WorldWideScience

Sample records for thermophilic methane production

  1. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium thermosaccharo......Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...

  2. Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: Evaluating and modeling methane production.

    Science.gov (United States)

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert; Sartaj, Majid

    2016-12-01

    Renewable energy and clean environment are two crucial requirements for our modern world. Low cost, energy production and limited environmental impact make anaerobic digestion (AD) a promising technology for stabilizing organic waste and in particular, sewage waste. The anaerobic co-digestion of thickened waste activated sludge (TWAS) and sewage treatment plant trapped fat, oil and grease (FOG) using different FOG-TWAS mixtures (20, 40, 60 and 80% of FOG based on total volatile solids (TVS)) were investigated in this study using both thermophilic (55 ± 1 °C) and two stages hyper-thermophilic/thermophilic (70 ± 1 °C and 55 ± 1 °C) anaerobic co-digestion. The hyper-thermophilic co-digestion approach as a part of the co-digestion process has been shown to be very useful in improving the methane production. During hyper-thermophilic biochemical methane potential (BMP) assay testing the sample with 60% FOG (based on TVS) has been shown to significantly increase the maximum methane production to 673.1 ± 14.0 ml of methane as compared to 316.4 ± 14.3 ml of methane for the control sample. This represents a 112.7% increase in methane production compared to the control sample considered in this paper. These results signify the importance of hyper-thermophilic digestion to the co-digestion of TWAS-FOG field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...... energy of 13.4kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results...

  4. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Yang, Ziyi; Wang, Wen; Zhang, Shuyu; Ma, Zonghu; Anwar, Naveed; Liu, Guangqing; Zhang, Ruihong

    2017-04-01

    The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMY org and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.

  5. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments......The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from...

  6. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation.

    Science.gov (United States)

    Cavinato, C; Bolzonella, D; Fatone, F; Cecchi, F; Pavan, P

    2011-09-01

    The optimization of a two-phase thermophilic anaerobic process treating biowaste for hydrogen and methane production was carried out at pilot scale using two stirred reactors (CSTRs) and without any physical/chemical pre-treatment of inoculum. During the experiment the hydrogen production at low hydraulic retention time (3d) was tested, both with and without reject water recirculation and at two organic loading rate (16 and 21 kgTVS/m3 d). The better yields were obtained with recirculation where the pH reached an optimal value (5.5) thanks to the buffering capacity of the recycle stream. The specific gas production of the first reactor was 51 l/kgVS(fed) and H2 content in biogas 37%. The mixture of gas obtained from the two reactors met the standards for the biohythane mix only when lower loading rate were applied to the first reactor, with a composition of 6.7% H2, 40.1% CO2 and 52.3% CH4 the overall SGP being 0.78 m3/kgVS(fed). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    Science.gov (United States)

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria.

    Science.gov (United States)

    Barros, Valciney Gomes de; Duda, Rose Maria; Vantini, Juliana da Silva; Omori, Wellington Pine; Ferro, Maria Inês Tiraboschi; Oliveira, Roberto Alves de

    2017-11-01

    Biogas production from sugarcane vinasse has enormous economic, energy, and environmental management potential. However, methane production stability and biodigested vinasse quality remain key issues, requiring better nutrient and alkalinity availability, operational strategies, and knowledge of reactor microbiota. This study demonstrates increased methane production from vinasse through the use of sugarcane filter cake and improved effluent recirculation, with elevated organic loading rates (OLR) and good reactor stability. We used UASB reactors in a two-stage configuration, with OLRs up to 45gCODL -1 d -1 , and obtained methane production as high as 3LL -1 d -1 . Quantitative PCR indicated balanced amounts of bacteria and archaea in the sludge (10 9 -10 10 copiesg -1 VS), and of the predominant archaea orders, Methanobacteriales and Methanosarcinales (10 6 -10 8 copiesg -1 VS). 16S rDNA sequencing also indicated the thermophilic Thermotogae as the most abundant class of bacteria in the sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  10. Simultaneous Production of Hydrogen and Methane from Sugar Beet Molasses in a Two Phase Anaerobic Digestion System in UASB Reactors under Thermophilic Temperature (55 Deg C)

    Energy Technology Data Exchange (ETDEWEB)

    Kongjan, P.; Villafa, S.; Beltran, P.; Min, B.; Angelidaki, I. (Dept. of Environmental Engineering, Technical Univ. of Denmark, DK-2800, Lyngby (Denmark)). e-mail: pak@env.dtu.dk

    2008-10-15

    Simultaneous production of hydrogen and methane in two sequential stages of acidogenic and methanogenic step was investigated in two serial operated up-flow anaerobic sludge bed (UASB) reactors at thermophilic temperature (55 deg C). Hydrogen production from molasses was carried out in the first reactor at the hydraulic retention time (HRT) of 1 day. Molasses were converted into hydrogen with the yield of 1.3 mole-H{sub 2}/mole-hexose{sub added} or 82.7 ml- H{sub 2}/g-VS{sub added} of molasses, and the hydrogen productivity was 2696 ml-H{sub 2}/dxl{sub reactor}. The effluent (mainly butyrate, acetate and lactate) after the acidogenic process was subsequently fed to the second reactor for methane production at HRT of 3 days. Methane production yield of 255 ml-H{sub 2}/g-VS{sub added} of influent or 130.1 ml-H{sub 2}/g-VS{sub added} of molasses and methane production rate of 1056 ml/dxl{sub reactor} were obtained. Significant decrease of volatile fatty acids (VFAs) was also observed in the effluent of the second reactor. A two phase anaerobic digestion was successfully demonstrated for molasses as a potential substrate to produce hydrogen and subsequent methane in the UASB reactors

  11. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    Science.gov (United States)

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 °C) mixed culture fermentation

    International Nuclear Information System (INIS)

    Zhang, Fang; Zhang, Yan; Chen, Yun; Dai, Kun; Loosdrecht, Mark C.M. van; Zeng, Raymond J.

    2015-01-01

    Highlights: • Simultaneous production of acetate and methane from glycerol was investigated. • Acetate accounted for more than 90% of metabolites in liquid solutions. • The maximum concentration of acetate was above 13 g/L. • 93% of archaea were hydrogenotrophic methanogens. • Thermoanaerobacter was main bacterium and its percentage was 92%. - Abstract: The feasibility of simultaneous production of acetate and methane from glycerol was investigated by selective enrichment of hydrogenotrophic methanogens in an extreme-thermophilic (70 °C) fermentation. Fed-batch experiments showed acetate was produced at the concentration up to 13.0 g/L. A stable operation of the continuous stirred tank reactor (CSTR) was reached within 100 days. Acetate accounted for more than 90 w/w% of metabolites in the fermentation liquid. The yields of methane and acetate were close to the theoretical yields with 0.74–0.80 mol-methane/mol-glycerol and 0.63–0.70 mol-acetate/mol-glycerol. The obtained microbial community was characterized. Hydrogenotrophic methanogens, mainly Methanothermobacter thermautotrophicus formed 93% of the methanogenogenic community. This confirms that a high temperature (70 °C) could effectively select for hydrogenotrophic methanogenic archaea. Thermoanaerobacter spp. was the main bacterium forming 91.5% of the bacterial population. This work demonstrated the conversion of the byproduct of biodiesel production, glycerol, to acetate as a chemical and biogas for energy generation

  13. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide......Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... and reliability of dark fermentative hydrogen production are sufficiently attractive for commercial application to be installed. Furthermore, storage and utilization of the produced hydrogen still faces challenges....

  14. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  15. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  16. Methane production from thermophilic co‐digestion of dairy manure and waste milk obtained from therapeutically treated cows

    Science.gov (United States)

    Iwasaki, Masahiro; Umetsu, Kazutaka

    2016-01-01

    Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788

  17. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows.

    Science.gov (United States)

    Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka

    2017-02-01

    Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (P m )/g volatile solids added followed by SM in both A and B. This P m of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  18. (Conversion of acetic acid to methane by thermophiles: Progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  19. [Conversion of acetic acid to methane by thermophiles: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  20. Thermophilic anaerobic oxidation of methane by marine microbial consortia.

    Science.gov (United States)

    Holler, Thomas; Widdel, Friedrich; Knittel, Katrin; Amann, Rudolf; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Teske, Andreas; Boetius, Antje; Wegener, Gunter

    2011-12-01

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.

  1. The impact of mesophilic and thermophilic anaerobic digestion on biogas production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; F. Cus

    2009-01-01

    Purpose: of this paper is to compare mesophilic and thermophilic anaerobic digestion of three maize varieties. Parameters such as biogas production and biogas composition from maize silage were measured and calculated. The amount of biogas production (methane) was observed by the mini digester.Design/methodology/approach: Biogas production and composition in mesophilic (35 degrees C) and thermophilic (55 degrees C) conditions were measured and compared. The measurements were performed with mi...

  2. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses.

    Science.gov (United States)

    Wan, Jingjing; Jing, Yuhang; Rao, Yue; Zhang, Shicheng; Luo, Gang

    2018-03-15

    Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion (TM) for hydrogen and methane production from waste-activated sludge (WAS) was investigated. The TM process was also compared to a process with mesophilic alkaline fermentation followed by a mesophilic anaerobic digestion (MM) and one-stage mesophilic anaerobic digestion (M) process. The results showed that both hydrogen yield (74.5 ml H 2 /g volatile solids [VS]) and methane yield (150.7 ml CH 4 /g VS) in the TM process were higher than those (6.7 ml H 2 /g VS and 127.8 ml CH 4 /g VS, respectively) in the MM process. The lowest methane yield (101.2 ml CH 4 /g VS) was obtained with the M process. Taxonomic results obtained from metagenomic analysis showed that different microbial community compositions were established in the hydrogen reactors of the TM and MM processes, which also significantly changed the microbial community compositions in the following methane reactors compared to that with the M process. The dynamics of bacterial pathogens were also evaluated. For the TM process, the reduced diversity and total abundance of bacterial pathogens in WAS were observed in the hydrogen reactor and were further reduced in the methane reactor, as revealed by metagenomic analysis. The results also showed not all bacterial pathogens were reduced in the reactors. For example, Collinsella aerofaciens was enriched in the hydrogen reactor, which was also confirmed by quantitative PCR (qPCR) analysis. The study further showed that qPCR was more sensitive for detecting bacterial pathogens than metagenomic analysis. Although there were some differences in the relative abundances of bacterial pathogens calculated by metagenomic and qPCR approaches, both approaches demonstrated that the TM process was more efficient for the removal of bacterial pathogens than the MM and M processes. IMPORTANCE This study developed an efficient process for bioenergy (H 2 and CH 4 ) production from WAS and elucidates the

  3. Influence of Thermal and Bacterial Pretreatment of Microalgae on Biogas Production in Mesophilic and Thermophilic Conditions.

    Science.gov (United States)

    Vidmar, Beti; Marinšek Logar, Romana; Panjičko, Mario; Fanedl, Lijana

    2017-01-01

    Microalgae biomass has a great potential in search for new alternative energy sources. They can be used as a substrate for the biogas production in anaerobic digestion. When using microalgae, the efficiency of this process is hampered due to the resistant cell wall. In order to accelerate the hydrolysis of cell wall and increase the efficiency of biogas production we applied two different pretreatments - biological and thermal under mesophilic and thermophilic conditions. During biological pretreatment we incubated microalgae with anaerobic hydrolytic bacteria Pseudobutyrivibrio xylanivorans Mz5T. In thermal pretreatment we incubated microalgae at 90 °C. We also tested a combined thermal and biological pretreatment in which we incubated P. xylanivorans Mz5T with thermally pretreated microalgae. Thermal pretreatment in mesophilic and thermophilic process has increased methane production by 21% and 6%, respectively. Biological pretreatment of microalgae has increased methane production by 13%, but only under thermophilic conditions (pretreatment under mesophilic conditions showed no effect on methane production). Thermal-biological pretreatment increased methane production by 12% under thermophilic conditions and by 6% under mesophilic conditions.

  4. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  5. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  6. [Conversion of acetic acid to methane by thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  7. An experimental evaluation of energy economics of biogas production at mesophilic and thermophilic temperatures

    International Nuclear Information System (INIS)

    Ezeonu, F. C.

    1997-01-01

    Process economy, with regard to and energy content predicts the potentialities of biogas production options. Experimental study reveal from the kinetic data of daily biogas production that biomethanation reaction is faster in thermophilic digestion, with a higher yield of gas per reactor volume per day. Energy calculations show that it will take 3.55*10 5 kWh to produce 1 m 3 of methane from our feedstock with biogas energy equivalent of 1.25 kWh. The cost implication of this is enormous amounting to US $2,641.95 for the production of 1 m 3 of methane using brewers spent grins

  8. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  9. Evaluation of two-phase thermophilic anaerobic methane fermentation for the treatment of garbage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hong, F. [Kyoto Univ., Kyoto (Japan). Dept. of Environmental Engineering]|[Japan Science and Technology Agency, Tokyo (Japan). CREST; Tsuno, H.; Hidaka, T.; Cheon, J.H. [Kyoto Univ., Kyoto (Japan). Dept. of Urban and Environmental Engineering]|[Japan Science and Technology Agency, Tokyo (Japan). CREST

    2004-07-01

    Municipal solid wastes (MSW) in Japan are generally incinerated. However, in recent years, garbage has been recognized as a renewable energy source. This has resulted in an increase in the use of biological processes, such as anaerobic digestion, to treat organic waste such as sewage sludge and garbage. The two phases of anaerobic digestion are the acidogenic phase and the methane producing phase. Both differ significantly in their nutritional and physiological requirements. This study evaluated the effectiveness of treating garbage with the two-phase thermophilic methane fermentation system (TPS). The performance of the acid fermentation phase in TPS was examined with particular reference to operational parameters such as pH, hydraulic retention time and organic loading rate on volatile fatty acid fermentation. It was shown that TPS was more efficient than the single-phase thermophilic methane fermentation system (SPS). Acidification control in the first stage resulted in better stability of methane fermentation in the second stage. VFA formation was optimized at a pH of 6. The recovery ratios of VFAs and methane were achieved in the range of 42 to 44 per cent and 88 to 91 per cent of garbage by high organic loading rate respectively. 12 refs., 6 tabs., 4 figs.

  10. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives.

    Science.gov (United States)

    Chang, Tinghong; Yao, Shuo

    2011-10-01

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.

  11. Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor.

    Science.gov (United States)

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert

    2018-07-01

    This paper investigates the feasibility and advantages of using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor system for the co-digestion of Thickened Waste Activated Sludge (TWAS) and Fat, Oil and Grease (FOG) to produce biogas in high quantity and quality. The performance of the dual-stage hyper-thermophilic (70°C)/thermophilic (55°C) anaerobic co-digestion system is evaluated and compared to the performance of a single-stage thermophilic (55°C) reactor that was used to co-digest the same FOG-TWAS mixtures. Both co-digestion reactors were compared to a control reactor (the control reactor was a single-stage thermophilic reactor that only digested TWAS). The effect of FOG% in the co-digestion mixture (based on total volatile solids) and the reactor hydraulic retention time (HRT) on the biogas/methane production and the reactors' performance were thoroughly investigated. The FOG% that led to the maximum methane yield with a stable reactor performance was determined for both reactors. The maximum FOG% obtained for the single-stage thermophilic reactor at 15 days HRT was found to be 65%. This 65% FOG resulted in 88.3% higher methane yield compared to the control reactor. However, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor proved to be more efficient than the single-stage thermophilic co-digestion reactor, as it was able to digest up to 70% FOG with a stable reactor performance. The 70% FOG in the co-digestion mixture resulted in 148.2% higher methane yield compared to the control at 15 days HRT. 70% FOG (based on total volatile solids) is so far the highest FOG% that has been proved to be useful and safe for semi-continuous reactor application in the open literature. Finally, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor also proved to be efficient and stable in co-digesting 40% FOG mixtures at lower HRTs (i.e., 9 and 12 days) and still produce high methane yields and Class A effluents

  12. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    Science.gov (United States)

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  13. Light enhances biogas production from thermophilic anaerobic digester

    Energy Technology Data Exchange (ETDEWEB)

    Tada, C.; Sawayama, S. [National Inst. of Advanced Industrial Science and Technology, Ibaraki (Japan). Biomass Research Group, Inst. for Energy Utilization

    2004-07-01

    The effect of light on thermophilic anaerobic digestion of cattle waste and sewage sludge was studied. Light was used to produce methane during anaerobic digestion of the sludge at 55 degrees C. Two reactors were tested. A dark reactor was wrapped in aluminum foil, and a light reactor was illuminated at 1500 lux with 60 watt incandescent bulbs. After an incubation of 35 days, the volume of methane produced from the light bulb reactor was 3.7 times higher than that from the dark reactor. Neither ammonium and phosphorous concentrations, nor the pH were not substantially different between the two types of reactors. The key methanogens in both reactors were Methanothermobacter thermoautotrophicum. This paper presents the results of the phylogenetic analysis. The results indicate that thermophilic methanogenesis can be enhanced by light. 7 refs., 1 tab.

  14. Digestion with initial thermophilic hydrolysis step for sanitation and enhanced methane extraction in wastewater treatment plants; Roetning med inledande termofilt hydrolyssteg foer hygienisering och utoekad metanutvinning paa avloppsreningsverk

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin [BioMil AB, Lund (Sweden); Carlsson, My; Uldal, Martina; Johannesson, Sofia [AnoxKaldnes AB, Lund (Sweden)

    2012-02-15

    Thermophilic (55 deg) pre-hydrolysis has been shown to improve methane yield, organics reduction and/or treatment capacity when applied to anaerobic digestion (Persson m. fl. 2010). The method has also proven to kill off pathogens, making it an interesting hygienisation alternative to pasteurisation. The Swedish Environmental Protection Agency has opened up for the possibility to validate new methods for hygienisation, if the pathogen reduction can be proven to be efficient enough. Thermophilic pre-hydrolysis has several possible advantages to pasteurization; e. g. district heating of lower temperature can be used, the stability of the process may increase, as well as the efficiency and extent of the digestion process. The objective of this study is to evaluate the effect of thermophilic pre-hydrolysis on anaerobic digestion (AD) of sewage sludge with respect to: 1. Biogas/methane production and solids reduction. 2. Correlations between substrate properties, process conditions and effect on the AD process. 3. Pathogen reduction efficiency. 4. Operational consequences. Laboratory trials in continuous and batch mode were conducted on sewage sludge from four Swedish wastewater treatment plants. In the trials thermophilic pre-hydrolysis with consecutive mesophilic AD was compared to conventional one-step mesophilic AD, as well as pre-pasteurisation with consecutive AD. For all the tested sludge samples the reduction of TS and VS increased as a result of thermophilic pre-hydrolysis prior to mesophilic AD. The results with respect to methane yield were not as straightforward. Increased production of biogas was achieved in pilot scale, but the methane production did not improve. In the laboratory trials the effect on methane production varied from -8 % till +18 % for the sludge samples tested. The most positive results were achieved in the test that had the highest organic load and that was fed with a sludge that was low in fat and high in carbohydrates, compared to the

  15. Methane production from marine, green macro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, G.

    1983-01-01

    Fermentation studies have been carried out to produce methane from green algae native to Scandinavian water and suitable for large scale cultivation. Long term semi-continuous fermentations during mesophilic and thermophilic conditions were performed as well as batch fermentations in flasks and syringes. A mixed inoculum was prepared from sediments, rotting seaweed, sewage sludge and rumen contents. Methane production from the seaweed substrate, consisting of ground green algae without any nutrient additions, started immediately in this culture, mesophilicly as well as thermophilicly. Fermentations were carried out with retention times from 27 to 11 days and loading rates from 1.1 to 2.6 g volatile solids (VS added) per litre per day. In the mesophilic fermentation, gas yields were 250-350 ml CH/sub 4//g VS added and the VS-reduction was around 50-55% at all tested retention times and loading rates. The level of volatile fatty acids was very low in this system. In the thermophilic digestor, gas yields were somewhat lower although the VS-reduction was around 50% also in this systems. The VFA-levels were higher and the culture more sensitive to disturbances. Thus no advantages were found with the thermophilic fermentation. In mesophilic batch fermentations the gas production was rather rapid and almost completed after 12-15 days, in agreement with the continuous fermentations. The gas yields in batch experiments were high, 350-480 ml CH/sub 4//g VS added. (Refs. 20).

