although with conflicting and inconsistent results. Lytic phages, viral predators of bacteria, represent an attractive approach as they provide several advantages compared to conventional treatments, such as their high specificity for bacterial targets and their ubiquity in nature. In this study, four Salmonella phages were isolated from British Columbia, Canada and characterized with respect to host range, burst size, latent period, and environmental stability to assess their potential to control Salmonella. Phage isolate SI1 showed the greatest host range, highest burst size and shortest latent period, greatest stability across all pH and temperatures and was the most effective in control of S. Enteritidis in vitro. Therefore, SI1 was chosen for treatment of sprouting alfalfa seeds artificially contaminated with S. Enteritidis with a multiplicity of infection (MOI of ∼110 PFU/CFU. A significant (p < 0.05 reduction of 38.3 ± 3.0% of viable Salmonella cells was observed following two h of phage treatment. On days two to six of the sprouting process, reductions of Salmonella were also observed, but were not significant compared to the control (p > 0.05. It was further demonstrated that the sprout yield was not significantly (p > 0.05 affected by phage treatment. These results highlight the potential of phages recovered from the British Columbia environment for use as biocontrol agents against Salmonella, although differing efficacies in vitro was

  3. Escherichia coli O157:H7 bacteriophage 241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Directory of Open Access Journals (Sweden)

    Zhongjing eLu

    2015-02-01

    Full Text Available A novel phage, 241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH  3.7 and salinity ( 5% NaCl were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7 or the 2 O antigen-negative mutants of O157:H7 strain, 43895per (also lacking H7 antigen and F12 (still expressing H7 antigen. However, the phage was able to lyse a per-complemented strain (43895perComp which expresses O157 antigen. These results indicated that phage 241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3 or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage 241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment.

  4. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Amina Amal Mahmoud Nouraldin, Manal Mohammad Baddour, Reem Abdel Hameed Harfoush, Sara AbdelAziz Mohamed Essa ...

  5. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9

    Directory of Open Access Journals (Sweden)

    Altermann Eric

    2011-08-01

    Full Text Available Abstract Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome, indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co

  6. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9.

    Science.gov (United States)

    Goh, Yong Jun; Goin, Caitlin; O'Flaherty, Sarah; Altermann, Eric; Hutkins, Robert

    2011-08-30

    Streptococcus thermophilus represents the only species among the streptococci that has "Generally Regarded As Safe" status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes

  7. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Dan, Tong; Wang, Dan; Wu, Shimei; Jin, Rulin; Ren, Weiyi; Sun, Tiansong

    2017-09-29

    Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  8. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Tong Dan

    2017-09-01

    Full Text Available Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000 of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography–mass spectrometry (SPME-GC-MS against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  9. Complete Genome Sequence of the Gamma-Aminobutyric Acid-Producing Strain Streptococcus thermophilus APC151.

    Science.gov (United States)

    Linares, Daniel M; Arboleya, Silvia; Ross, R Paul; Stanton, Catherine

    2017-04-27

    Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.

  10. Reduction of Salmonella in ground chicken using a bacteriophage.

    Science.gov (United States)

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  11. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  12. Crystallization and preliminary crystallographic analysis of molybdenum-cofactor biosynthesis protein C from Thermus thermophilus

    International Nuclear Information System (INIS)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Chen, Lirong; Liu, Zhi-Jie; Wang, Bi-Cheng; Nishida, Masami; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2006-01-01

    The molybdenum-cofactor biosynthesis protein C from T. thermophilus has been crystallized in two different space groups, P2 1 and R32; the crystals diffracted to 1.9 and 1.75 Å resolution, respectively. The Gram-negative aerobic eubacterium Thermus thermophilus is an extremely important thermophilic microorganism that was originally isolated from a thermal vent environment in Japan. The molybdenum cofactor in this organism is considered to be an essential component required by enzymes that catalyze diverse key reactions in the global metabolism of carbon, nitrogen and sulfur. The molybdenum-cofactor biosynthesis protein C derived from T. thermophilus was crystallized in two different space groups. Crystals obtained using the first crystallization condition belong to the monoclinic space group P2 1 , with unit-cell parameters a = 64.81, b = 109.84, c = 115.19 Å, β = 104.9°; the crystal diffracted to a resolution of 1.9 Å. The other crystal form belonged to space group R32, with unit-cell parameters a = b = 106.57, c = 59.25 Å, and diffracted to 1.75 Å resolution. Preliminary calculations reveal that the asymmetric unit contains 12 monomers and one monomer for the crystals belonging to space group P2 1 and R32, respectively

  13. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    development and spreading of antibiotic resistant bacteria in the environment. Bacteriophage therapy, constitutes a potent alternative not only for treatment but also for prevention of vibriosis in aquaculture and the current thesis addresses the potential and challenges of using phages to control Vibrio...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... therapy applications. Lytic phage vB_VspP_pVa5 that has been isolated against the rapidly emerging pathogen V. splendidus is also a promising candidate for phage therapy application according to its gene content and in vitro performance against its host. The genetic features of vB_VspP_pVa5 provide also...

  14. Crystallization of ribosomes from Thermus thermophilus

    International Nuclear Information System (INIS)

    Karpova, E.A.; Serdyuk, I.N.; Tarkhovskii, Yu.S.; Orlova, E.V.; Borovyagin, V.L.

    1987-01-01

    An understanding of the molecular bases of the process of protein biosynthesis on the ribosome requires a knowledge of its structure with high three-dimensional resolution involving the method of x-ray crystallographic analysis. The authors report on the production of crystals of the 70S ribosomes from a new source - the highly thermophilic bacterium Thermus thermophilus. Ribosomes for crystallization were obtained from Th. thermophilus strain HB8 by two washings in buffer with high ionic strength. The ribosome preparation was investigated for homogeneity by the method of high-speed sedimentation in a buffer containing 15 mM MgCl 2 , 50 mM NH 4 Cl, and 10 MM Tris-HCl, pH 7.5. Analysis showed that the preparation if homogeneous. The same preparation was investigated for intactness of ribosomal RNA by the method of gel electrophoresis in 2.75% acrylamide 0.5% agarose gel in a buffer containing 30 mM Tris, 30 mM NaH 2 PO 4 , 10 mM EDTA, 1-2% SDS, and 6 M urea. Analysis showed that the preparation possesses intact 16S and 23S RNA. The latter did not degrade, at least in a week of exposure of the ribosomes in buffer solution at 5 0 C. The ribosome preparation had no appreciable RNase activity, which was verified by incubating 4.5 micrograms of ribosomes with 3 micrograms of 14 C-labeled 16S rRna (50 0 C, 90 min) in a buffer containing 10 mM MgCl 2 , 100 mM NH 4 Cl, and 10 mM Tris-HCl, pH/sub 20 0 / 7.5. The incubated nonhydrolyzed RNA was precipitated with 5% trichloroacetic acid and applied on a GF/C filter. The radioactivity was determined in a toluene scintillator on an LS-100C counter

  15. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  16. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds.

    Directory of Open Access Journals (Sweden)

    Panos G Kalatzis

    Full Text Available Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.

  17. Complete Genome Sequence of Streptococcus thermophilus KLDS 3.1003, A Strain with High Antimicrobial Potential against Foodborne and Vaginal Pathogens

    Directory of Open Access Journals (Sweden)

    Smith E. Evivie

    2017-07-01

    Full Text Available Lactic acid bacteria play increasingly important roles in the food industry. Streptococcus thermophilus KLDS 3.1003 strain was isolated from traditional yogurt in Inner Mongolia, China. It has shown high antimicrobial activity against selected foodborne and vaginal pathogens. In this study, we investigated and analyzed its complete genome sequence. The S. thermophilus KLDS 3.1003 genome comprise of a 1,899,956 bp chromosome with a G+C content of 38.92%, 1,995 genes, and 6 rRNAs. With the exception of S. thermophilus M17TZA496, S. thermophilus KLDS 3.1003 has more tRNAs (amino acid coding genes compared to some S. thermophilus strains available on the National Centre for Biotechnology Information database. MG-RAST annotation showed that this strain has 317 subsystems with most genes associated with amino acid and carbohydrate metabolism. This strain also has a unique EPS gene cluster containing 23 genes, and may be a mixed dairy starter culture. This information provides more insight into the molecular basis of its potentials for further applications in the dairy and allied industries.

  18. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso

    2018-05-02

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications.

  19. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    Science.gov (United States)

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  20. Multiplex PCR for the detection and identification of dairy bacteriophages in milk.

    Science.gov (United States)

    del Rio, B; Binetti, A G; Martín, M C; Fernández, M; Magadán, A H; Alvarez, M A

    2007-02-01

    Bacteriophage infections of starter lactic acid bacteria are a serious risk in the dairy industry. Phage infection can lead to slow lactic acid production or even the total failure of fermentation. The associated economic losses can be substantial. Rapid and sensitive methods are therefore required to detect and identify phages at all stages of the manufacture of fermented dairy products. This study describes a simple and rapid multiplex PCR method that, in a single reaction, detects the presence of bacteriophages infecting Streptococcus thermophilus and Lactobacillus delbrueckii, plus three genetically distinct 'species' of Lactococcus lactis phages commonly found in dairy plants (P335, 936 and c2). Available bacteriophage genome sequences were examined and the conserved regions used to design five pairs of primers, one for each of the above bacteriophage species. These primers were designed to generate specific fragments of different size depending on the species. Since this method can detect the above phages in untreated milk and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms or for use in those that involve phage-deactivating conditions.

  1. Bacteriophage therapy for safeguarding animal and human health: a review.

    Science.gov (United States)

    Tiwari, Ruchi; Dhama, Kuldeep; Kumar, Amit; Rahal, Anu; Kapoor, Sanjay

    2014-02-01

    Since the discovery of bacteriophages at the beginning of the 19th century their contribution to bacterial evolution and ecology and use in a variety of applications in biotechnology and medicine has been recognized and understood. Bacteriophages are natural bacterial killers, proven as best biocontrol agents due to their ability to lyse host bacterial cells specifically thereby helping in disease prevention and control. The requirement of such therapeutic approach is straight away required in view of the global emergence of Multidrug Resistant (MDR) strains of bacteria and rapidly developing resistance to antibiotics in both animals and humans along with increasing food safety concerns including of residual antibiotic toxicities. Phage typing is a popular tool to differentiate bacterial isolates and to identify and characterize outbreak-associated strains of Salmonella, Campylobacter, Escherichia and Listeria. Numerous methods viz. plaque morphology, ultracentrifugation in the density gradient of CsCl2, and random amplified polymorphic DNA (RAPD) have been found to be effective in detection of various phages. Bacteriophages have been isolated and recovered from samples of animal waste products of different livestock farms. High titer cocktails of broad spectrum lytic bacteriophages are usually used for clinical trial for assessing their therapeutic efficacy against antibiotic unresponsive infections in different animals. Bacteriophage therapy also helps to fight various bacterial infections of poultry viz. colibacillosis, salmonellosis and listeriosis. Moreover, the utility of phages concerning biosafety has raised the importance to explore and popularize the therapeutic dimension of this promising novel therapy which forms the topic of discussion of the present review.

  2. Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a traditional Caciocavallo type cheese.

    Science.gov (United States)

    Settanni, L; Di Grigoli, A; Tornambé, G; Bellina, V; Francesca, N; Moschetti, G; Bonanno, A

    2012-04-02

    The present work was undertaken to evaluate the influence of the wooden dairy plant equipment on the microbiological characteristics of curd to be transformed into Caciocavallo Palermitano cheese. Traditional raw milk productions were performed concomitantly with standard cheese making trials carried out in stainless steel vat inoculated with a commercial starter. Milk from two different farms (A and B) was separately processed. The wooden vat was found to be a reservoir of lactic acid bacteria (LAB), while unwanted (spoilage and/or pathogenic) microorganisms were not hosted or were present at very low levels. All microbial groups were numerically different in bulk milks, showing higher levels for the farm B. LAB, especially thermophilic cocci, dominated the whole cheese making process of all productions. Undesired microorganisms decreased in number or disappeared during transformation, particularly after curd stretching. LAB were isolated from the wooden vat surface and from all dairy samples, subjected to phenotypic and genetic characterization and identification. Streptococcus thermophilus was the species found at the highest concentration in all samples analyzed and it also dominated the microbial community of the wooden vat. Fourteen other LAB species belonging to six genera (Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Weissella) were also detected. All S. thermophilus isolates were genetically differentiated and a consortium of four strains persisted during the whole traditional production process. As confirmed by pH and the total acidity after the acidification step, indigenous S. thermophilus strains acted as a mixed starter culture. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  4. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus

    Science.gov (United States)

    2015-01-01

    The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks’, mares’ and cows’ milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production. PMID:26761898

  5. Comparative Genomics of Bacteriophage of the Genus Seuratvirus

    DEFF Research Database (Denmark)

    Sazinas, Pavelas; Redgwell, Tamsin; Rihtman, Branko

    2017-01-01

    polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used...... to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest...

  6. Identification of novel bacteriophage peptides using a combination of gene sequence LC-MS-MS analysis and BLASTP

    Science.gov (United States)

    Introduction: In an effort to characterize novel bacteriophage with lytic activity against pathogenic E.coli associated with foodborne illness, gene sequencing and mass spectrometry have been used to identify expressed peptides which differentiate isolated bacteriophage from other known phage. Here,...

  7. Structural characterization of the exopolysaccharide produced by Streptococcus thermophilus 05-34 and its in situ application in yogurt.

    Science.gov (United States)

    Qin, Q Q; Xia, B S; Xiong, Y; Zhang, S X; Luo, Y B; Hao, Y L

    2011-01-01

    An exopolysaccharide (EPS) producing strain was isolated from Tibetan kefir grains in China, which was identified by 16S rDNA tests and designated as Streptococcus thermophilus 05-34. The high-performance liquid chromatography analysis showed that it was composed of galactose and glucose in a molar ratio of 1.0:0.8 with a molecular mass of 2.5 × 10(4) Da. EPS was further revealed to have α-d-glucose, α-d-galactose, β-d-glucose, and β-d-galactose by Fourier transform infrared spectroscopy combined with 1D (1) H nuclear magnetic resonance spectroscopy. The length of EPS ranged from 10 to 100 nm and the maximal height of lumps was 2.5 nm through atomic force micrograph analysis. Furthermore, yogurt fermented with EPS-producing S. thermophilus 05-34 exhibited lower susceptibility to whey separation, higher viscosity, and sensory scores than those made with non-EPS-producing strain in yogurt production. These results suggested that EPS-producing Streptococcus thermophilus 05-34 provided a potential application in the fermented dairy industry. © 2011 China Agricultural University © 2011 Journal of Food Science © 2011 Institute of Food Technologists®

  8. Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6T)

    Energy Technology Data Exchange (ETDEWEB)

    Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Han, James [Joint Genome Institute; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Ubler, Susanne [Universitat Regensburg, Regensburg, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Catabolite control of sugar metabolism in Streptococcus thermophilus

    NARCIS (Netherlands)

    Bogaard, van den P.T.C.

    2002-01-01

    Streptococcus thermophilus is used in many industrial dairy fermentations that require processing of milk at elevated temperatures. Its primary function is the rapid conversion of lactose to lactate while it also contributes to important sensory qualities. S.

  10. Nano/Micro Formulations for Bacteriophage Delivery.

    Science.gov (United States)

    Cortés, Pilar; Cano-Sarabia, Mary; Colom, Joan; Otero, Jennifer; Maspoch, Daniel; Llagostera, Montserrat

    2018-01-01

    Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO 3 . To perform bacteriophage encapsulation, a purified lysate highly concentrated (around 10 10 -10 11  pfu/mL) is necessary, and to dispose of a specific equipment. Both methodologies have been successfully applied for encapsulating Salmonella bacteriophages with different morphologies. Also, the material employed does not modify the antibacterial action of bacteriophages. Moreover, both technologies can also be adapted to any bacteriophage and possibly to any delivery route for bacteriophage therapy.

  11. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention.

    Directory of Open Access Journals (Sweden)

    Eric Morello

    Full Text Available Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy--the use of specific viruses that infect bacteria--is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections.

  12. Characteristics of Milk Fermented by Streptococcus thermophilus MGA45-4 and the Profiles of Associated Volatile Compounds during Fermentation and Storage

    Directory of Open Access Journals (Sweden)

    Tong Dan

    2018-04-01

    Full Text Available The lactic acid bacterium Streptococcus thermophilus is a major starter culture for the production of dairy products. In this study, the physiochemical characteristics of milk fermented by the MGA45-4 isolate of S. thermophilus were analyzed. Our data indicate that milk fermented using S. thermophilus MGA45-4 maintained a high viable cell count (8.86 log10 colony-forming units/mL, and a relatively high pH (4.4, viscosity (834.33 mPa·s, and water holding capacity (40.85% during 14 days of storage. By analyzing the volatile compound profile using solid-phase microextraction and gas chromatography/mass spectrometry, we identified 73 volatile compounds in the fermented milk product, including five carboxylic acids, 21 aldehydes, 13 ketones, 16 alcohols, five esters, and 13 aromatic carbohydrates. According to the odor activity values, 11 of these volatile compounds were found to play a key role in producing the characteristic flavor of fermented milk, particularly octanal, nonanal, hexanal, 2,3-butanedione, and 1-octen-3-ol, which had the highest odor activity values among all compounds analyzed. These findings thus provide more insights in the chemical/molecular characteristics of milk fermented using S. thermophilus, which may provide a basis for improving dairy product flavor/odor during the process of fermentation and storage.

  13. Characteristics of Milk Fermented by Streptococcus thermophilus MGA45-4 and the Profiles of Associated Volatile Compounds during Fermentation and Storage.

    Science.gov (United States)

    Dan, Tong; Jin, Rulin; Ren, Weiyi; Li, Ting; Chen, Haiyan; Sun, Tiansong

    2018-04-11

    The lactic acid bacterium Streptococcus thermophilus is a major starter culture for the production of dairy products. In this study, the physiochemical characteristics of milk fermented by the MGA45-4 isolate of S. thermophilus were analyzed. Our data indicate that milk fermented using S. thermophilus MGA45-4 maintained a high viable cell count (8.86 log10 colony-forming units/mL), and a relatively high pH (4.4), viscosity (834.33 mPa·s), and water holding capacity (40.85%) during 14 days of storage. By analyzing the volatile compound profile using solid-phase microextraction and gas chromatography/mass spectrometry, we identified 73 volatile compounds in the fermented milk product, including five carboxylic acids, 21 aldehydes, 13 ketones, 16 alcohols, five esters, and 13 aromatic carbohydrates. According to the odor activity values, 11 of these volatile compounds were found to play a key role in producing the characteristic flavor of fermented milk, particularly octanal, nonanal, hexanal, 2,3-butanedione, and 1-octen-3-ol, which had the highest odor activity values among all compounds analyzed. These findings thus provide more insights in the chemical/molecular characteristics of milk fermented using S. thermophilus , which may provide a basis for improving dairy product flavor/odor during the process of fermentation and storage.

  14. 75 - 78 Samira - BACTERIOPHAGES FINAL

    African Journals Online (AJOL)

    DR. AMIN

    Bayero Journal of Pure and Applied Sciences, 4(1): 75 - 78. Received: ... It involves the use of bacteriophages (small viruses that predate bacteria) to ..... Since the 1940s, research with ... phages is recognized by the appearance of plaques or.

  15. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  16. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.

    Science.gov (United States)

    Jakutyte-Giraitiene, Lina; Gasiunas, Giedrius

    2016-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.

  17. Biofilm Formation on Stainless Steel by Streptococcus thermophilus UC8547 in Milk Environments Is Mediated by the Proteinase PrtS.

    Science.gov (United States)

    Bassi, D; Cappa, F; Gazzola, S; Orrù, L; Cocconcelli, P S

    2017-04-15

    In Streptococcus thermophilus , gene transfer events and loss of ancestral traits over the years contribute to its high level of adaptation to milk environments. Biofilm formation capacity, a phenotype that is lost in the majority of strains, plays a role in persistence in dairy environments, such as milk pasteurization and cheese manufacturing plants. To investigate this property, we have studied S. thermophilus UC8547, a fast-acidifying dairy starter culture selected for its high capacity to form biofilm on stainless steel under environmental conditions resembling the dairy environment. Using a dynamic flow cell apparatus, it was shown that S. thermophilus UC8547 biofilm formation on stainless steel depends on the presence of milk proteins. From this strain, which harbors the prtS gene for the cell wall protease and shows an aggregative phenotype, spontaneous mutants with impaired biofilm capacity can be isolated at high frequency. These mutants lack the PrtS expendable island, as confirmed by comparison of the genome sequence of UC8547Δ3 with that of the parent strain. The prtS island excision occurs between two 26-bp direct repeats located in the two copies of the IS Sth1 flanking this genomic island. The central role of PrtS was confirmed by analyzing the derivative strain UC8547Δ16, whose prtS gene was interrupted by an insertional mutation, thereby making it incapable of biofilm formation. PrtS, acting as a binding substance between the milk proteins adhered to stainless steel and S. thermophilus cell envelopes, mediates biofilm formation in dairy environments. This feature provides S. thermophilus with an ecological benefit for its survival and persistence in this environment. IMPORTANCE The increased persistence of S. thermophilus biofilm has consequences in the dairy environment: if, on the one hand, the release of this microorganism from biofilm can promote the fermentation of artisanal cheeses, under industrial conditions it may lead to undesirable

  18. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    Science.gov (United States)

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  19. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  20. Isolation of Lactococcus lactis Mutants Simultaneously Resistant to the Cell Wall-Active Bacteriocin Lcn972, Lysozyme, Nisin, and Bacteriophage c2

    Science.gov (United States)

    Roces, Clara; Courtin, Pascal; Kulakauskas, Saulius; Rodríguez, Ana; Chapot-Chartier, Marie-Pierre

    2012-01-01

    Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits cell wall biosynthesis by binding to lipid II. In this work, two mutants resistant to Lcn972, Lactococcus lactis D1 and D1-20, with high (>320 arbitrary units [AU]/ml) and low (80 AU/ml) susceptibilities, respectively, have been isolated. Resistance to Lcn972 did not impose a burden to growth under laboratory conditions, nor did it substantially alter the physicochemical properties of the cell surface. However, the peptidoglycan of the mutants featured a higher content of muropeptides with tripeptide side chains than the wild-type strain, linking for the first time peptidoglycan remodelling to bacteriocin resistance. Moreover, L. lactis lacking a functional d,d-carboxypeptidase DacA (i.e., with a high content of pentapeptide side chain muropeptides) was shown to be more susceptible to Lcn972. Cross-resistance to lysozyme and nisin and enhanced susceptibility to penicillin G and bacitracin was also observed. Intriguingly, the Lcn972-resistant mutants were not infected by the lytic phage c2 and less efficiently infected by phage sk1. Lack of c2 infectivity was linked to a 22.6-kbp chromosomal deletion encompassing the phage receptor protein gene pip. The deletion also included maltose metabolic genes and the two-component system (TCS) F. However, a clear correlation between these genes and resistance to Lcn972 could not be clearly established, pointing to the presence of as-yet-unidentified mutations that account for Lcn972 resistance. PMID:22504807

  1. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  2. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  3. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1.

    Science.gov (United States)

    Lim, Jeong-A; Shin, Hakdong; Lee, Dong Hwan; Han, Sang-Wook; Lee, Ju-Hoon; Ryu, Sangryeol; Heu, Sunggi

    2014-08-01

    PM1, a novel virulent bacteriophage that infects Pectobacterium carotovorum subsp. carotovorum, was isolated. Its morphological features were examined by electron microscopy, which indicated that this phage belongs to the family Myoviridae. It has a 55,098-bp genome, including a 2,665-bp terminal repeat. A total of 63 open reading frames (ORFs) were predicted, but only 20 ORFs possessed homology with functional proteins. There is one tRNA coding region, and the GC-content of the genome is 44.9 %. Most ORFs in bacteriophage PM1 showed high homology to enterobacteria phage ΦEcoM-GJ1 and Erwinia phage νB EamM-Y2. Like these bacteriophages, PM1 encodes an RNA polymerase, which is a hallmark of T7-like phages. There is no integrase or repressor, suggesting that PM1 is a virulent bacteriophage.

  4. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type

    Directory of Open Access Journals (Sweden)

    Yahya eAli

    2014-03-01

    Full Text Available Lipoprotein Ltp encoded by temperate Streptococcus thermophilus phage TP-J34 is the prototype of the wide-spread family of host cell surface-exposed lipoproteins involved in superinfection exclusion. When screening for other S. thermophilus phages expressing this type of lipoprotein, three temperate phages - TP-EW, TP-DSM20617 and TP-778 - were isolated. In this communication we present the total nucleotide sequences of TP-J34 and TP-778L. For TP-EW, a phage almost identical to TP-J34, besides the ltp gene only the two regions of deviation from TP-J34 DNA were analyzed: the gene encoding the tail protein causing an assembly defect in TP-J34 and the gene encoding the lysin, which in TP-EW contains an intron. For TP-DSM20617 only the sequence of the lysogeny module containing the ltp gene was determined. The region showed high homology to the same region of TP-778. For TP-778 we could show that absence of the attR region resulted in aberrant excision of phage DNA. The amino acid sequence of mature LtpTP-EW was shown to be identical to that of mature LtpTP-J34, whereas the amino acid sequence of mature LtpTP-778 was shown to differ from mature LtpTP-J34 in eight amino acid positions. LtpTP-DSM20617 was shown to differ from LtpTP-778 in just one amino acid position. In contrast to LtpTP-J34, LtpTP-778 did not affect infection of lactococcal phage P008 instead increased activity against phage P001 was noticed.

  5. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  6. Metagenomic Analysis of Dairy Bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst

    2017-01-01

    Despite their huge potential for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows to remove the bulk protein from...

  7. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    Science.gov (United States)

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    Directory of Open Access Journals (Sweden)

    Domonkos Sváb

    2018-02-01

    Full Text Available During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC, enteropathogenic (EPEC, enterotoxigenic (ETEC, and enteroinvasive (EIEC pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria.

  10. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1.

    Science.gov (United States)

    Lim, Jeong-A; Jee, Samnyu; Lee, Dong Hwan; Roh, Eunjung; Jung, Kyusuk; Oh, Changsik; Heu, Sunggi

    2013-08-01

    Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

  11. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Sørensen, Kim I; Curic-Bawden, Mirjana; Junge, Mette P; Janzen, Thomas; Johansen, Eric

    2016-06-15

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose

  12. Isolation and Characterization of a Lytic Bacteriophage (vB_PmiS-TH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection.

    Science.gov (United States)

    Yazdi, Mahsa; Bouzari, Majid; Ghaemi, Ezzat Allah

    2018-01-01

    Proteus mirabilis is one of the most common causes of urinary tract infection (UTI), particularly in patients undergoing long-term catheterization. Phage vB_PmiS-TH was isolated from wastewater with high lytic activity against P. mirabilis (TH) isolated from UTI. The phage had rapid adsorption, a large burst size (∼260 PFU per infected cell), and high stability at a wide range of temperatures and pH values. As analyzed by transmission electron microscopy, phage vB_PmiS-TH had an icosahedral head of ∼87 × 62 nm with a noncontractile tail about 137 nm in length and 11 nm in width. It belongs to the family Siphoviridae. Combination of the phage vB_PmiS-TH with ampicillin had a higher removal activity against planktonic cells of P. mirabilis (TH) than the phage or the antibiotic alone. Combination of the phage at a multiplicity of infection of 100 with a high dose of ampicillin (246 µg/mL) showed the highest biofilm removal activity after 24 h. This study demonstrates that using a combination of phage and antibiotic could be significantly more effective against planktonic and biofilm forms of P. mirabilis (TH). © 2018 S. Karger AG, Basel.

  13. Bacteriophages show promise as antimicrobial agents.

    Science.gov (United States)

    Alisky, J; Iczkowski, K; Rapoport, A; Troitsky, N

    1998-01-01

    The emergence of antibiotic-resistant bacteria has prompted interest in alternatives to conventional drugs. One possible option is to use bacteriophages (phage) as antimicrobial agents. We have conducted a literature review of all Medline citations from 1966-1996 that dealt with the therapeutic use of phage. There were 27 papers from Poland, the Soviet Union, Britain and the U.S.A. The Polish and Soviets administered phage orally, topically or systemically to treat a wide variety of antibiotic-resistant pathogens in both adults and children. Infections included suppurative wound infections, gastroenteritis, sepsis, osteomyelitis, dermatitis, empyemas and pneumonia; pathogens included Staphylococcus, Streptococcus, Klebsiella, Escherichia, Proteus, Pseudomonas, Shigella and Salmonella spp. Overall, the Polish and Soviets reported success rates of 80-95% for phage therapy, with rare, reversible gastrointestinal or allergic side effects. However, efficacy of phage was determined almost exclusively by qualitative clinical assessment of patients, and details of dosages and clinical criteria were very sketchy. There were also six British reports describing controlled trials of phage in animal models (mice, guinea pigs and livestock), measuring survival rates and other objective criteria. All of the British studies raised phage against specific pathogens then used to create experimental infections. Demonstrable efficacy against Escherichia, Acinetobacter, Pseudomonas and Staphylococcus spp. was noted in these model systems. Two U.S. papers dealt with improving the bioavailability of phage. Phage is sequestered in the spleen and removed from circulation. This can be overcome by serial passage of phage through mice to isolate mutants that resist sequestration. In conclusion, bacteriophages may show promise for treating antibiotic resistant pathogens. To facilitate further progress, directions for future research are discussed and a directory of authors from the reviewed

  14. Bacteriophages of Leuconostoc, Oenococcus and Weissella

    Directory of Open Access Journals (Sweden)

    Witold P. Kot

    2014-04-01

    Full Text Available Leuconostoc (Ln., Weissella and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat and fish. Most of industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore bacteriophages attacking Leuconostoc strains may negatively influence the production process. Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae family and differ in morphological details. Hybridization and comparative genomic studies of Leuconostoc phages suggest that they can be divided into several groups, however overall diversity of Leuconostoc phages is much lower as compared to e.g. lactococcal phages. Several fully sequenced genomes of Leuconostoc phages have been deposited in public databases. Lytic phages of Leuconostoc can be divided into two host species-specific groups with similarly organized genomes that shared very low nucleotide similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor binding proteins of two lytic Ln. pseudomesenteroides phages have been identified. Molecular tools for detection of dairy Leuconostoc phages have been developed. The rather limited data on phages of Oenococcus and Weissella show that i lysogeny seems to be abundant in Oenococcus strains, and ii several phages infecting Weissella cibaria are also able to productively infect strains of other Weissella species and even strains of the genus

  15. In vitro Effectiveness of Commercial Bacteriophage Cocktails on Diverse Extended-Spectrum Beta-Lactamase Producing Escherichia coli Strains.

    Science.gov (United States)

    Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin

    2016-01-01

    The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients' blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly ( p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy.

  16. in vitro effectiveness of commercial bacteriophage cocktails on diverse extended spectrum beta-lactamase (ESBL producing Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Aycan Gundogdu

    2016-11-01

    Full Text Available The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multi-drug resistant extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC isolated from patients' blood and urine cultures. 615 E. coli isolates were included in this study. PhP-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to CLSI criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage and Intesti-bacteriophage were determined against 142 ESBL- EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for intesti-bacteriophage, 81.7% for Pyo-bacteriophage and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly (p<0.001 more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by multi-drug resistant pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a multi-drug-resistant ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy.

  17. Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae.