  16. Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria

    Directory of Open Access Journals (Sweden)

    Sean Michael Scully

    2014-12-01

    Full Text Available There is an increased interest in using thermophilic bacteria for the production of bioethanol from complex lignocellulosic biomass due to their higher operating temperatures and broad substrate range. This review focuses upon the main genera of thermophilic anaerobes known to produce ethanol, their physiology, and the relevance of various environmental factors on ethanol yields including the partial pressure of hydrogen, ethanol tolerance, pH and substrate inhibition. Additionally, recent development in evolutionary adaptation and genetic engineering of thermophilic bacteria is highlighted. Recent developments in advanced process techniques used for ethanol production are reviewed with an emphasis on the advantages of using thermophilic bacteria in process strategies including separate saccharification and fermentation, simultaneous saccharification and fermentation (SSF, and consolidated bioprocessing (CBP.

  17. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development...... of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering...

  18. Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria

    OpenAIRE

    Sean Michael Scully; Johann Orlygsson

    2014-01-01

    There is an increased interest in using thermophilic bacteria for the production of bioethanol from complex lignocellulosic biomass due to their higher operating temperatures and broad substrate range. This review focuses upon the main genera of thermophilic anaerobes known to produce ethanol, their physiology, and the relevance of various environmental factors on ethanol yields including the partial pressure of hydrogen, ethanol tolerance, pH and substrate inhibition. Additionally, recent de...

  19. Protease Production by Different Thermophilic Fungi

    Science.gov (United States)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  20. Ability of industrial anaerobic ecosystems to produce methane from ethanol in psychrophilic, mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Mabala, Jojo Charlie

    2012-01-01

    The process of anaerobic degradation of organic matter is a natural phenomenon widespread in many ecosystems (eg, marshes, lakes, rice fields, digestive systems of animals and humans). A high microbial diversity is maintained during this process, reflecting a diversity of metabolic pathways involved. When complete, the anaerobic digestion results in the formation of biogas (mixture of methane and carbon dioxide). In terms of biotechnology, anaerobic treatment of organic pollution reduces the volume of waste and generates energy as methane recoverable in several forms (electricity, heat, natural gas, biofuels). Industrial digesters are mostly operated at 35 deg. C or 55 deg. C which requires exogenous energy. The objective of the thesis is to study the adaptability of ecosystems sourced from anaerobic industrial scale reactors treating different range of wastes from different processes to convert ethanol into biogas at various temperatures. The first phase of the study was to adapt, in laboratory reactors ecosystems to their original temperature with a readily biodegradable substrate (ethanol). Then, the performances of microbial communities (the maximum methanogenic potential and degradation kinetics) were estimated on a temperature gradient from 5 deg. C to 55 deg. C in batch reactors. The adaptation phase of the ecosystems in lab-scale reactors showed that the biogas averaged theoretical production and this production was followed by a decrease in reaction time with successive addition of the substrate. In addition, the kinetics of the biogas obtained varied greatly from one ecosystem to another. Molecular fingerprinting profiles (CE-SSCP) of bacterial and archaeal communities were performed at the beginning and at the end of conditioning. These community profiles were compared with each other by principal component analysis (PCA). Bacterial populations that ensured efficient performance were different from those that ensured a good adaptability. In addition, the

  1. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  2. (Hyper)thermophilic Enzymes: Production and Purification

    NARCIS (Netherlands)

    Falcicchio, P.; Levisson, M.; Kengen, S.W.M.; Koutsopoulos, S.

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our

  3. Biogas Production from Distilled Grain Waste by Thermophilic Dry Anaerobic Digestion: Pretreatment of Feedstock and Dynamics of Microbial Community.

    Science.gov (United States)

    Wang, Ting-Ting; Sun, Zhao-Yong; Huang, Yu-Lian; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2018-02-01

    Distilled grain waste (DGW) eluted from the Chinese liquor making process poses potential serious environmental problems. The objective of this study is to evaluate the feasibility of converting DGW to biogas by thermophilic dry anaerobic digestion. To improve biogas production, the effects of dilute H 2 SO 4 and thermal pretreatment on DGW were evaluated by biochemical methane potential (BMP) tests. The results indicate that 90 °C thermal pretreatment provided the highest methane production at 212.7 mL/g-VTS add . The long-term thermophilic dry anaerobic digestion process was conducted in a 5-L separable flask for more than 3 years at a volatile total solid (VTS) loading rate of 1 g/kg-sludge/d, using synthetic waste, untreated and 90 °C thermal pretreated DGW as the feedstock, respectively. A higher methane production, 451.6 mL/g-VTS add , was obtained when synthetic waste was used; the methane production decreased to 139.4 mL/g-VTS add when the untreated DGW was used. The 90 °C thermal pretreated DGW increased the methane production to 190.5 mL/g-VTS add , showing an increase of 36.7% in methane production compared with that using untreated DGW. The microbial community structure analysis indicates that the microbial community in the thermophilic dry anaerobic digestion system maintained a similar structure when untreated or pretreated DGW was used, whereas the structure differed significantly when synthetic waste was used as the feedstock.

  4. Dry anaerobic ammonia-methane production from chicken manure.

    Science.gov (United States)

    Abouelenien, Fatma; Kitamura, Yoshiaki; Nishio, Naomichi; Nakashimada, Yutaka

    2009-03-01

    The effect of temperature on production of ammonia during dry anaerobic fermentation of chicken manure (CM), inoculated with thermophilic methanogenic sludge, was investigated in a batch condition for 8 days. Incubation temperature did not have a significant effect on the production of ammonia. Almost complete inhibition of production of methane occurred at 55 and 65 degrees C while quite low yields of 8.45 and 6.34 ml g(-1) VS (volatile solids) were observed at 35 and 45 degrees C due to a higher accumulation of ammonia. In order to improve the production of methane during dry anaerobic digestion of CM, stripping of ammonia was performed firstly on the CM previously fermented at 65 degrees C for 8 days: the stripping for 1 day at 85 degrees C and pH 10 removed 85.5% of ammonia. The first-batch fermentation of methane for 75 days was conducted next, using the ammonia-stripped CM inoculated with methanogenic sludge at different ratios, (CM: thermophilic sludge) of 1:2, 1:1, and 2:1 on volume per volume basis at both 35 and 55 degrees C. Production of methane improved and was higher than that of the control (without stripping of ammonia) but the yield of 20.4 ml g(-1) VS was still low, so second stripping of ammonia was conducted, which resulted in 74.7% removal of ammonia. A great improvement in the production of methane of 103.5 ml g(-1) VS was achieved during the second batch for 55 days.

  5. Production of α-amylase from some thermophilic Aspergillus species ...

    African Journals Online (AJOL)

    Tarla Bitkileri

    This paper aimed to evaluate the thermophilic and hyperthermophilic fungi isolated from extreme conditions capable of secreting α-amylase, an enzyme that has a commercial value especially in the production of bread in the food industry and also to ensure their optimization. In this study, thermostable amylase activities of ...

  6. Potential for methane production from typical Mediterranean agro-industrial by-products

    Energy Technology Data Exchange (ETDEWEB)

    Fountoulakis, M.S.; Drakopoulou, S.; Terzakis, S.; Georgaki, E.; Manios, T. [Laboratory of Solid Waste and Wastewater Management, School of Agricultural Technology, Technological Educational Institute of Crete, GR-71004 Iraklio, Crete (Greece)

    2008-02-15

    This work examines the potential for methane production from anaerobic co-digestion of olive mill wastewater and wine-grape residues with slaughterhouse wastewater. Continuous (mesophilic) and batch (mesophilic and thermophilic) experiments were studied, both with the separate types of by-products and with mixtures. Methane yields from olive oil wastewater, winery residues and slaughterhouse wastewater were 108, 147 and 297 L CH{sub 4} kg{sup -1} COD fed respectively. Co-digestion with 50% olive oil wastewater and 50% slaughterhouse wastewater or 50% winery residues gave a methane yield of 184 and 214 L CH{sub 4} kg{sup -1} COD, respectively. Furthermore, the methane yield was 188 L CH{sub 4} kg{sup -1} COD added, co-digesting a mixture of 50% winery residues and slaughterhouse wastewater. Finally, the same mixtures under thermophilic conditions gave methane yields of 282, 301 and 219 L CH{sub 4} kg{sup -1} COD, respectively. These results suggest that methane can be produced very efficiently by co-digesting olive oil wastewater, wine-grape residues and slaughterhouse wastewater. (author)

  7. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  8. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gas Fermentation using Thermophilic Moorella Species for production of Biochemicals

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna

    a device that enables the fully automated generation of growth curves in mid-sized cultures. In the respective chapter, we elaborate on the role of 3D printing in the construction of novel lab equipment and present the aforementioned solution for automated tracking of bacterial growth. In conclusion...... fermentation processes that are nearly on commercial level, mesophilic acetogens are used to mainly produce ethanol and butanediol. However, thermophilic acetogens, such as Moorella thermoacetica would allow for easy downstream processing when producing volatile products such as acetone. This thesis starts...

  10. Production of thermophilic and acidophilic endoglucanases by ...

    African Journals Online (AJOL)

    The effect of the carbon (sugarcane bagasse: SCB) and nitrogen (corn steep liquor: CSL) sources on endoglucanase production by the mutants 102C1 and 104C2 was studied using submerged cultivations at 28°C. Different concentrations of SCB and CSL were used and nine different media were generated. Mutant 102C1 ...

  11. BIOSURFACTANT PRODUCTION BY THERMOPHILIC DAIRY STREPTOCOCCI

    NARCIS (Netherlands)

    BUSSCHER, HJ; NEU, TR; VANDERMEI, HC

    Biosurfactant production of eight Streptococcus thermophilus strains, isolated from heat exchanger plates in the downstream side of the regenerator section of pasteurizers in the dairy industry has been measured using axisymmetric drop shape analysis by profile (ADSA-P). Strains were grown in M17

  12. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    Science.gov (United States)

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-11-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m 2 , and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Methane production and methane consumption: a review of processes underlying wetland methane fluxes.

    NARCIS (Netherlands)

    Segers, R.

    1998-01-01

    Potential rates of both methane production and methane consumption vary over three orders of magnitude and their distribution is skew. These rates are weakly correlated with ecosystem type, incubation temperature, in situ aeration, latitude, depth and distance to oxic/anoxic interface. Anaerobic

  14. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia.

    Science.gov (United States)

    Niu, Qigui; Qiao, Wei; Qiang, Hong; Li, Yu-You

    2013-10-01

    The thermophilic methane fermentation of chicken manure (10% TS) was investigated within a wide range of ammonia. Microbiological analysis showed significant shifts in Archaeal and Bacterial proportions with VFA accmulation and CH4 formation before and after inhibition. VFA accumulated sharply with lower methane production, 0.29 L/g VS, than during the steady stage, 0.32 L/g VS. Biogas production almost ceased with the synergy inhibition of TAN (8000 mg/L) and VFA (25,000 mg/L). Hydrogenotrophic Methanothermobacter thermautotrophicus str. was the dominate archaea with 95% in the inhibition stage and 100% after 40 days recovery compared to 9.3% in the steady stage. Aceticlastic Methanosarcina was not encountered with coincided phenomenal of high VFA in the inhibition stage as well as recovery stage. Evaluation of the microbial diversity and functional bacteria indicated the dominate phylum of Firmicutes were 94.74% and 84.4% with and without inhibition. The microbial community shifted significantly with elevated ammonia concentration affecting the performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  16. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  17. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are

  18. Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Terboven, Christiane; Ramm, Patrice; Herrmann, Christiane

    2017-10-01

    A newly developed fixed bed disc reactor (FBDR) which combines biofilm formation on biofilm carriers and reactor agitation in one single system was assessed for its applicability to demand-driven biogas production by variable feeding of sugar beet silage. Five different feeding patterns were studied at an organic loading of 4g VS L -1 d -1 under mesophilic and thermophilic conditions. High methane yields of 449-462L N kg VS were reached. Feeding variable punctual loadings caused immediate response with 1.2- to 3.5-fold increase in biogas production rates within 15min. Although variable feeding did not induce process instability, a temporary decrease in pH-value and methane concentration below 40% occurred. Thermophilic temperature was advantageous as it resulted in a more rapid, higher methane production and less pronounced decrease in methane content after feeding. The FBDR was demonstrated to be well-suited for flexible biogas production, but further research and comparison with traditional reactor systems are required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  20. Enhancement of methane production from barley waste

    OpenAIRE

    Neves, L.; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2006-01-01

    Two different approaches were attempted to try and enhance methane production from an industrial waste composed of 100% barley, which results from production of instant coffee substitutes. In previous work, this waste was co-digested with an excess of activated sludge produced in the wastewater treatment plant located in same industrial unit, resulting in a very poor methane yield (25LCH4(STP)/ kgVSinitial), and low reductions in total solids (31%) and in volatile solids (40%). Wh...

  1. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  2. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Agnes; Jerome, Valerie; Freitag, Ruth [Bayreuth Univ. (Germany). Chair for Process Biotechnology; Burghardt, Diana; Likke, Likke; Peiffer, Stefan [Bayreuth Univ. (Germany). Dept. of Hydrology; Hofstetter, Eugen M. [RVT Process Equipment GmbH, Steinwiesen (Germany); Gabler, Ralf [BKW Biokraftwerke Fuerstenwalde GmbH, Fuerstenwalde (Germany)

    2009-10-15

    A continuously operated, thermophilic, municipal biogas plant was observed over 26 months (sampling twice per month) in regard to a number of physicochemical parameters and the biogas production. Biogas yields were put in correlation to parameters such as the volatile fatty acid concentration, the pH and the ammonium concentration. When the residing microbiota was classified via analysis of the 16S rRNA genes, most bacterial sequences matched with unidentified or uncultured bacteria from similar habitats. Of the archaeal sequences, 78.4% were identified as belonging to the genus Methanoculleus, which has not previously been reported for biogas plants, but is known to efficiently use H{sub 2} and CO{sub 2} produced by the degradation of fatty acids by syntrophic microorganisms. In order to further investigate the influence of varied amounts of ammonia (2-8 g/L) and volatile fatty acids on biogas production and composition (methane/CO{sub 2}), laboratory scale satellite experiments were performed in parallel to the technical plant. Finally, ammonia stripping of the process water of the technical plant was accomplished, a measure through which the ammonia entering the biogas reactor via the mash could be nearly halved, which increased the energy output of the biogas plant by almost 20%. (orig.)

  3. In vitro production of thymine dimer by ultroviolet irradiation of DNA from mesophilic and thermophilic bacteria

    International Nuclear Information System (INIS)

    Yein, F.S.; Stenesh, J.

    1989-01-01

    Thymine dimer was produced in vitro by ultraviolet irradiation of DNA, isolated from the mesophile Bacillus licheniformis and the thermophile B. stearothermophilus. Irradiation was performed at three different temperaturs (35, 45 and 55 C) and the thymine dimer was isolated and determined. An HPLC procedure was developed that permitted temperature was greater for the thermophile than for the mesophile. Formation of thymine dimer increased with temperature for both organisms but more so for the thermophile; over the temperature range of 35-55 C, the average increase in thymine dimer production for the themrophile was about 4-times that for the mesophile. The melting out temperature, as a function of increasing irradiation temperature, was essentially unchanged for the mesophilic DNA, but decreased progressively for the thermophilic DNA. These results are discussed in terms of the macromolecular theory of to the macromolecular theory of the thermophily. (author). 31 refs.; 4 figs.; 3 tabs

  4. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    Science.gov (United States)

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yohei; Harada, Hideki [Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Lee, Dong-Yeol [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Chi, Yong-Zhi [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Li, Yu-You [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Department of Environmental Science, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Yu, Han-Qing [School of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2009-06-15

    In this study, the effects of the hydraulic retention time (HRT), pH and substrate concentration on the thermophilic hydrogen production of starch with an upflow anaerobic sludge bed (UASB) reactor were investigated. Starch was used as a sole substrate. Continuous hydrogen production was stably attained with a maximum H{sub 2} yield of 1.7 mol H{sub 2}/mol glucose. A H{sub 2}-producing thermophilic granule was successfully formed with diameter in the range of 0.5-4.0 mm with thermally pretreated methanogenic granules as the nuclei. The metabolic pathway of the granules was drastically changed at each operational parameter. The production of formic or lactic acids is an indication of the deterioration of hydrogen production for H{sub 2}-producing thermophilic granular sludge. (author)

  6. Biogeochemical evidence that thermophilic Archaea mediate the anaerobic oxidation of methane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Wakeham, S.G.; Hopmans, E.C.

    2003-01-01

    Distributions and isotopic analyses of lipids from sediment cores at a hydrothermally active site in the Guaymas Basin with a steep sedimentary temperature gradient revealed the presence of archaea that oxidize methane anaerobically. The presence of strongly 13C-depleted lipids at greater depths in

  7. Investigations of Methane Production in Hypersaline Environments

    Science.gov (United States)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  8. Aerobic methane production from organic matter

    NARCIS (Netherlands)

    Vigano, I.|info:eu-repo/dai/nl/304831956

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in the Earth’s atmosphere playing a key role in the radiative budget. It has been known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the

  9. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  10. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    Science.gov (United States)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  11. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mixed Substrate Fermentation for Enhanced Phytase Production by Thermophilic Mould Sporotrichum thermophile and Its Application in Beneficiation of Poultry Feed.

    Science.gov (United States)

    Kumari, Amit; Satyanarayana, T; Singh, Bijender

    2016-01-01

    The optimum values of the critical variables determined by the central composite design of response surface methodology (RSM) for maximum phytase production (1881.26 U g(-1) dry mouldy residue (DMR)) by Sporotrichum thermophile are 2.5 % Tween 80, 1.0 % yeast extract and 48 h of incubation period. Phytase production in the mixed substrate (sugarcane bagasse and wheat bran) fermentation enhanced 11.6-fold over the initial production as a consequence of optimization. Phytase titres are sustainable in flasks, trays and column bioreactor (1796 to 2095 U g(-1) DMR), thus validating the model and the process for large-scale phytase production. When the yeast extract was replaced with corn steep liquor (2 % w/v), a sustained enzyme titre (1890 U g(-1) DMR) was attained, making the process cost-effective. Among all the detergents, Tween 80 supported a higher phytase production than others. The enzyme efficiently liberated nutritional components from poultry feed (inorganic phosphate, soluble protein and reducing sugars) in a time-dependent manner.

  13. Methane production by sheep and cattle in Australia

    Science.gov (United States)

    Minson, D. J.

    1993-02-01

    Using methane production rates from Australian feeds and local estimates of the quantity of feed eaten by different classes of animal, it was estimated that sheep and cattle in Australia produce 2.66 Tg methane in 1990. This value is 43% higher than previous estimates and indicates a need to reassess the methane production of ruminants in other countries.

  14. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes.

    Science.gov (United States)

    Hao, L P; Mazéas, L; Lü, F; Grossin-Debattista, J; He, P J; Bouchez, T

    2017-04-01

    In order to understand the correlation between ammonia and methanogenesis metabolism, methane production pathways and their specific rates were studied at total ammonium nitrogen (TAN) concentrations of 0.14-9 g/L in three methanogenic sludges fed with acetate, at both mesophilic and thermophilic conditions. Results showed that high levels of TAN had significant inhibition on methanogenesis; this could, however, be recovered via syntrophic acetate oxidation (SAO) coupled with Hydrogenotrophic Methanogenesis (HM) performed by acetate oxidizing syntrophs or through Acetoclastic Methanogenesis (AM) catalyzed by Methanosarcinaceae, after a long lag phase >50 d. Free ammonia (NH 3 ) was the active component for this inhibition, of which 200 mg/L is suggested as the threshold for the pathway shift from AM to SAO-HM. Methane production rate via SAO-HM at TAN of 7-9 g/L was about 5-9-fold lower than that of AM at TAN of 0.14 g/L, which was also lower than the rate of AM pathway recovered at TAN of 7 g/L in the incubations with a French mesophilic inoculum. Thermophilic condition favored the establishment of the SAO-catalyzing microbial community, as indicated by the higher reaction rate and shorter lag phase. The operational strategy is thus suggested to be adjusted when NH 3 exceeds 200 mg/L.

  15. Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics.

    Science.gov (United States)

    Maurya, Anay Kumar; Parashar, Deepak; Satyanarayana, T

    2017-01-01

    Thermophilc mold Sporotrichum thermophile secretes an acidstable and thermostable phytase, which finds application as a food and feed additive because of its adequate thermostability, acid stability, protease insensitivity and broad substrate spectrum. Low extracellular phytase production by the mold is a major bottleneck for its application on a commercial scale. We have successfully overcome this problem by constitutive secretary expression of codon optimized rStPhy under glyceraldehyde phosphate dehydrogenase (GAP) promoter in Pichia pastoris. A ∼41-fold improvement in rStPhy production has been achieved. Circular Dichroism (CD) spectra revealed that rStPhy is composed of 26.65% α-helices, 5.26% β-sheets and 68.09% random coils at pH 5.0 and 60°C, the optima for the enzyme activity. The melting temperature (T m ) of the enzyme is ∼73°C. The 3D structure of rStPhy displayed characteristic signature sequences (RHGXRXP and HD) of HAP phytase. The catalytically important amino acids (Arg74, His75, Arg78, His368 and Asp369) were identified by docking and site directed mutagenesis. Fluorescence quenching by N-bromosuccinimide (NBS) and CsCl exposed tryptophan residues surrounded by negative charges, which play a key role in maintaining structural integrity of rStPhy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  17. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Aerobic methane production from organic matter

    Science.gov (United States)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  19. Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR.

    Science.gov (United States)

    Li, Qian; Li, Yu-You; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki

    2015-06-01

    This study was conducted to investigate the effects of sulfate on propionate degradation and higher organic loading rate (OLR) achievement in a thermophilic AnMBR for 373days using coffee grounds, milk and waste activated sludge (WAS) as the co-substrate. Without the addition of sulfate, the anaerobic system failed at an OLR of 14.6g-COD/L/d, with propionate accumulating to above 2.23g-COD/L, and recovery by an alkalinity supplement was not successful. After sulfate was added into substrates at a COD/SO4(2-) ratio of 200:1 to 350:1, biogas production increased proportionally with OLR increasing from 4.06 to 15.2g-COD/L/d. Propionic acid was maintained at less than 100mg-COD/L due to the effective conversion of propionic acid to methane after the sulfate supplement was added. The long-term stable performance of the AnMBR indicated that adding sulfate was beneficial for the degradation of propionate and achieving a higher OLR under the thermophilic condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  1. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production

    Science.gov (United States)

    Benassi, Vivian Machado; de Lucas, Rosymar Coutinho; Jorge, João Atílio; Polizeli, Maria de Lourdes Teixeira de Moraes

    2014-01-01

    Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 °C, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 °C. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form) were higher in cultures grown at high temperatures (35–40 °C), while the correspondent extracellular activities were favorably secreted from cultures at 30 °C. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes. PMID:25763055

  2. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  3. Biogas production from Sewage Sludge and Microalgae Co-digestion under mesophilic and thermophilic conditions

    OpenAIRE

    Bengoa, C.; Fabregat, A.; Ibáñez, C.; Caiola, N.; Trobajo, R.; Caporgno, M.P.

    2015-01-01

    10.1016/j.renene.2014.10.019 Isochrysis galbana and Selenastrum capricornutum, marine and freshwater microalgae species respectively,were co-digested with sewage sludge under mesophilic and thermophilic conditions. The substrates and the temperatures significantly influenced biogas production. Under mesophilic conditions, the sewage sludge digestion produced 451 ± 12 mLBiogas/gSV. Furthermore, all digesters were fed with I. galbana, or mixed with sludge, resulting in an average of 440 ± 2...

  4. Methane production by sheep and cattle in Australia

    OpenAIRE

    MINSON, D. J.

    2011-01-01

    Using methane production rates from Australian feeds and local estimates of the quantity of feed eaten by different classes of animal, it was estimated that sheep and cattle in Australia produce 2.66 Tg methane in 1990. This value is 43% higher than previous estimates and indicates a need to reassess the methane production of ruminants in other countries.DOI: 10.1034/j.1600-0889.1993.00008.x

  5. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-10-01

    Full Text Available Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose and the effect of process parameters (pH, temperature and sugar concentration on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w dry matter. Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v dry matter. Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery.

  6. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.

    Science.gov (United States)

    Koskinen, Perttu E P; Lay, Chyi-How; Puhakka, Jaakko A; Lin, Ping-Jei; Wu, Shu-Yii; Orlygsson, Jóhann; Lin, Chiu-Yue

    2008-11-01

    Dark fermentative hydrogen production from glucose by a thermophilic culture (33HL), enriched from an Icelandic hot spring sediment sample, was studied in two continuous-flow, completely stirred tank reactors (CSTR1, CSTR2) and in one semi-continuous, anaerobic sequencing batch reactor (ASBR) at 58 degrees C. The 33HL produced H2 yield (HY) of up to 3.2 mol-H2/mol-glucose along with acetate in batch assay. In the CSTR1 with 33HL inoculum, H2 production was unstable. In the ASBR, maintained with 33HL, the H2 production enhanced after the addition of 6 mg/L of FeSO4 x H2O resulting in HY up to 2.51 mol-H2/mol-glucose (H2 production rate (HPR) of 7.85 mmol/h/L). The H2 production increase was associated with an increase in butyrate production. In the CSTR2, with ASBR inoculum and FeSO4 supplementation, stable, high-rate H2 production was obtained with HPR up to 45.8 mmol/h/L (1.1 L/h/L) and HY of 1.54 mol-H2/mol-glucose. The 33HL batch enrichment was dominated by bacterial strains closely affiliated with Thermobrachium celere (99.8-100%). T. celere affiliated strains, however, did not thrive in the three open system bioreactors. Instead, Thermoanaerobacterium aotearoense (98.5-99.6%) affiliated strains, producing H2 along with butyrate and acetate, dominated the reactor cultures. This culture had higher H2 production efficiency (HY and specific HPR) than reported for mesophilic mixed cultures. Further, the thermophilic culture readily formed granules in CSTR and ASBR systems. In summary, the thermophilic culture as characterized by high H2 production efficiency and ready granulation is considered very promising for H2 fermentation from carbohydrates.

  7. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  8. Mangosteen peel can reduce methane production and rumen ...

    African Journals Online (AJOL)

    Mangosteen peel (MP), an agricultural by-product of tropical countries, has been reported to contain condensed tannins and saponins, which can affect rumen microbes to reduce enteric methane emission. In the present study, the effects of mangosteen peel on in vitro ruminal fermentation, gas production, methane ...

  9. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shu-Hsien; Yang, Shang-Shyng [Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 10617, (Taiwan); Liu, Ching-Piao [Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 91201, (Taiwan)

    2007-05-15

    Food waste is approximately one quarter of the total garbage in Taiwan. To investigate the feasibility of microbial conversion of food waste to multiple functional biofertilizer, food waste was mixed with bulking materials, inoculated with thermophilic and lipolytic microbes and incubated at 50{sup o}C in a mechanical composter. Microbial inoculation enhanced the degradation of food wastes, increased the total nitrogen and the germination rate of alfalfa seed, shortened the maturity period and improved the quality of biofertilizer. In food waste inoculated with thermophilic and lipolytic Brevibacillus borstelensis SH168 for 28 days, total nitrogen increased from 2.01% to 2.10%, ash increased from 24.94% to 29.21%, crude fat decreased from 4.88% to 1.34% and the C/N ratio decreased from 18.02 to 17.65. Each gram of final product had a higher population of thermophilic microbes than mesophilic microbes. Microbial conversion of food waste to biofertilizer is a feasible and potential technology in the future to maintain the natural resources and to reduce the impact on environmental quality. (author)

  10. Estimation of Methane from Hydrocarbon Exploration and Production in India

    OpenAIRE

    A. K. Pathak; K. Ojha

    2012-01-01

    Methane is the second most important greenhouse gas (GHG) after carbon dioxide. Amount of methane emission from energy sector is increasing day by day with various activities. In present work, various sources of methane emission from upstream, middle stream and downstream of oil & gas sectors are identified and categorised as per IPCC-2006 guidelines. Data were collected from various oil & gas sector like (i) exploration & production of oil & gas (ii) supply through pipel...

  11. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    Directory of Open Access Journals (Sweden)

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  12. Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system.

    Science.gov (United States)

    Xu, Wanying; Fu, Shanfei; Yang, Zhiman; Lu, Jun; Guo, Rongbo

    2018-07-01

    Thermophilic microaerobic pretreatment has been proved to be efficient in improving methane production of corn straw in previous studies. In this study, the effect of mesophilic (37 °C) microaerobic pretreatment using Bacillus Subtilis on the anaerobic digestion of corn straw was explored. Microaerobic pretreatment with a pure bacteria system was beneficial for the anaerobic digestion of corn straw, which obviously improved the methane yield. The maximum methane yield of 270.8 mL/g VS was obtained at the oxygen load of 5 mL/g VS, which was 17.35% higher than that of untreated group. Groups with mesophilic microaerobic pretreatment obtained higher glucose and VFAs concentrations, as well as higher peroxidase activities after 24 h pretreatment. In addition, the X-ray diffraction (XRD) analysis displayed the crystallinity indexes of pretreated groups were also decreased. Therefore, microaerobic pretreatment with a pure bacteria system (Bacillus Subtilis) is an efficient pretreatment method to enhance the anaerobic digestion efficiency of cellulosic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  14. Ecosystem and physiological controls over methane production in northern wetlands

    Science.gov (United States)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  15. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  16. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  17. Water effect in hydrogen production from methane

    Energy Technology Data Exchange (ETDEWEB)

    Acha, E.; Requies, J.; Barrio, V.L.; Cambra, J.F.; Gueemez, M.B.; Arias, P.L. [Chemical Engineering and Environmental Department, University of the Basque Country (UPV/EHU) 48013 Bilbao (Spain)

    2010-10-15

    Ni/MgO and Ni/Al{sub 2}O{sub 3} catalysts were prepared, by wet impregnation, to compare their performance in hydrogen production from methane CPO, wet-CPO and SR. The catalytic activity was tested at 1073 K, 1 bar and 600-1200 h{sup -1}. Fresh and used catalysts were characterized by different techniques. Both supports, as expected, had a low surface area (27.1 m{sup 2}/g MgO and 6.2 m{sup 2}/g {alpha}-Al{sub 2}O{sub 3}), as determined by BET method. The images obtained with SEM and TEM revealed that the Ni was more dispersed in the MgO support than in the Al{sub 2}O{sub 3} one. By XRD a strong interaction, as solid-solution, between NiO and MgO was found in the 30Ni/MgO and 40Ni/MgO catalysts. The fresh 40Ni/Al{sub 2}O{sub 3} reduced catalyst was partially reduced. But after the activity tests the stability of the reduced Ni became bigger. Some Ni sintering was also observed in the 40Ni/Al{sub 2}O{sub 3} after the wet-CPO and SR tests. The behaviour of the three catalysts was very good in CPO methane conversion (90-93%), but the gradual increase of the steam to carbon ratio, wet-CPO and SR, affected negatively the conversion. (author)

  18. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows.

    Science.gov (United States)

    Wu, Liansun; Koerkamp, Peter W G Groot; Ogink, Nico

    2018-02-01

    The breath methane concentration method uses the methane concentrations in the cow's breath during feed bin visits as a proxy for the methane production rate. The objective of this study was to assess the uncertainty of a breath methane concentration method in a feeder and its capability to measure and rank cows' methane production. A range of controlled methane fluxes from a so-called artificial reference cow were dosed in a feed bin, and its exhaled air was sampled by a tube inside the feeder and analyzed. The artificial reference cow simulates the lungs, respiratory tract, and rumen of a cow and releases a variable methane flux to generate a concentration pattern in the exhaled breath that closely resembles a real cow's pattern. The strength of the relation between the controlled methane release rates of the artificial reference cow and the measured methane concentrations was analyzed by linear regression, using the coefficient of determination (R 2 ) and the residual standard error as performance indicators. The effect of error sources (source-sampling distance, air turbulence, and cow's head movement) on this relation was experimentally investigated, both under laboratory and barn conditions. From the laboratory to the dairy barn at the 30-cm sampling distance, the R 2 -value decreased from 0.97 to 0.37 and the residual standard error increased from 75 to 86 ppm as a result of barn air turbulence, the latter increasing to a theoretical 94 ppm if modeled variability due to cow's head movement was accounted for as well. In practice, the effect of these random errors can be compensated by sampling strategies including repeated measurements on each cow over time, thus increasing the distinctive power between cows. However, systematic errors that may disturb the relation between concentration and production rate, such as cow variation in air exhalation rate and air flow patterns around sampling locations that differ between barns, cannot be compensated by repeated

  19. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production.

    Science.gov (United States)

    Taylor, Mark P; Eley, Kirsten L; Martin, Steve; Tuffin, Marla I; Burton, Stephanie G; Cowan, Donald A

    2009-07-01

    Strategies for improving fermentative ethanol production have focused almost exclusively on the development of processes based on the utilization of the carbohydrate fraction of lignocellulosic material. These so-called 'second-generation' technologies require metabolically engineered production strains that possess a high degree of catabolic versatility and are homoethanologenic. It has been suggested that the production of ethanol at higher temperatures would facilitate process design, and as a result the engineered progeny of Geobacillus thermoglucosidasius, Thermoanerobacterium saccharolyticum and Thermoanerobacter mathranii now form the platform technology of several new biotechnology companies. This review highlights the milestones in the development of these production strains, with particular focus on the development of reliable methods for cell competency, gene deletion or upregulation.

  20. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Directory of Open Access Journals (Sweden)

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  1. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  2. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  3. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Bjerg, Bjarne Schmidt; Hvelplund, Torben

    2010-01-01

    This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake of metab......This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake...

  4. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.

    Science.gov (United States)

    Verhaart, Marcel R A; Bielen, Abraham A M; van der Oost, John; Stams, Alfons J M; Kengen, Servé W M

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are promising is this respect. In addition to the high polysaccharide-hydrolysing capacities of many of these organisms, an important advantage is their ability to use most of the reducing equivalents (e.g. NADH, reduced ferredoxin) formed during glycolysis for the production of hydrogen, enabling H2/hexose ratios of between 3.0 and 4.0. So, despite the fact that the hydrogen-yielding reactions, especially the one from NADH, are thermodynamically unfavourable, high hydrogen yields are obtained. In this review we focus on three different mechanisms that are employed by a few model organisms, viz. Caldicellulosiruptor saccharolyticus and Thermoanaerobacter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, to efficiently produce hydrogen. In addition, recent developments to improve hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea are discussed.

  5. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Vrije, Truus de; Budde, Miriam A.W.; Lips, Steef J.; Bakker, Robert R.; Mars, Astrid E.; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-12-15

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis of the polysaccharide fraction in carrot pulp. The main sugars in the hydrolysate were glucose, fructose, and sucrose. In fermentations with glucose hydrogen yields and productivities were similar for both strains. With fructose the hydrogen yield of C. saccharolyticus was reduced which might be related to uptake of glucose and fructose by different types of transport systems. With T. neapolitana the fructose consumption rate and consequently the hydrogen productivity were low. The hydrogen yields of both thermophiles were 2.7-2.8 mol H{sub 2}/mol hexose with 10 g/L sugars from carrot pulp hydrolysate. With 20 g/L sugars the yield of T. neapolitana was 2.4 mol H{sub 2}/mol hexose while the yield of C. saccharolyticus was reduced to 1.3 mol H{sub 2}/mol hexose due to high lactate production in the stationary growth phase. C. saccharolyticus was able to grow on carrot pulp and utilized soluble sugars and, after adaptation, pectin and some (hemi)cellulose. No growth was observed with T. neapolitana when using carrot pulp in agitated fermentations. Enzymatic hydrolysis of the polysaccharide fraction prior to fermentation increased the hydrogen yield with almost 10% to 2.3 g/kg of hydrolyzed carrot pulp. (author)

  6. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    OpenAIRE

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential te...

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  8. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2010-01-01

    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  9. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418.