    Science.gov (United States)

    Pawlowski, Alice; Rissanen, Ilona; Bamford, Jaana K H; Krupovic, Mart; Jalasvuori, Matti

    2014-06-01

    A new family of viruses named Sphaerolipoviridae has been proposed recently. It comprises icosahedral, tailless haloarchaeal viruses with an internal lipid membrane located between the protein capsid and the dsDNA genome. The proposed family Sphaerolipoviridae was divided into two genera: Alphasphaerolipovirus, including Haloarcula hispanica viruses SH1, PH1 and HHIV-2, and Betasphaerolipovirus, including Natrinema virus SNJ1. Here, we propose to expand the family Sphaerolipoviridae to include a group of bacteriophages infecting extreme thermophilic Thermus thermophilus and sharing a number of structural and genomic properties with archaeal sphaerolipoviruses. This new group comprises two members, lytic phage P23-77 and temperate phage IN93, as well as putative members P23-72 and P23-65H. In addition, several related proviruses have been discovered as integrated elements in bacterial genomes of the families Thermus and Meiothermus. Morphology of the virus particles and the overall capsid architecture of these bacteriophages resembles that of archaeal members of the Sphaerolipoviridae, including an unusual capsid arrangement in a T = 28 dextro lattice. Alpha- and betasphaerolipoviruses share with P23-77-like bacteriophages a conserved block of core genes that encode a putative genome-packaging ATPase and the two major capsid proteins (MCPs). The recently determined X-ray structure of the small and large MCPs of P23-77 revealed a single beta-barrel (jelly-roll) fold that is superimposable with the cryo-EM density maps of the SH1 capsomers. Given the common features of these viruses, we propose to include the so far unclassified P23-77-like bacteriophages into a new genus, "Gammasphaerolipovirus", within the family Sphaerolipoviridae.

  18. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  19. Recovery of Lactobacillus bulgaricus and Streptococcus thermophilus on Nine Commonly Used Agar Media1

    Science.gov (United States)

    Moon, Nancy J.; Hamann, A. C.; Reinbold, G. W.

    1974-01-01

    Of the nine media tested, Eugon, Elliker's lactic agar, pH 6.8, and modified tryptic soy broth agars showed superior recovery of Lactobacillus bulgaricus and Streptococcus thermophilus strains. PMID:16350006

  20. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus

    NARCIS (Netherlands)

    Vaughan, E.E.; Bogaard, van den P.T.C.; Catzeddu, P.; Kuipers, O.P.; Vos, de W.M.

    2001-01-01

    Streptococcus thermophilus strain CNRZ 302 is unable to ferment galactose, neither that generated intracellularly by lactose hydrolysis nor the free sugar. Nevertheless, sequence analysis and complementation studies with Escherichia coli demonstrated that strain CNRZ 302 contained structurally

  1. Effects of Argonaute on Gene Expression in Thermus thermophilus.

    Directory of Open Access Journals (Sweden)

    Daan C Swarts

    Full Text Available Eukaryotic Argonaute proteins mediate RNA-guided RNA interference, allowing both regulation of host gene expression and defense against invading mobile genetic elements. Recently, it has become evident that prokaryotic Argonaute homologs mediate DNA-guided DNA interference, and play a role in host defense. Argonaute of the bacterium Thermus thermophilus (TtAgo targets invading plasmid DNA during and after transformation. Using small interfering DNA guides, TtAgo can cleave single and double stranded DNAs. Although TtAgo additionally has been demonstrated to cleave RNA targets complementary to its DNA guide in vitro, RNA targeting by TtAgo has not been demonstrated in vivo.To investigate if TtAgo also has the potential to control RNA levels, we analyzed RNA-seq data derived from cultures of four T. thermophilus strain HB27 variants: wild type, TtAgo knockout (Δago, and either strain transformed with a plasmid. Additionally we determined the effect of TtAgo on expression of plasmid-encoded RNA and plasmid DNA levels.In the absence of exogenous DNA (plasmid, TtAgo presence or absence had no effect on gene expression levels. When plasmid DNA is present, TtAgo reduces plasmid DNA levels 4-fold, and a corresponding reduction of plasmid gene transcript levels was observed. We therefore conclude that TtAgo interferes with plasmid DNA, but not with plasmid-encoded RNA. Interestingly, TtAgo presence stimulates expression of specific endogenous genes, but only when exogenous plasmid DNA was present. Specifically, the presence of TtAgo directly or indirectly stimulates expression of CRISPR loci and associated genes, some of which are involved in CRISPR adaptation. This suggests that TtAgo-mediated interference with plasmid DNA stimulates CRISPR adaptation.

  2. Ability of Bacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems

    International Nuclear Information System (INIS)

    Yasbin, R.E.; Andersen, B.J.; Sutherland, B.M.

    1981-01-01

    A novel form of enzyme therapy was achieved by utilizing protoplasts of Bacillus subtilis. Photoreactivating enzyme of Escherichia coli was successfully inserted into the protoplasts of B. subtilis treated with polyethylene glycol. This enzyme was used to photoreactivate ultraviolet-damaged bacteriophage deoxyribonucleic acid (DNA). Furthermore, in polyethylene glycol-treated protoplasts, ultraviolet-irradiated transfecting bacteriophage DNA was shown to be a functional substrate for the host DNA excision repair system. Previous results (R.E. Yasbin, J.D. Fernwalt, and P.I. Fields, J. Bacteriol.; 137: 391-396) showed that ultraviolet-irradiated bacteriophage DNA could not be repaired via the excision repair system of competent cells. Therefore, the processing of bacteriophage DNA by protoplasts and by competent cells must be different. This sensitive protoplast assay can be used to identify and to isolate various types of DNA repair enzymes

  3. Streptococcus thermophilus bacteraemia in a patient with transient bowel ischaemia secondary to polycythaemia

    OpenAIRE

    Stephens, Joanna; Turner, David P.J.

    2015-01-01

    Introduction: The ability of Streptococcus thermophilus to convert lactose into lactic acid has long been utilised by the dairy industry. A seemingly low-pathogenicity organism, there have been no previously published reports linking the consumption of foodstuffs to bacteraemia with this bacterium.\\ud Case Presentation: Here we present a case of a regular consumer of Activia yoghurt who developed S. thermophilus bacteraemia probably due to transient bowel ischaemia secondary to polycythaemia....

  4. Short communication: effect of oxygen on symbiosis between Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Horiuchi, H; Sasaki, Y

    2012-06-01

    Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus are traditionally used for the manufacture of yogurt. It is said that a symbiotic relationship exists between Strep. thermophilus and L. bulgaricus and this decreases fermentation time. It is well known that L. bulgaricus is stimulated by the formate produced by Strep. thermophilus, and Strep. thermophilus is stimulated by free amino acids and peptides liberated from milk proteins by L. bulgaricus in symbiotic fermentation. We found that acid production by starter culture LB81 composed of L. bulgaricus 2038 and Strep. thermophilus 1131 was greatly accelerated by decreasing dissolved oxygen (DO) to almost 0 mg/kg in the yogurt mix (reduced dissolved oxygen fermentation) and that DO interferes with the symbiotic relationship between L. bulgaricus 2038 and Strep. thermophilus 1131. We attributed the acceleration of acid production of LB81 by reduced dissolved oxygen fermentation mainly to the acceleration of formate production and the suppression of acid production of LB81 by DO mainly to the suppression of formate production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Bacteriophages use hypermodified nucleosides to evade host's defence systems

    DEFF Research Database (Denmark)

    Kot, Witold; Olsen, Nikoline S.; Carstens, Alexander Byth

    developed several strategies to evade these defence mechanisms. Ultimately, this led to the oldest and still running arms race - microorganisms vs. their molecular parasites. We here describe a remarkable new strategy used by the recently isolated Escherichia coli phage CAjan belonging to...... to investigate this mechanism in detail we have used several methods including direct plaque sequencing, restriction endonuclease analysis and CRISPR-Cas genome editing. Through generation of specific mutants, we were able to introduce a restriction sensitive phenotype in the CAjan bacteriophage providing new...

  6. Guidelines for Bacteriophage Product Certification.

    Science.gov (United States)

    Fauconnier, Alan

    2018-01-01

    Following decades in the wilderness, bacteriophage therapy is now appearing as a credible antimicrobial strategy. However, this reemerging therapy does not rekindle without raising sensitive regulatory concerns. Indeed, whereas the European regulatory framework has been basically implemented to tackle ready-to-use pharmaceuticals produced on a large scale, bacteriophage therapy relies on a dynamic approach requiring a regulation on personalized medicine, nonexistent at present. Because of this, no guideline are currently available for addressing the scientific and regulatory issues specifically related to phage therapy medicinal products (PTMP).Pending to the implementation of an appropriate regulatory framework and to the development of ensuing guidelines, several avenues which might lead to PTMP regulatory compliance are explored here. Insights might come from the multi-strain dossier approach set up for particular animal vaccines, from the homologous group concept developed for the allergen products or from the licensing process for veterinary autogenous vaccines. Depending on national legislations, customized preparations prescribed as magistral formulas or to be used on a named-patient basis are possible regulatory approaches to be considered. However, these schemes are not optimal and should thus be regarded as transitional.

  7. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis.

    Science.gov (United States)

    Porter, J; Anderson, J; Carter, L; Donjacour, E; Paros, M

    2016-03-01

    The objective of this study was to investigate the potential use of bacteriophage in preventing Escherichia coli mastitis on dairies. A cocktail consisting of 4 distinct bacteriophages was generated by screening against 36 E. coli isolates from dairy cows in Washington State with clinical mastitis. The bacteriophage significantly inhibited growth of 58% of the Washington State isolates and 54% of E. coli mastitis isolates from New York State, suggesting that the cocktail of phages had a relatively broad spectrum of action against relevant strains from 2 distinct geographies. The ability to suppress bacterial growth of these isolates in a liquid growth medium was not affected by the ratio of bacteriophage particles to bacterial cells (multiplicity of infection, MOI). For those E. coli that were completely inhibited by the phage cocktail, an MOI as low as 10 had the same effect as 10 µg/mL of ceftiofur on the growth rate of E. coli over a 12-h period using optical density measurements. A 3.3- to 5.6-log reduction of growth was achieved when E. coli was co-incubated with our phage cocktail in raw milk over a 12-h period at physiologic temperature. A modified gentamicin protection assay using bovine mammary epithelial cells provided a model to test whether bacteriophage could prevent cell attachment and invasion by chronic coliform mastitis strains. Pretreatment of cell cultures with the phage cocktail significantly reduced adhesion and intracellular survival of E. coli compared with controls. When combined with a bismuth-based teat sealant, the phage cocktail was able to inhibit bacterial growth when challenged with 1.6 × 10(3) cfu/mL of a clinical mastitis E. coli strain. In vitro results show bactericidal activity by our phage in raw milk and mammary tissue culture systems. Before a bacteriophage-based dry-cow treatment becomes a potential option for dairies, in vivo studies must be able to demonstrate that a specific dose of bacteriophage can protect cows from

  8. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. THE BIOMASS OF Streptococcus thermophilus AND Bifidobacterium longum IN DAIRY MEDIUM WITH BEE POLLEN

    Directory of Open Access Journals (Sweden)

    N. N. Lomova

    2015-02-01

    Full Text Available The present study was carried out to investigate the effect of adding different concentrations of bee pollen on the biomass of Streprococus thermophilus and B. longum in the dairy environment. Sampling, preparation and conducting of tests were performed by standard methods of analysis. The counts of Str. thermophilus and B. longum were carried out by using M17 and MRS agar media. The phases growth were determined graphically. Established, that bee pollen stimulates the accumulation of biomass Str. thermophilus on 9–15%, and B. longum – on 2,3–12,7% in an amount of up to 0.2–1.0%. Bee pollen reduces the duration of the lag phase for both types of microorganisms almost to its complete disappearance (1.0%. Pollen (1% prolong stationary phase for streptococci and bifidobacteria to 30% and 20%, respectively. And also, will provide the biomass in the amount of 6 ± 0,1·109 CFU/cm3 (Str. Thermophilus and 2,8 ± 0,1·108 CFU/cm3 (B. longum. Str. thermophilus and B. longum readily assimilate essential micronutrients pollen. Components of bee pollen can act growth stimulants (bifidogenic factor for the studied strains. The data obtained will form the basis of biotechnology dairy drink with bee products.

  10. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt.

    Science.gov (United States)

    Linares, Daniel M; O'Callaghan, Tom F; O'Connor, Paula M; Ross, R P; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δ t = 0.31-0.33 h -1 ], viscosity [0.49 Pa-s], water holding capacity [72-73%], and chemical composition [moisture (87-88%), protein (5.05-5.65%), fat (0.12-0.15%), sugar (4.8-5.8%), and ash (0.74-1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.

  11. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt

    Science.gov (United States)

    Linares, Daniel M.; O’Callaghan, Tom F.; O’Connor, Paula M.; Ross, R. P.; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72–73%], and chemical composition [moisture (87–88%), protein (5.05–5.65%), fat (0.12–0.15%), sugar (4.8–5.8%), and ash (0.74–1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid. PMID:27920772

  12. Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yoghurt

    Directory of Open Access Journals (Sweden)

    Daniel M. Linares

    2016-11-01

    Full Text Available Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic dairy foods. Yoghurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive and anti-diabetic agent. Here we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yoghurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (250 mg in a standard yoghurt volume of 125 ml, a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yoghurt was demonstrated by comparison with the reference yoghurt inoculated with the commercial CH1 starter (Chr. Hansen widely used in the dairy industry. Both yoghurts showed comparable pH curves ΔpH/Δt = 0.31-0.33 h−1, viscosity 0.49 Pa.s, water holding capacity 72-73%, and chemical composition moisture (87-88 %, protein (5.05-5.65 %, fat (0.12-0.15 %, lactose (4.8-5.8 % and ash (0.74-1.2 %. Gamma-amino-butyric acid was not detected in the control yoghurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yoghurt with gamma-amino-butyric acid.

  13. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  14. Population ecology of the tonguefish Symphurus thermophilus (Pisces; Pleuronectiformes; Cynoglossidae) at sulphur-rich hydrothermal vents on volcanoes of the northern Mariana Arc

    Science.gov (United States)

    Tunnicliffe, Verena; Tyler, Jennifer; Dower, John F.

    2013-08-01

    Flatfish are a major component of the hydrothermal vent community on three seamounts of the northern Mariana Volcanic Arc in the northwest Pacific. Nikko, Kasuga-2 and Daikoku seamounts host vent fields between 375 and 480 m depth where high temperature vents release molten sulphur. The small cynoglossid tonguefish, Symphurus thermophilus Munroe and Hashimoto, is ubiquitous in all vent habitats observed on these seamounts: among extensive fields of tubeworms and mussels and on solid sulphur surfaces on Nikko; on sulphur-rich sediments and barnacle-covered boulders on Kasuga-2; and on recent sulphur flows and on broad areas of loose and semi-consolidated sediments on Daikoku. We recorded repeated forays by individuals onto flows of molten sulphur as these surfaces cooled. Based on observations using ROVs, the mean density is 90 fish/m2 with maximum counts over 200 fish/m2 on Daikoku sediments. Compared to collected tonguefish from Daikoku and Kasuga-2, those from Nikko have significantly greater lengths and, on average, six times the mass. Otolith data indicate upper ages of 13 years with Nikko tonguefish growing significantly faster. Diets of tonguefish on the three seamounts reflect the different habitats and prey availability; in Daikoku specimens, small crustaceans and polychaetes are most common while on Nikko, gut contents are predominantly larger shrimp. We made the unusual observation of stunned midwater fish falling to the seafloor near the vents where S. thermophilus immediately attacked them. This tonguefish has a wide diet range and foraging behaviour that likely influence the differing growth rates and sizes of fish inhabiting the different vent sites. Limited genetic data suggest that larval exchange probably occurs among sites where the common habitat factor is high levels of elemental sulphur forming hard and partly unconsolidated substrata. Here, in the northern range of the Mariana Trench Marine National Monument, S. thermophilus, despite having an

  15. Crystallization and preliminary crystallographic analysis of a putative glucokinase/hexokinase from Thermus thermophilus

    International Nuclear Information System (INIS)

    Nakamura, Tsutomu; Kashima, Yasuhiro; Mine, Shouhei; Oku, Takashi; Uegaki, Koichi

    2011-01-01

    In this study, a putative glucokinase/hexokinase from T. thermophilus was purified and crystallized. Diffraction data were collected and processed to 2.02 Å resolution. Glucokinase/hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate, which is the first step of glycolysis. The open reading frame TTHA0299 of the extreme thermophile Thermus thermophilus encodes a putative glucokinase/hexokinase which contains the consensus sequence for proteins from the repressors, open reading frames and sugar kinases family. In this study, the glucokinase/hexokinase from T. thermophilus was purified and crystallized using polyethylene glycol 8000 as a precipitant. Diffraction data were collected and processed to 2.02 Å resolution. The crystal belonged to space group P2 1 , with unit-cell parameters a = 70.93, b = 138.14, c = 75.16 Å, β = 95.41°

  16. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  17. AbiA, a Lactococcal Abortive Infection Mechanism Functioning in Streptococcus thermophilus

    OpenAIRE

    Tangney, Mark; Fitzgerald, Gerald F.

    2002-01-01

    The lactococcal abortive infection mechanisms AbiA and AbiG were introduced into Streptococcus thermophilus 4035, and a range of phages capable of infecting this host were examined for sensitivity to these mechanisms. AbiA proved effective against six phages when examined at a growth temperature of 30°C but had no effect on any of the phages when tested at 37 or 42°C. AbiG failed to affect any of the S. thermophilus phages at 30, 37, or 42°C.

  18. AbiA, a lactococcal abortive infection mechanism functioning in Streptococcus thermophilus.

    Science.gov (United States)

    Tangney, Mark; Fitzgerald, Gerald F

    2002-12-01

    The lactococcal abortive infection mechanisms AbiA and AbiG were introduced into Streptococcus thermophilus 4035, and a range of phages capable of infecting this host were examined for sensitivity to these mechanisms. AbiA proved effective against six phages when examined at a growth temperature of 30 degrees C but had no effect on any of the phages when tested at 37 or 42 degrees C. AbiG failed to affect any of the S. thermophilus phages at 30, 37, or 42 degrees C.

  19. Incorporation of T4 bacteriophage in electrospun fibres.

    Science.gov (United States)

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  20. Neutron irradiation of bacteriophage λ

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M. . E-mail address of corresponding author: bozinde@vin.bg.ac.yu

    2005-01-01

    Double strand breaks (DSB) are the most dangerous lesions in DNA caused by irradiation, but many other lesions, usually called mutations, have not been clearly identified. These lesions, like DSB, can be the source of serious chromosomal damages and finally - cell death. Growing interest in heavy particles for radiotherapy and radioprotection encourages the search of the molecular basis of their action. In this respect, we chose bacteriophage λ1390 as the model system for the study of consequences of neutron irradiation. This derivative of λ phage possesses an unique ability to reversibly reorganize their genome in response to various selective pressures. The phages were irradiated with 13 Gy of mixed neutrons (7.5 Gy from fast and 5.6 Gy from thermal neutrons) and phages genomes were tested to DSB and mutations. Additionally, the stability of λ capsid proteins were tested. After all tests, we can conclude that, under our conditions, low flux of neutrons does not induce neither DNA strand break or DNA mutation nor the stability of λ capsid proteins. (author)

  1. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  2. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038.

    Science.gov (United States)

    Sasaki, Yasuko; Horiuchi, Hiroshi; Kawashima, Hiroko; Mukai, Takao; Yamamoto, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of L. bulgaricus 2038, resulting in earlier l-lactate and formate accumulation. Measurement of the DO concentration and hydrogen peroxide generation in the milk medium suggested that DO is mainly removed by S. thermophilus 1131. The results using an H2O-forming NADH oxidase (Nox)-defective mutant of S. thermophilus 1131 revealed that Nox is the major oxygen-consuming enzyme of the bacterium. Yogurt fermentation with the S. thermophilus Δnox mutant and L. bulgaricus 2038 was significantly slower than with S. thermophilus 1131 and L. bulgaricus 2038, and the DO concentrations of the mixed culture did not decrease to less than 2 mg/kg within 3 hr. These observations suggest that Nox of S. thermophilus 1131 contributes greatly to yogurt fermentation, presumably by removing the DO in milk.

  3. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker.

    Science.gov (United States)

    Wong, Wing Yee; Su, Ping; Allison, Gwen E; Liu, Chun-Qiang; Dunn, Noel W

    2003-10-01

    A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance selectable marker from L. lactis M71 and expresses the Cd(r) phenotype in S. thermophilus transformants. With the S. thermophilus replicon derived from the shuttle vector pND913, pND919 is able to replicate in the two S. thermophilus industrial strains tested, ST3-1 and ST4-1. Its relatively high retention rate in S. thermophilus further indicates its usefulness as a potential food-grade cloning vector. To our knowledge, this is the first report of a replicative potential food-grade vector for the industrially important organism S. thermophilus.

  4. Evaluating acetaldehyde synthesis from L-14C(U)] threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    International Nuclear Information System (INIS)

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.; Smith, K.L.; Jezeski, J.J.

    1986-01-01

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-[carbon-14(U)]threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42 0 C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-[carbon-14]threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42 0 C decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48 0 C was 89% lower than that of cells grown at 30 0 C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42 0 C increased threonine aldolase activity in S. thermophilus MS1

  5. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing

    OpenAIRE

    B Dhawan; S Sebastian; R Malhotra; A Kapil; D Gautam

    2016-01-01

    We report the first case of prosthetic joint infection caused by Lysobacter thermophilus which was identified by 16S rRNA gene sequencing. Removal of prosthesis followed by antibiotic treatment resulted in good clinical outcome. This case illustrates the use of molecular diagnostics to detect uncommon organisms in suspected prosthetic infections.

  6. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    B Dhawan

    2016-01-01

    Full Text Available We report the first case of prosthetic joint infection caused by Lysobacter thermophilus which was identified by 16S rRNA gene sequencing. Removal of prosthesis followed by antibiotic treatment resulted in good clinical outcome. This case illustrates the use of molecular diagnostics to detect uncommon organisms in suspected prosthetic infections.

  7. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison.

    NARCIS (Netherlands)

    Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; Vos, W.M.; Hugenholtz, J.

    2009-01-01

    In this report, we describe the amino acid metabolism and amino acid dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare them with those of two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a

  8. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  9. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Anastasiou, Rania; Mavrogonatou, Eleni; Blom, Jochen; Papandreou, Nikos C; Hamodrakas, Stavros J; Ferreira, Stéphanie; Renault, Pierre; Supply, Philip; Pot, Bruno; Tsakalidou, Effie

    2014-04-08

    Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were

  10. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2.

    Science.gov (United States)

    Rigvava, Sophio; Tchgkonia, Irina; Jgenti, Darejan; Dvalidze, Teona; Carpino, James; Goderdzishvili, Marina

    2013-01-01

    Enterococcus faecalis and Streptococcus mitis are common commensal inhabitants of the human gastrointestinal and genitourinary tracts. However, both species can be opportunistic pathogens and cause disease in nosocomial settings. These infections can be difficult to treat because of the frequency of antibiotic resistance among these strains. Bacteriophages are often suggested as an alternative therapeutic agent against these infections. In this study, E. faecalis and S. mitis strains were isolated from female patients with urinary tract infections. Bacteriophages active against these strains were isolated from sewage water from the Mtkvari River. Two phages, designated vB_EfaS_GEC-EfS_3 (Syphoviridae) and vB_SmM_GEC-SmitisM_2 (Myoviridae), were specific for E. faecalis and S. mitis, respectively. Each phage's growth patterns and adsorption rates were quantified. Sensitivity to ultraviolet light and temperature was determined, as was host range and serology. The S. mitis bacteriophage was found to be more resistant to ultraviolet light and exposure to high temperatures than the E. faecalis bacteriophage, despite having a much greater rate of replication. While each phage was able to infect a broad range of strains of the same species as the host species from which they were isolated, they were unable to infect other host species tested.

  11. Therapeutic effect of Streptococcus thermophilus CRL 1190-fermented milk on chronic gastritis.

    Science.gov (United States)

    Rodríguez, Cecilia; Medici, Marta; Mozzi, Fernanda; Font de Valdez, Graciela

    2010-04-07

    To investigate the potential therapeutic effect of exopolysaccharide (EPS)-producing Streptococcus thermophilus (S. thermophilus) CRL 1190 fermented milk on chronic gastritis in Balb/c mice. Balb/c mice were fed with the fermented milk for 7 d after inducing gastritis with acetyl-salicylic acid (ASA, 400 mg/kg body weight per day for 10 d). Omeprazole was included in this study as a positive therapeutic control. The gastric inflammatory activity was evaluated from gastric histology and inflammation score, number of interleukin-10 (IL-10), interferon-gamma (INFgamma) and tumor necrosis factor-alpha (TNF-alpha) cytokine-producing cells in the gastric mucosa, and thickness of the mucus layer. Animals receiving treatment with the EPS-producing S. thermophilus CRL 1190 fermented milk showed a conserved gastric mucosa structure similar to that of healthy animals. Inflammation scores of the fermented milk-treated mice were lower than those of mice in the gastritis group (0.2 + or - 0.03 vs 2.0 + or - 0.6, P mucus gel layer (2.2 + or - 0.6 vs 1.0 + or - 0.3; 5.1 + or - 0.8 vs 1.5 + or - 0.4 in the corpus and antrum mucosa, respectively, P milk suspension of the purified EPS from S. thermophilus CRL1190 was also effective as therapy for gastritis. This study suggests that fermented milk with S. thermophilus CRL 1190 and/or its EPS could be used in novel functional foods as an alternative natural therapy for chronic gastritis induced by ASA.

  12. Proteins of bacteriophage phi6

    International Nuclear Information System (INIS)

    Sinclair, J.F.; Tzagoloff, A.; Levine, D.; Mindich, L.

    1975-01-01

    We investigated the protein composition of the lipid-containing bacteriophage phi 6. We also studied the synthesis of phage-specific proteins in the host bacterium Pseudomonas phaseolicola HB10Y. The virion was found to contain 10 proteins of the following molecular weights: P1, 93,000; P2, 88,000; P3, 84,000; P4, 36,800; P5, 24,000; P6, 21,000; P7, 19,900; P8, 10,500; P9, 8,700; and P10, less than 6,000. Proteins P3, P9, and P10 were completely extracted from the virion with 1 percent Triton X-100. Protein P6 was partially extracted. Proteins P8 and P9 were purified by column chromatography. The amino acid composition of P9 was determined and was found to lack methionine. Labeling of viral proteins with [ 35 S]methionine in infected cells indicated that proteins P5, P9, P10, and P11 lacked methionine. Treatment of host cells with uv light before infection allowed the synthesis of P1, P2, P4, and P7; however, the extent of viral protein synthesis fell off exponentially with increasing delay time between irradiation and infection. Treatment of host cells with rifampin during infection allowed preferential synthesis of viral proteins, but the extent of synthesis also fell off exponentially with increasing delay time between the addition of rifampin and the addition of radioactive amino acids. All of the virion proteins were seen in gels prepared from rifampin-treated infected cells. In addition, two proteins, P11 and P12, were observed; their molecular weights were 25,200 and 20,100, respectively. Proteins P1, P2, P4, and P7 were synthesized early, whereas the rest began to increase at 45 min post-infection

  13. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    Science.gov (United States)

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  14. What history tells us XLIII Bacteriophage

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 3. What history tells us XLIII Bacteriophage: The contexts in which it was discovered. MICHEL MORANGE. Series Volume 42 Issue 3 September 2017 pp 359-362. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Molecular characterization of bacteriophages for microbial source tracking in Korea.

    Science.gov (United States)

    Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo

    2009-11-01

    We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.

  16. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus

    NARCIS (Netherlands)

    Sieuwerts, S.; Molenaar, D.; Hijum, van S.A.F.T.; Beerthuyzen, M.; Stevens, M.J.A.; Janssen, P.W.; Ingham, C.J.; Bok, de F.A.M.; Vos, de W.M.; Hylckama Vlieg, van J.E.T.

    2010-01-01

    Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp.

  17. Adesão de linhagem selvagem de Streptococcus thermophilus em superfície de aço inoxidável e efeitos da higienização na sua remoção Adhesion of a wild strain of Streptococcus thermophilus onto stainless steel surfaces and the effects of cleaning and sanification on its removal

    Directory of Open Access Journals (Sweden)

    Ana Lourdes Neves GÂNDARA

    2000-04-01

    Full Text Available Linhagem selvagem de Streptococcus thermophilus isolada de leite pasteurizado foi avaliada em modelo experimental quanto a adesão em superfície de aço inoxidável e comportamento frente à limpeza e sanificação. Em leite, a adesão do microrganismo em aço inoxidável foi estudada em 6h de contato a 45°C sob agitação e uma higienização com detergentes alcalino e ácido seguida de sanificação foi utilizada para avaliação do comportamento das células aderidas frente à higienização. Esse microrganismo aderiu a essa superfície produzindo uma carga de 10(4UFC/cm². Após a limpeza alcalina não foram detectadas células aderidas; em seguida a limpeza ácida 6 UFC/cm² ainda foram detectadas. A sanificação com hipoclorito de sódio, após a limpeza, foi suficiente para reduzir a carga de S. thermophilus selvagem aderida ao aço inoxidável. O modelo experimental mostrou-se adequado para o estudo, indicando que a cultura selvagem de Streptococcus thermophilus é produtora de biofilme em superfície de aço inoxidável. A limpeza da superfície de aço inoxidável por detergência alcalina remove mais que 99,9% das células aderidas. Pequenos números de células remanescentes são removidos na detergência ácida o que demonstra a necessidade das diferentes etapas e tipos de detergentes para a eficiência da limpeza. Melhores resultados na remoção desse biofilme são alcançadas com detergência alcalina seguida de detergência ácida e mais eficientemente quando se utiliza uma sanificação complementar com hipoclorito de sódio.A wild strain of Streptococcus thermophilus isolated from pasteurized milk was evaluated using an experimental model with respect to its adhesion onto stainless steel surfaces and its behaviour when submitted to cleansing and sanification. In milk, the adhesion of the microorganism on to stainless steel surfaces was studied after 6 hours of contact at 45°C with agitation, and after a cleansing process

  18. Aligning the unalignable: bacteriophage whole genome alignments.

    Science.gov (United States)

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  19. NADH Oxidase of Streptococcus thermophilus 1131 is Required for the Effective Yogurt Fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038

    OpenAIRE

    SASAKI, Yasuko; HORIUCHI, Hiroshi; KAWASHIMA, Hiroko; MUKAI, Takao; YAMAMOTO, Yuji

    2014-01-01

    We previously reported that dissolved oxygen (DO) suppresses yogurt fermentation with an industrial starter culture composed of Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) 2038 and Streptococcus thermophilus 1131, and also found that reducing the DO in the medium prior to fermentation (deoxygenated fermentation) shortens the fermentation time. In this study, we found that deoxygenated fermentation primarily increased the cell number of S. thermophilus 1131 rather than that of ...

  20. Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats.

    Directory of Open Access Journals (Sweden)

    Muriel Thomas

    Full Text Available Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8 and p27(Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.

  1. Environmental Bacteriophages of the Emerging Enterobacterial Phytopathogen, Dickeya solani, Show Genomic Conservation and Capacity for Horizontal Gene Transfer between Their Bacterial Hosts

    Directory of Open Access Journals (Sweden)

    Andrew Day

    2017-08-01

    Full Text Available Dickeya solani is an economically important phytopathogen widespread in mainland Europe that can reduce potato crop yields by 25%. There are no effective environmentally-acceptable chemical systems available for diseases caused by Dickeya. Bacteriophages have been suggested for use in biocontrol of this pathogen in the field, and limited field trials have been conducted. To date only a small number of bacteriophages capable of infecting D. solani have been isolated and characterized, and so there is a need to expand the repertoire of phages that may have potential utility in phage therapy strategies. Here we describe 67 bacteriophages from environmental sources, the majority of which are members of the viral family Myoviridae. Full genomic sequencing of two isolates revealed a high degree of DNA identity with D. solani bacteriophages isolated in Europe in the past 5 years, suggesting a wide ecological distribution of this phage family. Transduction experiments showed that the majority of the new environmental bacteriophages are capable of facilitating efficient horizontal gene transfer. The possible risk of unintentional transfer of virulence or antibiotic resistance genes between hosts susceptible to transducing phages cautions against their environmental use for biocontrol, until specific phages are fully tested for transduction capabilities.