    Science.gov (United States)

    Radchenkova, Nadja; Vassilev, Spasen; Panchev, Ivan; Anzelmo, Gianluca; Tomova, Iva; Nicolaus, Barbara; Kuncheva, Margarita; Petrov, Kaloyan; Kambourova, Margarita

    2013-09-01

    Synthesis of innovative exocellular polysaccharides (EPSs) was reported for few thermophilic microorganisms as one of the mechanisms for surviving at high temperature. Thermophilic aerobic spore-forming bacteria able to produce exopolysaccharides were isolated from hydrothermal springs in Bulgaria. They were referred to four species, such as Aeribacillus pallidus, Geobacillus toebii, Brevibacillus thermoruber, and Anoxybacillus kestanbolensis. The highest production was established for the strain 418, whose phylogenetic and phenotypic properties referred it to the species A. pallidus. Maltose and NH4Cl were observed to be correspondingly the best carbon and nitrogen sources and production yield was increased more than twofold in the process of culture condition optimization. After purification of the polymer fraction, a presence of two different EPSs, electroneutral EPS 1 and negatively charged EPS 2, in a relative weight ratio 3:2.2 was established. They were heteropolysaccharides consisting of unusual high variety of sugars (six for EPS 1 and seven for EPS 2). Six of the sugars were common for both EPSs. The main sugar in EPS 1 was mannose (69.3 %); smaller quantities of glucose (11.2 %), galactosamine (6.3 %), glucosamine (5.4 %), galactose (4.7 %), and ribose (2.9 %) were also identified. The main sugar in EPS 2 was also mannose (33.9 %), followed by galactose (17.9 %), glucose (15.5 %), galactosamine (11.7 %), glucosamine (8.1 %), ribose (5.3 %), and arabinose (4.9 %). Both polymers showed high molecular weight and high thermostability.

  10. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane.

    Science.gov (United States)

    McAnulty, Michael J; Poosarla, Venkata Giridhar; Li, Jine; Soo, Valerie W C; Zhu, Fayin; Wood, Thomas K

    2017-04-01

    We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation

    DEFF Research Database (Denmark)

    Topakas, E.; Kalogeris, E.; Kekos, D.

    2003-01-01

    A number of factors affecting production of feruloyl esterase an enzyme that hydrolyse ester linkages of ferulic acid (FA) in plant cell walls, by the thermophylic fungus Sporotrichum thermophile under solid state fermentation (SSF) were investigated. Initial moisture content and type of carbon...... source were consecutively optimised. SSF in a laboratory horizontal bioreactor using the optimised medium allowed the production of 156 mU g(-1) of carbon source, which compared favourably with those reported for the other micro-organisms. Optimal esterase activity was observed at pH 8 and 60 degrees......C. The activity of the esterase was measured on an insoluble feruloylated hemicellulose substrate (de-starched wheat bran (DSWB)). De-esterifcation of wheat straw yielded loss of feruloyl esterase production even though the supplementation of free FA comparable to the alkali-extractable levels of FA found...

  12. Methane productivity of manure, straw and solid fractions of manure

    DEFF Research Database (Denmark)

    Møller, H.B.; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    The methane productivity of manure in terms of volatile solids (VS), volume and livestock production was determined. The theoretical methane productivity is higher in pig (516 1 kg(-1) VS) and sow (530 1 kg(-1) VS) manure than in dairy cattle manure (469 1 kg(-1) VS), while the ultimate methane...... yield in terms of VS is considerably higher in pig (356 1 kg(-1) VS) and sow manure (275 1 kg(-1) VS) than in dairy cattle manure (148 1 kg(-1) VS). Methane productivity based on livestock units (LU) shows the lowest methane productivity for sows (165 m(3) CH4 LU-1), while the other animal categories...... are in the same range (282-301 m(3) CH4 LU-1). Pre-treatment of manure by separation is a way of making fractions of the manure that have a higher gas potential per volume. Theoretical methane potential and biodegradability of three types of fractions deriving from manure separation were tested. The volumetric...

  13. Continuous cultivation of a thermophilic bacterium Aeribacillus pallidus 418 for production of an exopolysaccharide applicable in cosmetic creams.

    Science.gov (United States)

    Radchenkova, N; Panchev, I; Vassilev, S; Kuncheva, M; Dobreva, S; Kambourova, M

    2015-11-01

    The aim of this study was to evaluate the effectiveness of continuous cultivation approach for exopolysaccharide (EPS) production by a thermophilic micro-organism and the potential of the synthesized EPS for application in cosmetic industry. Study on the ability of Aeribacillus pallidus 418, isolated as a good EPS producer, to synthesize the polymer in continuous cultures showed higher production in comparison with batch cultures. The degree of the EPS in the precipitate after continuous cultivation significantly increased. Non-Newtonian pseudoplastic and thixotropic behaviour of EPS determines the ability of the received cream to become more fluid after increasing time of application on the skin. This study demonstrates a highly efficient way for production of EPS from a continuous growth culture of A. pallidus 418 that have many advantages and can outperform batch culture by eliminating time for cleaning and sterilization of the vessel and the comparatively long lag phases before the organisms enter a brief period of high productivity. The valuable physico-chemical properties of the synthesized EPS influenced positively the properties of a commercial cream. EPSs from thermophilic micro-organisms are of special interest due to the advantages of the thermophilic processes and nonpathogenic nature of the polymer molecules. However, their industrial application is hindered by the comparatively low biomass and correspondingly EPS yield. Suggested continuous approach for EPS could have an enormous economic potential for an industrial scale production of thermophilic EPSs. © 2015 The Society for Applied Microbiology.

  14. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  15. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  16. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests.

    Science.gov (United States)

    Valero, David; Montes, Jesús A; Rico, José Luis; Rico, Carlos

    2016-02-01

    The biochemical methane potential test is the most commonly applied method to determine methane production from organic wastes. One of the parameters measured is the volume of biogas produced which can be determined manometrically by keeping the volume constant and measuring increases in pressure. In the present study, the effect of pressure accumulation in the headspace of the reactors has been studied. Triplicate batch trials employing cocoa shell, waste coffee grounds and dairy manure as substrates have been performed under two headspace pressure conditions. The results obtained in the study showed that headspace overpressures higher than 600mbar affected methane production for waste coffee grounds. On the contrary, headspace overpressures within a range of 600-1000mbar did not affect methane production for cocoa shell and dairy manure. With the analyses performed in the present work it has not been possible to determine the reasons for the lower methane yield value obtained for the waste coffee grounds under high headspace pressures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  19. Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: effects of temperature, hydraulic retention time, and organic loading rate.

    Science.gov (United States)

    Li, C; Champagne, P; Anderson, B C

    2013-01-01

    Anaerobic co-digestions with fat, oil, and grease (FOG) were investigated in semi-continuous flow digesters under various operating conditions. The effects of hydraulic retention times (HRTs) of 12 and 24 days, organic loading rates (OLRs) between 1.19 and 8.97 gTVS/Ld, and digestion temperatures of 37 degrees C and 55 degrees C on biogas production were evaluated. It was proposed that, compared to anaerobic digestion with wastewater treatment plant sludge (primary raw sludge), semi-continuous flow anaerobic co-digestion with FOG could effectively enhance biogas and methane production. Thermophilic (55 degrees C) co-digestions exhibited higher biogas production and degradation of organics than mesophilic co-digestions. The best biogas production rate of 17.4 +/- 0.86 L/d and methane content 67.9 +/- 1.46% was obtained with a thermophilic co-digestion at HRT = 24 days and OLR = 2.43 +/- 0.15 g TVS/Ld. These were 32.8% and 7.10% higher than the respective values from the mesophilic co-digestion under similar operating conditions.

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  2. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium.

    Science.gov (United States)

    Tomas, Ana F; Karakashev, Dimitar; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 degrees C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to grow without nutrient addition (yeast extract, peptone and vitamins) was also assessed. The maximum ethanol yield achieved was 1.28 mol ethanol/mol xylose consumed (77% of the theoretical yield), at 2 g/l of initial xylose concentration. The isolate was able to grow and produce ethanol as the main fermentation product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process.

  3. Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake.

    Science.gov (United States)

    Singh, Bijender; Satyanarayana, T

    2006-06-01

    The phytase production by Sporotrichum thermophile TLR50 was recorded on all the commonly used animal feed ingredients tested to varying degrees in solid-state fermentation. Enzyme production increased to 180 U/g of dry moldy residue (DMR) in sesame oil cake at 120 h and 45 degrees C at the initial substrate-to-moisture ratio of 1:2.5 and aw of 0.95. Supplementation of sesame oil cake with glucose and ammonium sulfate further enhanced phytase titer (282 U/g of DMR). An overall 76% enhancement in phytase production was achieved owing to optimization. The mold secreted acid phosphatase, amylase, xylanase, and lipase along with phytase. By the action of phytase, inorganic phosphate was liberated efficiently, leading to dephytinization of sesame oil cake.

  4. Biomass gasification for the production of methane

    NARCIS (Netherlands)

    Nanou, Pavlina

    2013-01-01

    Biomass is very promising as a sustainable alternative to fossil resources because it is a renewable source that contains carbon, an essential building block for gaseous and liquid fuels. Methane is the main component of natural gas, which is a fuel used for heating, power generation and

  5. Effect of swine waste concentration on energy production and profitability of aerobic thermophilic processing

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, J.W. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Engineering

    2001-07-01

    Improvements to aerobic thermophilic processing have led to the ability to recover significant amounts of energy as hot water ({approx} 55{sup o}C). This energy can easily be made useful in swine production facilities as a source of heating for farrowing or nursery buildings, aquaculture tanks or greenhouses for most of the year. Work in underway to investigate alternative uses for the energy in the hot months. Potentially, the energy may be used to dry the residual solids from the process ({approx} 40% of the original amount of solids) and these solids may be used for applications as: (1) field fertilizer in the non-growing seasons, (2) a high value organic food fertiliser, and (3) dry solids for co-firing in electric power stations. Heat produced may also be used to generate induced draught in chimneys to aid in building ventilation, reducing electric power consumption, and also to power state-of-the-art refrigeration/chilling systems for cooling production buildings. This work makes use of a design and economic model for a given configuration of aerobic thermophilic treatment suitable for swine production facilities to evaluate the effects on economics and energy production of various swine waste concentrations. While actual waste from the animal may be in the 130 g l{sup -1} dry solids range, waste for treatment is often diluted based on hog watering rates and building cleanout and flush systems. Some concentrations are as low as 15 g l{sup -1}. Lower waste concentrations require larger initial expenditures related to increased reactor volumes and tend to strongly affect the profitability of the process. Straightforward engineering design considerations permit profitable use of this technology even in these low concentration ranges. (Author)

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  7. Methanogens in hypersaline environments and their substrates for methane production

    Science.gov (United States)

    Poole, J. A.; Kelley, C. A.; Chanton, J.; Tazaz, A.; Bebout, B.

    2009-12-01

    The goal of our study was to determine the dominant substrates being used by methanogens in salt ponds in Guerrero Negro, Baja California Sur, Mexico. These are extreme environments that have been used as analogs for ancient life, terrestrial and extraterrestrial. Microbial mat and/or sediments from the ponds, amended either with site water only (controls) or with site water and various substrates, were incubated in N2 flushed serum vials. We hypothesized that trimethylamine, a degradation product of the osmoregulant glycine betaine, would be a dominant substrate in all ponds, as has been previously reported. Additionally we incubated with methanol, dimethylsulfide, monomethylamine, bicarbonate, and acetate, all reported to be substrates of great importance in other hypersaline environments. Concentrations of methane in the vial headspaces were monitored through time to obtain methane production rates. As expected, trimethylamine stimulated methane production over the controls in all incubations. Dimethylsulfide and methanol also stimulated methane production; the former increased methane production in the lowest salinity pond (55 ppt salinity) and the latter at one of the highest salinity ponds (184 ppt salinity). In addition to methane production data, stable carbon isotopic values of the methane in methane-rich bubbles collected at the sites as well as in the particulate organic carbon (POC) of the microbial mat/sediment were obtained. Fractionation factors, a measure of the isotopic differences between methane and substrate, can help indicate dominant substrates. Published fractionation factors differ depending on the substrate used and increase in the following order of use by methanogens: acetate, dimethylsulfide, CO2 reduction/trimethylamine and methanol. Since trimethylamine was used as a substrate at all of these sites, high fractionation factors in the range of 1.05 to 1.07 (the published range for trimethylamine) were expected. However, the apparent

  8. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  9. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production hostMoorella thermoacetica.

    Science.gov (United States)

    Redl, Stephanie; Sukumara, Sumesh; Ploeger, Tom; Wu, Liang; Ølshøj Jensen, Torbjørn; Nielsen, Alex Toftgaard; Noorman, Henk

    2017-01-01

    Syngas fermentation is a promising option for the production of biocommodities due to its abundance and compatibility with anaerobic fermentation. Using thermophilic production strains in a syngas fermentation process allows recovery of products with low boiling point from the off-gas via condensation. In this study we analyzed the production of acetone from syngas with the hypothetical production host derived from Moorella thermoacetica in a bubble column reactor at 60 °C with respect to thermodynamic and economic feasibility. We determined the cost of syngas production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gas-liquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas- and corn stover-derived syngas were determined to be higher due to the higher feedstock costs (1724 and 2878 $/t acetone, respectively). We applied an approach of combining thermodynamic and economic assessment to analyze a hypothetical bioprocess in which the volatile product acetone is produced from syngas with a thermophilic microorganism. Our model allowed us to identify process metrics and quantify the variable production costs for different scenarios. Economical production of bulk chemicals is challenging, making rigorous thermodynamic/economic modeling critical before undertaking an experimental program and as an ongoing guide during the program. We intend this study to give an incentive to apply the demonstrated approach to other bioproduction processes.

  10. PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    I. Q. M. Padilha

    2015-03-01

    Full Text Available Abstract The production and characterization of cellulase from thermophilic strain Bacillus sp. C1AC5507 was studied. For enzyme production, sugarcane bagasse was used as carbon source. The produced carboxymethyl cellulase (CMCase had a molecular weight around 55 kDa and its activity varied between 0.14 and 0.37 IU mL-1 in conditions predicted by Response Surface Methodology. The optimum temperature and pH for the CMCase production were 70 °C and 7.0, respectively. The enzyme activity was inhibited mostly by Cu+2 and activated mostly by Co+2, Mn2+, Ca+2 and Fe+3. Our findings provide a contribution to the use of natural wastes such as sugarcane bagasse as substrate for growth and production of thermophilic CMCase. Further optimization to increase the production of cellulase enables the use in industrial applications.

  11. Influence of variable feeding on mesophilic and thermophilic co-digestion of Laminaria digitata and cattle manure

    International Nuclear Information System (INIS)

    Sarker, Shiplu; Møller, Henrik Bjarne; Bruhn, Annette

    2014-01-01

    Highlights: • Anaerobic co-digestion of L. digitata and cattle manure, at ∼35 and ∼50 °C. • Mesophilic co-digestion showed somewhat stable specific methane, but increased volumetric yield. • Thermophilic co-digester yielded higher methane at higher input of algae compared to control. • Mesophilic co-digester performed better in terms of various parameters except methane yield. - Abstract: In this study the effect of various feeding ratios on mesophilic (∼35 °C) and thermophilic (∼50 °C) co-digestion of brown algae Laminaria digitata and cattle manure was investigated. Algae input of 15% VS caused no influence on specific methane yield from mesophilic co-digester while deteriorated the process parameters such as the development of propionic acid in total volatile fatty acids (tVFA) pattern of the thermophilic co-digester. The accumulation of tVFA continued for the latter reactor as the feeding ratio of algae enhanced to 24% VS, but the specific methane yield improved dramatically. Same rise in feeding once again showed no improvement in specific methane yield from mesophilic co-digester even though the other process parameters stabilized or, enriched such as the gain in average volumetric methane yield. For the last feeding ratio at 41% VS algae, specific methane yield from mesophilic co-digester slightly increased which however was not still comparable with the ultimate methane yield from the cattle manure alone. The thermophilic co-digestion on the other hand yielded maximum specific methane, together with the improvement in different process characteristics, as the feeding of algae maximized at the final stage. The trend of methane production from this reactor nevertheless was sharply downward towards the end of the experiment suggesting that the optimum feeding ratio has already been achieved for the present experimental conditions

  12. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  13. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels.

    Directory of Open Access Journals (Sweden)

    Joshua I Park

    Full Text Available Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.

  14. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...... from 19.2 mL H2/gVSS at 37 °C and pH 10–80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and p......H 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable...

  16. Methane production from coal by a single methanogen

    Science.gov (United States)

    Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.

    2017-12-01

    Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane

  17. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.

    Science.gov (United States)

    Müller, Jonas E N; Heggeset, Tonje M B; Wendisch, Volker F; Vorholt, Julia A; Brautaset, Trygve

    2015-01-01

    Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.

  18. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-02-01

    Hydrogen production (HP) from the organic fraction of municipal solid waste (OFMSW) under thermophilic acidogenic conditions was studied. The effect of nine different organic loading rates (OLRs) (from 9 to 220 g TVS/l/d) and hydraulic retention times (HRTs) (from 10d to 0.25 d) was investigated. Normally, butyrate was the main acid product. The biogas produced was methane- and sulfide-free at all tested OLR. Increasing the OLR resulted in an increase in both the quantity and quality of hydrogen production, except at the maximum OLR tested (220 g TVS/l/d). The maximum hydrogen content was 57% (v/v) at an OLR of 110 g TVS/l/d (HRT=0.5 d). HP was in the range of 0.1-5.7 l H2/l/d. The results have clearly shown that the increase in OLR was directly correlated with HP and microbial activity. The bacterial concentration inside the reactor is strongly influenced by the content of microorganisms in the OFMSW. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    Science.gov (United States)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  20. Syngas production by reforming of methane on perovskite catalysts ...

    Indian Academy of Sciences (India)

    T V Sagar

    production of chemicals like urea and salicylic acid is very limited, its transformation into fuels has attracted the attention of researchers recently.5,6 Reforming of methane with carbon dioxide to produce syngas is a. *For correspondence very attractive route to produce fuels and chemicals.7. This reaction has its importance ...

  1. Can aquatic worms enhance methane production from waste activated sludge?

    NARCIS (Netherlands)

    Serrano, Antonio; Hendrickx, Tim L.G.; Elissen, Hellen; Laarhoven, Bob; Buisman, Cees J.N.; Temmink, Hardy

    2016-01-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30 °C with sludge from a high-loaded membrane bioreactor, the aquatic worm

  2. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    NARCIS (Netherlands)

    Vrije, de G.J.; Budde, M.A.W.; Lips, S.J.J.; Bakker, R.R.; Mars, A.E.; Claassen, P.A.M.

    2010-01-01

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis

  3. Comparison of the mesophilic and thermophilic anaerobic digestion of spent cow bedding in leach-bed reactors.

    Science.gov (United States)

    Riggio, S; Hernandéz-Shek, M A; Torrijos, M; Vives, G; Esposito, G; van Hullebusch, E D; Steyer, J P; Escudié, R

    2017-06-01

    Anaerobic digestion of spent cow bedding in batch leach-bed reactors (LBRs) was compared in mesophilic and thermophilic conditions for the first time. Results show that the use of thermophilic conditions enhanced only the degradation kinetics of easily-degradable matter during the first days of the digestion, whereas similar methane yields (80% of the Biomethane Potential) were reached after 42days at both temperatures. Therefore, the anaerobic digestion in LBRs of spent cow bedding, a substrate rich in slowly-degradable compounds, was not improved in term of methane production considering the overall digestion time. Moreover, the high initial biogas production rate in thermophilic reactors was found to significantly reduce the energetic performance of the cogeneration unit at industrial scale, leading to a 5.9% decrease in the annual electricity production when compared to a mesophilic one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [The thermophilic streptomycetes flora in milk powders and condensed milk products (author's transl)].