  2. Growth advantage of Streptococcus thermophilus over Lactobacillus bulgaricus in vitro and in the gastrointestinal tract of gnotobiotic rats.

    Science.gov (United States)

    Ben-Yahia, L; Mayeur, C; Rul, F; Thomas, M

    2012-09-01

    The yoghurt bacteria, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, are alleged to have beneficial effects on human health. The objective of this study was to characterise growth, biochemical activity and competitive behaviour of these two bacteria in vitro and in vivo. S. thermophilus LMD-9 and L. bulgaricus ATCC 11842 growth and lactate production were monitored in different media and in the gastrointestinal tract (GIT) of germ-free rats. In vitro, particularly in milk, S. thermophilus had a selective growth advantage over L. bulgaricus. The GIT of germ-free rats not supplemented with lactose was colonised by S. thermophilus but not by L. bulgaricus. Both bacteria were able to colonise the GIT of germ-free rats supplemented with 45 g/l lactose in their drinking water. However, if germ-free rats were inoculated with a mixture of the two bacteria and were supplemented with lactose, S. thermophilus rapidly and extensively colonised the GIT (1010 cfu/g faeces) at the expense of L. bulgaricus, which remained in most cases at levels bulgaricus produced only D-lactate, both in vitro and in vivo. S. thermophilus showed competitive and growth advantage over L. bulgaricus in vitro as well as in vivo in the GIT of germ-free rats and, accordingly, L-lactate was the main lactate isomer produced.

  3. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    International Nuclear Information System (INIS)

    Sun Xingmin; Goehler, Andre; Heller, Knut J.; Neve, Horst

    2006-01-01

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquid medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10 9 phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages

  4. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

    Science.gov (United States)

    Kiro, Ruth; Shitrit, Dror; Qimron, Udi

    2014-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

  5. Bacteriophages of Leuconostoc, Oenococcus, and Weissella

    DEFF Research Database (Denmark)

    Kot, Witold; Neve, Horst; Heller, Knut J

    2014-01-01

    Leuconostoc (Ln.), Weissella, and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat, and fish. Most of industrially relevant Leuconostoc strains...... can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore, bacteriophages attacking Leuconostoc strains may negatively influence the production process....... Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using...

  6. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage

    International Nuclear Information System (INIS)

    Lisal, Jiri; Kainov, Denis E.; Lam, TuKiet T.; Emmett, Mark R.; Wei Hui; Gottlieb, Paul; Marshall, Alan G.; Tuma, Roman

    2006-01-01

    Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading

  7. Selection of Potential Therapeutic Bacteriophages that Lyse a CTX-M-15 Extended Spectrum β-Lactamase Producing Salmonella enterica Serovar Typhi Strain from the Democratic Republic of the Congo

    Directory of Open Access Journals (Sweden)

    Elene Kakabadze

    2018-04-01

    Full Text Available Recently, a Salmonella Typhi isolate producing CTX-M-15 extended spectrum β-lactamase (ESBL and with decreased ciprofloxacin susceptibility was isolated in the Democratic Republic of the Congo. We have selected bacteriophages that show strong lytic activity against this isolate and have potential for phage-based treatment of S. Typhi, and Salmonella in general.

  8. Evolution and the complexity of bacteriophages.

    Science.gov (United States)

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine

  9. Evolution and the complexity of bacteriophages

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-03-01

    Full Text Available Abstract Background The genomes of both long-genome (> 200 Kb bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1 Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2 Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection. (3 The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection. (4 The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1 determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2 find the environmental conditions that

  10. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  11. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  12. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    Directory of Open Access Journals (Sweden)

    Abdelkader Mezaini

    2009-01-01

    Full Text Available In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacteriocin production profiles showed that the maximal bacteriocin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml−1 with a bacteriocine production rate of 9.3 (AU ml−1 h−1. In addition, our findings showed that the bacteriocin, produced by S. thermophilus T2, was stable over a wide pH range (4–8; this indicates that such bacteriocin may be useful in acidic as well as nonacidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.

  13. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    International Nuclear Information System (INIS)

    Mezaini, A.; Bouras, A.D.; Mezaini, A.; Chihib, N.; Nedjar-Arroume, N.; Hornez, J.P.

    2010-01-01

    In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacitracin production profiles showed that the maximal bacitracin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml -1 ) with a bacterio cine production rate of 9.3 (AU ml -1 ) h -1 . In addition, our findings showed that the bacitracin, produced by S. thermophilus T2, was stable over a wide ph range (4-8); this indicates that such bacitracin may be useful in acidic as well as non acidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.

  14. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation.

    Science.gov (United States)

    Arioli, Stefania; Della Scala, Giulia; Remagni, Maria Chiara; Stuknyte, Milda; Colombo, Stefano; Guglielmetti, Simone; De Noni, Ivano; Ragg, Enzio; Mora, Diego

    2017-04-17

    The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pH in , L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    Science.gov (United States)

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  16. Bacteriophage ecology in environmental biotechnology processes.

    Science.gov (United States)

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Molecular characterization of podoviral bacteriophages virulent for Clostridium perfringens and their comparison with members of the Picovirinae.

    Directory of Open Access Journals (Sweden)

    Nikolay V Volozhantsev

    Full Text Available Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae.

  18. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  19. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    Science.gov (United States)

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  20. Sequence and comparative analysis of Leuconostoc dairy bacteriophages

    DEFF Research Database (Denmark)

    Kot, Witold; Hansen, Lars Henrik; Neve, Horst

    2014-01-01

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc...

  1. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    Science.gov (United States)

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  2. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  3. Characterization of some pneumococcal bacteriophages

    International Nuclear Information System (INIS)

    Porter, R.D.; Guild, W.R.

    1976-01-01

    The growth of pneumococcal phages at high cell and phage densities is enhanced strongly by the substitution of potassium for sodium in the medium. Initial titers of 2 x 10 10 to 4 x 10 10 PFU/ml are readily obtained, and concentrated stocks are stable in a storage buffer described here. The mechanism of the cation effect is obscure. Phages ω3 and ω8 each have linear double-stranded DNA of 33 x 10 6 daltons per particle, with an apparent guanine plus cytosine content of 47 to 49 mol percent, as determined by buoyancy and melting temperature, but with an unusual absorbance spectrum. Efficiency of plating is high if sufficient time is allowed for a relatively slow adsorption, which differs several-fold in rate between the two phages. Morphologically, these and other pneumococcal phages are similar to coliphage lambda but with a longer tail and tail fiber. Upon UV inactivation, ω3 and ω8 have D 37 values of 33 and 55 J/m 2 , respectively, and each shows multiplicity reactivation. A total of 13 ts mutants have been isolated from the two phages, representing only two complementation groups; complementation and recombination occur between ω3 and ω8 mutants. Both phages provoke high-titer antisera with extensive cross-reactivity against a number of newly isolated pneumococcal phages

  4. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hettinga, K.A.; Vervoort, J.J.M.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L.

  5. M13 Bacteriophage Based Protein Sensors

    Science.gov (United States)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  6. Isolation and characterization of bacteriophages with therapeutic potential

    DEFF Research Database (Denmark)

    Villarroel, Julia

    Phinder: A Phage Host Prediction Tool” published in May 2016. The tool predicts the bacterial host of a given phage based on co-occurrent k-mers between a query sequence and reference phage genomes with known host. HostPhinder’s accuracy in predicting the host species and genus of an evaluation set was higher than...

  7. Genome Sequences of Ilzat and Eleri, Two Phages Isolated Using Microbacterium foliorum NRRL B-24224

    Science.gov (United States)

    Ali, Ilzat; Jones, Acacia Eleri; Mohamed, Aleem

    2018-01-01

    ABSTRACT Bacteriophages Ilzat and Eleri are newly isolated Siphoviridae infecting Microbacterium foliorum NRRL B-24224. The phage genomes are similar in length, G+C content, and architecture and share 62.9% nucleotide sequence identity. PMID:29650566

  8. Analysis of Bacillus subtilis sporulation with spore-converting bacteriophage PMB12.

    OpenAIRE

    Kinney, D M; Bramucci, M G

    1981-01-01

    Previous observations concerning the ability of the spore-converting bacteriophage PMB12 to cause sporulation in certain sporulation-deficient mutants of Bacillus subtilis 168 were extended to include a spoOK mutant and a mutant temperature sensitive for sporulation due to a ribosomal mutation. Mutants of PMB12 that were unable to induce sporulation in the spoOK mutant were isolated to determine whether PMB12-encoded products had to affect the sporulation-specific functions of both the transc...

  9. Biology and genomics of an historic therapeutic Escherichia coli bacteriophage collection

    DEFF Research Database (Denmark)

    Baig, Abiyad; Colom, Joan; Barrow, Paul

    2017-01-01

    We have performed microbiological and genomic characterization of an historic collection of nine bacteriophages, specifically infecting a K1 E. coli O18:K1:H7 ColV+ strain. These phages were isolated from sewage and tested for their efficacy in vivo for the treatment of systemic E. coli infection...... in a mouse infection model by Smith and Huggins (1982). The aim of the study was to identify common microbiological and genomic characteristics, which co-relate to the performance of these phages in in vivo study. These features will allow an informed selection of phages for use as therapeutic agents...

  10. SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus.

    Science.gov (United States)

    Boutry, Céline; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia; Hols, Pascal

    2013-02-01

    Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.

  11. A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods.

    Science.gov (United States)

    Kort, Remco; Westerik, Nieke; Mariela Serrano, L; Douillard, François P; Gottstein, Willi; Mukisa, Ivan M; Tuijn, Coosje J; Basten, Lisa; Hafkamp, Bert; Meijer, Wilco C; Teusink, Bas; de Vos, Willem M; Reid, Gregor; Sybesma, Wilbert

    2015-12-08

    The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities. We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years. A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.

  12. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment

    Directory of Open Access Journals (Sweden)

    Lijing Jiang

    2017-12-01

    Full Text Available Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7–6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C, alkaline pH (optimal pH 8.0, microaerobic conditions (optimal 4% O2, and reduced sulfur compounds (e.g., sulfide, optimal 100 μM. Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep

  13. A Potential Food-Grade Cloning Vector for Streptococcus thermophilus That Uses Cadmium Resistance as the Selectable Marker

    OpenAIRE

    Wong, Wing Yee; Su, Ping; Allison, Gwen E.; Liu, Chun-Qiang; Dunn, Noel W.

    2003-01-01

    A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance se...

  14. Immuno compatibility of Bacteriophages as Nano medicines

    International Nuclear Information System (INIS)

    Kaur, T.; Nafissi, N.; Wasfi, O.; Sheldon, K.; Wettig, Sh.; Slavcev, R.

    2012-01-01

    Bacteriophage-based medical research provides the opportunity to develop targeted nano medicines with heightened efficiency and safety profiles. Filamentous phages also can and have been formulated as targeted drug-delivery nano medicines, and phage may also serve as promising alternatives/complements to antibiotics. Over the past decade the use of phage for both the prophylaxis and the treatment of bacterial infection, has gained special significance in view of a dramatic rise in the prevalence of antibiotic resistance bacterial strains. Two potential medical applications of phages are the treatment of bacterial infections and their use as immunizing agents in diagnosis and monitoring patients with immunodeficiencies. Recently, phages have been employed as gene-delivery vectors (phage nano medicine), for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. As phage applications to human therapeutic development grow at an exponential rate, it will become essential to evaluate host immune responses to initial and repetitive challenges by therapeutic phage in order to develop phage therapies that offer suitable utility. This paper examines and discusses phage nano medicine applications and the immunomodulatory effects of bacteriophage exposure and treatment modalities.

  15. A bacteriophages journey through the human body.

    Science.gov (United States)

    Barr, Jeremy J

    2017-09-01

    The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Bacteriophages and Their Role in Food Safety

    Directory of Open Access Journals (Sweden)

    Sanna M. Sillankorva

    2012-01-01

    Full Text Available The interest for natural antimicrobial compounds has increased due to alterations in consumer positions towards the use of chemical preservatives in foodstuff and food processing surfaces. Bacteriophages fit in the class of natural antimicrobial and their effectiveness in controlling bacterial pathogens in agro-food industry has led to the development of different phage products already approved by USFDA and USDA. The majority of these products are to be used in farm animals or animal products such as carcasses, meats and also in agricultural and horticultural products. Treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases and ultimately promote safe environments in animal and plant food production, processing, and handling. This is an overview of recent work carried out with phages as tools to promote food safety, starting with a general introduction describing the prevalence of foodborne pathogens and bacteriophages and a more detailed discussion on the use of phage therapy to prevent and treat experimentally induced infections of animals against the most common foodborne pathogens, the use of phages as biocontrol agents in foods, and also their use as biosanitizers of food contact surfaces.

  17. Study of the reactivation of X-ray inactivated lambda bacteriophages by irradiated Escherichia coli bacteria

    International Nuclear Information System (INIS)

    Kiessling, W.

    1980-01-01

    Bacteriophages lambda and E.coli cells were exposed to X-rays in LB medium. Host cells exposed to a dose of 85 to 765 Gy had a reactivation factor 1.3 to 3.0 for bacteriophages inactivated by X-rays. The capacity of the bacteria for bacteriophage mutliplication remained apparently unchanged in this dose range. After UV-irradiation of the host cells, only a reactivation factor of 1.3 was found for bacteriophages exposed to X-radiation. The comparatively low Weigle reactivation of bacteriophages exposed to X-radiation - as compared with bacteriophages exposed to UV radiation was analyzed by counting free, non-adsorbed bacteriophages determined by filtration of radioactively labelled bacteriophage-host complexes, it was found to be due to a reduced adsorptivity. Reactivation experiments with bacteriophages exposed to X-rays and host bacterias with different degrees of radiosensitivity proved this assumption to be correct. (orig.) [de

  18. Production of lactic acid from whey using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Adriana M. Rojas

    2015-09-01

    Full Text Available The main objective of this research was to determine the proper growth conditions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for the production of lactic acid using serum as substract. This serum was obtain from the department of Cesar, Colombia. Lactic acid is the result of the extraction and purification of fermentation broths in which bacteria Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus are used, which are usually used for the production of yogurt. The substrate was supplemented with yeast extract, ammonium phosphate as a nitrogen source, and calcium carbonate as a neutralizer, in order to optimize the consumption, by the bacteria, of the main carbohydrate present in serum (lactose. During the fermentation (up to 72 h the inoculums concentration, and temperature were controlled. Purification consisted in esterification, filtration of solids formed during the reaction, and removing of water by evaporation and nitrogen influx. Finally, lactic acid was obtained with 78,0% purity (36.7 g/L, which was characterized by infrared spectroscopy

  19. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: Evidence for a galactose-lactose antiporter

    International Nuclear Information System (INIS)

    Hutkins, R.W.; Ponne, C.

    1991-01-01

    Galactose-nonfermenting (Gal - ) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal - cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated [ 14 C]lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force (Δp) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a Δp of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal - S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system

  20. STUDIES ON THE BACTERIOPHAGE OF D'HÉRELLE

    Science.gov (United States)

    Hetler, D. M.; Bronfenbrenner, J.

    1928-01-01

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein. PMID:19869482

  1. Bacteria vs. bacteriophages: parallel evolution of immune arsenals

    Directory of Open Access Journals (Sweden)

    Muhammad Abu Bakr Shabbir

    2016-08-01

    Full Text Available Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR. In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.

  2. Bacteriophages: update on application as models for viruses in water

    African Journals Online (AJOL)

    Bacteriophages: update on application as models for viruses in water. ... the resistance of human viruses to water treatment and disinfection processes. ... highly sensitive molecular techniques viruses have been detected in drinking water ...

  3. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Amina Amal Mahmoud Nouraldin

    2015-07-11

    Jul 11, 2015 ... mote resistance to antimicrobial agents, and its occurrence during the infectious ... Biofilm is a structured community of bacterial cells adher- ent to an inert or ..... biofilms with bacteriophages and chlorine. Biotechnol Bioeng.

  4. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter

    NARCIS (Netherlands)

    Junjua, M.; Galia, W.; Gaci, N.; Uriot, O.; Genay, M.; Bachmann, H.; Kleerebezem, M.; Dary, A.; Roussel, Y.

    2014-01-01


    Aims

    To construct and validate the recombinase-based in vivo expression technology (R-IVET) tool in Streptococcus thermophilus (ST).

    Methods and Results

    The R-IVET system we constructed in the LMD-9 strain includes the plasmid pULNcreB allowing transcriptional fusion

  5. Quaternary structure of the lactose transport protein of Streptococcus thermophilus in the detergent-solubilized and membrane-reconstituted state

    NARCIS (Netherlands)

    Friesen, R.H.E.; Poolman, B.; Knol, J.

    2000-01-01

    The quaternary structure of LacS, the lactose transporter of Streptococcus thermophilus, has been determined for the detergent-solubilized and the membrane-reconstituted state of the protein. The quaternary structure of the n-dodecyl-β-D-maltoside-solubilized state was studied using a combination of

  6. Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the Terminal Ileum of Fistulated Göttingen Minipigs

    Science.gov (United States)

    Lick, Sonja; Drescher, Karsten; Heller, Knut J.

    2001-01-01

    The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth. PMID:11526016

  7. In Silico Prediction of Horizontal Gene Transfer Events in Lactobacillus bulgaricus and Streptococcus thermophilus Reveals Protocooperation in Yogurt Manufacturing▿ †

    Science.gov (United States)

    Liu, Mengjin; Siezen, Roland J.; Nauta, Arjen

    2009-01-01

    Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions. PMID:19395564

  8. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing.

    NARCIS (Netherlands)

    Liu, M.; Siezen, R.J.; Nauta, A.

    2009-01-01

    Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We

  9. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing.

    Science.gov (United States)

    Liu, Mengjin; Siezen, Roland J; Nauta, Arjen

    2009-06-01

    Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions.

  10. Evaluating acetaldehyde synthesis from L-/sup 14/C(U)) threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.; Smith, K.L.; Jezeski, J.J.

    1986-05-01

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-(carbon-14(U))threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42/sup 0/C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-(carbon-14)threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42/sup 0/C decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48/sup 0/C was 89% lower than that of cells grown at 30/sup 0/C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42/sup 0/C increased threonine aldolase activity in S. thermophilus MS1.

  11. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    OpenAIRE

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  12. Bacteriophage-based Probiotic Preparation for Managing Shigella Infections

    Science.gov (United States)

    2015-04-16

    The preparation (designated “ShigActive”) is a bacteriophage cocktail that specifically targets Shigella spp. (significant diarrhea-causing pathogens...phages lytic for Shigella , and we have developed a murine model in which the in vivo efficacy of our 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...10-Apr-2013 Approved for Public Release; Distribution Unlimited Final Report: Bacteriophage-based Probiotic Preparation for Managing Shigella

  13. Methods for initial characterization of Campylobacter jejuni bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.......Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity....

  14. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    Science.gov (United States)

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  15. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.

    Science.gov (United States)

    Togawa, Yoichiro; Nunoshiba, Tatsuo; Hiratsu, Keiichiro

    2018-02-01

    Markerless gene-disruption technology is particularly useful for effective genetic analyses of Thermus thermophilus (T. thermophilus), which have a limited number of selectable markers. In an attempt to develop a novel system for the markerless disruption of genes in T. thermophilus, we applied a Cre/lox system to construct a triple gene disruptant. To achieve this, we constructed two genetic tools, a loxP-htk-loxP cassette and cre-expressing plasmid, pSH-Cre, for gene disruption and removal of the selectable marker by Cre-mediated recombination. We found that the Cre/lox system was compatible with the proliferation of the T. thermophilus HB27 strain at the lowest growth temperature (50 °C), and thus succeeded in establishing a triple gene disruptant, the (∆TTC1454::loxP, ∆TTC1535KpnI::loxP, ∆TTC1576::loxP) strain, without leaving behind a selectable marker. During the process of the sequential disruption of multiple genes, we observed the undesired deletion and inversion of the chromosomal region between multiple loxP sites that were induced by Cre-mediated recombination. Therefore, we examined the effects of a lox66-htk-lox71 cassette by exploiting the mutant lox sites, lox66 and lox71, instead of native loxP sites. We successfully constructed a (∆TTC1535::lox72, ∆TTC1537::lox72) double gene disruptant without inducing the undesired deletion of the 0.7-kbp region between the two directly oriented lox72 sites created by the Cre-mediated recombination of the lox66-htk-lox71 cassette. This is the first demonstration of a Cre/lox system being applicable to extreme thermophiles in a genetic manipulation. Our results indicate that this system is a powerful tool for multiple markerless gene disruption in T. thermophilus.

  16. Framing the Future with Bacteriophages in Agriculture.

    Science.gov (United States)

    Svircev, Antonet; Roach, Dwayne; Castle, Alan

    2018-04-25

    The ability of agriculture to continually provide food to a growing world population is of crucial importance. Bacterial diseases of plants and animals have continually reduced production since the advent of crop cultivation and animal husbandry practices. Antibiotics have been used extensively to mitigate these losses. The rise of antimicrobial resistant (AMR) bacteria, however, together with consumers’ calls for antibiotic-free products, presents problems that threaten sustainable agriculture. Bacteriophages (phages) are proposed as bacterial population control alternatives to antibiotics. Their unique properties make them highly promising but challenging antimicrobials. The use of phages in agriculture also presents a number of unique challenges. This mini-review summarizes recent development and perspectives of phages used as antimicrobial agents in plant and animal agriculture at the farm level. The main pathogens and their adjoining phage therapies are discussed.

  17. Bacteriophage lambda: early pioneer and still relevant

    Science.gov (United States)

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  18. Montmorillonite-induced Bacteriophage φ6 Disassembly

    Science.gov (United States)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  19. Three-dimensional structure of the enzyme dimanganese catalase from thermus thermophilus at 1 A resolution

    International Nuclear Information System (INIS)

    Antonyuk, S.V.; Melik-Adamyan, V.R.; Popov, A.N.; Lamzin, V.S.; Hempstead, P.D.; Harrison, P.M.; Artymyuk, P.J.; Barynin, V.V.

    2000-01-01

    The crystal structures of two forms of the enzyme dimanganese catalase from Thermus Thermophilus (native and inhibited by chloride) were studied by X-ray diffraction analysis at 1.05 and 0.98 A resolution, respectively. The atomic models of the molecules were refined to the R factors 9.8 and 10%, respectively. The three-dimensional molecular structures are characterized in detail. The analysis of electron-density distributions in the active centers of the native and inhibited enzyme forms revealed that the most flexible side chains of the amino acid residues Lys162 and Glu36 exist in two interrelated conformations. This allowed us to obtain the structural data necessary for understanding the mechanism of enzymatic activity of the dimanganese catalase

  20. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.

    Science.gov (United States)

    Guo, Lijun; Xu, Kun; Liu, Zhiyuan; Zhang, Cunfang; Xin, Ying; Zhang, Zhiying

    2015-06-01

    In addition to the advantages of scalable, affordable, and easy to engineer, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is superior for multiplex targeting, which is laborious and inconvenient when achieved by cloning multiple gRNA expressing cassettes. Here, we report a simple CRISPR array assembling method which will facilitate multiplex targeting usage. First, the Streptococcus thermophilus CRISPR3/Cas locus was cloned. Second, different CRISPR arrays were assembled with different crRNA spacers. Transformation assays using different Escherichia coli strains demonstrated efficient plasmid DNA targeting, and we achieved targeting efficiency up to 95% with an assembled CRISPR array with three crRNA spacers. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A novel enzymatic system against oxidative stress in the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus.

    Directory of Open Access Journals (Sweden)

    Yuya Sato

    Full Text Available Rubrerythrin (Rbr is a non-heme iron protein composed of two distinctive domains and functions as a peroxidase in anaerobic organisms. A novel Rbr-like protein, ferriperoxin (Fpx, was identified in Hydrogenobacter thermophilus and was found not to possess the rubredoxin-like domain that is present in typical Rbrs. Although this protein is widely distributed among aerobic organisms, its function remains unknown. In this study, Fpx exhibited ferredoxin:NADPH oxidoreductase (FNR-dependent peroxidase activity and reduced both hydrogen peroxide (H(2O(2 and organic hydroperoxide in the presence of NADPH and FNR as electron donors. The calculated K(m and V(max values of Fpx for organic hydroperoxides were comparable to that for H(2O(2, demonstrating a multiple reactivity of Fpx towards hydroperoxides. An fpx gene disruptant was unable to grow under aerobic conditions, whereas its growth profiles were comparable to those of the wild-type strain under anaerobic and microaerobic conditions, clearly indicating the indispensability of Fpx as an antioxidant of H. thermophilus in aerobic environments. Structural analysis suggested that domain-swapping occurs in Fpx, and this domain-swapped structure is well conserved among thermophiles, implying the importance of structural stability of domain-swapped conformation for thermal environments. In addition, Fpx was located on a deep branch of the phylogenetic tree of Rbr and Rbr-like proteins. This finding, taken together with the wide distribution of Fpx among Bacteria and Archaea, suggests that Fpx is an ancestral type of Rbr homolog that functions as an essential antioxidant and may be part of an ancestral peroxide-detoxification system.

  2. Biofilm Formation on Stainless Steel by Streptococcus thermophilus UC8547 in Milk Environments Is Mediated by the Proteinase PrtS

    OpenAIRE

    Bassi, D.; Cappa, F.; Gazzola, S.; Orrù, L.; Cocconcelli, P. S.

    2017-01-01

    In Streptococcus thermophilus, gene transfer events and loss of ancestral traits over the years contribute to its high level of adaptation to milk environments. Biofilm formation capacity, a phenotype that is lost in the majority of strains, plays a role in persistence in dairy environments, such as milk pasteurization and cheese manufacturing plants. To investigate this property, we have studied S. thermophilus UC8547, a fast-acidifying dairy starter culture selected for its high capacity to...

  3. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  4. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus.

    Science.gov (United States)

    Sieuwerts, Sander; Molenaar, Douwe; van Hijum, Sacha A F T; Beerthuyzen, Marke; Stevens, Marc J A; Janssen, Patrick W M; Ingham, Colin J; de Bok, Frank A M; de Vos, Willem M; van Hylckama Vlieg, Johan E T

    2010-12-01

    Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp. bulgaricus) is one of the best-described mixed-culture fermentations. These species are believed to stimulate each other's growth by the exchange of metabolites such as folic acid and carbon dioxide. Recently, postgenomic studies revealed that an upregulation of biosynthesis pathways for nucleotides and sulfur-containing amino acids is part of the global physiological response to mixed-culture growth in S. thermophilus, but an in-depth molecular analysis of mixed-culture growth of both strains remains to be established. We report here the application of mixed-culture transcriptome profiling and a systematic analysis of the effect of interaction-related compounds on growth, which allowed us to unravel the molecular responses associated with batch mixed-culture growth in milk of S. thermophilus CNRZ1066 and L. bulgaricus ATCC BAA-365. The results indicate that interactions between these bacteria are primarily related to purine, amino acid, and long-chain fatty acid metabolism. The results support a model in which formic acid, folic acid, and fatty acids are provided by S. thermophilus. Proteolysis by L. bulgaricus supplies both strains with amino acids but is insufficient to meet the biosynthetic demands for sulfur and branched-chain amino acids, as becomes clear from the upregulation of genes associated with these amino acids in mixed culture. Moreover, genes involved in iron uptake in S. thermophilus are affected by mixed-culture growth, and genes coding for exopolysaccharide production were upregulated in both organisms in mixed culture compared to monocultures. The confirmation of previously identified responses in S. thermophilus using a different strain combination

  5. Reduction of the off-flavor volatile generated by the yogurt starter culture including Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in soymilk.

    Science.gov (United States)

    Kaneko, Daisuke; Igarashi, Toshinori; Aoyama, Kenji

    2014-02-19

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus establish a symbiotic relationship in milk; however, S. thermophilus predominantly grows in soymilk. This study determined that excess diacetyl was notably generated mainly by S. thermophilus in soymilk, and this flavor compound created an unpleasant odor in fermented soymilk. The addition of l-valine to soymilk reduced the amount of diacetyl and increased the levels of acetoin during fermentation by S. thermophilus . In addition, it was found that the expression of the ilvC gene was repressed and that of the als and aldB genes was stimulated in S. thermophilus by l-valine. Sensory evaluations with the triangle difference test and a preference test showed that the soymilk fermented with l-valine was significantly preferred compared with that without l-valine. In this study, we successfully controlled the metabolic flux of S. thermophilus in soymilk and produced more favorable fermented soymilk without the use of genetically modified lactic acid bacteria strains.

  6. Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine.

    Science.gov (United States)

    Zhang, Yanyan; Hu, Zhiqiang

    2013-01-01

    Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 10(7) PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 10(7) PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre-existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre-existing biofilms. However, a combination of phages (3 × 10(7) PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one-time treatment at the concentration of 1.9 × 10(8) PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 10(5) PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Copyright © 2012 Wiley Periodicals, Inc.

  7. Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y.

    Science.gov (United States)

    Khanal, Som N; Lucey, John A

    2017-09-01

    The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus (St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography-multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ∼150 min, which corresponded to pH ∼5.3, which was close to the point of gelation. During the remainder of the fermentation process (150-270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ∼60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 10 6 and 1.4 × 10 6 g/mol, respectively, which decreased to 1.6 × 10 6 and 0.8 × 10 6 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels

  8. Direct interaction of the bacteriophage SPP1 packaging ATPase with the portal protein.

    Science.gov (United States)

    Oliveira, Leonor; Cuervo, Ana; Tavares, Paulo

    2010-03-05

    DNA packaging in tailed bacteriophages and other viruses requires assembly of a complex molecular machine at a specific vertex of the procapsid. This machine is composed of the portal protein that provides a tunnel for DNA entry, an ATPase that fuels DNA translocation (large terminase subunit), and most frequently, a small terminase subunit. Here we characterized the interaction between the terminase ATPase subunit of bacteriophage SPP1 (gp2) and the procapsid portal vertex. We found, by affinity pulldown assays with purified proteins, that gp2 interacts with the portal protein, gp6, independently of the terminase small subunit gp1, DNA, or ATP. The gp2-procapsid interaction via the portal protein depends on gp2 concentration and requires the presence of divalent cations. Competition experiments showed that isolated gp6 can only inhibit gp2-procapsid interactions and DNA packaging at gp6:procapsid molar ratios above 10-fold. Assays with gp6 carrying mutations in distinct regions of its structure that affect the portal-induced stimulation of ATPase and DNA packaging revealed that none of these mutations impedes gp2-gp6 binding. Our results demonstrate that the SPP1 packaging ATPase binds directly to the portal and that the interaction is stronger with the portal embedded in procapsids. Identification of mutations in gp6 that allow for assembly of the ATPase-portal complex but impair DNA packaging support an intricate cross-talk between the two proteins for activity of the DNA translocation motor.

  9. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.

    Science.gov (United States)

    Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-08-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.

  10. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  11. Structure of TTHA1623, a novel metallo-β-lactamase superfamily protein from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    Yamamura, Akihiro; Okada, Akitoshi; Kameda, Yasuhiro; Ohtsuka, Jun; Nakagawa, Noriko; Ebihara, Akio; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    The crystal structures of TTHA1623 from T. thermophilus HB8 in an iron-bound and a zinc-bound form have been determined to 2.8 and 2.2 Å resolution, respectively. TTHA1623 is a metallo-β-lactamase superfamily protein from the extremely thermophilic bacterium Thermus thermophilus HB8. Homologues of TTHA1623 exist in a wide range of bacteria and archaea and one eukaryote, Giardia lamblia, but their function remains unknown. To analyze the structural properties of TTHA1623, the crystal structures of its iron-bound and zinc-bound forms have been determined to 2.8 and 2.2 Å resolution, respectively. TTHA1623 possesses an αββα-fold similar to that of other metallo-β-lactamase superfamily proteins with glyoxalase II-type metal coordination. However, TTHA1623 exhibits a putative substrate-binding pocket with a unique shape

  12. Cloning, expression, purification, crystallization and initial crystallographic analysis of the preprotein translocation ATPase SecA from Thermus thermophilus

    International Nuclear Information System (INIS)

    Vassylyeva, Marina N.; Mori, Hiroyuki; Tsukazaki, Tomoya; Yokoyama, Shigeyuki; Tahirov, Tahir H.; Ito, Koreaki; Vassylyev, Dmitry G.

    2006-01-01

    The SecA ATPase from T. thermophilus was cloned, expressed, purified and crystallized. Complete diffraction data sets were collected for two crystal forms at 2.8 and 3.5 Å resolution, respectively. Determination of the structure is now in progress. The Thermus thermophilus gene encoding the preprotein translocation ATPase SecA was cloned and expressed and the purified protein was crystallized by the hanging-drop vapour-diffusion technique in two different space groups P3 1(2) 21 (a = b = 168.6, c = 149.8 Å) and P6 1(5) 22 (a = b = 130.9, c = 564.6 Å). The crystals, improved by macroseeding, diffracted to beyond 2.8 and 3.5 Å resolution for the trigonal and hexagonal crystal forms, respectively. Structure determination using the multiple isomorphous replacement method is in progress

  13. Purification, crystallization and preliminary X-ray diffraction study on pyrimidine nucleoside phosphorylase TTHA1771 from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    Shimizu, Katsumi; Kunishima, Naoki

    2007-01-01

    The pyrimidine nucleoside phosphorylase TTHA1771 from T. thermophilus HB8 has been overexpressed, purified and crystallized. The crystals diffract X-rays to 1.8 Å resolution using synchrotron radiation. Pyrimidine nucleoside phosphorylase (PYNP) catalyzes the reversible phosphorolysis of pyrimidines in the nucleotide-synthesis salvage pathway. In order to study the structure–thermostability relationship of this enzyme, PYNP from the extreme thermophile Thermus thermophilus HB8 (TTHA1771) has been cloned, overexpressed and purified. The TTHA1771 protein was crystallized at 291 K using the oil-microbatch method with PEG 4000 as a precipitant. A native data set was collected to 1.8 Å resolution using synchrotron radiation. The crystal belongs to the monoclinic space group P2 1 , with unit-cell parameters a = 58.83, b = 76.23, c = 103.86 Å, β = 91.3°

  14. A bacteriophage endolysin that eliminates intracellular streptococci

    Science.gov (United States)

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  15. Synthesis of rare sugars with L-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8.

    Science.gov (United States)

    Li, Zijie; Cai, Li; Qi, Qingsheng; Styslinger, Thomas J; Zhao, Guohui; Wang, Peng George

    2011-09-01

    We report herein a one-pot four-enzyme approach for the synthesis of the rare sugars d-psicose, d-sorbose, l-tagatose, and l-fructose with aldolase FucA from a thermophilic source (Thermus thermophilus HB8). Importantly, the cheap starting material DL-GP (DL-glycerol 3-phosphate), was used to significantly reduce the synthetic cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of molybdopterin synthase from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Ohmori, Miwa; Agari, Kazuko; Kitamura, Yoshiaki; Baba, Seiki; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-01-01

    The molybdopterin synthase from T. thermophilus HB8 was cloned, expressed, purified and crystallized. The crystals belong to space group P2 1 and diffracted to a resolution of 1.64 Å. Thermus thermophilus is a Gram-negative aerobic thermophilic eubacterium which can grow at temperatures ranging from 323 to 355 K. In addition to their importance in thermostability or adaptation strategies for survival at high temperatures, the thermostable enzymes in thermophilic organisms contribute to a wide range of biotechnological applications. The molybdenum cofactor in all three kingdoms consists of a tricyclic pyranopterin termed molybdopterin that bears the cis-dithiolene group responsible for molybdenum ligation. The crystals of molybdopterin synthase from T. thermophilus HB8 belong to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 33.94, b = 103.32, c = 59.59 Å, β = 101.3°. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit

  18. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    Science.gov (United States)

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Molecular and chemical engineering of bacteriophages for potential medical applications.

    Science.gov (United States)

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  20. Engineered enzymatically active bacteriophages and methods of uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  1. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    Science.gov (United States)

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  2. Characterization of a bacteriophage T4 mutant lacking DNA-dependent ATPase

    International Nuclear Information System (INIS)

    Behme, M.T.; Ebisuzaki, K.

    1975-01-01

    A DNA-dependent ATPase has previously been purified from bacteriophage T4-infected Escherichia coli. A mutant phage strain lacking this enzyme has been isolated and characterized. Although the mutant strain produced no detectable DNA-dependent ATPase, growth properties were not affected. Burst sizes were similar for the mutant phage and T4D in polAl, recB, recC, uvrA, uvrB, uvrC, and various DNA-negative E. coli. UV sensitivity and genetic recombination were normal in a variety of E. coli hosts. Mapping data indicate that the genetic locus controlling the mutant occurs near gene 56. The nonessential nature of this gene is discussed

  3. Recovery status of bacteriophages of different livestock farms of Veterinary College, Adhartal, Jabalpur, India

    Directory of Open Access Journals (Sweden)

    Sanjay Shukla and S. D. Hirpurkar

    2011-06-01

    Full Text Available Study was conducted to know the presence of bacteriophage in sewage material which can play a very important role during therapy against the some antibiotic resistance organisms. During study waste water samples were collected from different depths of the wastewater collection tanks located in livestock farms of different species (Cattle, pig, goat and poultry. These samples were subjected primarily to rapid detection by streak plate method for the detection of lytic activity followed by primary isolation of phage against two most common bacteria of environment, namely, B. subtilis and E. coli by Double agar layer (DAL method. Recovery of phages was maximum from pig feces (67% followed by dairy cattle farm waste (63%, buffalo farm waste (50%, goat farm waste (13%. [Vet. World 2011; 4(3.000: 117-119

  4. Impact of bacteriophage Saint3 carriage on the immune evasion capacity and hemolytic potential of Staphylococcus aureus CC398.

    Science.gov (United States)

    Jung, Philipp; Abdelbary, Mohamed M H; Kraushaar, Britta; Fetsch, Alexandra; Geisel, Jürgen; Herrmann, Mathias; Witte, Wolfgang; Cuny, Christiane; Bischoff, Markus

    2017-02-01

    Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of clonal complex 398 (CC398) are frequently found in Europe, and recent studies highlighted the importance of mobile genetic element (MGE) exchange for host adaptation of this lineage. Of note, one of the MGEs commonly found in human S. aureus isolates, the immune evasion cluster (IEC) harboring bacteriophage Saint3, is very rarely found in LA-MRSA CC398 isolates obtained from farm animals, but more frequently found in LA-MRSA CC398 that were retransmitted to humans. Here, we analyzed with a set of S. aureus CC398 isolates harboring/lacking φSaint3 how this MGE affects (i) phagocytosis of CC398 isolates by polymorphonuclear neutrophils (PMNs), and (ii) hemolysis of human and livestock-derived erythrocytes. Isolates lacking φSaint3 were more efficiently phagocytosed by human PMNs in whole blood phagocytosis assays than isolates harboring this bacteriophage, irrespective of their origin. Notably, a similar effect was observed when equine blood was utilized, but not detected with porcine blood. Integration of φSaint3 into LA-MRSA CC398 strains lacking this MGE confirmed these findings, as φSaint3-harboring recipients were again less efficiently ingested by PMNs in equine and human blood than their parental strains. Integration of φSaint3 strongly reduced the hemolytic potential of the culture supernatants against human-derived erythrocytes, and to a smaller extent also against porcine-derived erythrocytes, while φSaint3 integration only slightly affected the hemolytic capacities against equine-derived red blood cells. The significant protective effect of φSaint3 against phagocytosis by equine PMNs suggests that the host specificity of the IEC components might be broader than currently assumed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multiple roles of genome-attached bacteriophage terminal proteins

    International Nuclear Information System (INIS)

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-01-01

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer

  6. Contractile injection systems of bacteriophages and related systems

    DEFF Research Database (Denmark)

    Taylor, Nicholas M I; van Raaij, Mark J; Leiman, Petr G

    2018-01-01

    Contractile tail bacteriophages, or myobacteriophages, use a sophisticated biomolecular structure to inject their genome into the bacterial host cell. This structure consists of a contractile sheath enveloping a rigid tube that is sharpened by a spike-shaped protein complex at its tip. The spike ...

  7. 21 CFR 172.785 - Listeria-specific bacteriophage preparation.

    Science.gov (United States)

    2010-04-01

    ... application to meat and poultry products that comply with the ready-to-eat definition in 9 CFR 430.1. Current... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Listeria-specific bacteriophage preparation. 172.785 Section 172.785 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  8. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P

  9. [Bacteriophages in the battle against multidrug resistant bacteria

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Vandenbroucke-Grauls, C.

    2018-01-01

    Bacteriophages are viruses that infect bacteria. They are highly specific for a bacterial species. The so-called 'lytic phages' can lyse bacteria when they infect them; these phages can be used to treat bacterial infections. Despite a century of experience with phage therapy, the evidence for

  10. Multiple roles of genome-attached bacteriophage terminal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  11. Pembuatan Dan Aktivitas Antibakteri Yogurt Hasil Fermentasi Tiga Bakteri (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacilus acidophilus

    Directory of Open Access Journals (Sweden)

    Dian S. Kamara

    2016-07-01

    Full Text Available Exploitation of synthetic antibiotics compounds not only have positive effect for human, but also have side effect that can be unfavorable, therefore many researches are being conducted to find natural antibiotics compounds that are safer. Lactic acid bacteria has the abilitytoproduce antibacterial compound when used in fermentation process.For example, Lactobacillus acidophilus produces acidophilin and acidolin. The main purpose of the present study is to investigate antibacterial activity of yogurt fermented with mixed bacterial culture of L. bulgaricus, S. thermophilus and L. acidophilus against Escherichia coli (representing Gram negative bacteria and Bacillus subtilis (representing Gram  positive bacteria. The antibacterial activity of the yogurt at three different time points (5, 7 and 9 hours were examined. We also investigate the fermentation parameters of the yogurt production. The results of the present study indicate that the crude yogurt extract has antibacterial activity, where the highest activity was observed  at 7 hour of incubation, resulting 0.35 and 0.30 cm of clear zone against E. coli and B. subtilis, respectively. It is most likely that the compound is non protein compound.

  12. Lactose hydrolysis by free and fibre-entrapped β-galactosidase from Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Zhennai Yang

    1993-09-01

    Full Text Available To study lactose hydrolysis by β-galactosidase, this enzyme was produced from Streptococcus thermophilus strain 11F and partially purified by acetone and ammonium sulphate fractionation, and ion exchange chromatography on a Q Sepharose FF column. Lactose hydrolysis by the enzyme was affected by lactose concentrations, sugars and milk proteins. The maximum extent of lactose hydrolysis in buffer was obtained with a 15% lactose concentration. Addition of 2% of lactose, glucose, galactose or sucrose in milk inhibited the enzymatic hydrolysis. The enzyme was activated by bovine serum albumin and a combination of αs-casein and β-casein. Of the casein fractions, the principal fraction, αs-casein, was less effective than β-casein and κ-casein. The fibre entrapped enzyme had a temperature optimum of 57°C, and a pH optimum from 7.5 to at least 9.0 with O-nitrophenyl-β-D-galactopyranoside as substrate. By recycling with whey and skim milk through a jacketed glass column (1.6 cm x 30 cm loaded with fibre-entrapped enzyme at 55°C, a lactose hydrolysis of 49.5% and 47.9% was achieved in 11 h and 7 h respectively.

  13. Microcalorimetric study of the growth of Streptococcus thermophilus in renneted milk

    Directory of Open Access Journals (Sweden)

    Irina eStulova

    2015-02-01

    Full Text Available The growth of Streptococcus thermophilus ST12 (ST12 in liquid milk, reconstituted from low-heat skim milk powder (RSM and in RSM with rennet addition (r-RSM at 40°C was monitored by microcalorimetry. It was shown that the growth rate of bacteria decreased in renneted samples in comparison with liquid RSM starting from certain sizes of the colonies (deviation moments, which depended on the inoculation rates. The hydrolysis of lactose was delayed for about 1 h in the r-RSM in comparison with RSM but otherwise the metabolism of carbohydrates in the renneted and non-renneted milks was similar. The total free amino acids content by the end of fermentations was higher in r-RSM than in RSM presumably due to the enzymatic hydrolytic activity of rennet. The quantitatively dominating amino acids were remarkably different in the r-RSM and RSM indicating that the hydrolysis cascade of caseins and/or metabolism of amino acids by the bacteria functioned differently in the two cases. The data obtained showed potential of microcalorimetry to characterize quantitative differences of growth and metabolism of the bacteria in renneted and liquid samples of milk.

  14. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication.

    Science.gov (United States)

    Aye, Seaim Lwin; Fujiwara, Kei; Ueki, Asuka; Doi, Nobuhide

    2018-05-05

    Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Site-directed mutation of a laccase from Thermus thermophilus: Effect on the activity profile

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-01-01

    Full Text Available A site-directed mutant R453T of a laccase from Thermus thermophilus HB27 (Tth-laccase was constructed in order to investigate the effect on laccase catalytic properties. The mutated gene was cloned and overexpressed in Escherichia coli. Nickel-affinity purification was achieved and followed by copper ion incorporation. The mature mutated enzyme was quantitatively equal to the wild type. A photometric assay based on the oxidation of the substrate 2,2-azino-bis-(3- ethylbenzthiazoline-6-sulfonate (ABTS was employed in comparison with the wild-type Tth-laccase on catalytic properties. The R453T mutant exhibited improvement in substrate affinity and specific activity at room temperature, whereas those parameters were not significantly influenced when the temperature increased up to 65°C or higher. The mutant had better catalytic activity than that of the wild type at acidic pH. Investigated by circular dichroism spectroscopy, the mutant Tth-laccase displayed similar profiles at low and high temperatures.

  16. Engineering the Substrate Specificity of a Thermophilic Penicillin Acylase from Thermus thermophilus

    Science.gov (United States)

    Torres, Leticia L.; Cantero, Ángel; del Valle, Mercedes; Marina, Anabel; López-Gallego, Fernando; Guisán, José M.

    2013-01-01

    A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site. PMID:23263966

  17. Effects of Streptococcus thermophilus TH-4 in a rat model of doxorubicin-induced mucositis.

    Science.gov (United States)

    Wang, Hanru; Brook, Caitlin L; Whittaker, Alexandra L; Lawrence, Andrew; Yazbeck, Roger; Howarth, Gordon S

    2013-08-01

    Mucositis is a debilitating intestinal side effect of chemotherapeutic regimens. Probiotics have been considered a possible preventative treatment for mucositis. Streptococcus thermophilus TH-4 (TH-4), a newly identified probiotic, has been shown to partially alleviate mucositis induced by administration of the antimetabolite chemotherapy drug, methotrexate in rats; likely mediated through a mechanism of folate production. However, its effects against other classes of chemotherapy drug have yet to be determined. The authors investigated the effects of TH-4 in a rat model of mucositis induced by the anthracycline chemotherapy drug, doxorubicin. Gastrointestinal damage was induced in female Dark Agouti rats (148.3 ± 1.5 g) by intraperitoneal injection of doxorubicin (20 mg/kg). Animals recieved a daily oral gavage of TH-4 at 10(9) cfu/ml or skim milk (vehicle) from days 0 to 8. At day 6, rats were injected with either saline or doxorubicin. At kill, small intestinal tissues were collected for determination of sucrase and myeloperoxidase (MPO) activities and histological assessment. Body weight was significantly decreased by doxorubicin compared with normal controls (p TH-4 partially prevented the loss of body weight induced by doxorubicin (2.3% compared with 4%), but provided no further therapeutic benefit. The minimal amelioration of doxorubicin-induced mucositis by TH-4 further supports folate production as a likely mechanism of TH-4 action against methotrexate-induced mucositis. Further studies into TH-4 are required to confirm its applicability to other conventional chemotherapy regimens.

  18. Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Zhang, Qingli; Yang, Bao; Brashears, Mindy M; Yu, Zhimin; Zhao, Mouming; Liu, Ning; Li, Yinjuan

    2014-05-01

    A lot of interesting research has been undertaken to enhance the yield of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB). The objective of this study was to determine the influence of casein hydrolysates (CH) with molecular weight less than 3 kDa on cell viability, EPS synthesis and the enzyme activity involved in EPS synthesis during the co-culturing of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in MRS broth for 72 h at 37 ± 0.1 °C. The highest EPS yield (150.1 mg L⁻¹) was obtained on CH prepared with papain (CHP) at 48 h. At 24 h, EPS were composed of galactose, glucose and rhamnose in a molar ratio of 1.0:2.4:1.5. The monosaccharide composition changed with extension of the fermentation time. The activities of α-phosphoglucomutase, uridine 5'-diphosphate (UDP)-glucose pyrophosphorylase and UDP-galactose 4-epimerase were associated with EPS synthesis. Moreover, the activities of β-phosphoglucomutase and deoxythymadine 5'-diphosphate (dTDP)-glucose pyrophosphorylase involved in rhamnose synthesis were very low at the exponential growth phase and could not be detected during other given periods. The influence of different CH (<3 kDa) on LAB viability, EPS production, EPS monomeric composition and activity levels of key metabolic enzymes was distinct. Besides, their influence was related to the distribution of amino acids. © 2013 Society of Chemical Industry.

  19. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  20. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    International Nuclear Information System (INIS)

    Saewen, Elin; Huttunen, Eine; Zhang Xue; Yang Zhennai; Widmalm, Goeran

    2010-01-01

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 → , in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M w = 62 kDa, corresponding to 64 repeating units in the EPS.

  1. Characterization of recombinant glyoxylate reductase from thermophile Thermus thermophilus HB27.

    Science.gov (United States)

    Ogino, Hiroyasu; Nakayama, Hitoshi; China, Hideyasu; Kawata, Takuya; Doukyu, Noriyuki; Yasuda, Masahiro

    2008-01-01

    A glyoxylate reductase gene from the thermophilic bacterium Thermus thermophilus HB27 (TthGR) was cloned and expressed in Escherichia coli cells. The recombinant enzyme was highly purified to homogeneity and characterized. The purified TthGR showed thermostability up to 70 degrees C. In contrast, the maximum reaction condition was relatively mild (45 degrees C and pH 6.7). Although the kcat values against co-enzyme NADH and NADPH were similar, the Km value against co-enzyme NADH was approximately 18 times higher than that against NADPH. TthGR prefers NADPH rather than NADH as an electron donor. These results indicate that a phosphate group of a co-enzyme affects the binding affinity rather than the reaction efficiency, and TthGR demands appropriate amount of phosphate for a high activity. Furthermore, it was found that the half-lives of TthGR in the presence of 25% dimethyl sulfoxide and diethylene glycol were significantly longer than that in the absence of an organic solvent.

  2. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Saewen, Elin [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden); Huttunen, Eine; Zhang Xue [University of Helsinki, Department of Food Technology (Finland); Yang Zhennai [Northeast Agricultural Research Center of China, Center of Agro-food Technology (China); Widmalm, Goeran, E-mail: gw@organ.su.s [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden)

    2010-06-15

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: {yields} 3)[{alpha}-d-Glcp-(1 {yields} 4)]-{beta}-d-Galp-(1 {yields} 4)-{beta}-d-Glcp-(1 {yields} 4)[{beta}-d-Galf-(1 {yields} 6)]-{beta}-d-Glcp-(1 {yields} 6)-{beta}-d-Glcp-(1 {sup {yields}}, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M{sub w} = 62 kDa, corresponding to 64 repeating units in the EPS.

  3. Evolution of the Quorum network and the mobilome (plasmids and bacteriophages) in clinical strains of Acinetobacter baumannii during a decade.

    Science.gov (United States)

    López, M; Rueda, A; Florido, J P; Blasco, L; Fernández-García, L; Trastoy, R; Fernández-Cuenca, F; Martínez-Martínez, L; Vila, J; Pascual, A; Bou, G; Tomas, M

    2018-02-06

    In this study, we compared eighteen clinical strains of A. baumannii belonging to the ST-2 clone and isolated from patients in the same intensive care unit (ICU) in 2000 (9 strains referred to collectively as Ab_GEIH-2000) and 2010 (9 strains referred to collectively as Ab_GEIH-2010), during the GEIH-REIPI project (Umbrella BioProject PRJNA422585). We observed two main molecular differences between the Ab_GEIH-2010 and the Ab_GEIH-2000 collections, acquired over the course of the decade long sampling interval and involving the mobilome: i) a plasmid harbouring genes for bla OXA 24/40 ß-lactamase and abKA/abkB proteins of a toxin-antitoxin system; and ii) two temperate bacteriophages, Ab105-1ϕ (63 proteins) and Ab105-2ϕ (93 proteins), containing important viral defence proteins. Moreover, all Ab_GEIH-2010 strains contained a Quorum functional network of Quorum Sensing (QS) and Quorum Quenching (QQ) mechanisms, including a new QQ enzyme, AidA, which acts as a bacterial defence mechanism against the exogenous 3-oxo-C12-HSL. Interestingly, the infective capacity of the bacteriophages isolated in this study (Ab105-1ϕ and Ab105-2ϕ) was higher in the Ab_GEIH-2010 strains (carrying a functional Quorum network) than in the Ab_GEIH-2000 strains (carrying a deficient Quorum network), in which the bacteriophages showed little or no infectivity. This is the first study about the evolution of the Quorum network and the mobilome in clinical strains of Acinetobacter baumannii during a decade.

  4. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware.

    Science.gov (United States)

    Jun, Jin Woo; Park, Se Chang; Wicklund, Anu; Skurnik, Mikael

    2018-04-20

    Yersinia enterocolitica, the primary cause of yersiniosis, is one of the most important foodborne pathogens globally and is associated with the consumption of raw contaminated pork. In the current study, four virulent bacteriophages (phages), one of Podoviridae (fHe-Yen3-01) and three of Myoviridae (fHe-Yen9-01, fHe-Yen9-02, and fHe-Yen9-03), capable of infecting Y. enterocolitica were isolated and characterized. fHe-Yen9-01 had the broadest host range (61.3% of strains, 65/106). It demonstrated a latent period of 35 min and a burst size of 33 plaque-forming units/cell, and was found to have a genome of 167,773 bp with 34.79% GC content. To evaluate the effectiveness of phage fHe-Yen9-01 against Y. enterocolitica O:9 strain Ruokola/71, we designed an experimental model of the food market environment. Phage treatment after bacterial inoculation of food samples, including raw pork (4 °C, 72 h), ready-to-eat pork (26 °C, 12 h), and milk (4 °C, 72 h), prevented bacterial growth throughout the experiments, with counts decreasing by 1-3 logs from the original levels of 2-4 × 10 3  CFU/g or ml. Similarly, when artificially contaminated kitchen utensils, such as wooden and plastic cutting boards and knives, and artificial hands, were treated with phages for 2 h, bacterial growth was effectively inhibited, with counts decreasing by 1-2 logs from the original levels of ca 10 4  CFU/cm 2 or ml. To the best of our knowledge, this is the first report of the successful application of phages for the control of Y. enterocolitica growth in food and on kitchen utensils. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Chang, Young-Cheol; Choi, DuBok; Kikuchi, Shintaro

    2012-01-01

    For biological extraction of heavy metals from chromated copper arsenate (CCA) treated wood, different bacteria were investigated. The extraction rates of heavy metals using Lactobacillusbulgaricus and Streptococcusthermophilus were highest. The chemical extraction rates were depended on the amounts of pyruvic acid and lactic acid. Especially, the extraction rates using mixed pyruvic acid and lactic acid were increased compared to those of sole one. They were also enhanced in the mixed culture of L. bulgaricus and S. thermophilus. To improve the extraction of CCA, a two-step processing procedure with the mixed culture of L. bulgaricus and S. thermophilus was conducted. A maximum of 93% of copper, 86.5% of chromium, and 97.8% of arsenic were extracted after 4 days. These results suggest that a two-step process with the mixed culture of L. bulgaricus and S. thermophilus is most effective to extract heavy metals from CCA treated wood. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    Science.gov (United States)

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  7. [Isolation and identification of the temperate bacteriophage from isolated strains of Streptococcus suis serotype 2].

    Science.gov (United States)

    Ma, Yuling; Lu, Chengping; Fan, Hongjie

    2008-04-01

    A PCR assay was developed to study the distributional characteristics of phage integrase gene in Streptococcus suis serotype 2 (SS2). A 323bp distinct DNA target can be amplified in 25 strains of virulent SS2, while can not be amplified in avirulent strain T15, 5 strains of other serotypes (SS1, SS7, SS9) and strains of group C Streptococcus strains from pigs, which suggested that the phage integrase gene may be related to the pathogenicity of SS2 and can be consider as a detection factor of the virulent gene of SS2. The sequencing and restriction endonuclease analysis of the PCR products were also done. Comparisons between the sequences of phage integrase gene with that of SS2 strain, showed a high homology with SS2 China strains 98HAH33, 05ZYH33 and North American strain 89-1591. Complete cell lysis was observed with SS2 virulent strains but not with avirulent strain T15 after the induction by mitomycin C. Electron microscopy analysis of the lysate from SS2 virulent strains HA9801 and ZY05719 revealed the presence of phage particles. The induced phage, named SS2-HA and SS2-ZY, both have a small isometric nucleocapsid approximately 50 nm in diameter and have no tail and is therefore a member of the Tectiviridae family. The phage integrase gene sequence of phage SS2-HA and SS2-ZY shared high homologue identities with virulent SS2 strains, which suggested that the phage integrase gene of SS2 has high specify. The temperate phage and phage integrase gene can only detected from SS2 virulent strains but not from avirulent strain, and the detection of phage integrase gene was related to the virulence-associate factors of SS2, such as the muramidase-released protein gene (mrp), which suggested that the temperate phage of SS2 may be related to the pathogenicity of SS2.

  8. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation.

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    Full Text Available Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU. Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.

  9. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Benedikt eLeis

    2015-04-01

    Full Text Available Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed the mutant strain BL03 that was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active clones in the thermophilic bacterium than in the mesophilic E. coli. From all clones functionally screened in E. coli, only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus. Four open reading frames (ORFs were found which did not share significant similarity to known esterase enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and preliminarily characterized. Our work underscores the benefit of using additional screening hosts other than E. coli for the identification of novel biocatalysts with industrial relevance.

  10. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.

    Directory of Open Access Journals (Sweden)

    Sayaka Igari

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8α(8 barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme.

  11. Bacteriophage-based synthetic biology for the study of infectious diseases

    Science.gov (United States)

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  12. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    Science.gov (United States)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  13. Genetic and biochemical studies of the lipid-containing bacteriophage PR4

    International Nuclear Information System (INIS)

    Vanden Boom, T.J.

    1989-01-01

    Bacteriophage PR4 is a lipid-containing bacterial virus able to infect Escherichia coli and Salmonella typhimurium. The icosahedral virion consists of an external protein capsid layer which surrounds a membrane vesicle enclosed ds DNA genome. The author has analyzed the time course of phage PR4 protein synthesis and have identified at least 34 proteins present in phage infected cells not detected in uninfected control cultures. In addition, he has isolated a more extensive set of conditional-lethal nonsense mutants of this virus. This collection of mutants permitted the identification of seven additional phage PR4 gene products, including the terminal genome protein and an accessory lytic factor. The present collection of phage PR4 mutants has been assigned to 19 distinct genetic groups on the basis of genetic complementation tests and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of the proteins produced in mutant-infected UV-irradiated cells. A restriction endonuclease map of the phage PR4 genome was constructed which includes 59 sites for ten restriction endonucleases. In addition, he has constructed a collection of recombinant plasmids containing subgenomic DNA fragments of bacteriophage PR4. He has used this collection of plasmids to generate a physical-genetic map of the PR4 genome. The physical-genetic map localizes mutations in 13 phage PR4 genetic groups on the viral DNA molecule. To investigate the role of phosphatidylglycerol (PG) in phage assembly and infectivity, he propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of phage PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild type host

  14. Bacteriophages encode factors required for protection in a symbiotic mutualism.

    Science.gov (United States)

    Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A

    2009-08-21

    Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.

  15. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole

    2016-01-01

    genome structure of many bacteriophages. The method is demonstrated to outperform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source...... and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e. contigs) of phage origin in metage-nomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic...... code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder....

  16. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  17. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  18. Effect of HZE particles and space hadrons on bacteriophages

    International Nuclear Information System (INIS)

    Iurov, S.S.; Akoev, I.G.; Leonteva, G.A.

    1983-01-01

    The effects of particle radiation of the type encountered in space flight on bacteriophages are investigated. Survival and mutagenesis were followed in dry film cultures or liquid suspensions of T4Br(+) bacteriophage exposed to high-energy (HZE) particles during orbital flight, to alpha particles and accelerator-generated hardrons in the laboratory, and to high-energy cosmic rays at mountain altitudes. The HZE particles and high-energy hadrons are found to have a greater relative biological efficiency than standard gamma radiation, while exhibiting a highly inhomogeneous spatial structure in the observed biological and genetic effects. In addition, the genetic lesions observed are specific to the type of radiation exposure, consisting primarily of deletions and multiple lesions of low revertability, with mode of action depending on the linear energy transfer. 18 references

  19. RNA secondary structures of the bacteriophage phi6 packaging regions.

    OpenAIRE

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models ...

  20. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Science.gov (United States)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  1. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2018-05-01

    Full Text Available Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014], the tailed bacteriophages deliver their DNA into host cells via an “ejection” process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  2. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    Science.gov (United States)

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  3. A bacteriophage-related chimeric marine virus infecting abalone.

    Directory of Open Access Journals (Sweden)

    Jun Zhuang

    Full Text Available Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin. The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs, eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria.

  4. Identification and characterization of preferred DNA-binding sites for the Thermus thermophilus transcriptional regulator FadR.

    Directory of Open Access Journals (Sweden)

    Minwoo Lee

    Full Text Available One of the primary transcriptional regulators of fatty acid homeostasis in many prokaryotes is the protein FadR. To better understand its biological function in the extreme thermophile Thermus thermophilus HB8, we sought to first determine its preferred DNA-binding sequences in vitro using the combinatorial selection method Restriction Endonuclease Protection, Selection, and Amplification (REPSA and then use this information to bioinformatically identify potential regulated genes. REPSA determined a consensus FadR-binding sequence 5´-TTRNACYNRGTNYAA-3´, which was further characterized using quantitative electrophoretic mobility shift assays. With this information, a search of the T. thermophilus HB8 genome found multiple operons potentially regulated by FadR. Several of these were identified as encoding proteins involved in fatty acid biosynthesis and degradation; however, others were novel and not previously identified as targets of FadR. The role of FadR in regulating these genes was validated by physical and functional methods, as well as comparative genomic approaches to further characterize regulons in related organisms. Taken together, our study demonstrates that a systematic approach involving REPSA, biophysical characterization of protein-DNA binding, and bioinformatics can be used to postulate biological roles for potential transcriptional regulators.