    Science.gov (United States)

    Falkowski, J

    1978-08-01

    247 specimens of powdered milk and 165 of condensed milk were tested for their contamination with thermophile Streptomycetes. Colonies of these contaminants were isolated from all specimens of powdered milk and from 73 samples of condensed sweeted milk. The isolated strains corresponded with the following species of thermophilic Streptomycetes: Thermoactinomyces vulgaris, Tsiklinsky 1899, Thermoactinomyces vulgaris, Tsiklinsky 1899 "giant colonies", Micromonospora sp. (Agre et al., 1).

  5. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    Science.gov (United States)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  6. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    Science.gov (United States)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  7. Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-zhao; Cheng, Xi-yu [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100093 (China)

    2010-09-15

    A microwave-assisted acid pretreatment (MAP) strategy has been developed to enhance hydrogen production via thermophilic fermentation of corn stover. Pretreatment of corn stover by combining microwave irradiation and acidification resulted in the increased release of soluble substances and made the corn stover more accessible to microorganisms when compared to thermal acid pretreatment (TAP). MAP showed obvious advantages in short duration and high efficiency of lignocellulosic hydrolysis. Analysis of the particle size and specific surface area of corn stover as well as observation of its cellular microstructure were used to elucidate the enhancement mechanism of the hydrolysis process by microwave assistance. The cumulative hydrogen volume reached 182.2 ml when corn stover was pretreated by MAP with 0.3 N H{sub 2}SO{sub 4} for 45 min, and the corresponding hydrogen yield reached 1.53 mol H{sub 2}/mol-glucose equivalents converted to organic end products. The present work demonstrates that MAP has potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable biofuel. (author)

  8. Influence of biogenic gas production on coalbed methane recovery index

    Directory of Open Access Journals (Sweden)

    Hongyu Guo

    2017-05-01

    Full Text Available In investigating the effect of biogenic gas production on the recovery of coalbed methane (CBM, coal samples spanning different ranks were applied in the microbial-functioned simulation experiments for biogenic methane production. Based on the biogenic methane yield, testing of pore structures, and the isothermal adsorption data of coals used before and after the simulation experiments, several key parameters related to the recovery of CBM, including recovery rate, gas saturation and ratio of critical desorption pressure to reservoir pressure, etc., were calculated and the corresponding variations were further analyzed. The results show that one of the significant functions of microbial communities on coal is possibly to weaken its affinity for methane gas, especially with the advance of coal ranks; and that by enhancing the pore system of coal, which can be evidenced by the increase of porosity and permeability, the samples collected from Qianqiu (Yima in Henan and Shaqu (Liulin in Shanxi coal mines all see a notable increase in the critical desorption pressure, gas saturation and recovery rate, as compared to the moderate changes of that of Guandi (Xishan in Shanxi coal sample. It is concluded that the significance of enhanced biogenic gas is not only in the increase of CBM resources and the improvement of CBM recoverability, but in serving as an engineering reference for domestic coalbed biogenic gas production.

  9. Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic versus thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Converti, A.; Del Borghi, A.; Zilli, M.; Arni, S.; Del Borghi, M. [Univ. of Genoa (Italy). Inst. of Chemical and Process Engineering

    1999-10-01

    The phenomena limiting the anaerobic digestion of vegetable refuses are studied through batch tests carried out using anaerobic sludge previously selected under either mesophilic (37 C) or thermophilic (55 C) conditions. The compositions of the hydrolysed cellulosic and hemicellulosic fractions of these materials are simulated by starch and hemicellulose hydrolysates, respectively. Non-hydrolysed mixtures of vegetable waste with sewage sludge are used to ascertain whether the hydrolysis of these polymeric materials is the limiting step of the digestion process or not. The experimental data of methane production are then worked out by a first-order equation derived from the Monod's model to estimate the kinetic rate constant and methane production yield for each material. Comparison of these results shows that passing from mesophilic to thermophilic conditions is responsible for a slight deceleration of methane production but remarkably enhances both methanation yield and methane content of biogas. The final part of the study deals with the fed-batch digestion of the same residues in static digester. Working under thermophilic conditions at a loading rate threshold of 6.0 g{sub COD}/l . d, the hemicellulose hydrolysate ensures the highest methane productivity (60 mmol{sub CH{sub 4}}/l . d) and methane content of biogas (60%), while unbalance towards the acidogenic phase takes place under the same conditions for the starch hydrolysate. The intermediate behaviour of the non-hydrolysed mixture of vegetable waste with sewage sludge demonstrates that hemicellulose hydrolysis is the limiting step of digestion and suggests the occurrence of ligninic by products inhibition on methane productivity. (orig.)

  10. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    Science.gov (United States)

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, A.F.

    2013-05-15

    Second-generation bioethanol is produced from residual biomass such as industrial and municipal waste or agricultural and forestry residues. However, Saccharomyces cerevisiae, the microorganism currently used in industrial first-generation bioethanol production, is not capable of converting all of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered by the recalcitrance of the lignocellulosic biomass, and by the lack of a microorganism capable of converting this feedstock to bioethanol with high yield, efficiency and productivity. In this study, a new extreme thermophilic ethanologenic bacterium was isolated from household waste. When assessed for ethanol production from xylose, an ethanol yield of 1.39 mol mol-1 xylose was obtained. This represents 83 % of the theoretical ethanol yield from xylose and is to date the highest reported value for a native, not genetically modified microorganism. The bacterium was identified as a new member of the genus Thermoanaerobacter, named Thermoanaerobacter pentosaceus and was subsequently used to investigate some of the factors that influence secondgeneration bioethanol production, such as initial substrate concentration and sensitivity to inhibitors. Furthermore, T. pentosaceus was used to develop and optimize bioethanol production from lignocellulosic biomass using a range of different approaches, including combination with other microorganisms and immobilization of the cells. T. pentosaceus could produce ethanol from a wide range of substrates without the addition of nutrients such as yeast extract and vitamins to the medium. It was initially sensitive to concentrations of 10 g l-1 of xylose and 1 % (v/v) ethanol. However, long term repeated batch cultivation showed that the strain

  12. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoez, F. Tuba; Keskin, Tugba; Korkmaz, Kemal S.; Syed, Hamid M. [Bioengineering Department, Faculty of Engineering, Ege University, EBILTEM, Bornova, 35100 Izmir (Turkey)

    2009-09-15

    Hydrogen (H{sub 2}) production from cheese processing wastewater via dark anaerobic fermentation was conducted using mixed microbial communities under thermophilic conditions. The effects of varying hydraulic retention time (HRT: 1, 2 and 3.5 days) and especially high organic load rates (OLR: 21, 35 and 47 g chemical oxygen demand (COD)/l/day) on biohydrogen production in a continuous stirred tank reactor were investigated. The biogas contained 5-82% (45% on average) hydrogen and the hydrogen production rate ranged from 0.3 to 7.9 l H{sub 2}/l/day (2.5 l/l/day on average). H{sub 2} yields of 22, 15 and 5 mmol/g COD (at a constant influent COD of 40 g/l) were achieved at HRT values of 3.5, 2, and 1 days, respectively. On the other hand, H{sub 2} yields were monitored to be 3, 9 and 6 mmol/g COD, for OLR values of 47, 35 and 21 g COD/l/day, when HRT was kept constant at 1 day. The total measurable volatile fatty acid concentration in the effluent (as a function of influent COD) ranged between 118 and 27,012 mg/l, which was mainly composed of acetic acid, iso-butyric acid, butyric acid, propionic acid, formate and lactate. Ethanol and acetone production was also monitored from time to time. To characterize the microbial community in the bioreactor at different HRTs, DNA in mixed liquor samples was extracted immediately for PCR amplification of 16S RNA gene using eubacterial primers corresponding to 8F and 518R. The PCR product was cloned and subjected to DNA sequencing. The sequencing results were analyzed by using MegaBlast available on NCBI website which showed 99% identity to uncultured Thermoanaerobacteriaceae bacterium. (author)

  13. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures.

    Science.gov (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-06-01

    The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L -1 ) and vinasse (AFBR-V = 10,000 mg COD L -1 ) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H 2 h -1 L -1 in AFBR-CW and 0.71 ± 0.16 L H 2 h -1 L -1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H 2 g COD -1 . Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H 2 g COD -1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

  14. Establishment and Characterization of an Anaerobic Thermophilic (55 degrees C) Enrichment Culture Degrading Long-Chain Fatty Acids

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær

    1995-01-01

    A thermophilic, long-chain fatty acid-oxidizing culture was enriched. Stearate was used as the substrate, and methane and carbon dioxide were the sole end products. Cultivation was possible only when a fed-batch system was used or with addition of activated carbon or bentonite. The enrichment...

  15. Total solid content drives hydrogen production through microbial selection during thermophilic fermentation.

    Science.gov (United States)

    Motte, Jean-Charles; Trably, Eric; Hamelin, Jérôme; Escudié, Renaud; Bonnafous, Anaïs; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Dumas, Claire

    2014-08-01

    In this study, the effect of total solid content (TS) on thermophilic hydrogen production from wheat straw was investigated. Six TS contents ranging from wet to dry conditions (10-34%TS) were tested in batch tests. A decrease of H₂ yields was observed and three statistical groups were distinguished according to the TS content: wet conditions (10% and 14%TS) with 15.3 ± 1.6 NmlH₂ gTS(-1), intermediate conditions (19%TS) with 6.4 ± 1.0 NmlH₂ gTS(-1) and dry conditions (25-34%TS) with 3.4 ± 0.8 NmlH₂ gTS(-1). Such a decrease in biohydrogen yields was related to a metabolic shift with an accumulation of lactic acid under dry conditions. Concomitantly, a microbial population shift was observed with a dominance of species related to the class Clostridia under wet conditions, and a co-dominance of members of Bacilli, Clostridia classes and Bacteroidetes phylum under dry conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3.

    Science.gov (United States)

    Kumar, Satyendra; Kikon, Khyodano; Upadhyay, Ashutosh; Kanwar, Shamsher S; Gupta, Reena

    2005-05-01

    A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.

  17. Can aquatic worms enhance methane production from waste activated sludge?

    Science.gov (United States)

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation

    DEFF Research Database (Denmark)

    Kongjan, Prawit; Min, Booki; Angelidaki, Irini

    2009-01-01

    /L. Addition of yeast extract in the cultivation medium resulted in significant improvement of hydrogen yield. The main metabolic products during xylose fermentation were acetate, ethanol, and lactate. The specific growth rates were able to fit the experimental points relatively well with Haldane equation...... yield achieved in the CSTR was 1.36 +/- 0.03 mol-H-2/Mol-xylose(consumed),, and the production rate was 62 +/- 2 ml/d.L-reactor. The hydrogen content in the methane-free mixed gas was approximately 31 +/- 1%, and the rest was carbon dioxide. The main intermediate by-products from the effluent were...... acetate, formate, and ethanol at 4.25 +/- 0.10, 3.01 +/- 0.11, and 2.59 +/- 0.16 mM, respectively....

  19. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    Directory of Open Access Journals (Sweden)

    Abreu Angela A

    2012-02-01

    Full Text Available Abstract Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5 and batch (70°C, pH 5.5 and pH 7 assays. Two expanded granular sludge bed (EGSB reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively. Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars

  20. The genotypic diversity and lipase production of some thermophilic bacilli from different genera

    Directory of Open Access Journals (Sweden)

    Melih Koc

    2015-12-01

    Full Text Available Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributyrin and olive oil broths at 60 °C and pH 7.0. During the 24, 48 and 72-h period of incubation, the changes in the lipase activities, culture absorbance, wet weight of biomass and pH were all measured. The activity was determined by using pNPB in 50 mM phosphate buffer at pH 7.0 at 60 °C. The lipase production of the isolates in olive oil broths varied between 0.008 and 0.052, whereas these values were found to be 0.002-0.019 (U/mL in the case of tyributyrin. For comparison, an index was established by dividing the lipase activities to cell biomass (U/mg. The maximum thermostable lipase production was achieved by the isolates F84a, F84b, and G. thermodenitrificans DSM 465T (0.009, 0.008 and 0.008 U/mg within olive oil broth, whereas G. stearothermophilus A113 displayed the highest lipase activity than its type strain in tyributyrin. Therefore, as some of these isolates displayed higher activities in comparison to references, new lipase producing bacilli were determined by presenting their genotypic diversity with DNA fingerprinting techniques.

  1. Implications of Limited Thermophilicity of Nitrite Reduction for Control of Sulfide Production in Oil Reservoirs

    OpenAIRE

    Fida, Tekle Tafese; Chen, Chuan; Okpala, Gloria; Voordouw, Gerrit

    2016-01-01

    Nitrate reduction to nitrite in oil fields appears to be more thermophilic than the subsequent reduction of nitrite. Concentrated microbial consortia from oil fields reduced both nitrate and nitrite at 40 and 45°C but only nitrate at and above 50°C. The abundance of the nirS gene correlated with mesophilic nitrite reduction activity. Thauera and Pseudomonas were the dominant mesophilic nitrate-reducing bacteria (mNRB), whereas Petrobacter and Geobacillus were the dominant thermophilic NRB (tN...

  2. Effect of azithromycin on enhancement of methane production from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Maeda, Toshinari; Mohd Yusoff, Mohd Zulkhairi; Ogawa, Hiroaki I

    2014-07-01

    In the methane production from waste activated sludge (WAS), complex bacterial interactions in WAS have been known as a major contribution to methane production. Therefore, the influence of bacterial community changes toward methane production from WAS was investigated by an application of antibiotics as a simple means for it. In this study, azithromycin (Azm) as an antibiotic was mainly used to observe the effect on microbial changes that influence methane production from WAS. The results showed that at the end of fermentation, Azm enhanced methane production about twofold compared to control. Azm fostered the growth of acid-producing bacterial communities, which synthesized more precursors for methane formation. DGGE result showed that the hydrolysis as well as acetogenesis stage was improved by the dominant of B1, B2 and B3 strains, which are Clostridium species. In the presence of Azm, the total population of archaeal group was increased, resulting in higher methane productivity achievement.

  3. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 oC)

    International Nuclear Information System (INIS)

    Kotsopoulos, Thomas A.; Fotidis, Ioannis A.; Tsolakis, Nikolaos; Martzopoulos, Gerassimos G.

    2009-01-01

    A continuous stirred tank reactor (CSTR) (750 cm 3 working volume) was operated with pig slurry under hyper-thermophilic (70 o C) temperature for hydrogen production. The hydraulic retention time (HRT) was 24 h and the organic loading rate was 24.9 g d -1 of volatile solid (VS). The inoculum used in the hyper-thermophilic reactor was sludge obtained from a mesophilic methanogenic reactor. The continuous feeding with active biomass (inoculum) from the mesophilic methanogenic reactor was necessary in order to achieve hydrogen production. The hyper-thermophilic reactor started to produce hydrogen after a short adapted period of 4 days. During the steady state period the mean hydrogen yield was 3.65 cm 3 g -1 of volatile solid added. The high operation temperature of the reactor enhanced the hydrolytic activity in pig slurry and increased the volatile fatty acids (VFA) production. The short HRT (24 h) and the hyper-thermophilic temperature applied in the reactor were enough to prevent methanogenesis. No pre-treatment methods or other control methods for preventing methanogenesis were necessary. Hyper-thermophilic hydrogen production was demonstrated for the first time in a CSTR system, fed with pig slurry, using mixed culture. The results indicate that this system is a promising one for biohydrogen production from pig slurry.

  4. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  5. Extraction of soluble substances from organic solid municipal waste to increase methane production.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2015-02-01

    This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70 degrees C) - Influence of pH and acetate concentration

    DEFF Research Database (Denmark)

    Liu, Dawei; Min, Booki; Angelidaki, Irini

    2008-01-01

    Hydrogen production from household solid waste (HSW) was performed via dark fermentation by using an extreme-thermophilic mixed culture, and the effect of pH and acetate on the biohydrogen production was investigated. The highest hydrogen production yield was 257 +/- 25 mL/gVS(added) at the optim...

  7. The influence of petroleum products on the methane fermentation process.

    Science.gov (United States)

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A two stage silo/digester for methane production from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Egg, R.P.; Coble, C.G.; Hicks, D.D.

    1985-01-01

    A pilot scale silo/anaerobic digester was constructed to evaluate ensiling for storage of sweet sorghum used for methane production. Leachate from ensiled sweet sorghum was circulated through a packed bed anaerobic digester to produce methane. After 133 days of operation, methane was still being produced. Specific methane yield in the anaerobic filter was 0.27 m/sup 3//kg COD added and 0.34 m/sup 3//kg COD removed. COD removal was 79.6%.

  9. Effects of mixing on methane production during thermophilic anaerobic digestion of manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Buendia, Inmaculada M.; Ellegaard, Lars

    2008-01-01

    The effect of mixing on anaerobic digestion of manure was evaluated in lab-scale and pilot-scale experiments at 55 °C. The effect of continuous (control), minimal (mixing for 10 min prior to extraction/feeding) and intermittent mixing (withholding mixing for 2 h prior to extraction...... (10 min mixing before feeding) was advantageous compared to vigorous mixing (110 times per minute). On the other hand, under low substrate to inoculum ratio (10/90), gentle mixing was the best. The study thus indicated that mixing schemes and intensities have some effect on anaerobic digestion...

  10. Methane impurity production in the fusion reactor environment

    International Nuclear Information System (INIS)

    Dawson, P.T.

    1984-11-01

    Fusion requires temperatures of the order of 10 8 degrees C. In order to attain the required temperature it will be essential to minimise the energy losses from the plasma. Impurities are a major cause of plasma cooling. Ionization of impurity species in the plasma leads to a subsequent decay and emission of radiation. The most common low Z contaminants to be consideed are water and methane produced by reaction of hydrogen isotopes with oxygen and carbon. This review focuses on the methane production problem. We will be concerned with the sources of carbon in the reactor and also with the reactivity of carbon with hydrogen molecules, atoms and ions and the synergistic effects which can arise from coincident fluxes of electrons and photons and the effects of radiation-induced damage of the materials involved. While the reactor first wall will provide the most hostile environment for methane producton, most of the reactions discussed can occur in breeder blankets and also in other tritium facilities such as fuel handling, purification and storage facilities

  11. Breath Methane Excretion Is not An Accurate Marker of Colonic Methane Production in Irritable Bowel Syndrome.

    Science.gov (United States)

    Di Stefano, Michele; Mengoli, Caterina; Bergonzi, Manuela; Klersy, Catherine; Pagani, Elisabetta; Miceli, Emanuela; Corazza, Gino Roberto

    2015-06-01

    The role of colonic methane production in functional bowel disorders is still uncertain. In small samples of irritable bowel syndrome (IBS) patients, it was shown that methane breath excretion correlates with clinical presentation and delayed gastrointestinal transit time. The aim of this study was to evaluate the relationship between intestinal production and breath excretion of CH4 and to correlate CH4 production with the presence and the severity of symptoms, in a large cohort of IBS patients and in a group of healthy volunteers. A group of 103 IBS patients and a group of 28 healthy volunteers were enrolled. The presence and severity of symptoms and gastrointestinal transit were evaluated in all subjects, who underwent breath H2/CH4 measurement for 7 h after lactulose to identify breath excretors of these gases; H2 and CH4 were also measured in rectal samples to identify colonic producers. Cumulative H2 and CH4 excretion and production were evaluated by the area under the time-concentration curve calculation (AUC). In IBS patients, CH4 was detected in rectal samples in 48 patients (47%), but only 27 of them (26% of the 103 enrolled patients) excreted this gas with breath. In CH4 producers, the prevalence and severity of symptoms and gastrointestinal transit time were not significantly different with respect to non-producers. IBS subtypes were homogeneously represented in CH4 producers and in non-producers. Healthy volunteers, compared with IBS patients, showed a significantly lower prevalence of CH4 excretion, whereas no difference was found in the prevalence of colonic CH4 production; moreover, in healthy volunteers compared with IBS, CH4 breath excretion and CH4 production were not different in quantitative terms. Our data show that colonic CH4 production is not associated with clinical presentation in IBS patients and does not correlate with symptom severity or with gastrointestinal transit time. Clinical inferences based on breath CH4 excretion should

  12. Thermophilic Anaerobic Digester Performance Under Different Feed-Loading Frequency

    Science.gov (United States)

    Bombardiere, John; Espinosa-Solares, Teodoro; Domaschko, Max; Chatfield, Mark

    The effect of feed-loading frequency on digester performance was studied on a thermophilic anaerobic digester with a working volume of 27.43 m3. The digester was fed 0.93 m3 of chicken-litter slurry/d, containing 50.9 g/L chemical oxygen demand. The treatments were loading frequencies of 1, 2, 6, and 12 times/d. The hourly pH, biogas production, and methane percent of the biogas were less stable at lower feed frequencies. There was no statistical difference among treatments in methanogenic activity. The feed-loading frequency of six times per day treatment provided the greatest biogas production.

  13. Production, consumption, and migration of methane in accretionary prism of southwestern Taiwan

    Science.gov (United States)

    Chen, Nai-Chen; Yang, Tsanyao Frank; Hong, Wei-Li; Chen, Hsuan-Wen; Chen, Hsiao-Chi; Hu, Ching-Yi; Huang, Yu-Chun; Lin, Saulwood; Lin, Li-Hung; Su, Chih-Chieh; Liao, Wei-Zhi; Sun, Chih-Hsien; Wang, Pei-Ling; Yang, Tao; Jiang, Shao-Yong; Liu, Char-Shine; Wang, Yunshuen; Chung, San-Hsiung

    2017-08-01

    To systematically quantify the production, consumption, and migration of methane, 210 sediment cores were collected from offshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data, combined with published results, were used to calculate the diffusive methane fluxes across different geochemical transitions and to develop scenarios of mass balance and constrain deep microbial and thermogenic methane production rates within the accretionary prism. The results showed that methane diffusive fluxes ranged from 2.71 × 10-3 to 2.78 × 10-1 and from -1.88 × 10-1 to 3.97 mmol m-2 d-1 at the sulfate-methane-transition-zone (SMTZ) and sediment-seawater interfaces, respectively. High methane fluxes tend to be associated with structural features, suggesting a strong structural control on the methane transport. A significant portion of ascending methane (>50%) is consumed by anaerobic oxidation of methane at the SMTZ at most sites, indicating effective biological filtration. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater. The flux imbalance arose primarily due to the larger production of methane through deep microbial and thermogenic processes at a magnitude of 1512-43,096 Tg Myr-1 and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.

  14. The genotypic diversity and lipase production of some thermophilic bacilli from different genera

    OpenAIRE

    Koc, Melih; Cokmus, Cumhur; Cihan, Arzu Coleri

    2015-01-01

    Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributy...

  15. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C).

    Science.gov (United States)

    Liu, Dawei; Zeng, Raymond J; Angelidaki, Irini

    2008-08-15

    Two continuously stirred tank reactors were operated with household solid waste at 70 degrees C, for hydrogen and methane production. The individual effect of hydraulic retention time (HRT as 1, 2, 3, 4, and 6 days) at pH 7 or pH (5, 5.5, 6, 6.5, 7) at 3-day HRT was investigated on the hydrogen production versus methanogenesis. It was found that at pH 7, the maximum hydrogen yield was 107 mL-H(2)/g VS(added) (volatile solid added) but no stable hydrogen production was obtained as after some time methanogenesis was initiated at all tested HRTs. This demonstrated that sludge retention time alone was not enough for washing out the methanogens at pH 7 under extreme-thermophilic conditions. Oppositely, we showed that keeping the pH level at 5.5 was enough to inhibit methane and produce hydrogen stably at 3-day HRT. However, the maximum stable hydrogen yield was low at 21 mL-H(2)/g VS(added). 2008 Wiley Periodicals, Inc.

  16. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70ºC)

    DEFF Research Database (Denmark)

    Liu, Dawei; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Two continuously stirred tank reactors were operated with household solid waste at 70°C, for hydrogen and methane production. The individual effect of hydraulic retention time (HRT as 1, 2, 3, 4, and 6 days) at pH 7 or pH (5, 5.5, 6, 6.5, 7) at 3-day HRT was investigated on the hydrogen production...... versus methanogenesis. It was found that at pH 7, the maximum hydrogen yield was 107 mL-H2/g VSadded (volatile solid added) but no stable hydrogen production was obtained as after some time methanogenesis was initiated at all tested HRTs. This demonstrated that sludge retention time alone was not enough...... for washing out the methanogens at pH 7 under extreme-thermophilic conditions. Oppositely, we showed that keeping the pH level at 5.5 was enough to inhibit methane and produce hydrogen stably at 3-day HRT. However, the maximum stable hydrogen yield was low at 21 mL-H2/g VSadded. Biotechnol. Bioeng. 2008...

  17. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  18. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.

    Science.gov (United States)

    Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You

    2015-02-01

    This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Modeling methane emissions by cattle production systems in Mexico

    Science.gov (United States)

    Castelan-Ortega, O. A.; Ku Vera, J.; Molina, L. T.

    2013-12-01

    Methane emissions from livestock is one of the largest sources of methane in Mexico. The purpose of the present paper is to provide a realistic estimate of the national inventory of methane produced by the enteric fermentation of cattle, based on an integrated simulation model, and to provide estimates of CH4 produced by cattle fed typical diets from the tropical and temperate climates of Mexico. The Mexican cattle population of 23.3 million heads was divided in two groups. The first group (7.8 million heads), represents cattle of the tropical climate regions. The second group (15.5 million heads), are the cattle in the temperate climate regions. This approach allows incorporating the effect of diet on CH4 production into the analysis because the quality of forages is lower in the tropics than in temperate regions. Cattle population in every group was subdivided into two categories: cows (COW) and other type of cattle (OTHE), which included calves, heifers, steers and bulls. The daily CH4 production by each category of animal along an average production cycle of 365 days was simulated, instead of using a default emission factor as in Tier 1 approach. Daily milk yield, live weight changes associated with the lactation, and dry matter intake, were simulated for the entire production cycle. The Moe and Tyrrell (1979) model was used to simulate CH4 production for the COW category, the linear model of Mills et al. (2003) for the OTHE category in temperate regions and the Kurihara et al. (1999) model for the OTHE category in the tropical regions as it has been developed for cattle fed tropical diets. All models were integrated with a cow submodel to form an Integrated Simulation Model (ISM). The AFRC (1993) equations and the lactation curve model of Morant and Gnanasakthy (1989) were used to construct the cow submodel. The ISM simulates on a daily basis the CH4 production, milk yield, live weight changes associated with lactation and dry matter intake. The total daily CH

  20. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME......-digestion of treated EFB by NaOH presoaking and hydrothermal treatment with POME, which resulted in 98% improvement in methane yield comparing with co-digesting untreated EFB. The maximum methane production of co-digestion treated EFB with POME was 82.7m3 CH4/ton of mixed treated EFB and POME (6.8:1), corresponding...

  1. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna; Sukumara, Sumesh; Ploeger, Tom

    2017-01-01

    production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gasliquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate...... under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas-and corn stover-derived syngas were determined...

  2. Economic evaluation of coalbed methane production in China

    International Nuclear Information System (INIS)

    Luo Dongkun; Dai Youjin

    2009-01-01

    Roaring natural gas demand, energy security and environment protection concerns coupled with stringent emission reduction requirement have made China's abundant coalbed methane (CBM) resource an increasingly valuable energy source. However, not all of China's CBM resource is economic to develop under current technological condition and economic situation. In order to locate the CBM resource with economic viability to develop in China, economic evaluation of CBM production is conducted by applying net present value (NPV) method. The results indicate that more than half of CBM resource in China is economic to develop. It shows that CBM price, production rate and operating costs are the three major factors with most impact on the economic viability of the CBM development in target areas in China. The result also demonstrates that the economic limit production is roughly 1200 cubic meters per day. These economic evaluation results provide important information for both CBM companies and China government.

  3. Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material.

    Science.gov (United States)

    Thummes, Kathrin; Kämpfer, Peter; Jäckel, Udo

    2007-07-01

    To date, composting has been regarded as an aerobic process but it has been shown that composting piles are often sources of atmospheric methane. In order to gain a more comprehensive view on the diversity of methanogenic Archaea in compost, gas chromatographical methods and molecular cloning were used to study relationships of thermophilic archaeal communities and changes in methane production potential during compost maturation. According to the thermophilic methane production potential, wide differences could be detected between differently aged compost materials. In material derived from 3- and 4-week-old piles, low and no thermophilic methane production potential, respectively, was observed at 50 degrees C. Material from a 6-week-old pile showed the maximum methane production. With compost maturation, the production slowly decreased again with 6 weeks, 8 weeks, and mature compost showing an optimum methane production potential at 60 degrees C. At 70 degrees C, only 6-week-old material showed a comparable high production of methane. The 16S rRNA-based phylogenetic surveys revealed an increase of archaeal diversity with compost maturation. In the 6-week-old material, 86% of the sequences in the archaeal 16S rRNA library had the highest sequence similarities to Methanothermobacter spp. and the remaining 14% of the clones were related to Methanosarcina thermophila. Quantification of methanogens in 6-week-old material, on the basis of the methane production rate, resulted in values of about 2x10(7) cells per gram fresh weight. In 8-week-old and mature compost material, the proportion of sequences similar to Methanothermobacter spp. decreased to 34% and 0%, respectively. The mature compost material showed the highest variation in identified sequences, although 33% could be assigned to as yet uncultured Archaea (e.g. Rice cluster I, III, and IV). Our results indicate that compost harbours a diverse community of thermophilic methanogens, with changing composition

  4. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH 4 + -N L -1 ) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH 4 + -N L -1 ) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH 4 + -N L -1 ), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Decreasing methane production in hydrogenogenic UASB reactors fed with cheese whey

    International Nuclear Information System (INIS)

    Carrillo-Reyes, Julián; Celis, Lourdes B.; Alatriste-Mondragón, Felipe; Razo-Flores, Elías

    2014-01-01

    One of the problems in fermentative hydrogen producing reactors, inoculated with pre-treated anaerobic granular sludge, is the eventual methane production by hydrogen-consuming methanogens. In this study, strategies such as reduction of pH and HRT, organic shock loads and repeated biomass heat treatment were applied to hydrogenogenic UASB reactors fed with cheese whey, that showed methane production after certain time of continuous operation (between 10 and 60 days). The reduction of pH to 4.5 not only decreased methane production but also hydrogen production. Organic shock load (from 20 to 30 g COD/L-d) was the more effective strategy to decrease the methane production rate (75%) and to increase the hydrogen production rate (172%), without stopping reactor operation. Repeated heat treatment of the granular sludge was the only strategy that inhibited completely methane production, leading to high volumetric hydrogen production rates (1.67 L H 2 /L-d), however this strategy required stopping reactor operation; in addition homoacetogenesis, another hydrogen-consuming pathway, was not completely inhibited. This work demonstrated that it was possible to control the methane activity in hydrogen producing reactors using operational strategies. - Highlights: • Operational strategies control methane in hydrogen production from cheese whey. • Organic shock load increased the hydrogen production rate. • Operation pH below 5 decreased both the hydrogen and methane production. • Second biomass heat treatment inhibits completely methanogenesis. • Homoacetogens play a negative role in fermentative hydrogen production

  6. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.

    Science.gov (United States)

    Ma, Kedong; Hu, Guoquan; Pan, Liwei; Wang, Zichao; Zhou, Yi; Wang, Yanwei; Ruan, Zhiyong; He, Mingxiong

    2016-11-01

    A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  8. Thermophilic cellobiohydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Sapra, Rajat; Park, Joshua I.; Datta, Supratim; Simmons, Blake A.

    2017-04-18

    The present invention provides for a composition comprising a polypeptide comprising a first amino acid sequence having at least 70% identity with the amino acid sequence of Csac GH5 wherein said first amino acid sequence has a thermostable or thermophilic cellobiohydrolase (CBH) or exoglucanase activity.

  9. Implications of Limited Thermophilicity of Nitrite Reduction for Control of Sulfide Production in Oil Reservoirs

    Science.gov (United States)

    Fida, Tekle Tafese; Chen, Chuan; Okpala, Gloria

    2016-01-01

    ABSTRACT Nitrate reduction to nitrite in oil fields appears to be more thermophilic than the subsequent reduction of nitrite. Concentrated microbial consortia from oil fields reduced both nitrate and nitrite at 40 and 45°C but only nitrate at and above 50°C. The abundance of the nirS gene correlated with mesophilic nitrite reduction activity. Thauera and Pseudomonas were the dominant mesophilic nitrate-reducing bacteria (mNRB), whereas Petrobacter and Geobacillus were the dominant thermophilic NRB (tNRB) in these consortia. The mNRB Thauera sp. strain TK001, isolated in this study, reduced nitrate and nitrite at 40 and 45°C but not at 50°C, whereas the tNRB Petrobacter sp. strain TK002 and Geobacillus sp. strain TK003 reduced nitrate to nitrite but did not reduce nitrite further from 50 to 70°C. Testing of 12 deposited pure cultures of tNRB with 4 electron donors indicated reduction of nitrate in 40 of 48 and reduction of nitrite in only 9 of 48 incubations. Nitrate is injected into high-temperature oil fields to prevent sulfide formation (souring) by sulfate-reducing bacteria (SRB), which are strongly inhibited by nitrite. Injection of cold seawater to produce oil creates mesothermic zones. Our results suggest that preventing the temperature of these zones from dropping below 50°C will limit the reduction of nitrite, allowing more effective souring control. IMPORTANCE Nitrite can accumulate at temperatures of 50 to 70°C, because nitrate reduction extends to higher temperatures than the subsequent reduction of nitrite. This is important for understanding the fundamentals of thermophilicity and for the control of souring in oil fields catalyzed by SRB, which are strongly inhibited by nitrite. PMID:27208132

  10. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  11. Hydrogen production from methane using oxygen-permeable ceramic membranes

    Science.gov (United States)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  12. Quantum chemical simulation of methane production by coal hydrogenation pyrolysis

    Science.gov (United States)

    Yang, Zhiyuan; Xue, Wenying; He, Xiaoxiao; Meng, Zhuoyue

    2018-02-01

    In this work, molecular mechanics, molecular dynamics and semi-empirical quantum chemistry of the Wiser molecular structure model of bituminous coal were studied by molecular simulation. The molecular structure model was optimized and the geometrical configuration of the structural model was analyzed. The bond length and bond cleavage energy of different types of bonds were obtained, and the weak bonds and possible fragments were revealed by a series of simulation. The reaction mechanism of methane production from debris of hydrogenation pyrolysis was studied by transition state theory. The results showed that the energy of the optimal structure of Wiser molecular model of bituminous coal was 704.517 kcal/mol, and the arrangement of aromatic layers was approximately parallel. The initial cleavage of the Wiser model mainly occurs in the coal structure of the relatively high degree of cross-linking and the C-C bond connected to carbonyl carbon. The three-dimensional structure of Wiser model was broken and then generated a large number of debris, the groups of methyl were removed from debris molecules under hydrogen atmosphere, and then methyl radicals and hydrogen radicals combined to form methane.

  13. More than just one Methane Paradox? - Methane Production in Oxic Waters and Aerobic Methane Oxidation under Oxygen-Depleted Conditions

    Science.gov (United States)

    Lehmann, M. F.; Niemann, H.; Bartosiewicz, M.; Blees, J.; Steinle, L.; Su, G.; Zopfi, J.

    2016-12-01

    The standing paradigm is that methane (CH4) production through methanogenesis occurs exclusively under anoxic conditions and that at least in freshwater environments most of the biogenic CH4 is oxidized by aerobic methanotrophic bacteria (MOB) under oxic conditions. However, subsurface CH4 accumulation in oxic waters, a phenomenon referred to as the "CH4 paradox", has been observed both in the ocean and in lakes, and suggests in-situ CH4 production or a remarkable tolerance of at least some methanogens to O2. Analogously, MOB seem to thrive also under micro-oxic conditions, i.e., they may be responsible for significant CH4 turnover at extremely low O2 concentrations. O2 availability particularly within the sub-micromolar range is likely one of the key factors controlling the balance between CH4 production and consumption in redox-transition zones of aquatic environments, yet threshold O2 concentrations are poorly constrained. Here we provide multiple lines of evidence for apparent "methanogenesis" in well-oxygenated waters and discuss the potential mechanisms that lead to CH4 accumulation in the oxic epilimnia of two south-alpine lakes. On the other end, we present data from a deep meromictic lake, which indicate aerobic CH4 oxidation (MOx) at O2 concentrations below the detection limit of common O2 sensors. A strong MOx potential throughout the anoxic hyplimnion of the studied lake implies that the MOB community is able to survive prolonged periods of O2 starvation and is capable to rapidly resume microaerobic MOx upon introduction of low levels of O2. This conclusion is qualitatively consistent with field data from a coastal shelf environment in the Baltic Sea, where we observed maximum MOx rates during the summer stratification period when O2 concentrations were lowest, implying that in both environments MOx bacteria are adapted to trace levels of O2. Indeed, laboratory experiments at different manipulated O2 concentration levels suggest a nanomolar O2 optimum

  14. Optimization of biohydrogen and methane recovery within a cassava ethanol wastewater/waste integrated management system

    DEFF Research Database (Denmark)

    Wang, Wen; Xie, Li; Luo, Gang

    2012-01-01

    Thermophilic co-fermentation of cassava stillage (CS) and cassava excess sludge (CES) were investigated for hydrogen and methane production. The highest hydrogen yield (37.1 ml/g-total-VS added) was obtained at VSCS/VSCES of 7:1, 17% higher than that with CS digestion alone. The CES recycle enhan...