  5. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    Science.gov (United States)

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  6. Genesis of a novel Shigella flexneri serotype by sequential infection of serotype-converting bacteriophages SfX and SfI

    Directory of Open Access Journals (Sweden)

    Sun Qiangzheng

    2011-12-01

    Full Text Available Abstract Background Shigella flexneri is the major pathogen causing bacillary dysentery. Fifteen serotypes have been recognized up to now. The genesis of new S. flexneri serotypes is commonly mediated by serotype-converting bacteriophages. Untypeable or novel serotypes from natural infections had been reported worldwide but have not been generated in laboratory. Results A new S. flexneri serotype-serotype 1 d was generated when a S. flexneri serotype Y strain (native LPS was sequentially infected with 2 serotype-converting bacteriophages, SfX first and then SfI. The new serotype 1 d strain agglutinated with both serotype X-specific anti-7;8 grouping serum and serotype 1a-specific anti- I typing serum, and differed from subserotypes 1a, 1b and 1c. Twenty four S. flexneri clinical isolates of serotype X were all converted to serotype 1 d by infection with phage SfI. PCR and sequencing revealed that SfI and SfX were integrated in tandem into the proA-yaiC region of the host chromosome. Conclusions These findings suggest a new S. flexneri serotype could be created in nature. Such a conversion may be constrained by susceptibility of a strain to infection by a given serotype-converting bacteriophage. This finding has significant implications in the emergence of new S. flexneri serotypes in nature.

  7. The Activity of the Lactose Transporter from Streptococcus thermophilus Is Increased by Phosphorylated IIA and the Action of β-Galactosidase

    NARCIS (Netherlands)

    Geertsma, Eric R.; Duurkens, Ria H.; Poolman, Bert

    2005-01-01

    The metabolism of lactose by Streptococcus thermophilus is highly regulated, allowing the bacterium to prefer lactose over glucose as main source of carbon and energy. In vitro analysis of the enzymes involved in transport and hydrolysis of lactose showed that the transport reaction benefits from

  8. Differential regulation of two closely related integrative and conjugative elements from Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Carraro Nicolas

    2011-10-01

    Full Text Available Abstract Background Two closely related ICEs, ICESt1 and ICESt3, have been identified in the lactic acid bacterium Streptococcus thermophilus. While their conjugation and recombination modules are almost identical (95% nucleotide identity and their regulation modules related, previous work has demonstrated that transconjugants carrying ICESt3 were generated at rate exceeding by a 1000 factor that of ICESt1. Results The functional regulation of ICESt1 and ICESt3 transcription, excision and replication were investigated under different conditions (exponential growth or stationary phase, DNA damage by exposition to mitomycin C. Analysis revealed an identical transcriptional organization of their recombination and conjugation modules (long unique transcript whereas the transcriptional organization of their regulation modules were found to be different (two operons in ICESt1 but only one in ICESt3 and to depend on the conditions (promoter specific of stationary phase in ICESt3. For both elements, stationary phase and DNA damage lead to the rise of transcript levels of the conjugation-recombination and regulation modules. Whatever the growth culture conditions, excision of ICESt1 was found to be lower than that of ICESt3, which is consistent with weaker transfer frequencies. Furthermore, for both elements, excision increases in stationary phase (8.9-fold for ICESt1 and 1.31-fold for ICESt3 and is strongly enhanced by DNA damage (38-fold for ICESt1 and 18-fold for ICESt3. Although ICEs are generally not described as replicative elements, the copy number of ICESt3 exhibited a sharp increase (9.6-fold after mitomycin C exposure of its harboring strain CNRZ385. This result was not observed when ICESt3 was introduced in a strain deriving ICESt1 host strain CNRZ368, deleted for this element. This finding suggests an impact of the host cell on ICE behavior. Conclusions All together, these results suggest a novel mechanism of regulation shared by ICESt1

  9. Insight into the transition between the open and closed conformations of Thermus thermophilus carboxypeptidase

    International Nuclear Information System (INIS)

    Okai, Masahiko; Yamamura, Akihiro; Hayakawa, Kou; Tsutsui, Shiho; Miyazono, Ken-ichi; Lee, Woo-Cheol; Nagata, Koji; Inoue, Yumiko; Tanokura, Masaru

    2017-01-01

    Carboxypeptidase cleaves the C-terminal amino acid residue from proteins and peptides. Here, we report the functional and structural characterizations of carboxypeptidase belonging to the M32 family from the thermophilic bacterium Thermus thermophilus HB8 (TthCP). TthCP exhibits a relatively broad specificity for both hydrophilic (neutral and basic) and hydrophobic (aliphatic and aromatic) residues at the C-terminus and shows optimal activity in the temperature range of 75–80 °C and in the pH range of 6.8–7.2. Enzyme activity was significantly enhanced by cobalt or cadmium and was moderately inhibited by Tris at 25 °C. We also determined the crystal structure of TthCP at 2.6 Å resolution. Two dimer types of TthCP are present in the crystal. One type consists of two subunits in different states, open and closed, with a C α RMSD value of 2.2 Å; the other type consists of two subunits in the same open state. This structure enables us to compare the open and closed states of an M32 carboxypeptidase. The TthCP subunit can be divided into two domains, L and S, which are separated by a substrate-binding groove. The L and S domains in the open state are almost identical to those in the closed state, with C α RMSD values of 0.84 and 0.53 Å, respectively, suggesting that the transition between the open and closed states proceeds with a large hinge-bending motion. The superimposition between the closed states of TthCP and BsuCP, another M32 family member, revealed that most putative substrate-binding residues in the grooves are oriented in the same direction. - Highlights: • The enzyme activity of TthCP was inhibited moderately by Tris molecule. • We solved the crystal structure of TthCP at 2.6 Å resolution. • The crystal structure of TthCP revealed both the open and closed conformations.

  10. Polymer-based delivery systems for support and delivery of bacteriophages

    Science.gov (United States)

    Brown, Alyssa Marie

    One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.

  11. An Intramolecular Chaperone Inserted in Bacteriophage P22 Coat Protein Mediates Its Chaperonin-independent Folding*

    Science.gov (United States)

    Suhanovsky, Margaret M.; Teschke, Carolyn M.

    2013-01-01

    The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation. PMID:24126914

  12. Improved antibacterial efficacy of bacteriophage-cosmetic formulation for treatment of Staphylococcus aureus in vitro

    Directory of Open Access Journals (Sweden)

    Sabah Abo-elmaaty

    2016-12-01

    Full Text Available Currently phages are used as alternative antibiotics for treating pathogenic bacteria causing skin disease. However, the efficacy of pure preparations of phage is greatly reduced due to its short longevity on surface of skin. supplemented cosmetic phages [0.5% phage conc./cosmetic] significantly increased phage longevity on skin surface. The phages were isolated by the single plaque assay from the infected skin showing edema and erythema symptoms. The isolated phages had plaques with 3–5 mm diameters and a distinct translucent spreading halo. The morphological phage particles were cubic nucleocapsid with 65–75 nm across with short contractile tails. The supplemented cosmetic phages reduced the bacterial growth to 95.45%, compared with free phages and non-supplemented cosmetic 86.1% and 77% respectively. The phage containing cosmetic was applied for disease treatment and increased the phage longevity from 24 to 100 h and preserved initial phage population. This work indicated the enhanced antibacterial efficacy of fortifying specific bacteriophage in cosmetics to be a promising formulation for efficient treatment of skin diseases.

  13. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Bryan Utter

    Full Text Available In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01 from a vancomycin-intermediate S. aureus (VISA strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC. Our identification of several potential ExPΦs and mobile genetic elements (MGEs also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT.

  14. A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus.

    Science.gov (United States)

    Bastías, Roberto; Higuera, Gastón; Sierralta, Walter; Espejo, Romilio T

    2010-04-01

    A clonal population of pathogenic Vibrio parahaemolyticus O3 : K6 serovar has spread in coastal waters, causing outbreaks worldwide since 1996. Bacteriophage infection is one of the main factors affecting bacterial strain concentration in the ocean. We studied the occurrence and properties of phages infecting this V. parahaemolyticus pandemic strain in coastal waters. Analysing 143 samples, phages were found in 13. All isolates clustered in a closely related group of podophages with at least 90% nucleotide sequence identity in three essential genes, despite distant geographical origins. These bacteriophages were able to multiply on the V. parahaemolyticus pandemic strain, but the impact on host concentration and subsequent growth was negligible. Infected bacteria continued producing the phage but were not lysogenized. The phage genome of prototype strain VP93 is 43 931 nucleotides and contains 337 bp direct terminal repeats at both ends. VP93 is the first non-Pseudomonas phage related to the PhiKMV-like subgroup of the T7 supergroup. The lack of a major effect on host growth suggests that these phages exert little control on the propagation of the pandemic strain in the environment. This form of phage growth can be modelled if phage-sensitive and -resistant cells that convert to each other with a high frequency are present in clonal cultures of pandemic V. parahaemolyticus.

  15. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    Science.gov (United States)

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  16. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk.

    Science.gov (United States)

    Tayyarcan, Emine Kübra; Acar Soykut, Esra; Boyaci, Ismail Hakki

    2018-04-11

    In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~ 10 7  pfu/mL) and have lower titers (10 2 -10 3  pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (10 2  pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R 2 ) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649).

  17. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice

    Directory of Open Access Journals (Sweden)

    Vinodkumar C

    2008-07-01

    Full Text Available Drug resistance is the major cause of increase in morbidity and mortality in neonates. One thousand six hundred forty-seven suspected septicemic neonates were subjected for microbiological analysis over a period of 5 years. Forty-two P. aeruginosa were isolated and the antibiogram revealed that 28 P. aeruginosa were resistant to almost all the common drugs used (multidrug-resistant. The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. As a result, a novel and most effective approaches for treating infection caused by multidrug-resistant bacteria are urgently required. In this context, one intriguing approach is to use bacteriophages (viruses that kill bacteria in the treatment of infection caused by drug-resistant bacteria. In the present study, the utility of lytic bacteriophages to rescue septicemic mice with multidrug-resistant (MDR P. aeruginosa infection was evaluated. MDR P. aeruginosa was used to induce septicemia in mice by intraperitoneal (i.p. injection of 10 7 CFU. The resulting bacteremia was fatal within 48 hrs. The phage strain used in this study had lytic activity against a wide range of clinical isolates of MDR P. aeruginosa. A single i.p. injection of 3 x 10 9 PFU of the phage strain, administered 45 min after the bacterial challenge, was sufficient to rescue 100% of the animals. Even when treatment was delayed to the point where all animals were moribund, approximately 50% of them were rescued by a single injection of this phage preparation. The ability of this phage to rescue septicemic mice was demonstrated to be due to the functional capabilities of the phage and not to a nonspecific immune effect. The rescue of septicemic mice could be affected only by phage strains able to grow in vitro on the bacterial host used to infect the animals and when such strains are heat-inactivated, they lose their ability to rescue the infected mice. Multidrug-resistant bacteria have

  18. Impact of engineered Streptococcus thermophilus trains overexpressing glyA gene on folic acid and acetaldehyde production in fermented milk Impacto de linhagens de Streptococcus thermophilus com aumento da expressão do gene glyA na produção de ácido folico e acetaldeído em leite fermentado

    Directory of Open Access Journals (Sweden)

    Ana Carolina Sampaio Dória Chaves

    2003-11-01

    Full Text Available The typical yogurt flavor is caused by acetaldehyde produced through many different pathways by the yogurt starter bacteria L. bulgaricus and S. thermophilus. The attention was focused on one specific reaction for acetaldehyde and folic acid formation catalyzed by serine hydroxymethyltransferase (SHMT, encoded by the glyA gene. In S. thermophilus, this enzyme SHMT also plays the typical role of the enzyme threonine aldolase (TA that is the interconvertion of threonine into glycine and acetaldehyde. The behavior of engineered S. thermophilus strains in milk fermentation is described, folic acid and acetaldehyde production were measured and pH and counts were followed. The engineered S. thermophilus strains StA2305 and StB2305, have the glyA gene (encoding the enzyme serine hydroxymethyltransferase overexpressed. These engineered strains showed normal growth in milk when it was supplemented with Casitione. When they were used in milk fermentation it was observed an increase in folic acid and in acetaldehyde production by StA2305 and for StB2305 it was noticed a significative increase in folic acid formation.O acetaldeído, responsável pelo sabor e aroma característicos de iogurte, é produzido por diferentes vias metabólicas pelas bactérias lácticas: Streptococcus thermophilus (S. thermophilus e Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus. Neste trabalho, a atenção foi focada especificamente na reação para a formação de acetaldeído e de ácido fólico, catalisada pela enzima serina hidroximetil transferase (SHMT, codificada pelo gene glyA. A enzima SHMT catalisa diversas reações e, no caso da bactéria S. thermophilus, ela exerce também a atividade característica da enzima treonina aldolase (TA, definida como a interconversão do aminoácido treonina em glicina e acetaldeído. Foram construídas linhagens de S. thermophilus (StA2305 e StB2305 com super expressão do gene glyA. Estas linhagens modificadas apresentaram

  19. UV ability to destroy poliovirus end FRNA specific bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Joret, J.C.; Lesavre, J.; Perrot, J.Y.

    1996-01-01

    In France, the use of ultraviolet radiation to disinfect secondary effluents is only in its initial stage. The aim of this study was to examine the ability of UV to destroy Poliovirus Type 1 and FRNA specific bacteriophages (laboratory MS2 phages and indigenous phages). Concentrated viral solutions were mixed with secondary effluents artificially enriched with suspended solids and then irradiated at various UV dose in a collimated beam. Bacteriological analysis of Escherichia coli and enterococci were performed at the same time. UV were very efficient to kill Poliovirus : Inactivation of 3 and 5 log units were observed respectively at UV doses of 20 and 40 mW/cm{sup 2}. The Poliovirus disinfection rate was almost the same than Escherichia coli. Enterococci were more resistant than E. coli. Inactivation of MS2 bacteriophages was significantly correlated to UV dose following the relationship MS2 Inactivation = 0.047{sup *} Dose + 0,396. At UV dose of 20 mWs/cm{sup 2}, MS2 phages were 2.3 times more resistant to UV than Poliovirus, i.e. they need UV dose 2,3 times greater to be disinfected at the same level. A review of the literature has also shown that viruses more resistant to UV treatment have never been reported. All this would tend to confirm the interest of this group of virus as indicators of the disinfection efficiency of UV, which could indicate, on site, the inactivation of pathogenic viruses. Inactivation rates obtained for FRNA phages proved the good virucidal activity of UV. The inactivation of indigenous FRNA bacteriophages was not correlated with E. coli inactivation. On the other hand, it was correlated with enterococci inactivation. (Author). 23 refs., 7 figs., 4 tabs.

  20. Cholera dynamics with Bacteriophage infection: A mathematical study

    International Nuclear Information System (INIS)

    Misra, A.K.; Gupta, Alok; Venturino, Ezio

    2016-01-01

    Highlights: • A mathematical model for the biological control of cholera has been proposed. • The feasibility and stability of all the equilibria have been investigated. • The ODE model is found to exhibit Hopf-bifurcation. • Conditions of global asymptotic stability have been obtained. • The impact of important parameters on cholera spread has been shown. - Abstract: Mathematical modeling of waterborne diseases, such as cholera, including a biological control using Bacteriophage viruses in the aquatic reservoirs is of great relevance in epidemiology. In this paper, our aim is twofold: at first, to understand the cholera dynamics in the region around a water body; secondly, to understand how the spread of Bacteriophage infection in the cholera bacterium V. cholerae controls the disease in the human population. For this purpose, we modify the model proposed by Codeço, for the spread of cholera infection in human population and the one proposed by Beretta and Kuang, for the spread of Bacteriophage infection in the bacteria population [1, 2]. We first discuss the feasibility and local asymptotic stability of all the possible equilibria of the proposed model. Further, in the numerical investigation, we have found that the parameter ϕ, called the phage adsorption rate, plays an important role. There is a critical value, ϕ c , at which the model possess Hopf-bifurcation. For lower values than ϕ c , the equilibrium E * is unstable and periodic solutions are observed, while above ϕ c , the equilibrium E * is locally asymptotically stable, and further shown to be also globally asymptotically stable. We investigate the effect of the various parameters on the dynamics of the infected humans by means of numerical simulations.

  1. Untargeted GC-MS Metabolomics Reveals Changes in the Metabolite Dynamics of Industrial Scale Batch Fermentations of Streptoccoccus thermophilus Broth

    DEFF Research Database (Denmark)

    Khakimov, Bekzod; Christiansen, Lene D.; Heins, Anna-Lena

    2017-01-01

    An industrial scale biomass production using batch or fed-batch fermentations usually optimized by selection of bacterial strains, tuning fermentation media, feeding strategy, and temperature. However, in-depth investigation of the biomass metabolome during the production may reveal new knowledge...... shows that in-depth metabolic analysis of fermentation broth provides a new tool for advanced optimization of high-volume-low-cost biomass production by lowering the cost, increase the yield, and augment the product quality....... for better optimization. In this study, for the first time, the authors investigated seven fermentation batches performed on five Streptoccoccus thermophilus strains during the biomass production at Chr. Hansen (Denmark) in a real life large scale fermentation process. The study is designed to investigate...

  2. Bacteriophages : an underestimated role in human and animal health ?

    Directory of Open Access Journals (Sweden)

    Marianne eDe Paepe

    2014-03-01

    Full Text Available Metagenomic approaches applied to viruses have highlighted their prevalence in almost all microbial ecosystems investigated. In all ecosystems, notably those associated with humans or animals, the viral fraction is dominated by bacteriophages. Whether they contribute to dysbiosis, i.e. the departure from microbiota composition in symbiosis at equilibrium and entry into a state favoring human or animal disease is unknown at present. This review summarizes what has been learnt on phages associated with human and animal microbiota, and focuses on examples illustrating the several ways by which phages may contribute to a shift to pathogenesis, either by modifying population equilibrium, by horizontal transfer, or by modulating immunity.

  3. Mechanisms for the initiation of bacteriophage T7 DNA replication

    International Nuclear Information System (INIS)

    Fuller, C.W.; Beauchamp, B.B.; Engler, M.J.; Lechner, R.L.; Matson, S.W.; Tabor, S.; White, J.H.; Richardson, C.C.

    1983-01-01

    Genetic analysis of bacteriophage T7 has shown that the products of phage genes 1, 2, 3, 4, 5, and 6 are required for phage DNA synthesis in vivo. T7 RNA polymerase is the translation product of gene 1. This RNA polymerase is required for transcription of most of the phage genome, including genes 2 through 6. T7 RNA polymerase promoters consist of a highly conserved 23-bp DNA sequence. There are 17 such promoters in the T7 DNA molecule, all of which direct transcription from the same strand of the DNA. 70 references, 11 figures

  4. A quorum-sensing-induced bacteriophage defense mechanism

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin; Mærkedahl, Rasmus Baadsgaard; Svenningsen, Sine

    2013-01-01

    of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ¿ phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive...... sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages ¿ and ¿. On the basis of our findings in the classical Escherichia coli-¿ model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under...

  5. Re-initiation repair in bacteriophage T4

    International Nuclear Information System (INIS)

    Cupido, M.

    1981-01-01

    Irradiation of bacteriophage T4 with ultraviolet light induces the formation of pyrimidine dimers in its DNA. These dimers hamper replication of DNA and, to a lesser extent, transcription of DNA after its infection of bacteria. A number of pathways enable phage T4 to multiply dimer-containing DNA. One of these pathways has been named replication repair and is described in this thesis. The properties of two phage strains, unable to perform replication repair, have been studied to obtain a picture of the repair process. The mutations in these strains that affect replication repair have been located on the genomic map of T4. (Auth.)

  6. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Science.gov (United States)

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  7. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance

    Directory of Open Access Journals (Sweden)

    Daly Michael J

    2005-10-01

    Full Text Available Abstract Background Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. Results By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27 and Deinococcus megaplasmid (DR177. Conclusion After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of

  8. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Directory of Open Access Journals (Sweden)

    Tina Y Liu

    Full Text Available CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus Type III-A Csm complex (TthCsm with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  9. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.

    Science.gov (United States)

    Yamasaki, Takashi; Nakazaki, Yosuke; Yoshida, Masasuke; Watanabe, Yo-hei

    2011-07-01

    ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer. © 2011 The Authors Journal compilation © 2011 FEBS.

  10. Localization and regulation of bacteriophage Mu promoters

    International Nuclear Information System (INIS)

    Stoddard, S.F.; Howe, M.M.

    1989-01-01

    Mu promoters active during the lytic cycle were located by isolating RNA at various times after induction of Mu prophages, radiolabeling it by capping in vitro, and hybridizing it to Mu DNA fragments on Southern blots. Signals were detected from four new promoters in addition to the previously characterized P e (early), P cM (repressor), and P mom (late) promoters. A major signal upstream of C was first observed at 12 min and intensified thereafter with RNA from cts and C amber but not replication-defective prophages; these characteristics indicate that this signal arises from a middle promoter, which we designate P m . With 20- and 40-min RNA, four additional major signals originated in the C-lys, F-G-I, N-P, and com-mom regions. These signals were missing with RNA from C amber and replication-defective prophages and therefore reflected the activity of late promoters, one of which we presume was P mom . Uninduced lysogens showed weak signals from five regions, one from the early regulatory region, three between genes B and lys, and one near the late genes K, L, and M. The first of these probably resulted from P cM activity; the others remain to be identified

  11. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  12. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  13. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow’s Milk Cheeses

    Directory of Open Access Journals (Sweden)

    Elena Franciosi

    2015-01-01

    Full Text Available “Nostrano-cheeses” are traditional alpine cheeses made from raw cow’s milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA, an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months. A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR and differentiated into 583 clusters. LAB strains from dominant clusters (n=97 were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC. About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg was a Sc. thermophilus.

  14. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food

    DEFF Research Database (Denmark)

    Sengun, Ilkin Yucel; Nielsen, Dennis Sandris; Karapinar, Mehmet

    2009-01-01

    Tarhana is a traditional fermented product produced from a mixture of spontaneously fermented yogurt and wheat flour in Turkey. The aims of the present study were to enumerate and identify for the first time by molecular biology-based methods predominant lactic acid bacteria (LAB) isolated during...... processing of Tarhana. Samples were collected from eight different regions of Turkey. In order to explore the relationship between raw material and the microbiology of Tarhana, yogurt and wheat flour were also analyzed. A total of 226 Gram-positive and catalase-negative isolates were obtained from MRS, M17...... and S. thermophilus was found to be the yogurt....

  15. Bacteriophage Prevalence in the Genus Azospirillum and Analysis of the First Genome Sequence of an Azospirillum brasilense Integrative Phage▿

    Science.gov (United States)

    Boyer, Mickaël; Haurat, Jacqueline; Samain, Sylvie; Segurens, Béatrice; Gavory, Frédérick; González, Víctor; Mavingui, Patrick; Rohr, René; Bally, René; Wisniewski-Dyé, Florence

    2008-01-01

    The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (ΦAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the ΦAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of ΦAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd. PMID:18065619

  16. Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage.

    Science.gov (United States)

    Boyer, Mickaël; Haurat, Jacqueline; Samain, Sylvie; Segurens, Béatrice; Gavory, Frédérick; González, Víctor; Mavingui, Patrick; Rohr, René; Bally, René; Wisniewski-Dyé, Florence

    2008-02-01

    The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (phiAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the phiAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of phiAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd.

  17. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Hammer, Karin

    1999-01-01

    Previously we showed that only one phage-expressed protein (Orf1), a 425-bp region upstream of the orf1 gene (presumably encoding a promoter), and the attP region are necessary and also sufficient for integration of the bacteriophage TP901-1 genome into the chromosome of Lactococcus lactis subsp......P region seem to be necessary for site-specific integration of the temperate bacteriophage TP901-1. By use of the integrative elements (attP and orf1) expressed by the temperate lactococcal bacteriophage TP901-1, a system for obtaining stable chromosomal single-copy transcriptional fusions in L. lactis...

  18. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Science.gov (United States)

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  19. Bacteriophage lambda: The path from biology to theranostic agent.

    Science.gov (United States)

    Catalano, Carlos E

    2018-03-13

    Viral particles provide an attractive platform for the engineering of semisynthetic therapeutic nanoparticles. They can be modified both genetically and chemically in a defined manner to alter their surface characteristics, for targeting specific cell types, to improve their pharmacokinetic features and to attenuate (or enhance) their antigenicity. These advantages derive from a detailed understanding of virus biology, gleaned from decades of fundamental genetic, biochemical, and structural studies that have provided mechanistic insight into virus assembly pathways. In particular, bacteriophages offer significant advantages as nanoparticle platforms and several have been adapted toward the design and engineering of "designer" nanoparticles for therapeutic and diagnostic (theranostic) applications. The present review focuses on one such virus, bacteriophage lambda; I discuss the biology of lambda, the tools developed to faithfully recapitulate the lambda assembly reactions in vitro and the observations that have led to cooptation of the lambda system for nanoparticle design. This discussion illustrates how a fundamental understanding of virus assembly has allowed the rational design and construction of semisynthetic nanoparticles as potential theranostic agents and illustrates the concept of benchtop to bedside translational research. This article is categorized under: Biology-Inspired Nanomaterials> Protein and Virus-Based Structures Biology-Inspired Nanomaterials> Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  20. Isolation of anonymous, polymorphic DNA fragments from human chromosome 22q12-qter

    NARCIS (Netherlands)

    J.P. Dumanski (Jan); A.H.M. Geurts van Kessel (Ad); M. Ruttledge (Martin); A. Wladis (Andreas); N. Sugawa (Noriaki); V.P. Collins (Peter); M. Nordenskjöld

    1990-01-01

    textabstractA series of 195 random chromosome 22-specific probes, equivalent to approximately 1% of the size of this chromosome, have been isolated from a chromosome 22-specific bacteriophage lambda genomic library. These probes were mapped to four different regions of chromosome 22 on a panel of

  1. Impacts of Antibiotic and Bacteriophage Treatments on the Gut-Symbiont-Associated Blissus insularis (Hemiptera: Blissidae

    Directory of Open Access Journals (Sweden)

    Yao Xu

    2016-11-01

    Full Text Available The Southern chinch bug, Blissus insularis, possesses specialized midgut crypts that harbor dense populations of the exocellular symbiont Burkholderia. Oral administration of antibiotics suppressed the gut symbionts in B. insularis and negatively impacted insect host fitness, as reflected by retarded development, smaller body size, and higher susceptibility to an insecticide, bifenthrin. Considering that the antibiotics probably had non-lethal but toxic effects on host fitness, attempts were conducted to reduce gut symbionts using bacteriophage treatment. Soil-lytic phages active against the cultures of specific Burkholderia ribotypes were successfully isolated using a soil enrichment protocol. Characterization of the BiBurk16MC_R phage determined its specificity to the Bi16MC_R_vitro ribotype and placed it within the family Podoviridae. Oral administration of phages to fifth-instar B. insularis, inoculated with Bi16MC_R_vitro as neonates had no deleterious effects on host fitness. However, the ingested phages failed to impact the crypt-associated Burkholderia. The observed inactivity of the phage was likely due to the blockage of the connection between the anterior and posterior midgut regions. These findings suggest that the initial colonization by Burkholderia programs the ontogeny of the midgut, providing a sheltered residence protected from microbial antagonists.

  2. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood

    Directory of Open Access Journals (Sweden)

    Kirill V. Sergueev

    2017-06-01

    Full Text Available For decades, bacteriophages (phages have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.

  3. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood.

    Science.gov (United States)

    Sergueev, Kirill V; Filippov, Andrey A; Nikolich, Mikeljon P

    2017-06-10

    For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B . abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis . The addition of a simple short sample preparation step enabled the indirect phage-based detection of B . abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B . abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.

  4. Repair-defective mutants of Alteromonas espejiana, the host for bacteriophage PM2

    International Nuclear Information System (INIS)

    Zerler, B.R.; Wallace, S.S.

    1984-01-01

    The in vivo repair processes of Alteromonas espejiana, the host for bacteriophage PM2, were characterized, and UV- and methyl methanesulfonate (MMS)-sensitive mutants were isolated. Wild-type A. espejiana cells were capable of photoreactivation, excision, recombination, and inducible repair. There was no detecttable pyrimidine dimer-DNA N-glycosylase activity, and pyrimidine dimer removal appeared to occur by a pathway analogous to the Escherichia coli Uvr pathway. The UV- and MMS-sensitive mutants of A. espejiana included three groups, each containing at least one mutation involved with excision, recombination, or inducible repair. One group that was UV sensitive but not sensitive to MMS or X rays showed a decreased ability to excise pyrimidine dimers. Mutants in this group were also sensitive to psoralen plus near-UV light and were phenotypically analogous to the E. coli uvr mutants. A second group was UV and MMS sensitive but not sensitive to X rays and appeared to contain mutations in a gene(s) involved in recombination repair. These recombination-deficient mutants differed from the E. coli rec mutants, which are MMS and X-ray sensitive. The third group of A. espejiana mutants was sensitive to UV, MMS, and X rays. These mutants were recombination deficient, lacked inducible repair, and were phenotypically similar to E. coli recA mutants

  5. Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available Pathogenic Escherichia coli (E. coli is severely threatening the rabbit industry in China, and the concern over antibiotic-resistant bacteria has given rise to an urgent need for antibiotic alternatives. In this study, a member (ZRP1 of the Myoviridae family was isolated from rabbit faeces using a strain of rabbit atypical enteropathogenic E. coli (ZR1 as host. The one-step growth curve indicated that the latent period was around 25 to 30 min and the burst size was 144±31 plaque-forming unit/cell. The rate of phage-resistant mutation was 7×10–5±4×10–5. When the bacteriophage input at the multiplicity of infection (MOI was 0.1, 1 or 10, the growth of host E. coli in broth was inhibited for 5 h. A single intravenous injection of ZRP1 at MOI 0.1, 1 or 10 significantly prolonged the survival time of rabbits which simultaneously received a lethal dose of ZR1.

  6. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood

    Science.gov (United States)

    Sergueev, Kirill V.; Filippov, Andrey A.; Nikolich, Mikeljon P.

    2017-01-01

    For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types. PMID:28604602

  7. Characterization of bacteriophage KVP40 and T4 RNA ligase 2

    International Nuclear Information System (INIS)

    Yin Shenmin; Kiong Ho, C.; Miller, Eric S.; Shuman, Stewart

    2004-01-01

    Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a subfamily of RNA strand-joining enzymes that includes the trypanosome RNA editing ligases. A homolog of T4 Rnl2 is encoded in the 244-kbp DNA genome of vibriophage KVP40. We show that the 335-amino acid KVP40 Rnl2 is a monomeric protein that catalyzes RNA end-joining through ligase-adenylate and RNA-adenylate (AppRNA) intermediates. In the absence of ATP, pre-adenylated KVP40 Rnl2 reacts with an 18-mer 5'-PO 4 single-strand RNA (pRNA) to form an 18-mer RNA circle. In the presence of ATP, Rnl2 generates predominantly AppRNA. Isolated AppRNA can be circularized by KVP40 Rnl2 in the absence of ATP. The reactivity of phage Rnl2 and the distribution of the products are affected by the length of the pRNA substrate. Whereas 18-mer and 15-mer pRNAs undergo intramolecular sealing by T4 Rnl2 to form monomer circles, a 12-mer pRNA is ligated intermolecularly to form dimers, and a 9-mer pRNA is unreactive. In the presence of ATP, the 15-mer and 12-mer pRNAs are converted to AppRNAs, but the 9-mer pRNA is not. A single 5' deoxynucleotide substitution of an 18-mer pRNA substrate has no apparent effect on the 5' adenylation or circularization reactions of T4 Rnl2. In contrast, a single deoxyribonucleoside at the 3' terminus strongly and selectively suppresses the sealing step, thereby resulting in accumulation of high levels of AppRNA in the absence of ATP. The ATP-dependent 'capping' of RNA with AMP by Rnl2 is reminiscent of the capping of eukaryotic mRNA with GMP by GTP:RNA guanylyltransferase and suggests an evolutionary connection between bacteriophage Rnl2 and eukaryotic RNA capping enzymes

  8. Bacteriophage and lytic enzymes - can they help us in the war with antibiotic resistant bacteria

    International Nuclear Information System (INIS)

    Trudil, D.; Rainina, E.