  15. Controls on Mannville coalbed methane production in Fort Assiniboine, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, D.; Majcher, M. [Nexen Inc., Calgary, AB (Canada)

    2010-07-01

    A horizontal well exploitation scheme is being used in the Fort Assiniboine field in central Alberta to produce coalbed methane (CBM) from the under-saturated coals of the Mannville Formation. The Mannville coal seams in this region are under-saturated. In order to improve permeability to gas within the fracture system and achieve economic gas production rates, the reservoir's ability to dewater the coal through the fracture fabric to establish a gas phase is key. Across the field, a wide range of production rates can be found. A study was conducted to collect field wide data from core, wells, geological and geophysical mapping and production data in order to determine the major controls on gas production rates. The paper discussed the compilation of wellbore parameters, including borehole orientation and length; wellbore configuration; and production data. It also discussed the characterization of reservoir parameters such as reservoir thickness; structure; stress; and reservoir quality. It was concluded that the main controls on Mannville CBM production in the Fort Assiniboine field are coal seam thickness, effective stress, coal quality and face cleat exposure. 5 refs., 14 figs.

  16. Measurement methods to assess methane production of individual dairy cows in a barn

    NARCIS (Netherlands)

    Wu, L.

    2016-01-01

    Abstract Mitigation of methane production from dairy cows is critical to reduce the dairy industry’s contribution to the production of greenhouse gases. None of current used methane measurement methods are flawless and application of the methods is limited to assess the

  17. Measurement methods to assess methane production of individual dairy cows in a barn

    NARCIS (Netherlands)

    Wu, L.

    2016-01-01

    Abstract

    Mitigation of methane production from dairy cows is critical to reduce the dairy industry’s contribution to the production of greenhouse gases. None of current used methane measurement methods are flawless and application of the methods is limited to assess the

  18. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  19. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Rawana N. Alkhalili

    2016-08-01

    Full Text Available A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase.

  20. Methane Production by Seagrass Ecosystems in the Red Sea

    KAUST Repository

    Garcias Bonet, Neus

    2017-11-07

    Atmospheric methane (CH) is the second strongest greenhouse gas and it is emitted to the atmosphere naturally by different sources. It is crucial to define the dimension of these natural emissions in order to forecast changes in atmospheric CH mixing ratio in future scenarios. However, CH emissions by seagrass ecosystems in shallow marine coastal systems have been neglected although their global extension. Here we quantify the CH production rates of seagrass ecosystems in the Red Sea. We measured changes in CH concentration and its isotopic signature by cavity ring-down spectroscopy on chambers containing sediment and plants. We detected CH production in all the seagrass stations with an average rate of 85.09 ± 27.80 μmol CH m d. Our results show that there is no seasonal or daily pattern in the CH production rates by seagrass ecosystems in the Red Sea. Taking in account the range of global estimates for seagrass coverage and the average seagrass CH production, the global CH production and emission by seagrass ecosystems could range from 0.09 to 2.7 Tg yr. Because CH emission by seagrass ecosystems had not been included in previous global CH budgets, our estimate would increase the contribution of marine global emissions, hitherto estimated at 9.1 Tg yr, by about 30%. Thus, the potential contribution of seagrass ecosystems to marine CH emissions provides sufficient evidence of the relevance of these fluxes as to include seagrass ecosystems in future assessments of the global CH budgets.

  1. Production of Methanol from Methane by EncapsulatedMethylosinus sporium.

    Science.gov (United States)

    Patel, Sanjay K S; Jeong, Jae-Hoon; Mehariya, Sanjeet; Otari, Sachin V; Madan, Bharat; Haw, Jung Rim; Lee, Jung-Kul; Zhang, Liaoyuan; Kim, In-Won

    2016-12-28

    Massive reserves of methane (CH₄) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of CH₄ to methanol. The present study demonstrates the bioconversion of CH₄ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum . Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium , was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, 30°C, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of CH₄ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

  2. Potential impact of salinity on methane production from food waste anaerobic digestion.

    Science.gov (United States)

    Zhao, Jianwei; Liu, Yiwen; Wang, Dongbo; Chen, Fei; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2017-09-01

    Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Methane production and energy partition in sheep fed timothy silage- or hay-based diets

    OpenAIRE

    B Santoso; B Mwenya; C Sar; J Takahashi

    2007-01-01

    Methane is produced as a result of anaerobic fermentation of the soluble and structural carbohydrates by methanogens in the rumen of ruminant animals. Removal of methane from rumen represents a loss of approximately 7.22% of gross energy intake. Four ruminally fistulated Cheviot wethers were used in a crossover design to determine methane production and energy partition in sheep fed timothy silage- or hay-based diets. The experimental diets consisted of either timothy silage or timothy hay a...

  4. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    . The enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g......-sugars/L DM showed good performance with a satisfactory hydrogen yield of 269.5 ml-H2/g-sugar and rate of 4500 ml H2/l⋅d. Fluorescent in situ hybridization (FISH) analysis of the microbial community of sludge from batch fermentation and the UASB-granules after 54 days of operation, was dominated...... by Thermoanaerobacterium spp., which are key players in fermentative hydrogen production of DM under thermophilic conditions. Furthermore, the granules in the UASB reactor were also significantly containing Thermoanaerobacterium spp. and phylum Firmecutes (most Clotridium, Bacillus and Desulfobacterium...

  5. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2017-12-01

    In this work, winery wastes generated by a cellar producing approximately 300,000 hL of wine per year was monitored for a period of one year. On average, 196 L of wastewater, 0.1 kg of waste activated sludge (dry matter) and 1.6 kg of wine lees were produced per hectoliter of wine produced. Different winery wastes, deriving from different production steps, namely waste activated sludge from wastewater treatment and wine lees, were co-treated using an anaerobic digestion process. Testing was conducted on a pilot scale for both mesophilic and thermophilic conditions. The process was stable for a long period at 37 °C, with an average biogas production of 0.386 m 3 /kg COD fed . On the other hand, for thermophilic conditions, volatile fatty acids accumulated in the reactor and the process failed after one hydraulic retention time (23 days). In order to fix the biological process, trace elements (iron, cobalt and nickel) were added to the feed of the thermophilic reactor. Metals augmentation improved process stability and yields at 55 °C. The pH ranged between 7.8 and 8.0, and specific gas production was 0.450 m 3 /kg COD fed , which corresponded to dry matter and COD removals of 34% and 88%, respectively. Although the observed performances in terms of biogas production were good, the thermophilic process exhibited some limitations related to both the necessity of metals addition and the worse dewaterability properties. In fact, while the mesophilic digestates reached a good dewatering quality via the addition of 6.5 g of polymer per kg of dry matter, the required dosage for the thermophilic sludge was greater than 10 g/kg of dry matter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thermophilic microorganisms in biomining.

    Science.gov (United States)

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  7. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    Science.gov (United States)

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Role of Age-Related Shifts in Rumen Bacteria and Methanogens in Methane Production in Cattle

    Science.gov (United States)

    Liu, Chong; Meng, Qinghui; Chen, Yongxing; Xu, Mengsi; Shen, Min; Gao, Rui; Gan, Shangquan

    2017-01-01

    Rumen microbiota are essential for maintaining digestive and metabolic functions, producing methane as a byproduct. Dairy heifers produce large amounts of methane based on fermentation of digested organic matter, with adverse consequences for feed efficiency and the environment. It is therefore important to understand the influence of host age on the relationship between microbiota and methane production. This study explored the age effect on the relationship between microbial communities and enteric methane production in dairy cows and heifers using high-throughput sequencing. Methane production and volatile fatty acid concentrations were age-related. Heifers (9–10 months) had lower methane production but higher methane production per dry matter intake (DMI). The acetate:propionate ratio decreased significantly with increasing age. Age-related microbiota changes in the rumen were reflected by a significant shift in bacterial taxa, but relatively stable archaeal taxa. Prevotella, Ruminococcus, Flavonifractor, Succinivibrio, and Methanobrevibacter were affected by age. This study revealed different associations between predominant bacterial phylotypes and Methanobrevibacter with increasing age. Prevotella was strongly correlated with Methanobrevibacter in heifers; howerver, in older cows (96–120 months) this association was replaced by a correlation between Succinivibrio and Methanobrevibacter. This shift may account for the age-related difference in rumen fermentation and methane production per DMI. PMID:28855896

  9. Role of Age-Related Shifts in Rumen Bacteria and Methanogens in Methane Production in Cattle

    Directory of Open Access Journals (Sweden)

    Chong Liu

    2017-08-01

    Full Text Available Rumen microbiota are essential for maintaining digestive and metabolic functions, producing methane as a byproduct. Dairy heifers produce large amounts of methane based on fermentation of digested organic matter, with adverse consequences for feed efficiency and the environment. It is therefore important to understand the influence of host age on the relationship between microbiota and methane production. This study explored the age effect on the relationship between microbial communities and enteric methane production in dairy cows and heifers using high-throughput sequencing. Methane production and volatile fatty acid concentrations were age-related. Heifers (9–10 months had lower methane production but higher methane production per dry matter intake (DMI. The acetate:propionate ratio decreased significantly with increasing age. Age-related microbiota changes in the rumen were reflected by a significant shift in bacterial taxa, but relatively stable archaeal taxa. Prevotella, Ruminococcus, Flavonifractor, Succinivibrio, and Methanobrevibacter were affected by age. This study revealed different associations between predominant bacterial phylotypes and Methanobrevibacter with increasing age. Prevotella was strongly correlated with Methanobrevibacter in heifers; howerver, in older cows (96–120 months this association was replaced by a correlation between Succinivibrio and Methanobrevibacter. This shift may account for the age-related difference in rumen fermentation and methane production per DMI.

  10. Methane production, recovery and emission from two Danish landfills

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan

    and Zn and utilized by methanogens to convert CO2 into CH4. The addition of Al and Zn to the incubated SW resulted in higher CH4 production. Relatively high CH4 production from SW at landfills and the unusual gas composition (high CH4 and low CO2 content) are most likely due to methanogens converting......Landfill gas (LFG), mainly consisting of methane (CH4) and carbon dioxide (CO2), is produced by the anaerobic digestion of biodegradable waste deposited in landfills. CH4 is a greenhouse gas with global warming potential 28 times that of CO2 over a period of 100 years. The produced CH4 in landfills...... can be recovered and utilized for the production of electricity and/or heat. Higher recovery of CH4 could result in lower CH4 emissions into the atmosphere, and thus lower the contribution of landfills to climate change. Moreover, higher CH4 recovery can result in higher production of heat...

  11. Influence of process parameters on the extraction of soluble substances from OFMSW and methane production.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2017-04-01

    Microorganisms involved in anaerobic digestion require dissolved substrates to transport them through the cell wall to different processing units and finally to be disposed as waste, such as methane and carbon dioxide. In order to increase methane production, this work proposes to separate the soluble substances from OFMSW and analyse methane production from extracts and OFMSW. Using water as solvent, four extraction parameters were proposed: (1) Number of consecutive extractions, (2) Duration of mixing for every consecutive extraction, (3) OFMSW to water mass ratios 1:1, 1:2, and 1:3 and, (4) The influence of temperature on the extraction process. Results indicated that is possible to separate 40% of VS from OFMSW with only three consecutive extraction with mixing of 30min in every extraction using ambient temperature water. For every OFMSW to water combination, the first three consecutive extracts were analysed for biochemical methane potential test during 21days at 35°C; OFMSW was also tested as reference. Methane production from all substrates is highest during the first day and then it slowly decreases to increase again during a second stage. This was identified as diauxic behaviour. Specific methane production at day 21 increased with increasing water content of the extracts where OFMSW methane production was the lowest of all with 535NL/kgVS. These results indicate that it is feasible to rapidly produce methane from extracted substances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils.

    Science.gov (United States)

    Wagner, Robert; Zona, Donatella; Oechel, Walter; Lipson, David

    2017-08-01

    While there is no doubt that biogenic methane production in the Arctic is an important aspect of global methane emissions, the relative roles of microbial community characteristics and soil environmental conditions in controlling Arctic methane emissions remains uncertain. Here, relevant methane-cycling microbial groups were investigated at two remote Arctic sites with respect to soil potential methane production (PMP). Percent abundances of methanogens and iron-reducing bacteria correlated with increased PMP, while methanotrophs correlated with decreased PMP. Interestingly, α-diversity of the methanogens was positively correlated with PMP, while β-diversity was unrelated to PMP. The β-diversity of the entire microbial community, however, was related to PMP. Shannon diversity was a better correlate of PMP than Simpson diversity across analyses, while rarefied species richness was a weak correlate of PMP. These results demonstrate the following: first, soil pH and microbial community structure both probably control methane production in Arctic soils. Second, there may be high functional redundancy in the methanogens with regard to methane production. Third, iron-reducing bacteria co-occur with methanogens in Arctic soils, and iron-reduction-mediated effects on methanogenesis may be controlled by α- and β-diversity. And finally, species evenness and rare species abundances may be driving relationships between microbial groups, influencing Arctic methane production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  14. Migration of methane into groundwater from leaking production wells near Lloydminster

    International Nuclear Information System (INIS)

    1995-03-01

    The problem of migration of methane from leaking oil and gas wells into aquifers in the Lloydminster area in Saskatchewan, was discussed. A study was conducted to determine if the methane in shallow aquifers near the leaking wells, came from the wells or occurred naturally. Migration rate in aquifers, concentration gradients and approximate flux rates of methane from leaking wells to shallow aquifers, were studied. The methods of investigation included drilling of test holes at selected sites, installation of monitoring wells, purging of wells, pumping tests and water level monitoring, sampling and analyses for dissolved methane. The relatively high methane concentrations in many of the monitoring wells indicated the presence of a methane plume that has migrated from the production well. It was suggested that other leaky well sites in the area should be investigated to determine if similar plumes were present. 18 refs., 5 tabs., 13 figs

  15. Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles.

    Science.gov (United States)

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-ichi; Ohmura, Naoya; Igarashi, Yasuo

    2011-05-01

    Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L(-1), the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L(-1). Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia.

  16. Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge.

    Science.gov (United States)

    Wang, Qilin; Ye, Liu; Jiang, Guangming; Jensen, Paul D; Batstone, Damien J; Yuan, Zhiguo

    2013-10-15

    Anaerobic digestion of waste activated sludge (WAS) is currently enjoying renewed interest due to the potential for methane production. However, methane production is often limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pretreatment strategy based on free nitrous acid (FNA or HNO2) to enhance methane production from WAS. Pretreatment of WAS for 24 h at FNA concentrations up to 2.13 mg N/L substantially enhanced WAS solubilization, with the highest solubilization (0.16 mg chemical oxygen demand (COD)/mg volatile solids (VS), at 2.13 mg HNO2-N/L) being six times that without FNA pretreatment (0.025 mg COD/mg VS, at 0 mg HNO2-N/L). Biochemical methane potential tests demonstrated methane production increased with increased FNA concentration used in the pretreatment step. Model-based analysis indicated FNA pretreatment improved both hydrolysis rate and methane potential, with the highest improvement being approximately 50% (from 0.16 to 0.25 d(-1)) and 27% (from 201 to 255 L CH4/kg VS added), respectively, achieved at 1.78-2.13 mg HNO2-N/L. Further analysis indicated that increased hydrolysis rate and methane potential were related to an increase in rapidly biodegradable substrates, which increased with increased FNA dose, while the slowly biodegradable substrates remained relatively static.

  17. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar

    2010-01-01

    on biogas and methane potential in the temperature range (25-100 degrees C). Maximum enhancement is observed at 70 degrees C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 degrees C), with maximum enhancement at 100...

  18. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C

    NARCIS (Netherlands)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Heijne, ter Annemiek

    2016-01-01

    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from

  19. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Mars, Astrid E.; Veuskens, Teun; Budde, Miriam A.W.; van Doeveren, Patrick F.N.M.; Lips, Steef J.; Bakker, Robert R.; de Vrije, Truus; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-08-15

    Production of hydrogen by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana was studied in serum flasks and in pH-controlled bioreactors with glucose, and hydrolyzed and untreated potato steam peels (PSP) as carbon sources. Two types of PSP hydrolysates were used: one in which the starch in the PSP was liquefied with alpha-amylase, and one in which the liquefied starch was further hydrolyzed to glucose by amyloglucosidase. When the PSP hydrolysates or untreated PSP were added at circa 10-14 g/L of glucose units, both strains grew well and produced hydrogen with reasonable to high molar yields (2.4-3.8 moles H{sub 2}/mole glucose units), and no significant production of lactate. The hydrogen production rates and yields were similar with untreated PSP, hydrolyzed PSP, and pure glucose, showing that C. saccharolyticus and T. neapolitana are well equipped for the utilization of starch. When the concentrations of the substrates were increased, growth and hydrogen production of both strains were hampered. At substrate concentrations of circa 30-40 g/L of glucose units, the molar hydrogen yield of C. saccharolyticus was severely reduced due to the formation of high amounts of lactate, while T. neapolitana was unable to grow at all. The results showed that PSP and PSP hydrolysates are very suitable substrates for efficient fermentative hydrogen production at moderate substrate loadings. (author)

  20. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    Science.gov (United States)

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-04-25

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  1. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... The optimum PH range for hydrogen production in this system was in the range from 5 to 5.5. The short hydraulic retention time (2 days) applied in the first stage was enough to separate acidogenesis from methanogenesis. No additional control for preventing methanogenesis in the first stage was necessary...

  2. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Skiadas, Ioannis V.

    2003-01-01

    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic...... digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences...... between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pretreatment at 70 degreesC on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pretreatment step showed very positive effect on the methane potential and production rate upon...

  3. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses

    Directory of Open Access Journals (Sweden)

    Mahya Kulivand

    2015-02-01

    Full Text Available Eight different grasses collected from pastures of the Kermanshah province (Kermanshah, Iran, at mid-vegetative stage were used to study the relationships between their chemical compositions, kinetic parameters of in vitro gas production and rumen methane production. There was a positive correlation (r = 0.62, p < 0.05 between crude protein (CP content of grasses and total gas production (A at 96h incubation. Negative correlations were also observed between acid detergent fiber (ADF content and total gas production (r = -0.60, p < 0.05. Amongst the nutrients, neutral detergent fiber (NDF and ADF were positively correlated with methane concentration, (r = 0.75 and 0.77, p < 0.01. The methane reduction potential (MRP was negative for Trachyspermum copticum indicating higher methane production than the control hay for this grass. The MRP of Chamaemelum nobile was more than 25%, indicating plants that reduce methane production more than 20 percent methane in comparison with control actually have ingredients to reduce methane.

  4. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.

    2016-01-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from......, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55 °C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas...