    2009-01-01

    Drug-resistant pathogens are a growing menace to all people, regardless of age, or socioeconomic background. They endanger people industrial societies like the United States, as well as in less developed nations and are even causing problems in military field hospitals. From Streptococcus pneumoniae to Staphylococcus, C. difficile, and multidrug-resistant TB, the list is growing. The threat of engineered microorganisms further complicates the interaction between man and Mother Nature. Additionally, although antibiotics were specifically designed for treating human health emergencies, their use for raising livestock animals has expanded. In the US, large amounts of antibiotics are routinely mixed into feed in order to promote growth rather than combat disease and as prophylactic treatment to offset unnatural diets and unhealthy living conditions. U.S.-raised animals in the 1950s received 2 million pounds per year of antibiotics in their feed compared to 50 million pounds today-a 2,500-percent increase. A large percentage of these drugs pass into the environment. In fact, prior to 1995, when fluoroquinolones were first approved to treat poultry, very few fluoroquinolone-resistant Campylobacter were found in people with foodborne diseases in the United States. After the approval, however, many more fluoroquinolone-resistant bacteria were found in humans and in poultry from slaughter plants and retail stores. The threat to our food supply becomes a threat to security. What can be done? One approach is to treat bacterial diseases by the use of bacteriophages. Phages are very small viruses that destroy by lysing select bacteria. The idea of using phage as a therapy for infectious bacterial diseases was first proposed by d'Herelle around World War I and over 80 years bacteriophage has been a key tool of healthcare professionals within Eastern Europe. More recently professionals in the USA and Western Europe have isolated and developed specific lytic components which have

  9. The extent of co-metabolism of glucose and galactose by L. lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    The lactose transporter and β-galactosidase from Streptococcus thermophilus, encoded by the lacSZ operon, were introduced into the lactose-negative strain Lactococcus lactis MG1363 and the expression of the lacSZ operon was modulated by substitution of the native promoter with randomized synthetic...... promoters. A series of strains with various expression levels of lacSZ were examined for their fermentation of lactose. Strains with a high expression level were found to metabolize lactose in a similar manner to S. thermophilus, i.e. the galactose moiety of lactose was excreted to the growth medium...... and only glucose was metabolized in glycolysis. Interestingly, strains with low expression of the operon showed a mixed acid metabolism and co-metabolism of galactose and glucose. The lactose flux increased gradually with increasing expression of the lacSZ operon until an optimum was observed...

  10. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  11. Lysogenic Streptococcus suis isolate SS2-4 containing prophage SMP showed increased mortality in zebra fish compared to the wild-type isolate.

    Directory of Open Access Journals (Sweden)

    Fang Tang

    Full Text Available Streptococcus suis (S. suis infection is considered to be a major problem in the swine industry worldwide. Based on the capsular type, 33 serotypes of S. suis have been described, with serotype 2 (SS2 being the most frequently isolated from diseased piglets. Little is known, however, about the pathogenesis and virulence factors of S. suis. Research on bacteriophages highlights a new area in S. suis research. A S. suis serotype 2 bacteriophage, designated SMP, has been previously isolated in our laboratory. Here, we selected a lysogenic isolate in which the SMP phage was integrated into the chromosome of strain SS2-4. Compared to the wild-type isolate, the lysogenic strain showed increased mortality in zebra fish. Moreover the sensitivity of the lysogenic strain to lysozyme was seven times higher than that of the wild-type.

  12. Characterization and lytic activity of methicillin-resistant Staphylococcus aureus(MRSA phages isolated from NICU

    Directory of Open Access Journals (Sweden)

    Golnar Rahimzadeh

    2016-06-01

    Full Text Available Background Methicillin-resistant Staphylococcus aureus (MRSA is a well-known pathogen that causes serious diseases in humans. As part of the efforts to control this pathogen, an isolated bacteriophage, Siphoviridae, which specifically targets Methicillin-resistant Staphylococcus aureus (MRSA, was characterized. Aims The objective of this study was to characterize of a virulent bacteriophage (Siphoviridae isolated from a NICU bathroom sink. Methods The MRSA strain was isolated from patient blood. The isolated strain was confirmed as MRSA using conventional methods. Phages were isolated from a NICU bathroom sink and activity was lytic as determined by spot test. Titer phage lysate was measured by the Double Layer Agar (DLA technique. The morphology was found with electron microscopy. The single-step growth curve was plotted. Results Electron microscopy showed the phage as a member of the family Siphoviridae, serogroup A and F. The isolated phage was capable of lytic activity against methicillin-resistant Staphylococcus aureus (MRSA strain as shown by spot test. By DLA, the titre of the phages was determined to be 10×108PFU/ml. The single-step growth curve showed that the latent period of the isolated bacteriophage was 30 min and the total number of viable progeny per infected host, burst size, was 2600 PFU/infected host. Conclusion In this study, two phages were isolated and characterized from a NICU bathroom sink, from the Siphoviridae family, which specifically targetsmethicillin-resistant Staphylococcus aureus (MRSA.

  13. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    Science.gov (United States)

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-03

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. Copyright © 2011. Published by Elsevier B.V.

  14. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    OpenAIRE

    Rayevsky A. V.; Tukalo M. A.

    2016-01-01

    Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT) aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids) were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [P...

  15. 76 FR 66187 - Bacteriophage of Clavibacter Michiganensis Subspecies Michiganensis; Exemption From the...

    Science.gov (United States)

    2011-10-26

    ... history of bacteriophage laboratory and pesticidal usage, adverse reports in the literature have not been... cheese factory in Argentina. Journal of Dairy Science 89:3791-3799. 19. Guillaumes J, Houdeau G, Germain...

  16. Pecularities of mutagenesis of T4Br bacteriophage under the direct and indirect radiation effects

    International Nuclear Information System (INIS)

    Yurov, S.S.

    1975-01-01

    Different lethal and mutagenic effects were shown when bacteriophage T4Br + (470 r/min) was irradiated in broth (direct effect) and a buffer solution (direct and indirect action). The survival rate of the bacteriophage in the buffer solution was 0.1 percent for a dose rate of 60 kr; in the broth it was 10 percent. The frequency of mutation of the bacteriophage also showed the greater effect of the irradiation in the buffer solution than in the broth (25 and 5 r-mutants respectively at a dose rate of 10 kr). An analysis of the ratio of the r-groups when the bacteriophage was treated in various ways revealed differences between mutagenesis produced in the broth and the buffer, and spontaneous mutagenesis. (V.A.P.)

  17. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  18. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  19. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    García-Hernández, J; Moreno, Y; Amorocho, C M; Hernández, M

    2012-03-01

    We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. This technique was successfully applied to detect viable cells in inoculated faeces. Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk

    Science.gov (United States)

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P.

    2015-01-01

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk. PMID:26245488

  1. In vivo study of the survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after consumption of fermented milk.

    Science.gov (United States)

    García-Hernández, J; Moreno, Y; Chuan, C; Hernández, M

    2012-10-01

    Direct Viable Count (DVC) method has been recently combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of Lactobacillus delbrueckii subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801. This method has been used to determine their in vitro viability to gastrointestinal juices, being the resistance of L. delbrueckii subsp. bulgaricus and S. thermophilus 26.2% and 9.2%, respectively. On the other hand, an in vivo study has been carried out with the application of this technique for their detection in human feces, after consuming fermented milk. Cells of L. delbrueckii subsp. bulgaricus CECT 4005T were not detected, whereas viable cells of S. thermophilus CECT 801 were detected in a number higher than 10(3) cells per gram in a 30% of the samples after 4 wk of consumption. DVC-FISH is a quick and culture-independent useful method, which has been applied for the 1st time in an in vivo survival study of LAB. © 2012 Institute of Food Technologists®

  2. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance

    Science.gov (United States)

    Schep, Daniel G.; Rubinstein, John L.

    2016-01-01

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  3. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk.

    Science.gov (United States)

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P

    2015-08-06

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk.

  4. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt.

    Science.gov (United States)

    Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F

    2014-05-02

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  6. Molecular studies on bacteriophage endolysins and their potential to control gram-negative bacteria

    OpenAIRE

    Oliveira, Hugo Alexandre Mendes

    2014-01-01

    Thesis for PhD degree in Chemical and Biological Engineeering Bacteriophages are viruses that specifically infect bacterial hosts to reproduce. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that impedes their release into the environment. Consequently, bacteriophages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan and cause bacteriolysis. In contrast to their extensively studied counterparts, active against Gram-positi...

  7. Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy—Part II

    Directory of Open Access Journals (Sweden)

    Expert round table on acceptance and re-implementation of bacteriophage therapy

    2018-04-01

    Full Text Available This perspective paper follows up on earlier communications on bacteriophage therapy that we wrote as a multidisciplinary and intercontinental expert-panel when we first met at a bacteriophage conference hosted by the Eliava Institute in Tbilisi, Georgia in 2015. In the context of a society that is confronted with an ever-increasing number of antibiotic-resistant bacteria, we build on the previously made recommendations and specifically address how the Nagoya Protocol might impact the further development of bacteriophage therapy. By reviewing a number of recently conducted case studies with bacteriophages involving patients with bacterial infections that could no longer be successfully treated by regular antibiotic therapy, we again stress the urgency and significance of the development of international guidelines and frameworks that might facilitate the legal and effective application of bacteriophage therapy by physicians and the receiving patients. Additionally, we list and comment on several recently started and ongoing clinical studies, including highly desired double-blind placebo-controlled randomized clinical trials. We conclude with an outlook on how recently developed DNA editing technologies are expected to further control and enhance the efficient application of bacteriophages.

  8. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    Science.gov (United States)

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  9. Transcriptomic and metabolic responses of Staphylococcus aureus in mixed culture with Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans in milk.

    Science.gov (United States)

    Zdenkova, Kamila; Alibayov, Babek; Karamonova, Ludmila; Purkrtova, Sabina; Karpiskova, Renata; Demnerova, Katerina

    2016-09-01

    Staphylococcus aureus is a major food-borne pathogen due to the production of enterotoxin and is particularly prevalent in contaminated milk and dairy products. The lactic acid bacteria (LAB) are widely used as biocontrol agents in fermented foods which can inhibit pathogenic flora. In our work, we investigated the influence of three strains of LAB (Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans) on the relative expression of three enterotoxin genes (sea, sec, sell) and eight virulence and/or regulatory genes (sarA, saeS, codY, srrA, rot, hld/RNAIII, agrA/RNAII, sigB) in two S. aureus strains (MW2 and Sa1612) in TSB and reduced-fat milk (1.5 %) at 30 °C over a 24-h period. The tested LAB and S. aureus strains proved to be mutually non-competitive or only slightly competitive during co-cultivation. In addition, under the above-mentioned conditions, differential gene expression between the S. aureus MW2 and Sa1612 strains was well documented. S. aureus growth was changed in mixed culture with LAB; however, its effect on the repression of sea and sec expression correlated with production of these virulence factors. In comparison, the presence of LAB strains generally inhibited the expression of sec, sell, sarA, seaS, agrA/RNAII and hld/RNAIII genes. The effect of LAB strains presence on the expression of sea, codY, srrA, rot and sigB genes was medium, time, LAB and S. aureus strain specific. SEA and SEC production was significantly reduced in milk compared to TSB in pure culture. After the 24-h cultivation, S. aureus MW2 and Sa1612 SEC production was 187 and 331 times lower in milk compared to TSB, respectively (0.07 and 0.39 ng/mL in milk, versus 13.1 and 129.2 ng/mL in TSB, respectively). At the same time S. aureus MW2 and Sa1612 SEA production was 77 and 68 times lower in milk compared to TSB, respectively (0.99 and 0.17 ng/mL in milk, versus 76.4 and 11.5 ng/mL in TSB, respectively). This study has revealed new insights into the

  10. Low molecular weight thiols and thioredoxins are important players in Hg(II) resistance in Thermus thermophilus HB27.

    Science.gov (United States)

    Norambuena, J; Wang, Y; Hanson, T; Boyd, J M; Barkay, T

    2017-11-17

    Mercury (Hg), one of the most toxic and widely distributed heavy metals, has a high affinity for thiol groups. Thiol groups reduce and sequester Hg. Therefore, low molecular weight and protein thiols may be important cell components used in Hg resistance. To date, the role of low molecular weight thiols in Hg-detoxification remains understudied. The mercury resistance ( mer ) operon of Thermus thermophilus suggests an evolutionary link between Hg(II) resistance and low molecular weight thiol metabolism. This mer operon encodes for an enzyme involved in methionine biosynthesis, Oah. Challenge with Hg(II) resulted in increased expression of genes involved in the biosynthesis of multiple low molecular weight thiols (cysteine, homocysteine, and bacillithiol), as well as the thioredoxin system. Phenotypic analysis of gene replacement mutants indicated that Oah contributes to Hg resistance under sulfur limiting conditions, and strains lacking bacillithiol and/or thioredoxins are more sensitive to Hg(II) than the wild type. Growth in presence of either a thiol oxidizing agent or a thiol alkylating agent increased sensitivity to Hg(II). Furthermore, exposure to 3 μM Hg(II) consumed all intracellular reduced bacillithiol and cysteine. Database searches indicate that oah2 is present in all Thermus spp. mer operons. The presence of a thiol related gene was also detected in some alphaprotobacterial mer operons, in which a glutathione reductase gene was present, supporting the role of thiols in Hg(II) detoxification. These results have led to a working model in which LMW thiols act as Hg(II) buffering agents while Hg is reduced by MerA. Importance The survival of microorganisms in presence of toxic metals is central to life's sustainability. The affinity of thiol groups to toxic heavy metals drives microbe-metal interactions and modulate metal toxicity. Mercury detoxification ( mer ) genes likely originated early in microbial evolution among geothermal environments. Little is

  11. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  12. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  13. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  14. The oxygen effect in bacteriophages irradiated in different media. 1

    International Nuclear Information System (INIS)

    Korystov, Yu.N.; Veksler, F.B.

    1983-01-01

    The oxygen effect (OE) on bacteriophage T4 in a salt solution was studied. It is shown that the sign and magnitude of OE depend on the conditions of the postirradiation incubation of the phage in irradiated medium. The direct OE is due to postirradiation lesion of the phage by hydrogen peroxide which is formed in greater amounts after irradiation in oxygen than in anoxia. The addition of catalase is shown to eliminate the postirradiation inactivation of the phage. In this case an opposite OE is observed. The mechanism of this effect is a scavenge of hydrogen atoms which damage the phage by oxygen. In the presence of catalase the OE depends also on pH of the solution. It is suggested that the hydroxyl radical arising from the reaction of H 2 O 2 with Fe 2+ is responsible for the damaging effect of H 2 O 2 . (author)

  15. Bacteriophage-Derived Peptidase CHAPK Eliminates and Prevents Staphylococcal Biofilms

    Directory of Open Access Journals (Sweden)

    Mark Fenton

    2013-01-01

    Full Text Available New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase, CHAPK, as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. Purified CHAPK applied to biofilms of Staphylococcus aureus DPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition, CHAPK was able to prevent biofilm formation by this strain. The CHAPK lysin also reduced S. aureus in a skin decolonization model. Our data demonstrates the potential of CHAPK as a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.

  16. Streptococcus Thermophilus ve Lactobacillus Delbrueckii Subsp. Bulgaricus Virülent Fajlarının Morfolojik Karakterizasyonu (İngilizce

    Directory of Open Access Journals (Sweden)

    Esra Acar Soykut

    2015-02-01

    Full Text Available Bu çalışmada 25 adet S. thermophilus ve 25 adet L. bulgaricus fajının elektron mikroskobik incelemesi yapılarak morfolojik karakterizasyonu gerçekleştirilmiştir. S. thermophilus fajlarında izometrik, hegzagonal baş çapının 53-74 nm, kontraktil olmayan kuyruk uzunluğunun 182-290 nm ve kuyruk genişliğinin de 7-14 nm arasında değiştiği görülmüştür. Bu fajlarda yaka, kuyruk plağı ve fibril benzeri yapıya rastlanmamıştır. İncelenen tüm fajlar, elde edilen verilere dayanılarak diğer S. thermophilus fajları gibi Ackermann sınıflaması Siphoviridae familyasına ve/veya Bradley sınıflaması B grubuna dâhil edilmiştir. S. thermophilus fajlarında olduğu gibi Lb. bulgaricus fajlarında da izometrik, hegzagonal kapsit ve kontraktil olmayan kuyruk yapısı belirlenmiştir. Kapsit çapları 47-73 nm arasında değişirken, kontraktil olmayan kuyruk uzunlukları 117-162 nm ve kuyruk enleri 7-13 nm arasında bulunmuştur. Ackermann sınıflaması Siphoviridae familyasına ve/veya Bradley sınıflaması B grubuna dâhil edilen bu fajlarda yaka, kuyruk tablası ve fibril yapısının varlığı dikkat çekmiştir. S. thermophilus ve L. bulgaricus faj örneklerinin hazırlanmasındaki farklılıkların ve kullanılan elektron mikroskop tiplerinin kuyruk yapılarının görünebilirliğini etkilediği düşünülmüştür.

  17. Review: elimination of bacteriophages in whey and whey products

    Directory of Open Access Journals (Sweden)

    Zeynep eAtamer

    2013-07-01

    Full Text Available As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages per mL. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV light irradiation and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favoured - rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent

  18. Review: elimination of bacteriophages in whey and whey products

    Science.gov (United States)

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  19. Bacteriophage and their potential roles in the human oral cavity

    Directory of Open Access Journals (Sweden)

    Anna Edlund

    2015-04-01

    Full Text Available The human oral cavity provides the perfect portal of entry for viruses and bacteria in the environment to access new hosts. Hence, the oral cavity is one of the most densely populated habitats of the human body containing some 6 billion bacteria and potentially 35 times that many viruses. The role of these viral communities remains unclear; however, many are bacteriophage that may have active roles in shaping the ecology of oral bacterial communities. Other implications for the presence of such vast oral phage communities include accelerating the molecular diversity of their bacterial hosts as both host and phage mutate to gain evolutionary advantages. Additional roles include the acquisitions of new gene functions through lysogenic conversions that may provide selective advantages to host bacteria in response to antibiotics or other types of disturbances, and protection of the human host from invading pathogens by binding to and preventing pathogens from crossing oral mucosal barriers. Recent evidence suggests that phage may be more involved in periodontal diseases than were previously thought, as their compositions in the subgingival crevice in moderate to severe periodontitis are known to be significantly altered. However, it is unclear to what extent they contribute to dysbiosis or the transition of the microbial community into a state promoting oral disease. Bacteriophage communities are distinct in saliva compared to sub- and supragingival areas, suggesting that different oral biogeographic niches have unique phage ecology shaping their bacterial biota. In this review, we summarize what is known about phage communities in the oral cavity, the possible contributions of phage in shaping oral bacterial ecology, and the risks to public health oral phage may pose through their potential to spread antibiotic resistance gene functions to close contacts.

  20. Occurrence and numbers of bacteriophages and bacterial indicators in faeces of yellow-legged seagull (Larus cachinnans).

    Science.gov (United States)

    Muniesa, M; Jofre, J; Lucena, F

    1999-12-01

    Faeces from feral populations of yellow-legged seagulls from the northern coastal area of Catalonia (North-eastern Spain) contained variable amounts of faecal coliforms, faecal streptococci, somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. Occurrence and numbers of bacterial indicators and bacteriophages in the faeces of yellow-legged seagulls are in the ranges described in the faeces of different animals. The ratios between numbers of bacterial indicators and numbers of bacteriophages are much higher in faeces of seagulls than in treated or raw sewage contributed by out-falls of the same area.

  1. Effect of a bacteriophage cocktail in combination with modified atmosphere packaging in controlling Listeria monocytogenes on fresh-cut spinach

    Directory of Open Access Journals (Sweden)

    Boyacioglu O.

    2016-06-01

    Full Text Available A Listeria monocytogenes-specific bacteriophage cocktail was evaluated for its activity against a nalidixic acid-resistant L. monocytogenes (Lm-NalR isolate on fresh-cut spinach stored under modified atmosphere packaging at various temperatures. Pieces (~2 × 2 cm2 of fresh spinach inoculated with 4.5 log CFU/cm2 Lm-NalR were sprayed with the phage cocktail (6.5 log plaque-forming units [PFU]/cm2 or a control. The samples were stored at 4°C or 10°C for up to 14 d in sealed packages filled with either atmospheric air (AA or modified atmosphere (MA. At 4°C under AA, the phages significantly (P ≤ 0.05 lowered the Lm-NalR populations on spinach, compared to control-treated inoculated samples, by 1.12 and 1.51 log CFU/cm2 after 1 and 14 d, respectively. At 4°C under MA, Lm-NalR was significantly reduced by 1.95 log CFU/cm2 compared to control leaves after both 1 and 14 d. At 10°C under AA, the phages significantly reduced Lm-NalR by 1.50 and 2.51 log CFU/cm2 after 1 and 14 d compared to the control. Again at 10°C under MA, the phages significantly reduced Lm-NalR by 1.71 and 3.24 log CFU/cm2 compared to control after 1 and 14 d, respectively. The results support the potential of lytic bacteriophages in effectively reducing populations of L. monocytogenes on freshcut leafy produce, under both AA and MA conditions.

  2. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  3. Evaluation of Anti- Bacteriophage as Feed Additives to Prevent (SE in Broiler

    Directory of Open Access Journals (Sweden)

    K. H. Kim

    2013-03-01

    Full Text Available This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2% of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308 were allotted by randomized complete block (RCB design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR at terminal period among treatments (p>0.05. Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT, glutamic-pyruvic transaminase (GPT and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05. In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05, and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05. Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics

  4. Pb2+ Effects on Growth, Lipids, and Protein and DNA Profiles of the Thermophilic Bacterium Thermus Thermophilus

    Directory of Open Access Journals (Sweden)

    Barbara Nicolaus

    2016-12-01

    Full Text Available Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb2+, using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes.

  5. Yoğurt Bakterilerinin (Lactobacillus bulgaricus, Streptococcus thermophilus) Sucuğun Fermantasyonu Üzerine Etkisi

    OpenAIRE

    Karakaya, Mustafa; Kılıç, Aydın

    1994-01-01

    Bu araştırmada, L. bulgaricus, S. thermophilus yoğurt kültürleri ve değişik karbonhidrat kaynakları (sakkaroz, laktoz) kullanılarak, sucuğun fermantasyonu üzerine olan etkileri araştırılmıştır. Olgunlaşma sürelerinin belirlenmesinde sucukların belirli su miktarına (%35) ulaşmaları kriter olarak alınmış ve bu süre içerisinde periyodik olarak laktik asit üretimi ve pH değişimi kontrol edilmiştir. Kullanılan yoğurt kültürleri olgunlaşmanın 4. ve 7. günlerinde pH değişimi üzerine etkili olurken,...

  6. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S., E-mail: esipov@mx.ibch.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.

  7. Inactivation and unfolding of protein tyrosine phosphatase from Thermus thermophilus HB27 during urea and guanidine hydrochloride denaturation.

    Directory of Open Access Journals (Sweden)

    Yejing Wang

    Full Text Available The effects of urea and guanidine hydrochloride (GdnHCl on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase, a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV circular dichroism (CD, Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase.

  8. Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Luis Amarillas

    2016-09-01

    Full Text Available Background Shiga toxin-producing Escherichia coli (STEC is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. Methods In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. Results Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. Conclusion These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.

  9. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    Science.gov (United States)

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; Weisbeek, P. J.

    1982-01-01

    The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This

  11. Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: Evolution, structure, and genome organization of lactococcal bacteriophages

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Østergaard, Solvej; Pedersen, Margit

    2001-01-01

    A complete analysis of the entire genome of the temperate lactococcal bacteriophage TP901-1 has been performed and the function of 21 of 56 TP901-1-encoded ORFs has been assigned. This knowledge has been used to propose 10 functional modules each responsible for specific functions during...

  12. Stability and assembly in vitro of bacteriophage PP7 virus-like particles

    Directory of Open Access Journals (Sweden)

    Peabody David S

    2007-11-01

    Full Text Available Abstract Background The stability of a virus-like particle (VLP is an important consideration for its use in nanobiotechnology. The icosahedral capsid of the RNA bacteriophage PP7 is cross-linked by disulfide bonds between coat protein dimers at its 5-fold and quasi-6-fold symmetry axes. This work determined the effects of these disulfides on the VLP's thermal stability. Results Measurements of the thermal denaturation behavior of PP7 VLPs in the presence and absence of a reducing agent show that disulfide cross-links substantially stabilize them against thermal denaturation. Although dimers in the capsid are linked to one another by disulfides, the two subunits of dimers themselves are held together only by non-covalent interactions. In an effort to confer even greater stability a new cross-link was introduced by genetically fusing two coat protein monomers, thus producing a "single-chain dimer" that assembles normally into a completely cross-linked VLP. However, subunit fusion failed to increase the thermal stability of the particles, even though it stabilized the isolated dimer. As a step toward gaining control of the internal composition of the capsid, conditions that promote the assembly of PP7 coat protein dimers into virus-like particles in vitro were established. Conclusion The presence of inter-dimer disulfide bonds greatly stabilizes the PP7 virus-like particle against thermal denaturation. Covalently cross-linking the subunits of the dimers themselves by genetically fusing them through a dipeptide linker sequence, offers no further stabilization of the VLP, although it does stabilize the dimer. PP7 capsids readily assemble in vitro in a reaction that requires RNA.

  13. Genomics of three new bacteriophages useful in the biocontrol of Salmonella

    Directory of Open Access Journals (Sweden)

    Carlota eBardina

    2016-04-01

    Full Text Available Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87 able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs; 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic

  14. Structure and assembly of bacteriophage T4 head

    Directory of Open Access Journals (Sweden)

    Black Lindsay W

    2010-12-01

    Full Text Available Abstract The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as that found in phage HK97 and several other icosahedral bacteriophages. Folding of gp23 requires the assistance of two chaperones, the E. coli chaperone GroEL and the phage coded gp23-specific chaperone, gp31. The capsid also contains two non-essential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. The structure of Soc shows two capsid binding sites which, through binding to adjacent gp23 subunits, reinforce the capsid structure. Hoc and Soc have been extensively used in bipartite peptide display libraries and to display pathogen antigens including those from HIV, Neisseria meningitides, Bacillus anthracis, and FMDV. The structure of Ip1*, one of the components of the core, has been determined, which provided insights on how IPs protect T4 genome against the E. coli nucleases that degrade hydroxymethylated and glycosylated T4 DNA. Extensive mutagenesis combined with the atomic structures of the DNA packaging/terminase proteins gp16 and gp17 elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. Cryo-EM structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages

  15. Bacteriophage therapy to combat bacterial infections in poultry.

    Science.gov (United States)

    Wernicki, Andrzej; Nowaczek, Anna; Urban-Chmiel, Renata

    2017-09-16

    Infections in poultry are an economic and health problem in Europe and worldwide. The most common infections are associated with salmonellosis, colibacillosis, campylobacteriosis, and others. The prevalence of Campylobacter-positive poultry flocks in European countries varies from 18% to 90%. In the United States, the prevalence of infected flocks is nearly 90%. A similar percentage of infection has been noted for salmonellosis (about 75-90%) and E. coli (90-95%). The occurence of Clostridium perfringens is a major problem for the poultry industry, with some estimates suggesting colonization of as many as 95% of chickens, resulting in clinical or subclinical infections. In the US, annual economic losses due to Salmonella infections run from $1.188 billion to over $11.588 billion, based on an estimated 1.92 million cases. Similar costs are observed in the case of other types of infections. In 2005 economic losses in the the poultry industry due to mortalities reached 1,000,000 USD.Infections caused by these pathogens, often through poultry products, are also a serious public health issue.The progressive increase in the number of multi-drug resistant bacteria and the complete ban on the use of antibiotics in livestock feed in the EU, as well as the partial ban in the US, have led to the growth of research on the use of bacteriophages to combat bacterial infections in humans and animals.The high success rate and safety of phage therapy in comparison with antibiotics are partly due to their specificity for selected bacteria and the ability to infect only one species, serotype or strain. This mechanism does not cause the destruction of commensal bacterial flora. Phages are currently being used with success in humans and animals in targeted therapies for slow-healing infections. They have also found application in the US in eliminating pathogens from the surface of foods of animal and plant origin. At a time of growing antibiotic resistance in bacteria and the resulting

  16. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed

  17. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes

    International Nuclear Information System (INIS)

    Kim, Young Jun; Nam, Chang-Hoon; Jin, Young-Hyun; Stieglitz, Thomas; Salieb-Beugelaar, Georgette B

    2014-01-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications. (paper)

  18. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    Science.gov (United States)

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  19. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    Science.gov (United States)

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  20. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Chen, Yujie; Kong, Qing; Chi, Chen; Shan, Shihua; Guan, Bin

    2015-10-15

    The purpose of this study was to explore the ability of anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus to biotransform aflatoxins in peanut meal. The pH of the peanut meal was adjusted above 10, and then heated for 10 min at 100 °C, 115 °C and 121 °C. The S. thermophilus and L. delbrueckii subsp. bulgaricus were precultured together in MRS broth for 48 h at 37 °C. The heated peanut meal was mixed with precultured MRS broth containing 7.0×10(8) CFU/mL of S. thermophilus and 3.0×10(3) CFU/mL of L. delbrueckii subsp. bulgaricus with the ratio of 1 to 1 (weight to volume) and incubated in anaerobic jars at 37 °C for 3 days. The aflatoxin content in the peanut meal samples was determined by HPLC. The results showed that the peanut meal contained mainly aflatoxin B1 (AFB1) (10.5±0.64 μg/kg) and aflatoxin G1 (AFG1) (18.7±0.55 μg/kg). When heat treatment was combined with anaerobic solid fermentation, the biotransformation rate of aflatoxins in peanut meal could attain 100%. The cytotoxicity of fermented peanut meal to L929 mouse connective tissue fibroblast cells was determined by MTT assay and no significant toxicity was observed in the fermented peanut meal. Furthermore, heat treatment and anaerobic solid fermentation did not change the amino acid concentrations and profile in peanut meal. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF.

    Science.gov (United States)

    Leon-Velarde, Carlos G; Happonen, Lotta; Pajunen, Maria; Leskinen, Katarzyna; Kropinski, Andrew M; Mattinen, Laura; Rajtor, Monika; Zur, Joanna; Smith, Darren; Chen, Shu; Nawaz, Ayesha; Johnson, Roger P; Odumeru, Joseph A; Griffiths, Mansel W; Skurnik, Mikael

    2016-09-01

    Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of

  2. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature

    Directory of Open Access Journals (Sweden)

    Shillito Bruce

    2009-05-01

    Full Text Available Abstract Background Hydrothermal vents and cold seeps represent oases of life in the deep-sea environment, but are also characterized by challenging physical and chemical conditions. The effect of temperature fluctuations on vent organisms in their habitat has not been well explored, in particular at a molecular level, most gene expression studies being conducted on coastal marine species. In order to better understand the response of hydrothermal organisms to different temperature regimes, differentially expressed genes (obtained by a subtractive suppression hybridization approach were identified in the mussel Bathymodiolus thermophilus and the annelid Paralvinella pandorae irlandei to characterize the physiological processes involved when animals are subjected to long term exposure (2 days at two contrasting temperatures (10° versus 20°C, while maintained at in situ pressures. To avoid a potential effect of pressure, the experimental animals were initially thermally acclimated for 24 hours in a pressurized vessel. Results For each species, we produced two subtractive cDNA libraries (forward and reverse from sets of deep-sea mussels and annelids exposed together to a thermal challenge under pressure. RNA extracted from the gills, adductor muscle, mantle and foot tissue were used for B. thermophilus. For the annelid model, whole animals (small individuals were used. For each of the four libraries, we sequenced 200 clones, resulting in 78 and 83 unique sequences in mussels and annelids (about 20% of the sequencing effort, respectively, with only half of them corresponding to known genes. Real-time PCR was used to validate differentially expressed genes identified in the corresponding libraries. Strong expression variations have been observed for some specific genes such as the intracellular hemoglobin, the nidogen protein, and Rab7 in P. pandorae, and the SPARC protein, cyclophilin, foot protein and adhesive plaque protein in B. thermophilus

  3. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22

    Directory of Open Access Journals (Sweden)

    Zehra Nur Yuksekdag

    2008-06-01

    Full Text Available Exopolysaccharides (EPSs production was studied by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22 in the medium containing various carbon sources (glucose, fructose, sucrose or lactose. For all the strains, glucose was the most efficient carbon source and B3, G12 and W22 strains produced 211, 175 and 120 EPS mg/L respectively. Also, the influence of different concentrations of glucose (5,10,15,20,25,30 g/L on EPS production and growth was studied. The results indicated that EPS production and growth were stimulated by the high glucose concentration (30 g/L.

  4. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Abdoh, M.M.M. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{sup +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  5. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    Science.gov (United States)

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug. PMID:17404004

  6. The allosteric switching mechanism in bacteriophage MS2

    Energy Technology Data Exchange (ETDEWEB)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  7. Novel N4 Bacteriophages Prevail in the Cold Biosphere.

    Science.gov (United States)

    Zhan, Yuanchao; Buchan, Alison; Chen, Feng

    2015-08-01

    Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Factors influencing lysis time stochasticity in bacteriophage λ

    Directory of Open Access Journals (Sweden)

    Dennehy John J

    2011-08-01

    Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

  9. BENEFICIAL FACE OF BACTERIOPHAGES: APPLICATIONS IN FOOD PROCESSING

    Directory of Open Access Journals (Sweden)

    H. V. Raghu

    2012-06-01

    Full Text Available Foods are processed to make them available at all places; consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. In many countries cases associated with foodborne infectious are increased. However, available techniques are unable to effectively control the problem. Further, exploring novel methods and technologies for ensuring the safety of food with effective quality control approaches are under research. Phages are the natural enemies of bacteria, and are more specific to host renders them ideal candidates for applications designed to increase food safety during the production process. Scientific findings are available showing the possibility to use as biocontrol agents against various pathogens with out interfering with the natural microflora or the cultures in fermented products. Furthermore, phages or phage derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and sp ecific identification of viable cells. Bacteriophages are natural, found in various environments including water; foods etc. and are not found significantly influence the human cells.

  10. phiGENOME: an integrative navigation throughout bacteriophage genomes.

    Science.gov (United States)

    Stano, Matej; Klucar, Lubos

    2011-11-01

    phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Disinfection of bacteriophage MS2 by copper in water.

    Science.gov (United States)

    Armstrong, Andrew M; Sobsey, Mark D; Casanova, Lisa M

    2017-09-01

    Households that lack piped water supply are often forced to meet water needs by storing in the home, leaving water vulnerable to contamination by viruses. Storage in copper containers can potentially prevent this type of contamination, but the inactivation kinetics of viruses by copper need to be described to make appropriate storage recommendations. This work characterized inactivation kinetics of bacteriophage MS2 as a surrogate for enteric viruses by dissolved ionic copper in water. Reduction of MS2 increased with increasing doses of copper. At 0.3 mg/L, there was a 1.8-log 10 reduction of MS2 within 6 h. At 1 and 3 mg/L, 2-2.5 log 10 inactivation could be achieved between 6 and 24 h. Parameters for the Chick-Watson, Hom, and One Hit-Two Population models of inactivation were calculated and evaluated, all of which demonstrated strong goodness-of-fit and predictability at various contact times. Copper inactivates MS2 under controlled conditions at doses between 0.3 and 3 mg/L. Although requiring longer contact times than conventional disinfectants, it is a candidate for improving the safety of stored drinking water.

  12. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    Science.gov (United States)

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

  14. Fluorescent nanodiamond-bacteriophage conjugates maintain host specificity.

    Science.gov (United States)

    Trinh, Jimmy T; Alkahtani, Masfer H; Rampersaud, Isaac; Rampersaud, Arfaan; Scully, Marlan; Young, Ryland F; Hemmer, Philip; Zeng, Lanying

    2018-06-01

    Rapid identification of specific bacterial strains within clinical, environmental, and food samples can facilitate the prevention and treatment of disease. Fluorescent nanodiamonds (FNDs) are being developed as biomarkers in biology and medicine, due to their excellent imaging properties, ability to accept surface modifications, and lack of toxicity. Bacteriophages, the viruses of bacteria, can have exquisite specificity for certain hosts. We propose to exploit the properties of FNDs and phages to develop phages conjugated with FNDs as long-lived fluorescent diagnostic reagents. In this study, we develop a simple procedure to create such fluorescent probes by functionalizing the FNDs and phages with streptavidin and biotin, respectively. We find that the FND-phage conjugates retain the favorable characteristics of the individual components and can discern their proper host within a mixture. This technology may be further explored using different phage/bacteria systems, different FND color centers and alternate chemical labeling schemes for additional means of bacterial identification and new single-cell/virus studies. © 2018 Wiley Periodicals, Inc.

  15. Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.

    Science.gov (United States)

    Islam, Golam S; Wang, Qi; Sabour, Parviz M

    2018-01-01

    Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.

  16. Decreased survival of the λ15 bacteriophage induced by UV-365 nanometers in Escherichia coli

    International Nuclear Information System (INIS)

    Luca, M.E.M. de.

    1989-01-01

    The results of our investigation showed a new effect (not yet described in the current literature) of the UV-365 nm, verified when the bacteria E. coli was irradiated with this wavelenght and then infected with bacteriophage irradiated with short UV (254 nm). In these conditions we observed a decrease in the phage survival. This phenomenon was called Decreased Survival of the Bacteriophage (DSB). We were able to show that DSB was only induced in bacteria irradiated with UV-365 nm, proficient in recombination repair and owning 4-thiouridine in their tRNA. For the induction of DSB it is necessary to promote damage in the bacteriophage through UVA and UVB. It seems that DSB and SOS are antagonistic since DSB is able to suppress the mutation induced by SOS. (author)

  17. Research of pathogenic bacteria and bacteriophages in the residuals of wastewater treatment plants

    International Nuclear Information System (INIS)

    Mathlouthi, Soumaya

    2011-01-01

    The aim of this study is to find the pathogenic bacteria Listeria and Salmonella and to detect of bacterial (fecal coliforms) and viral indicators (bacteriophage) of fecal contamination in the residues of three sewage treatment plants in Greater Tunis: Charguia, Jdaida and Wardia. Three types of samples were analyzed: raw sewage, treated wastewater and sludge. The study showed the presence of pathogenic bacteria in some samples with a frequency of 7 pour cent for Listeria and 21 pour cent for Salmonella. However, none of these organisms has been detected in treated water of Jdaida and Chargia reflecting the efficiency of the purification process in these stations. Furthermore, all samples were positive for the presence of fecal coliforms and bacteriophages with important titles: up to 8.23 log10 (CFU/L) for coliforms and 8.36 log10 (pfu/L) for bacteriophages.

  18. Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water

    NARCIS (Netherlands)

    Chaudhry, Waqas Nasir; Ul Haq, Irshad; Andleeb, Saadia; Qadri, Ishtiaq

    Citrobacter freundii is a worldwide emerging nosocomial pathogen with escalating incidence of multidrug resistance. Citrobacter freundii exists in natural environment, especially in health care settings and is difficult to eradicate. Phage therapy is considered as an alternative way of controlling

  19. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus

    Directory of Open Access Journals (Sweden)

    Magdalena Myga-Nowak

    2016-09-01

    Full Text Available It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses – bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic

  20. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...... describe a new method for detection of phage infection in Lactococcus lactis dairy cultures. The method is based on flow cytometric detection of cells with low-density cell walls. The method allows fast and early detection of phage-infected bacteria, independently of which phage has infected the culture...

  1. Selective Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses

    CSIR Research Space (South Africa)

    Molukanele, P

    2010-09-01

    Full Text Available Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses P. Molukanele 1, 3, A. Du Plessis 1, T. Roberts 1, L. Botha 1, M. Khati 2,3, W. Campos 2, 3 1CSIR National Laser Centre, Femtosecond Science group, Pretoria, South Africa 2CSIR... that is about 1 ?m long and 5-6 nm in diameter. Its host Escherichia coli (E.coli), is approximately 2-6 ?m long and 1-1.5 ?m in diameter, see figure 1 below. Figure 1: Schematic representations of M13 bacteriophage and its host E.coli...

  2. Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro.

    Directory of Open Access Journals (Sweden)

    Jing Gong

    Full Text Available To investigate the effects of four strains, generally used in clinic, including Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis, and their related products on human colonic smooth muscle in vitro.Human colonic circular muscle strips obtained from disease-free margins of resected segments from 25 patients with colorectal cancer were isometrically examined in a constant-temperature organ bath and exposed to different concentrations of living bacteria, sonicated cell fractions and cell-free supernatant (CFS. The area under the curve (AUC representing the contractility of smooth muscle strips was calculated.(1 The four living probiotics inhibited the contractility of human colonic muscle strips only at high concentration (1010 CFUs/mL, all P0.05.Four common probiotics related products, including the sonicated cell fractions and the CFS, obviously inhibited human colonic smooth muscles strips contraction in a dose-dependent manner. Only high concentration living probiotics (1010 CFUs/mL can inhibit the colonic smooth muscles strips contraction. The NO pathway may be partly involved in the inhibitory effect of CFS from Streptococcus thermophilus and Enterococcus faecalis.

  3. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  4. Identification of Lactobacillus delbrueckii and Streptococcus thermophilus Strains Present in Artisanal Raw Cow Milk Cheese Using Real-time PCR and Classic Plate Count Methods.

    Science.gov (United States)

    Stachelska, Milena A

    2017-12-04

    The aim of this paper was to detect Lactobacillus delbrueckii and Streptococcus thermophilus using real-time quantitative PCR assay in 7-day ripening cheese produced from unpasteurised milk. Real-time quantitative PCR assays were designed to identify and enumerate the chosen species of lactic acid bacteria (LAB) in ripened cheese. The results of molecular quantification and classic bacterial enumeration showed a high level of similarity proving that DNA extraction was carried out in a proper way and that genomic DNA solutions were free of PCR inhibitors. These methods revealed the presence of L. delbrueckii and S. thermophilus. The real-time PCR enabled quantification with a detection of 101-103 CFU/g of product. qPCR-standard curves were linear over seven log units down to 101 copies per reaction; efficiencies ranged from 77.9% to 93.6%. Cheese samples were analysed with plate count method and qPCR in parallel. Compared with the classic plate count method, the newly developed qPCR method provided faster and species specific identification of two dairy LAB and yielded comparable quantitative results.

  5. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.

    Science.gov (United States)

    Malik, Danish J; Sokolov, Ilya J; Vinner, Gurinder K; Mancuso, Francesco; Cinquerrui, Salvatore; Vladisavljevic, Goran T; Clokie, Martha R J; Garton, Natalie J; Stapley, Andrew G F; Kirpichnikova, Anna

    2017-11-01

    Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver

  6. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent.

    Science.gov (United States)

    Schuch, Raymond; Khan, Babar K; Raz, Assaf; Rotolo, Jimmy A; Wittekind, Michael

    2017-07-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC 90 ) value of ≤0.25 μg/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes , and Streptococcus agalactiae were also sensitive to disruption, with MBEC 90 values ranging from 0.25 to 8 μg/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component. Copyright © 2017 American Society for Microbiology.

  7. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond

    2017-05-02

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  8. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond; Khan, Babar Khalid; Raz, Assaf; Rotolo, Jimmy A.; Wittekind, Michael

    2017-01-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  9. Self-assembly of silver nanoparticles and bacteriophage

    Directory of Open Access Journals (Sweden)

    Santi Scibilia

    2016-03-01

    Full Text Available Biohybrid nanostructured materials, composed of both inorganic nanoparticles and biomolecules, offer prospects for many new applications in extremely diverse fields such as chemistry, physics, engineering, medicine and nanobiotechnology. In the recent years, Phage display technique has been extensively used to generate phage clones displaying surface peptides with functionality towards organic materials. Screening and selection of phage displayed material binding peptides has attracted great interest because of their use for development of hybrid materials with multiple functionalities. Here, we present a self-assembly approach for the construction of hybrid nanostructured networks consisting of M13 P9b phage clone, specific for Pseudomonas aeruginosa, selected by Phage display technology, directly assembled with silver nanoparticles (AgNPs, previously prepared by pulsed laser ablation. These networks are characterized by UV–vis optical spectroscopy, scanning/transmission electron microscopies and Raman spectroscopy. We investigated the influence of different ions and medium pH on self-assembly by evaluating different phage suspension buffers. The assembly of these networks is controlled by electrostatic interactions between the phage pVIII major capsid proteins and the AgNPs. The formation of the AgNPs-phage networks was obtained only in two types of tested buffers at a pH value near the isoelectric point of each pVIII proteins displayed on the surface of the clone. This systematic study allowed to optimize the synthesis procedure to assembly AgNPs and bacteriophage. Such networks find application in the biomedical field of advanced biosensing and targeted gene and drug delivery. Keywords: Phage display, Silver nanoparticles, Self-assembly, Hybrid architecture, Raman spectroscopy

  10. Novel DNA packaging recognition in the unusual bacteriophage N15

    Energy Technology Data Exchange (ETDEWEB)

    Feiss, Michael [Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242 (United States); Geyer, Henriette, E-mail: henriettegeyer@gmail.com [Division of Viral Infections, Robert Koch Institute, Berlin (Germany); Division of Viral Infections, Robert Koch Institute, Berlin (Germany); Klingberg, Franco, E-mail: franco.klingberg@thermofisher.com [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Moreno, Norma, E-mail: nmoreno@islander.tamucc.edu [Texas A& M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States. (United States); Texas A& M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States. (United States); Forystek, Amanda, E-mail: eamanda-forystek@uiowa.edu [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242 (United States); Maluf, Nasib Karl, E-mail: fKarl.Maluf@ap-lab.com [Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt (Germany); Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA. (United States); Sippy, Jean [Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242 (United States)

    2015-08-15

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.

  11. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    Science.gov (United States)

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

  12. Protein Pattern and Plasmid Profile of Lactic Acid Bacteria Isolated from Dahi, A Traditional Fermented Milk Product of Pakistan

    Directory of Open Access Journals (Sweden)

    Tariq Masud

    2007-01-01

    Full Text Available A total of 116 isolates were identified from randomly collected market dahi samples from Rawalpindi, Pakistan. Lactic acid bacteria dominated the microbial population of dahi and were identified according to their morphological and physiological characteristics. Among these lactobacilli were frequently occurring organisms. The phenotypic and biochemical analyses gave a diversity of species (8 presumptive species. The most abundant species were Lactobacillus delbrueckii subsp. bulgaricus (28 isolates and Streptococcus thermophilus (25 isolates. Some contaminants such as Staphylococcus, Micrococcus and Saccharomyces spp. were also observed. The whole cell protein profiles of selected strains of lactic acid bacteria were examined by SDS-PAGE. It was observed that each species yielded a different electrophoretic pattern. It was further observed that among the strains investigated for the analysis of plasmid DNA 22 strains were found positive, 8 strains of L. delbrueckii subsp. bulgaricus followed by 5 of L. acidophilus, 4 of L. casei, 3 of L. helveticus and one of each L. delbrueckii subsp. delbrueckii and L. delbrueckii subsp. lactis, whereas no plasmid was observed in S. thermophilus and L. lactis strains investigated during the study. All the plasmids isolated were mostly large size plasmids and ranged from 20 to 25 kb in size.

  13. Lysis to Kill: Evaluation of the Lytic Abilities, and Genomics of Nine Bacteriophages Infective for Gordonia spp. and Their Potential Use in Activated Sludge Foam Biocontrol.

    Directory of Open Access Journals (Sweden)

    Zoe A Dyson

    Full Text Available Nine bacteriophages (phages infective for members of the genus Gordonia were isolated from wastewater and other natural water environments using standard enrichment techniques. The majority were broad host range phages targeting more than one Gordonia species. When their genomes were sequenced, they all emerged as double stranded DNA Siphoviridae phages, ranging from 17,562 to 103,424 bp in size, and containing between 27 and 127 genes, many of which were detailed for the first time. Many of these phage genomes diverged from the expected modular genome architecture of other characterized Siphoviridae phages and contained unusual lysis gene arrangements. Whole genome sequencing also revealed that infection with lytic phages does not appear to prevent spontaneous prophage induction in Gordonia malaquae lysogen strain BEN700. TEM sample preparation techniques were developed to view both attachment and replication stages of phage infection.

  14. Control of Lactose Transport, β-Galactosidase Activity, and Glycolysis by CcpA in Streptococcus thermophilus : Evidence for Carbon Catabolite Repression by a Non-Phosphoenolpyruvate-Dependent Phosphotransferase System Sugar

    NARCIS (Netherlands)

    Bogaard, Patrick T.C. van den; Kleerebezem, Michiel; Kuipers, Oscar P.; Vos, Willem M. de

    2000-01-01

    Streptococcus thermophilus, unlike many other gram-positive bacteria, prefers lactose over glucose as the primary carbon and energy source. Moreover, lactose is not taken up by a phosphoenolpyruvate-dependent phosphotransferase system (PTS) but by the dedicated transporter LacS. In this paper we

  15. Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli.

    Science.gov (United States)

    Torres, Leticia L; Ferreras, Eloy R; Cantero, Angel; Hidalgo, Aurelio; Berenguer, José

    2012-08-09

    Penicillin acylases (PACs) are enzymes of industrial relevance in the manufacture of β-lactam antibiotics. Development of a PAC with a longer half-life under the reaction conditions used is essential for the improvement of the operational stability of the process. A gene encoding a homologue to Escherichia coli PAC was found in the genome of the thermophilic bacterium Thermus thermophilus (Tth) HB27. Because of the nature of this PAC and its complex maturation that is crucial to reach its functional heterodimeric final conformation, the overexpression of this enzyme in a heterologous mesophilic host was a challenge. Here we describe the purification and characterization of the PAC protein from Tth HB27 overexpressed in Escherichia coli. Fusions to a superfolder green fluorescent protein and differential membrane solubilization assays indicated that the native enzyme remains attached through its amino-terminal end to the outer side of the cytoplasmic membrane of Tth cells. In order to overexpress this PAC in E. coli cells, a variant of the protein devoid of its membrane anchoring segment was constructed. The effect of the co-expression of chaperones and calcium supplementation of the culture medium was investigated. The total production of PAC was enhanced by the presence of DnaK/J and GrpE and even more by trigger factor and GroEL/ES. In addition, 10 mM calcium markedly improved both PAC specific and volumetric activities. Recombinant PAC was affinity-purified and proper maturation of the protein was confirmed by SDS-PAGE and MALDI-TOF analysis of the subunits. The recombinant protein was tested for activity towards several penicillins, cephalosporins and homoserine lactones. Hydrophobic acyl-chain penicillins were preferred over the rest of the substrates. Penicillin K (octanoyl penicillin) was the best substrate, with the highest specificity constant value (16.12 mM-1.seg-1). The optimum pH was aprox. 4 and the optimum temperature was 75 °C. The half-life of

  16. Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Torres Leticia L

    2012-08-01

    Full Text Available Abstract Background Penicillin acylases (PACs are enzymes of industrial relevance in the manufacture of β-lactam antibiotics. Development of a PAC with a longer half-life under the reaction conditions used is essential for the improvement of the operational stability of the process. A gene encoding a homologue to Escherichia coli PAC was found in the genome of the thermophilic bacterium Thermus thermophilus (Tth HB27. Because of the nature of this PAC and its complex maturation that is crucial to reach its functional heterodimeric final conformation, the overexpression of this enzyme in a heterologous mesophilic host was a challenge. Here we describe the purification and characterization of the PAC protein from Tth HB27 overexpressed in Escherichia coli. Results Fusions to a superfolder green fluorescent protein and differential membrane solubilization assays indicated that the native enzyme remains attached through its amino-terminal end to the outer side of the cytoplasmic membrane of Tth cells. In order to overexpress this PAC in E. coli cells, a variant of the protein devoid of its membrane anchoring segment was constructed. The effect of the co-expression of chaperones and calcium supplementation of the culture medium was investigated. The total production of PAC was enhanced by the presence of DnaK/J and GrpE and even more by trigger factor and GroEL/ES. In addition, 10 mM calcium markedly improved both PAC specific and volumetric activities. Recombinant PAC was affinity-purified and proper maturation of the protein was confirmed by SDS-PAGE and MALDI-TOF analysis of the subunits. The recombinant protein was tested for activity towards several penicillins, cephalosporins and homoserine lactones. Hydrophobic acyl-chain penicillins were preferred over the rest of the substrates. Penicillin K (octanoyl penicillin was the best substrate, with the highest specificity constant value (16.12 mM-1.seg-1. The optimum pH was aprox. 4 and the optimum

  17. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Directory of Open Access Journals (Sweden)

    Theresa Tiefenbrunn

    Full Text Available The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+ and e(- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3 and Cu(B atoms that is best modeled as peroxide. The structure of ba(3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the

  18. Induction of genetic recombination in the lambda bacteriophage by ultraviolet radiation of the Escherichia Coli cells

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1986-12-01

    In this work there are reported the results that show that although the stimulation of the recombination of the Lambda bacteriophage, by UV irradiation of the cells of Escherichia Coli, it looks to be the result of the high expression of the functions of the SOS system, doesn't keep some relationship with the high concentration of protein reached RecA. (Author)

  19. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.

    Science.gov (United States)

    Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir

    2017-08-01

    Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  1. The inactivating and mutagenic effect of hydroxylamine on bacteriophage φX174

    NARCIS (Netherlands)

    Pol, J.H. van de; Arkel, G.A. van

    1965-01-01

    The inactivation of bacteriophage ΦXI74 by the mutagenic agents nitrous acid and ultraviolet irradiation proceeds according to a single-hit kinetics. However, treatment of purified ΦXI74 by hydroxylamine (HA) at pH 6 and 25° results in an inactivation that is not strictly exponential. The

  2. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4

    NARCIS (Netherlands)

    van der Avoort, H. G.; van der Ende, A.; van Arkel, G. A.; Weisbeek, P. J.

    1984-01-01

    The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or

  3. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses.

    Science.gov (United States)

    Garcia, Keila Carolina de Ornellas Dutka; Corrêa, Isadora Mainieri de Oliveira; Pereira, Larissa Quinto; Silva, Tarcísio Macedo; Mioni, Mateus de Souza Ribeiro; Izidoro, Ana Carolina de Moraes; Bastos, Igor Henrique Vellano; Gonçalves, Guilherme Augusto Marietto; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2017-09-01

    Foodborne diseases represent a major risk to public health worldwide. Pathogenic bacteria can live in the form of biofilm within the food industry, providing a permanent source of contamination. The aim of this study was to evaluate the influence of the types of adhesion surfaces on Salmonella biofilm formation at eight different times, and analyze the action time of a bacteriophage pool on established biofilms. Most of the samples used were classified as weak biofilm producers, with serovars Enteritidis and Heidelberg showing the highest frequency of biofilm formation. Glass and stainless steel surfaces significantly favored biofilm formation at 60 and 36 h of incubation respectively, but the polyvinyl chloride surface did not favor biofilm production, suggesting that the type of material may interfere with production. The bacteriophage pool action period focused on 3 h, but treatment of 9 h on glass surface biofilms was superior to other treatments because it affected the largest number of samples. These results suggests that some surface types and Salmonella serotypes may promote biofilm formation and indicate bacteriophages as an alternative to control biofilms. But further studies are required to prove the effectiveness and safety of bacteriophage therapy as an alternative in the antimicrobial control in the processing plants. © 2017 Poultry Science Association Inc.

  4. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    Directory of Open Access Journals (Sweden)

    Bożena Szermer-Olearnik

    Full Text Available Lipopolysaccharide (LPS, endotoxin, pyrogen constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol. During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3 and 10(5 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3-10(5 EU/10(9 PFU (plaque forming units down to an average of 2.8 EU/10(9 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli and F8 (P. aeruginosa.

  5. The membrane-bound form of gene 9 minor coat protein of bacteriophage M13

    NARCIS (Netherlands)

    Houbiers, M.C.

    2002-01-01

    Bacteriophage M13 is a virus that infects the bacteria Escherichia coli ( E. coli ), a single cell organism that resides in our intestines. It consists of the cytoplasm (contents) and a double membrane that keeps the

  6. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Belén Álvarez

    2017-07-01

    Full Text Available Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  7. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    Science.gov (United States)

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  8. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    NARCIS (Netherlands)

    Dutilh, Bas E; Cassman, Noriko; McNair, Katelyn; Sanchez, Savannah E; Silva, Genivaldo G Z; Boling, Lance; Barr, Jeremy J; Speth, Daan R; Seguritan, Victor; Aziz, Ramy K; Felts, Ben; Dinsdale, Elizabeth A; Mokili, John L; Edwards, Robert A

    2014-01-01

    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the

  9. The effectiveness of bacteriophages against methicillin-resistant Staphylococcus aureus ST398 nasal colonization in pigs

    NARCIS (Netherlands)

    Verstappen, Koen M.; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C.; Carney, Jennifer; Nes, Van Arie; Wagenaar, Jaap A.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential

  10. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs

    NARCIS (Netherlands)

    Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    UNLABELLED: Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a

  11. Key Players in the Genetic Switch of Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Alsing, Anne; Pedersen, Margit; Sneppen, Kim

    2011-01-01

    the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter Pr at different concentrations of the phage repressor, CI, and compare the effect of CI on Pr in the presence or absence of the phage-encoded MOR...

  12. Bacteriophage T7 structure according to the data of small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rol' bin, Yu A; Svergun, D I; Feigin, L A; Gashpar, Sh; Ronto, D [AN SSSR, Moscow. Inst. Kristallografii

    1980-01-01

    An attempt is made to obtain complete data on the form, sizes, weight and hydration of the T7 bacteriophage cultivated on E.coli cells and the peculiarities of phage DNA structure using the method of small-angle scattering.

  13. Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Frandsen, Kristian E. H.; Erba, Elisabetta Boeri

    2016-01-01

    The CI repressor from the temperate bacteriophage TP901-1 consists of two folded domains, an N-terminal helix-turn-helix DNA-binding domain (NTD) and a C-terminal oligomerization domain (CTD), which we here suggest to be further divided into CTD1 and CTD2. Full-length CI is a hexameric protein......, whereas a truncated version, CIΔ58, forms dimers. We identify the dimerization region of CIΔ58 as CTD1 and determine its secondary structure to be helical both within the context of CIΔ58 and in isolation. To our knowledge this is the first time that a helical dimerization domain has been found in a phage...... repressor. We also precisely determine the length of the flexible linker connecting the NTD to the CTD. Using electrophoretic mobility shift assays and native mass spectrometry, we show that CIΔ58 interacts with the O-L operator site as one dimer bound to both half-sites, and with much higher affinity than...

  14. Characterization and complete genome sequence of a novel N4-like bacteriophage, pSb-1 infecting Shigella boydii.

    Science.gov (United States)

    Jun, Jin Woo; Yun, Sae Kil; Kim, Hyoun Joong; Chai, Ji Young; Park, Se Chang

    2014-10-01

    Shigellosis is one of major foodborne pathogens in both developed and developing countries. Although antibiotic therapy is considered an effective treatment for shigellosis, the imprudent use of antibiotics has led to the increase of multiple-antibiotic-resistant Shigella species globally. In this study, we isolated a virulent Podoviridae bacteriophage (phage), pSb-1, that infects Shigella boydii. One-step growth analysis revealed that this phage has a short latent period (15 min) and a large burst size (152.63 PFU/cell), indicating that pSb-1 has good host infectivity and effective lytic activity. The double-stranded DNA genome of pSb-1 is composed of 71,629 bp with a G + C content of 42.74%. The genome encodes 103 putative ORFs, 9 putative promoters, 21 transcriptional terminators, and one tRNA region. Genome sequence analysis of pSb-1 and comparative analysis with the homologous phage EC1-UPM, N4-like phage revealed that there is a high degree of similarity (94%, nucleotide sequence identity) between pSb-1 and EC1-UPM in 73 of the 103 ORFs of pSb-1. The results of this investigation indicate that pSb-1 is a novel virulent N4-like phage infecting S. boydii and that this phage might have potential uses against shigellosis. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    Science.gov (United States)

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  16. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.

    Science.gov (United States)

    Tiemann, B; Depping, R; Rüger, W

    1999-01-01

    There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  17. Bacteriophage GC1, a Novel Tectivirus Infecting Gluconobacter Cerinus, an Acetic Acid Bacterium Associated with Wine-Making

    Directory of Open Access Journals (Sweden)

    Cécile Philippe

    2018-01-01

    Full Text Available The Gluconobacter phage GC1 is a novel member of the Tectiviridae family isolated from a juice sample collected during dry white wine making. The bacteriophage infects Gluconobacter cerinus, an acetic acid bacterium which represents a spoilage microorganism during wine making, mainly because it is able to produce ethyl alcohol and transform it into acetic acid. Transmission electron microscopy revealed tail-less icosahedral particles with a diameter of ~78 nm. The linear double-stranded DNA genome of GC1 (16,523 base pairs contains terminal inverted repeats and carries 36 open reading frames, only a handful of which could be functionally annotated. These encode for the key proteins involved in DNA replication (protein-primed family B DNA polymerase as well as in virion structure and assembly (major capsid protein, genome packaging ATPase (adenosine triphosphatase and several minor capsid proteins. GC1 is the first tectivirus infecting an alphaproteobacterial host and is thus far the only temperate tectivirus of gram-negative bacteria. Based on distinctive sequence and life-style features, we propose that GC1 represents a new genus within the Tectiviridae, which we tentatively named “Gammatectivirus”. Furthermore, GC1 helps to bridge the gap in the sequence space between alphatectiviruses and betatectiviruses.

  18. Streptophage-mediated control of off-flavour taint producing streptomycetes isolated from barramundi ponds

    Directory of Open Access Journals (Sweden)

    Jodi Anne Jonns

    2017-06-01

    Following the determination of the streptophage susceptibility of the isolates one of the most odourous streptomycete species (USC-14510 was selected to be tested further using different pond simulations resembling real-life applications. Geosmin was tested as the indicator of off-flavour taint production and as it has been previously reported that the cyanobacteria-actinomycete interactions occurring in ponds result in even greater levels of geosmin and 2-methylisoborneol, the geosmin levels for the isolate in the presence of cyanobacteria and streptophages were also tested. Findings indicated that the highly odourous Streptomyces species (USC-14510 once infected with streptophages, can lose its capacity to produce off-flavour taints. Pond simulation studies also revealed geosmin production was significantly reduced when streptophages were introduced into the pond water where streptomycete species were grown. The bacteriophage control method developed in the presented study might again confirm significant potential for the bacteriophage-mediated remediation strategy to be adapted by the aquaculture industry.

  19. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  20. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  1. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water...

  2. Effects of Sample Impurities on the Analysis of MS2 Bacteriophage by Small-Angle Neutron Scattering

    National Research Council Canada - National Science Library

    Elashvili, Ilya; Wick, Charles H; Kuzmanovic, Deborah A; Krueger, Susan; O'Connell, Catherine

    2005-01-01

    .... The impact of small molecular weight impurities of the resolution of structural data obtained by SANS of the bacteriophage MS2 distorts the resolution and sharpness of contrast variation peaks...

  3. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles.

    Directory of Open Access Journals (Sweden)

    George Lezin

    Full Text Available Plasmid DNA minipreps are fundamental techniques in molecular biology. Current plasmid DNA minipreps use alkali and the anionic detergent SDS in a three-solution format. In addition, alkali minipreps usually require additional column-based purification steps and cannot isolate other extra-chromosomal elements, such as bacteriophages. Non-ionic detergents (NIDs have been used occasionally as components of multiple-solution plasmid DNA minipreps, but a one-step approach has not been developed. Here, we have established a one-tube, one-solution NID plasmid DNA miniprep, and we show that this approach also isolates bacteriophage lambda particles. NID minipreps are more time-efficient than alkali minipreps, and NID plasmid DNA performs better than alkali DNA in many downstream applications. In fact, NID crude lysate DNA is sufficiently pure to be used in digestion and sequencing reactions. Microscopic analysis showed that the NID procedure fragments E. coli cells into small protoplast-like components, which may, at least in part, explain the effectiveness of this approach. This work demonstrates that one-step NID minipreps are a robust method to generate high quality plasmid DNA, and NID approaches can also isolate bacteriophage lambda particles, outperforming current standard alkali-based minipreps.

  4. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.

  5. Interaction of Thermus thermophilus ArsC enzyme and gold nanoparticles naked-eye assays speciation between As(III) and As(V)

    International Nuclear Information System (INIS)

    Politi, Jane; De Stefano, Luca; Spadavecchia, Jolanda; Casale, Sandra; Fiorentino, Gabriella; Antonucci, Immacolata

    2015-01-01

    The thermophilic bacterium Thermus thermophilus HB27 encodes chromosomal arsenate reductase (TtArsC), the enzyme responsible for resistance to the harmful effects of arsenic. We report on adsorption of TtArsC onto gold nanoparticles for naked-eye monitoring of biomolecular interaction between the enzyme and arsenic species. Synthesis of hybrid biological–metallic nanoparticles has been characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV–vis), dynamic light scattering (DLS) and phase modulated infrared reflection absorption (PM-IRRAS) spectroscopies. Molecular interactions have been monitored by UV–vis and Fourier transform-surface plasmon resonance (FT-SPR). Due to the nanoparticles’ aggregation on exposure to metal salts, pentavalent and trivalent arsenic solutions can be clearly distinguished by naked-eye assay, even at 85 μM concentration. Moreover, the assay shows partial selectivity against other heavy metals. (paper)

  6. The role of electrostatic interactions in the Streptococcus thermophilus adhesion on human erythrocytes in media with different 1:1 electrolyte concentration

    Directory of Open Access Journals (Sweden)

    О. І. Гордієнко

    2015-10-01

    Full Text Available The process of bacterial adhesion is usually discussed in terms of the two-stage sorption model. According to the model, at the first stage the bacteria fastly attaches to the surface by weak physical interactions, while at the second stage irreversible molecular and cellular adhesion process takes place. An important factor, influencing the adhesion processes, is physical-chemical characteristics of the medium, in particular, the presence of monovalent cations therein. The aim of this work is to assess the role of electrostatic component of the intercellular interactions at the first reversible stage of adhesion. Comparison of experimental data of adhesion of lactobacilli S. thermophilus on human erythrocytes and theoretical definition of the Debye radius and the erythrocytes surface potential in the experimental solutions showed that with decreasing ionic strength of the solution the change in the adhesion index in our experiments is fully in line with the theory DLVO predictions.

  7. Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications

    DEFF Research Database (Denmark)

    Monshupanee, Tanakarn; Gregory, Steven T; Douthwaite, Stephen

    2008-01-01

    of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity...... for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site...... to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations....

  8. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate.

    Science.gov (United States)

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period.

  9. Optimizing Propagation of Staphylococcus aureus Infecting Bacteriophage vB_SauM-phiIPLA-RODI on Staphylococcus xylosus Using Response Surface Methodology

    OpenAIRE

    Eva González-Menéndez; Francisco Noé Arroyo-López; Beatriz Martínez; Pilar García; Antonio Garrido-Fernández; Ana Rodríguez

    2018-01-01

    The use of bacteriophages for killing pathogenic bacteria is a feasible alternative to antibiotics and disinfectants. To obtain the large quantities of phages required for this application, large-scale production of bacteriophages must be optimized. This study aims to define conditions that maximize the phage yield of the virulent and polyvalent staphylococcal bacteriophage vB_SauM-phiIPLA-RODI in broth culture, using the food-grade species Staphylococcus xylosus as the host strain to reduce ...

  10. Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S-adenosyl-l-homocysteine

    International Nuclear Information System (INIS)

    Pioszak, Augen A.; Murayama, Kazutaka; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2005-01-01

    Three structures of a putative RNA 5-methyluridine methyltransferase from T. thermophilus, including its complex with S-adenosyl-l-homocysteine, are presented. The structures reveal the mode of cofactor binding, architecture of the putative active site, and the presence of a deep cleft adjacent to the active site that may bind RNA. The Thermus thermophilus hypothetical protein TTHA1280 belongs to a family of predicted S-adenosyl-l-methionine (AdoMet) dependent RNA methyltransferases (MTases) present in many bacterial and archaeal species. Inspection of amino-acid sequence motifs common to class I Rossmann-fold-like MTases suggested a specific role as an RNA 5-methyluridine MTase. Selenomethionine (SeMet) labelled and native versions of the protein were expressed, purified and crystallized. Two crystal forms of the SeMet-labelled apoprotein were obtained: SeMet-ApoI and SeMet-ApoII. Cocrystallization of the native protein with S-adenosyl-l-homocysteine (AdoHcy) yielded a third crystal form, Native-AdoHcy. The SeMet-ApoI structure was solved by the multiple anomalous dispersion method and refined at 2.55 Å resolution. The SeMet-ApoII and Native-AdoHcy structures were solved by molecular replacement and refined at 1.80 and 2.60 Å, respectively. TTHA1280 formed a homodimer in the crystals and in solution. Each subunit folds into a three-domain structure composed of a small N-terminal PUA domain, a central α/β-domain and a C-terminal Rossmann-fold-like MTase domain. The three domains form an overall clamp-like shape, with the putative active site facing a deep cleft. The architecture of the active site is consistent with specific recognition of uridine and catalysis of methyl transfer to the 5-carbon position. The cleft is suitable in size and charge distribution for binding single-stranded RNA.

  11. Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus.

    Science.gov (United States)

    Pennacchio, Angela; Pucci, Biagio; Secundo, Francesco; La Cara, Francesco; Rossi, Mosè; Raia, Carlo A

    2008-07-01

    The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily was identified in the extremely thermophilic, halotolerant gram-negative eubacterium Thermus thermophilus HB27. The T. thermophilus ADH gene (adh(Tt)) was heterologously overexpressed in Escherichia coli, and the protein (ADH(Tt)) was purified to homogeneity and characterized. ADH(Tt) is a tetrameric enzyme consisting of identical 26,961-Da subunits composed of 256 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to approximately 73 degrees C and a 30-min half-inactivation temperature of approximately 90 degrees C, as well as good tolerance to common organic solvents. ADH(Tt) has a strict requirement for NAD(H) as the coenzyme, a preference for reduction of aromatic ketones and alpha-keto esters, and poor activity on aromatic alcohols and aldehydes. This thermophilic enzyme catalyzes the following reactions with Prelog specificity: the reduction of acetophenone, 2,2,2-trifluoroacetophenone, alpha-tetralone, and alpha-methyl and alpha-ethyl benzoylformates to (S)-(-)-1-phenylethanol (>99% enantiomeric excess [ee]), (R)-alpha-(trifluoromethyl)benzyl alcohol (93% ee), (S)-alpha-tetralol (>99% ee), methyl (R)-(-)-mandelate (92% ee), and ethyl (R)-(-)-mandelate (95% ee), respectively, by way of an efficient in situ NADH-recycling system involving 2-propanol and a second thermophilic ADH. This study further supports the critical role of the D37 residue in discriminating NAD(H) from NADP(H) in members of the SDR superfamily.

  12. Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise

    Directory of Open Access Journals (Sweden)

    Ralf Jäger

    2016-10-01

    Full Text Available Probiotics have immunomodulatory effects. However, little is known about the potential benefit of probiotics on the inflammation subsequent to strenuous exercise. In a double-blind, randomized, placebo controlled, crossover design separated by a 21-day washout, 15 healthy resistance-trained men ingested an encapsulated probiotic Streptococcus (S. thermophilus FP4 and Bifidobacterium (B. breve BR03 at 5 bn live cells (AFU concentration each, or a placebo, daily for 3 weeks prior to muscle-damaging exercise (ClinicalTrials.gov NCT02520583. Isometric strength, muscle soreness, range of motion and girth, and blood interleukin-6 (IL-6 and creatine kinase (CK concentrations were measured from pre- to 72 h post-exercise. Statistical analysis was via mixed models and magnitude-based inference to the standardized difference. Probiotic supplementation resulted in an overall decrease in circulating IL-6, which was sustained to 48 h post-exercise. In addition, probiotic supplementation likely enhanced isometric average peak torque production at 24 to 72 h into the recovery period following exercise (probiotic–placebo point effect ±90% CI: 24 h, 11% ± 7%; 48 h, 12% ± 18%; 72 h, 8% ± 8%. Probiotics also likely moderately increased resting arm angle at 24 h (2.4% ± 2.0% and 48 h (1.9% ± 1.9% following exercise, but effects on soreness and flexed arm angle and CK were unclear. These data suggest that dietary supplementation with probiotic strains S. thermophilus FP4 and B. breve BR03 attenuates performance decrements and muscle tension in the days following muscle-damaging exercise.

  13. Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise.

    Science.gov (United States)

    Jäger, Ralf; Purpura, Martin; Stone, Jason D; Turner, Stephanie M; Anzalone, Anthony J; Eimerbrink, Micah J; Pane, Marco; Amoruso, Angela; Rowlands, David S; Oliver, Jonathan M

    2016-10-14

    Probiotics have immunomodulatory effects. However, little is known about the potential benefit of probiotics on the inflammation subsequent to strenuous exercise. In a double-blind, randomized, placebo controlled, crossover design separated by a 21-day washout, 15 healthy resistance-trained men ingested an encapsulated probiotic Streptococcus ( S. ) thermophilus FP4 and Bifidobacterium ( B. ) breve BR03 at 5 bn live cells (AFU) concentration each, or a placebo, daily for 3 weeks prior to muscle-damaging exercise (ClinicalTrials.gov NCT02520583). Isometric strength, muscle soreness, range of motion and girth, and blood interleukin-6 (IL-6) and creatine kinase (CK) concentrations were measured from pre- to 72 h post-exercise. Statistical analysis was via mixed models and magnitude-based inference to the standardized difference. Probiotic supplementation resulted in an overall decrease in circulating IL-6, which was sustained to 48 h post-exercise. In addition, probiotic supplementation likely enhanced isometric average peak torque production at 24 to 72 h into the recovery period following exercise (probiotic-placebo point effect ±90% CI: 24 h, 11% ± 7%; 48 h, 12% ± 18%; 72 h, 8% ± 8%). Probiotics also likely moderately increased resting arm angle at 24 h (2.4% ± 2.0%) and 48 h (1.9% ± 1.9%) following exercise, but effects on soreness and flexed arm angle and CK were unclear. These data suggest that dietary supplementation with probiotic strains S. thermophilus FP4 and B. breve BR03 attenuates performance decrements and muscle tension in the days following muscle-damaging exercise.

  14. Interaction between bacteriophage and pyrophyllite clay in aqueous solution

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Jae-Hyun; Kang, Jin-Kyu; Son, Jeong-Woo; Yi, In-Geol; Kim, Song-Bae

    2014-05-01

    Viral contamination results in a degradation in drinking water quality and a threat to public health. Toprovide safe drinking water, water treatment alternatives using various adsorbents and filter media such as activated carbon, bituminous coal, quartz sand and clay have been considered. Pyrophyllite is a 2:1 clay mineral having dioctahedral layer structure with octahedrally coordinated Al ion sheets between two sheets of SiO4 tetrahedra. It is a hydrous aluminosilicate clay with the chemical composition AlSi2O5(OH). Pyrophyllite has recently been investigated as a potential low-cost and environmental friendly adsorbent for removing various contaminants. The aim of this study was to investigate the removal of the bacteriophage MS2 from aqueous solution using pyrophyllite. Batch experiments were conducted to examine the MS2 sorption to pyrophyllite. The influence of fluoride, a groundwater contaminant, on the removal of MS2 was also observed. Batch results demonstrated that pyrophyllite was effective in MS2 removal. The percent removal increased from 5.26% to 99.99% (= 4.0 log removal) as the pyrophyllite concentrations increased from 0.2 to 20 g/L. More than 99% of MS2 could be removed with a pyrophyllite concentration of ≥ 4 g/L. The sorption of MS2 to pyrophyllite was rapid. Within 15 min, approximately 99.98% (= 3.7 log removal) of MS2 was attained. More than 4.0 log removal was achieved after 180 min. The experimental data were analyzed with the pseudo first-order and pseudo second-order kinetic models. The correlation coefficient showed that pseudo second-order model was better than pseudo first-order model at describing the kinetic data. The amount of MS2 removed at equilibrium was determined to be 1.43 × 108 pfu/g from the pseudo second-order model. The experimental data were also analyzed with the Freundlich and Langmuir isotherm models. The correlation coefficients showed that the Langmuir model was more suitable than the Freundlich model for MS2

  15. Three-dimensional structure of the enveloped bacteriophage phi12: an incomplete T = 13 lattice is superposed on an enclosed T = 1 shell.

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2009-09-01

    Full Text Available Bacteriophage phi12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae.We present structural studies of cystovirus phi12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated phi12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC. We find that in the nucleocapsid (NC, the phi12 P8 protein is organized on an incomplete T = 13 icosahedral lattice where the symmetry axes of the T = 13 layer and the enclosed T = 1 layer of the PC superpose. This is the same general protein-component organization found in phi6 NC's but the detailed structure of the entire phi12 P8 layer is distinct from that found in the best classified cystovirus species phi6. In the reconstruction of the NC, the P8 layer includes protein density surrounding the hexamers of P4 that sit at the 5-fold vertices of the icosahedral lattice. We believe these novel features correspond to dimers of protein P7.In conclusion, we have determined that the phi12 NC surface is composed of an incomplete T = 13 P8 layer forming a net-like configuration. The significance of this finding in regard to cystovirus assembly is that vacancies in the lattice could have the potential to accommodate additional viral proteins that are required for RNA packaging and synthesis.

  16. Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis

    Directory of Open Access Journals (Sweden)

    Alla K. Golomidova

    2016-01-01

    Full Text Available The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers, however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.

  17. Genome analysis of environmental and clinical P. aeruginosa isolates from sequence type-1146.

    Directory of Open Access Journals (Sweden)

    David Sánchez

    Full Text Available The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49 and one clinical (SD9 isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in "Related to phage, transposon or plasmid" and "Secreted factors" categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes than in isolates P37 (24 genes, P47 (16 genes and P49 (21 genes. CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.

  18. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2012-09-01

    Full Text Available A protocol for the bacteriophage amplification technique was developed for quantitative detection of viable Listeria monocytogenes cells using the A511 listeriophage with plaque formation as the end-point assay. Laser and toluidine blue O (TBO were employed as selective virucidal treatment for destruction of exogenous bacteriophage. Laser and TBO can bring a total reduction in titer phage (ca. 10(8 pfu/mL without affecting the viability of L. monocytogenes cells. Artificially inoculated skimmed milk revealed mean populations of the bacteria as low as between 13 cfu/mL (1.11 log cfu/mL, after a 10-h assay duration. Virucidal laser treatment demonstrated better protection of Listeria cells than the other agents previously tested. The protocol was faster and easier to perform than standard procedures. This protocol constitutes an alternative for rapid, sensitive and quantitative detection of L. monocytogenes.

  19. Elucidating the pH-Dependent Structural Transition of T7 Bacteriophage Endolysin.

    Science.gov (United States)

    Sharma, Meenakshi; Kumar, Dinesh; Poluri, Krishna Mohan

    2016-08-23

    Bacteriophages are the most abundant and diverse biological entities on earth. Bacteriophage endolysins are unique peptidoglycan hydrolases and have huge potential as effective enzybiotics in various infectious models. T7 bacteriophage endolysin (T7L), also known as N-acetylmuramoyl-l-alanine amidase or T7 lysozyme, is a 17 kDa protein that lyses a range of Gram-negative bacteria by hydrolyzing the amide bond between N-acetylmuramoyl residues and the l-alanine of the peptidoglycan layer. Although the activity profiles of several of the T7 family members have been known for many years, the molecular basis for their pH-dependent differential activity is not clear. In this study, we explored the pH-induced structural, stability, and activity characteristics of T7L by applying a variety of biophysical techniques and protein nuclear magnetic resonance (NMR) spectroscopy. Our studies established a reversible structural transition of T7L below pH 6 and the formation of a partially denatured conformation at pH 3. This low-pH conformation is thermally stable and exposed its hydrophobic pockets. Further, NMR relaxation measurements and structural analysis unraveled that T7L is highly dynamic in its native state and a network of His residues are responsible for the observed pH-dependent conformational dynamics and transitions. As bacteriophage chimeric and engineered endolysins are being developed as novel therapeutics against multiple drug resistance pathogens, we believe that our results are of great help in designing these entities as broadband antimicrobial and/or antibacterial agents.

  20. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    Science.gov (United States)

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  1. Computational determination of the effects of virulent Escherichia coli and salmonella bacteriophages on human gut.

    Science.gov (United States)

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2016-10-01

    Salmonella and Escherichia coli are different types of bacteria that cause food poisoning in humans. In the elderly, infants and people with chronic conditions, it is very dangerous if Salmonella or E. coli gets into the bloodstream and then they must be treated by phage therapy. Treating Salmonella and E. coli by phage therapy affects the gut flora. This research paper presents a system for detecting the effects of virulent E. coli and Salmonella bacteriophages on human gut. A method based on Domain-Domain Interactions (DDIs) model is implemented in the proposed system to determine the interactions between the proteins of human gut bacteria and the proteins of bacteriophages that infect virulent E. coli and Salmonella. The system helps gastroenterologists to realize the effect of injecting bacteriophages that infect virulent E. coli and Salmonella on the human gut. By testing the system over Enterobacteria phage 933W, Enterobacteria phage VT2-Sa and Enterobacteria phage P22, it resulted in four interactions between the proteins of the bacteriophages that infect E. coli O157:H7, E. coli O104:H4 and Salmonella typhimurium and the proteins of human gut bacterium strains. Several effects were detected such as: antibacterial activity against a number of bacterial species in human gut, regulation of cellular differentiation and organogenesis during gut, lung, and heart development, ammonia assimilation in bacteria, yeasts, and plants, energizing defense system and its function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in human gut. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Experimental Examination of Bacteriophage Latent-Period Evolution as a Response to Bacterial Availability

    OpenAIRE

    Abedon, Stephen T.; Hyman, Paul; Thomas, Cameron

    2003-01-01

    For obligately lytic bacteriophage (phage) a trade-off exists between fecundity (burst size) and latent period (a component of generation time). This trade-off occurs because release of phage progeny from infected bacteria coincides with destruction of the machinery necessary to produce more phage progeny. Here we employ phage mutants to explore issues of phage latent-period evolution as a function of the density of phage-susceptible bacteria. Theory suggests that higher bacterial densities s...

  3. Bacteriophage-based tools: recent advances and novel applications [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Lisa O'Sullivan

    2016-11-01

    Full Text Available Bacteriophages (phages are viruses that infect bacterial hosts, and since their discovery over a century ago they have been primarily exploited to control bacterial populations and to serve as tools in molecular biology. In this commentary, we highlight recent diverse advances in the field of phage research, going beyond bacterial control using whole phage, to areas including biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel drug delivery systems and bionanotechnology.

  4. Recovery status of bacteriophages of different livestock farms of Veterinary College, Adhartal, Jabalpur, India

    OpenAIRE

    Sanjay Shukla and S. D. Hirpurkar

    2011-01-01

    Study was conducted to know the presence of bacteriophage in sewage material which can play a very important role during therapy against the some antibiotic resistance organisms. During study waste water samples were collected from different depths of the wastewater collection tanks located in livestock farms of different species (Cattle, pig, goat and poultry). These samples were subjected primarily to rapid detection by streak plate method for the detection of lytic activity followed by pri...

  5. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria.

    Science.gov (United States)

    El-Shibiny, Ayman; El-Sahhar, Salma

    2017-11-01

    Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.

  6. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase.

    Science.gov (United States)

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-08-05

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca(2+) ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Varga, Marian; Pantůček, Roman; Růžičková, Vladislava; Doškař, Jirˇí

    2016-01-01

    In Staphylococcus aureus, generalized transduction mediated by temperate bacteriophages represents a highly efficient way of transferring antibiotic resistance genes between strains. In the present study, we identified and characterized in detail a new efficiently transducing bacteriophage of the family Siphoviridae, designated ϕJB, which resides as a prophage in the meticillin-resistant S. aureus (MRSA) strain Jevons B. Whole-genome sequencing followed by detailed in silico analysis uncovered a linear dsDNA genome consisting of 43 ,12 bp and comprising 70 ORFs, of which ∼40 encoded proteins with unknown function. A global genome alignment of ϕJB and other efficiently transducing phages ϕ11, ϕ53, ϕ80, ϕ80α and ϕNM4 showed a high degree of homology with ϕNM4 and substantial differences with regard to other phages. Using a model transduction system with a well-defined donor and recipient, ϕJB transferred the tetracycline resistance plasmid pT181 and a penicillinase plasmid with outstanding frequencies, beating most of the above-mentioned phages by an order of magnitude. Moreover, ϕJB demonstrated high frequencies of transferring antibiotic resistance plasmids even upon induction from a lysogenic donor strain. Considering such transducing potential, ϕJB and related bacteriophages may serve as a suitable tool for elucidating the nature of transduction and its contribution to the spread of antibiotic resistance genes in naturally occurring MRSA populations.

  8. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  9. Effectiveness of cooking to reduce norovirus and infectious F-specific RNA bacteriophage concentrations in Mytilus edulis.

    Science.gov (United States)

    Flannery, J; Rajko-Nenow, P; Winterbourn, J B; Malham, S K; Jones, D L

    2014-08-01

    The aim of this study was to determine if domestic cooking practices can reduce concentrations of norovirus (NoV) and F-specific RNA (FRNA) bacteriophage in experimentally contaminated mussels. Mussels (n = 600) contaminated with NoV and FRNA bacteriophage underwent four different cooking experiments performed in triplicate at ~70°C and >90°C. Concentrations of infectious FRNA bacteriophage (using a plaque assay) were compared with concentrations of FRNA bacteriophage and NoV determined using a standardised RT-qPCR. Initial concentrations of infectious FRNA bacteriophage (7·05 log10  PFU g(-1) ) in mussels were not significantly reduced in simmering water (~70°C); however, cooking at higher temperatures (>90°C) reduced infectious FRNA bacteriophage to undetected levels within 3 min. Further investigation determined the time required for a 1-log reduction of infectious FRNA bacteriophage at 90°C to be 42 s therefore a >3-log reduction in infectious virus can be obtained by heating mussel digestive tissue to 90°C for 126 s. Domestic cooking practices based on shell opening alone do not inactivate infectious virus in mussels, however, cooking mussels at high temperatures is effective to reduce infectious virus concentrations and the risk of illness in consumers. The data will contribute towards evidence-based cooking recommendations for shellfish to provide a safe product for human consumption. © 2014 The Society for Applied Microbiology.

  10. Bacteriophage production following exposure of lactic streptococci to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Terzaghi, B E; Sandine, W E [New Zealand Dairy Research Institute, Palmerston North

    1981-02-01

    Single colony isolates of lactic streptococcal strains, most of which have been utilized for cheese-making in New Zealand, were u.v.-irradiated and their growth response was followed optically. All 45 strains showed either lysis or impairment of growth. Their concentrated, bacteria-free supernatants were examined by electron microscopy for the presence of phage particles. Intact phages were observed in most lysates, while disrupted phage parts were found in the remaining lysates. Plaque-forming ability was demonstrable in a few cases. Lysogenization of a different strain by one of the phages detected by this technique was attempted. Similarities and differences with respect to lytic phages which have been isolated for these same strains in New Zealand cheese factories are discussed in relation to the possible origin and control of phages.

  11. Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis.

    Science.gov (United States)

    Aziz, Ramy Karam; Ackermann, Hans-Wolfgang; Petty, Nicola K; Kropinski, Andrew M

    2018-01-01

    Because of the rise in antimicrobial resistance there has been a significant increase in interest in phages for therapeutic use. Furthermore, the cost of sequencing phage genomes has decreased to the point where it is being used as a teaching tool for genomics. Unfortunately, the quality of the descriptions of the phage and its annotation frequently are substandard. The following chapter is designed to help people working on phages, particularly those new to the field, to accurately describe their newly isolated viruses.

  12. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  13. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat.

    Science.gov (United States)

    Wang, Changbao; Chen, Qiming; Zhang, Chong; Yang, Jie; Lu, Zhaoxin; Lu, Fengxia; Bie, Xiaomei

    2017-05-15

    The aim of this study was to find a virulent bacteriophage for the biocontrol of Salmonella in duck meat. A broad host-spectrum virulent phage, fmb-p1, was isolated and purified from an duck farm, and its host range was determined to include S. Typhimurium, S. Enteritidis, S. Saintpaul, S. Agona, S. Miami, S. Anatum, S. Heidelberg and S. Paratyphi-C. Electron microscopy and genome sequencing showed that fmb-p1 belongs to the family Siphoviridae. The genome of fmb-p1 is composed of a 43,327-bp double-stranded DNA molecule with 60 open reading frames and a total G+C content of 46.09%. There are no deleterious sequences or genes encoding known harmful products in the phage fmb-p1 genome. Phage fmb-p1 was stable under different temperature (40-75°C), pH (4-10) and NaCl solutions (1-11%). The phage treatment (9.9×10 9 PFU/cm 2 ) caused a peak reduction in S. Typhimurium of 4.52 log CFU/cm 2 in ready-to-eat (RTE) duck meat, whereas potassium sorbate treatment (PS, 2mg/cm 2 ) resulted in a 0.05-0.12 log reduction. Compared to PS treatment, there was significant difference in the S. Typhimurium reduction (P˂0.05) by phage treatment at both 4°C and 25°C. The results suggested that phage could be applied to reduce Salmonella, on commercial poultry products. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effectiveness of lytic bacteriophages in reducing E. coli O157:H7 populations introduced through cross-contamination on fresh cut lettuce

    Science.gov (United States)

    Previous research has shown that lytic bacteriophages (phages) can kill E. coli O157:H7 on produce surfaces. The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield) at 10^8 PFU/m...

  15. Bacteriophage ΦSA012 Has a Broad Host Range against Staphylococcus aureus and Effective Lytic Capacity in a Mouse Mastitis Model

    Directory of Open Access Journals (Sweden)

    Hidetomo Iwano

    2018-01-01

    Full Text Available Bovine mastitis is an inflammation of the mammary gland caused by bacterial infection in dairy cattle. It is the most costly disease in the dairy industry because of the high use of antibiotics. Staphylococcus aureus is one of the major causative agents of bovine mastitis and antimicrobial resistance. Therefore, new strategies to control bacterial infection are required in the dairy industry. One potential strategy is bacteriophage (phage therapy. In the present study, we examined the host range of previously isolated S. aureus phages ΦSA012 and ΦSA039 against S. aureus strains isolated from mastitic cows. These phages could kill all S. aureus (93 strains from 40 genotypes and methicillin-resistant S. aureus (six strains from six genotypes strains tested. Using a mouse mastitis model, we demonstrated that ΦSA012 reduced proliferation of S. aureus and inflammation in the mammary gland. Furthermore, intravenous or intraperitoneal phage administration reduced proliferation of S. aureus in the mammary glands. These results suggest that broad host range phages ΦSA012 is potential antibacterial agents for dairy production medicine.

  16. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment.

    Science.gov (United States)

    Jans, Christoph; Follador, Rainer; Hochstrasser, Mira; Lacroix, Christophe; Meile, Leo; Stevens, Marc J A

    2013-03-22

    Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC.We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ.Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and investigation of the

  17. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment

    Science.gov (United States)

    2013-01-01

    Background Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. Results The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC. We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ. Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and

  18. Pengaruh Variasi Konsentrasi Inulin pada Proses Fermentasi oleh L. acidophilus, L. bulgaricus dan S. thermophillus - (The Inulin Variation Concentration Effect in Fermentation Using L. acidophilus, L. bulgaricus and S. thermophilus

    Directory of Open Access Journals (Sweden)

    Raden Haryo Bimo Setiarto

    2017-06-01

    Full Text Available Prebiotics are food components that can not enzymatically digested, thus it fermented by probiotic bacteria. Inulin is a prebiotic source that widely used in processed food products such as fermented milk. This study aimed to know the variation concentrations effect of prebiotic inulin on the growth of lactic acid bacteria starter yogurt (Lactobacillus acidophillus, Lactobacillus bulgaricus, Streptococcus thermophillus. The growth of those lactic acid bacteries was determined based on OD (Optical Density, Total Plate Count (TPC, total lactic acid content and pH. Inulin concentration of 0.5% (w/v increased the growth of those three bacteries. Reductioned of pH value during inulin fermentation indicated the growth of bacteria that produced lactic acid. L.bulgaricus and S.thermophilus growth rate were more sensitive than L.acidophilus in addition of prebiotic inulin concentration. The growth of those bacteries in MRSB medium supplemented inulin decreased pH around 7.00 into below 5.00 due to organic acids formation.Keywords: Fermentation, Inulin, L.acidophilus, L.bulgaricus, S.thermophilusABSTRAKPrebiotik adalah komponen bahan pangan yang tidak dapat dicerna oleh saluran pencernaan secara enzimatis sehingga akan difermentasi oleh bakteri probiotik di usus besar. Inulin merupakan salah satu sumber prebiotik yang banyak dimanfaatkan dalam produk pangan olahan seperti susu fermentasi. Pemberian inulin pada kadar tertentu perlu diketahui untuk mengetahui jumlah optimal yang diperlukan untuk menjaga kesehatan. Penelitian ini bertujuan untuk mengetahui pengaruh variasi konsentrasi prebiotik inulin terhadap pertumbuhan bakteri asam laktat starter yogurt (Lactobacillus acidophillus, Lactobacillus bulgaricus dan Streptococcus thermophillus. Pengamatan pertumbuhan L. acidophilus, L. bulgaricus dan S. thermophillus dilakukan dengan beberapa cara antara lain perhitungan total sel dengan menggunakan prinsip turbidimetrik OD (Optical Density,  jumlah total

  19. Nonsense mutants in the bacteriophage T4D v gene

    Energy Technology Data Exchange (ETDEWEB)

    Minderhout, L van; Grimbergen, J; Groot, B de [Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese; Cohen (J.A.) Instituut voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1975-09-01

    Ten UV-sensitive mutants of T4D with the v phenotype were isolated. Of these ten mutants, two are amber and two opal. In UV curves and in photoreactivation and multiplicity reactivation experiments the nonsense mutants show the v phenotype in su/sup -/ hosts and almost the T4/sup +/ phenotype in su/sup +/ hosts. The mutations are located between rl and e and are alleles of v/sub 1/. In crosses with irradiated and non-irradiated phages the recombinant frequency is not reduced by uvs5. Amber uvs5 propagated in CR63 su/sup +/ is with B su/sup -/ just as sensitive to UV as uvs5 propagated in B su/sup -/, which permits the conclusion that the capsid of T4 phage particles does not contain the v gene product.

  20. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using β-d-glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation.

    Science.gov (United States)

    Mallek-Fakhfakh