  6. Methane Production of Different Forages in Ruminal Fermentation

    Directory of Open Access Journals (Sweden)

    S. J. Meale

    2012-01-01

    Full Text Available An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM ranged from 671 to 713 (grasses, 377 to 590 (leguminous shrubs and 288 to 517 (non-leguminous shrubs. After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05 within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

  7. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas and renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.

  8. Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chun-Feng [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ebie, Yoshitaka [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); Xu, Kai-Qin [National Institute for Environmental Studies, Tsukuba 305-8506 (Japan); State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Li, Yu-You [Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579 (Japan); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296 (Japan)

    2010-08-15

    The structure of a microbial community in the two-stage process for H{sub 2} and CH{sub 4} production from food waste was investigated by a molecular biological approach. The process was a continuous combined thermophilic acidogenic hydrogenesis and mesophilic (RUN1) or thermophilic (RUN2) methanogenesis with recirculation of the digested sludge. A two-phase process suggested in this study effectively separate H{sub 2}-producing bacteria from methanogenic archaea by optimization of design parameters such as pH, hydraulic retention time (HRT) and temperature. Galore microbial diversity was found in the thermophilic acidogenic hydrogenesis, Clostridium sp. strain Z6 and Thermoanaerobacterium thermosaccharolyticum were considered to be the dominant thermophilic H{sub 2}-producing bacteria. The hydrogenotrophic methanogens were inhibited in thermophilic methanogenesis, whereas archaeal rDNAs were higher in the thermophilic methanogenesis than those in mesophilic methanogenesis. The yields of H{sub 2} and CH{sub 4} were in equal range depending on the characteristics of food waste, whereas effluent water quality indicators were different obviously in RUN1 and RUN2. The results indicated that hydrolysis and removal of food waste were higher in RUN2 than RUN1. (author)

  9. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  10. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and Methane Production

    Directory of Open Access Journals (Sweden)

    S. H. Nguyen

    2016-06-01

    Full Text Available Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy dodecane (Empicol. After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0. On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3 was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining

  11. Enhanced methane productivity from lignocellulosic biomasses using aqueous ammonia soaking pretreatment

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Skiadas, Ioannis; Gavala, Hariklia N.

    2012-01-01

    energy sector. Biogas is part of a rapidly growing renewable energy sector, which expands at a rate of 20-30 % globally [1]. However, the increasing demand for methane production cannot be satisfied by the use of anaerobic digestion only from waste/wastewater treatment. Energy crops as well......The continuously increasing demand for renewable energy sources, such as methane, renders anaerobic digestion to one of the most promising technologies for renewable energy production. In fact, anaerobic digestion for methane production has become a major part of the rapidly growing renewable...... as agricultural residues, such as wheat straw, can be considered as one of the best options for increasing the methane production through biomass digestion. The production of perennial crops like miscanthus, sweetgrass, and willow consumes far less resources (energy for cultivation, herbicides and fertilizers...

  12. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    Science.gov (United States)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  13. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production.

    Science.gov (United States)

    Deng, Xiang-Yuan; Gao, Kun; Zhang, Ren-Chuan; Addy, Min; Lu, Qian; Ren, Hong-Yan; Chen, Paul; Liu, Yu-Huan; Ruan, Roger

    2017-11-01

    Liquid swine manure was subjected to thermophilic anaerobic digestion, ammonia stripping and centrifugation in order to increase the available carbon sources and decrease the ammonia concentration and turbidity. Chlorella vulgaris (UTEX 2714) was grown on minimally diluted (2×, 3× and 4×) autoclaved and non-autoclaved pretreated anaerobic digestion swine manure (PADSM) in a batch-culture system for 7days. Results showed that C. vulgaris (UTEX 2714) grew best on 3× PADSM media, and effectively removed NH 4 + -N, TN, TP and COD by 98.5-99.8%, 49.2-55.4%, 20.0-29.7%, 31.2-34.0% and 99.8-99.9%, 67.4-70.8%, 49.3-54.4%, 73.6-78.7% in differently diluted autoclaved and non-autoclaved PADSM, respectively. Results of chemical compositions indicated that contents of pigment, carbohydrate, protein and lipid in C. vulgaris (UTEX 2714) changed with the culture conditions. Moreover, its fatty acid profiles suggested that this alga could be used as animal feed if cultivated in autoclaved PADSM or as good-quality biodiesel feedstock if cultivated in non-autoclaved PADSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Bioaugmentation of a Two-Stage Thermophilic (68°C/55°C) Anaerobic Digestion Concept for Improvement of the Methane Yield From Cattle Manure

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2007-01-01

    The possibility of improving a two-stage (68°C/55°C) anaerobic digestion concept for treatment of cattle manure was studied. In batch experiments, a 10-24% increase of the specific methane yield from cattle manure and its fractions was obtained, when the substrates were inoculated with bacteria...

  15. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.

    Science.gov (United States)

    Ou, Mark S; Mohammed, Nazimuddin; Ingram, L O; Shanmugam, K T

    2009-05-01

    Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

  16. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments.

    Science.gov (United States)

    Thummes, Kathrin; Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2007-12-01

    Since compost is widely used as soil amendment and the fact that during the processing of compost material high amounts of microorganisms are released into the air, we investigated whether compost may act as a carrier for thermophilic methanogens to temperate soils. All eight investigated compost materials showed a clear methane production potential between 0.01 and 0.98 micromol CH(4) g dw(-1)h(-1) at 50 degrees C. Single strand conformation polymorphism (SSCP) and cloning analysis indicated the presence of Methanosarcina thermophila, Methanoculleus thermophilus, and Methanobacterium formicicum. Bioaerosols collected during the turning of a compost pile showed both a highly similar SSCP profile compared to the corresponding compost material and clear methane production during anoxic incubation in selective medium at 50 degrees C. Both observations indicated a considerable release of thermophilic methanogens into the air. To analyse the persistence of compost-borne thermophilic methanogens in temperate oxic soils, we therefore studied their potential activity in compost and compost/soil mixtures, which was brought to a meadow soil, as well as in an agricultural soil fertilised with compost. After 24h anoxic incubation at 50 degrees C, all samples containing compost showed a clear methanogenic activity, even 1 year after application. In combination with the in vitro observed resilience of the compost-borne methanogens against desiccation and UV radiation we assume that compost material acts as an effective carrier for the distribution of thermophilic methanogens by fertilisation and wind.

  17. In-Situ Resource Utilization: Methane Fuel Production

    Data.gov (United States)

    National Aeronautics and Space Administration — Sabatier reactors are being matured to produce methane from CO2 and hydrogen.  The hydrogen is derived from the electrolysis of soil-derived water, and the CO2 is...

  18. Methane production and energy partition in sheep fed timothy silage- or hay-based diets

    Directory of Open Access Journals (Sweden)

    B Santoso

    2007-03-01

    Full Text Available Methane is produced as a result of anaerobic fermentation of the soluble and structural carbohydrates by methanogens in the rumen of ruminant animals. Removal of methane from rumen represents a loss of approximately 7.22% of gross energy intake. Four ruminally fistulated Cheviot wethers were used in a crossover design to determine methane production and energy partition in sheep fed timothy silage- or hay-based diets. The experimental diets consisted of either timothy silage or timothy hay and a commercial concentrate (85:15, on DM basis. Variables measured were nutrients digestibility, energy balance and methane production. Apparent digestibilities of DM, OM, CP, NDF, ADF, cellulose and hemicellulose were significantly higher (P<0.05 on sheep fed silage-based diet than those fed hay-based diet. Sheep fed silage-based diet had greater (P<0.01 urinary energy loss, methane and heat production, but lower (P<0.05 fecal energy loss. Methane production, either expressed as g kg-1 dry matter intake or g day-1 was markedly lower (P<0.05 in hay-based diet as compared to silage-based diet. There was a strong relationship between methane production (g day-1 and NDF digested (g day-1 (R2 = 88.4%, P<0.001. Methane production expressed as g kg-1 NDF digested in silage-based diet was higher (P<0.05 than in hay-based diet (66.44 vs 62.70. These results indicate that methane release by sheep increased with increasing NDF digested.

  19. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    OpenAIRE

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane. For every two molecules of CO2 injected, roughly one molecule of methane is produced. The work included an investigation of the potential CBM reserves in the Dutch underground and the related CO2 s...

  20. Characteristics of the organic fraction of municipal solid waste and methane production: A review.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2016-08-01

    Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed. Copyright © 2016. Published by Elsevier Ltd.

  1. Microbial diversity and dynamics during methane production from municipal solid waste

    International Nuclear Information System (INIS)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-01-01

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  2. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  3. High production, purification, biochemical characterization and gene analysis of a novel catalase from the thermophilic bacterium Ureibacillus thermosphaericus FZSF03.

    Science.gov (United States)

    Jia, Xianbo; Lin, Xinjian; Tian, Yandan; Chen, Jichen; You, Minsheng

    2017-10-01

    A catalase-producing thermophilic bacterium, Ureibacillus thermosphaericus FZSF03, was isolated from high-temperature compost. Catalase production in this strain increased 31 times and reached 57,630U/mL after optimization in a shake flask, which might represent the highest catalase activity level among reported wild strains. This catalase was further purified and identified. The purified enzyme showed a specific activity of 219,360U/mg, higher than many other catalases. The molecular weight of this enzyme is 52kDa according to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the enzyme was identified as a monofunctional haeme catalase of Ureibacillus thermosphaericus by liquid chromatography-mass spectrometry (LC-MS)/MS. The optimal reaction temperature for this catalase was found to be 60°C. Stability was observed at 60°C and at a pH of 10.0, indicating the superiority of this enzyme at a high temperature and under alkaline conditions. Therefore, this catalase is a prospective candidate for industrial production and applications. The gene encoding this catalase is 1503bp. As the amino acid sequence shows low similarity with other catalases, we suggest that this is a novel monofunctional haeme catalase. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

    OpenAIRE

    Yvon-Durocher , Gabriel; Montoya , Jose Maria; Woodward , Guy; Jones , Iwan John; Trimmer , Mark

    2010-01-01

    Abstract Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We investigated whether warming altered the balance of methane efflux relative to primary production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. Furthermore, CH4 ef...

  5. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process

    Energy Technology Data Exchange (ETDEWEB)

    Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); Palm Oil Product and Technology Research Center, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110 (Thailand); Birkeland, Nils-Kaare [Department of Biology and Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020 Bergen (Norway)

    2009-09-15

    The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l{sup -1} d{sup -1} gave a maximum hydrogen yield of 0.27 l H{sub 2} g COD{sup -1} with a volumetric hydrogen production rate of 9.1 l H{sub 2} l{sup -1} d{sup -1} (16.9 mmol l{sup -1}h{sup -1}). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 {+-} 3.5%, 92 {+-} 3%, 57 {+-} 2.5% and 78 {+-} 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l{sup -1} d{sup -1}) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME). (author)

  6. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate

    OpenAIRE

    Ruiz Fuertes, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats Ripoll, Xavier

    2016-01-01

    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential (BMP) and the methane production rate (MPR) using batch anaerobic tests

  7. Improvement of methane production from waste paper by pretreatment with rumen fluid.

    Science.gov (United States)

    Baba, Yasunori; Tada, Chika; Fukuda, Yasuhiro; Nakai, Yutaka

    2013-01-01

    Cellulose hydrolysis is the rate-limiting step in anaerobic digestion. In the present study, waste paper was used as a model of cellulosic biomass and was pretreated with rumen fluid prior to methane production. To achieve a high methane yield, the reaction time of the pretreatment was examined. Waste paper was soaked with rumen fluid for 6 and 24h at 37 °C. Various volatile fatty acids, especially acetate, were produced by the pretreatment. Semicontinuous methane production was carried out over a 20-day period. The best daily methane yield was obtained by the 6-h pretreatment. The amount was 2.6 times higher than that of untreated paper, which resulted in 73.4% of the theoretical methane yield. During methane production, the cellulose, hemicellulose and lignin degradabilities were improved by the pretreatment. Pretreatment by rumen fluid is therefore a powerful method to accelerate the methane yield from a cellulosic biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    Science.gov (United States)

    Roscioli, J R; Herndon, S C; Yacovitch, T I; Knighton, W Berk; Zavala-Araiza, D; Johnson, M R; Tyner, D R

    2018-03-07

    Cold Heavy Oil Production with Sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here we present the results of field measurements of methane emissions from CHOPS wells and compare them to self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly under-reported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS site, and aid in developing policy to mitigate regional methane emissions. Implications Methane measurements from Cold Heavy Oil Production with Sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian Government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 years.

  9. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    KAUST Repository

    Siegert, Michael

    2014-02-18

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.

  10. Temperature dependence of bioelectrochemical CO2conversion and methane production with a mixed-culture biocathode.

    Science.gov (United States)

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  11. Enhancing methane production in a farm-scale biogas production system

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, P.

    2003-07-01

    Biogas technology with utilisation of biogas is increasingly applied in the agricultural sector to produce renewable energy and to minimise environmental emissions both resulting in reduction in greenhouse gas (GHG) emissions. The main objective of this thesis was to evaluate methods to enhance the methane production in a farm-scale biogas production system. Semi-continuous digestion of pig and dairy cow manures produced methane yields (m{sup 3} kg{sup -1} volatile solids (VS)) of about 0.31 and 0.14 respectively at 2 kgVS m{sup -3} d{sup -1} loading rate, 30 d hydraulic retention time (HRT) and 6.0% feed VS while in batches yields were 0.14, and 0.36 m3 kg{sup -1} VS for dairy cow and pig and manures respectively. These yields were lower than the theoretical yield of 0.4 m3 kg{sup -1} VS reported for cow manure. Possible co-substrates to enhance the methane production were investigated. Methane yields (m{sup 3} kg{sup -1} VS) in batch assays were 0.14 to 0.35 for three different energy crops and 0.32-0.39 for confectionery by-products. On full-scale application, cow manure alone and co-digestion with energy crops produced 0.22 m{sup 3} CH{sub 4} kg{sup -1} VS and co-digestion with confectionery by-products (20% of feed biomass) about 0.28 m{sup 3} kg{sup -1} VS. Laboratory co-digestion of pig manure with potato tuber or its industrial by- products (potato peel or potato stillage) at loading rate of 2 kg VS m-3 d-1 produced methane yields (m{sup 3} kg{sup -1} VS) of about 0.22 at 85:15 and 0.31 at 80:20 feed VS ratio (VS% pig manure to potato co-substrate) compared to 0.14 for pig manure alone. The batch incubation of digested materials from a farm biogas digester (35 deg C) and its associated post-storage tank indicated that both materials could still produce up to 0.20 m{sup 3} kg{sup -1} VS. The amount and rate was highly dependent on temperature. These results suggest that the untapped methane potential in the digested manure cannot effectively be recovered at

  12. Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP

    Directory of Open Access Journals (Sweden)

    Alexander Krajete

    2016-08-01

    Full Text Available Recently, interests for new biofuel generations allowing conversion of gaseous substrate(s to gaseous product(s arose for power to gas and waste to value applications. An example is biological methane production process (BMPP with Methanothermobacter marburgensis. The latter, can convert carbon dioxide (CO2 and hydrogen (H2, having different origins and purities, to methane (CH4, water and biomass. However, these gas converting bioprocesses are tendentiously gas limited processes and the specific methane productivity per biomass amount (qCH4 tends to be low. Therefore, this contribution proposes a workflow for the development of a feed forward strategy to control biomass, growth (rx and qCH4 in a continuous gas limited BMPP. The proposed workflow starts with a design of experiment (DoE to optimize media composition and search for a liquid based limitation to control selectively growth. From the DoE it came out that controlling biomass growth was possible independently of the dilution and gassing rate applied while not affecting methane evolution rates (MERs. This was done by shifting the process from a natural gas limited state to a controlled liquid limited growth. The latter allowed exploiting the maximum biocatalytic activity for methane formation of Methanothermobacter marburgensis. An increase of qCH4 from 42 to 129 mmolCH4 g−1 h−1 was achieved by applying a liquid limitation compare with the reference state. Finally, a verification experiment was done to verify the feeding strategy transferability to a different process configuration. This evidenced the ratio of the fed KH2PO4 to rx (R(FKH2PO4/rx has an appropriate parameter for scaling feeds in a continuous gas limited BMPP. In the verification experiment CH4 was produced in a single bioreactor step at a methane evolution rate (MER of   132 mmolCH4*L−1*h−1 at a CH4 purity of 93 [Vol.%].

  13. Nitrous oxide and methane emissions during storage of dewatered digested sewage sludge.

    Science.gov (United States)

    Willén, Agnes; Rodhe, Lena; Pell, Mikael; Jönsson, Håkan

    2016-12-15

    This study investigated the effect on greenhouse gas emissions during storage of digested sewage sludge by using a cover during storage or applying sanitisation measures such as thermophilic digestion or ammonia addition. In a pilot-scale storage facility, nitrous oxide and methane emissions were measured on average twice monthly for a year, using a closed chamber technique. The thermophilically digested sewage sludge (TC) had the highest cumulative emissions of nitrous oxide (1.30% of initial total N) followed by mesophilically digested sewage sludge stored without a cover (M) (0.34%) and mesophilically digested sewage sludge stored with a cover (MC) (0.19%). The mesophilically digested sewage sludge sanitised with ammonia and stored with a cover (MAC) showed negligible cumulative emissions of nitrous oxide. Emissions of methane were much lower from TC and MAC than from M and MC. These results indicate that sanitisation by ammonia treatment eliminates the production of nitrous oxide and reduces methane emissions from stored sewage sludge, and that thermophilic digestion has the potential to reduce the production of methane during storage compared with mesophilic digestion. The results also indicate a tendency for lower emissions of nitrous oxide and higher emissions of methane from covered sewage sludge compared with non-covered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.

    Science.gov (United States)

    Park, Jungyu; Lee, Beom; Tian, Donjie; Jun, Hangbae

    2018-01-01

    A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    DEFF Research Database (Denmark)

    Panichnumsin, Pan; Nopharatana, Annop; Ahring, Birgitte Kiær

    2010-01-01

    (-3) d(-1) and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP......Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic......:Alkalinity ratio methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth...

  16. Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Fatemeh Azadian

    2017-06-01

    Full Text Available The acidophilic and thermophilic cellulase would facilitate the conversion of lignocellulosic biomass to biofuel. In this study, Bacillus sonorensis HSC7 isolated as the best thermophilic cellulose degrading bacterium from Gorooh hot spring. 16S rRNA gene sequencing showed that, this strain closely related to the B. sonorensis. CMCase production was considered under varying environmental parameters. Results showed that, sucrose and (NH42SO4 were obtained as the best carbon and nitrogen sources for CMCase production. B. sonorensis HSC7 produced CMCase during the growth in optimized medium supplemented with agricultural wastes as sole carbon sources. The enzyme was active with optimum temperature of 70 °C and the optimum CMCase activity and stability observed at pH 4.0 and 5.0, respectively. These are characteristics indicating that, this enzyme could be an acidophilic and thermophilic CMCase. Furthermore, the CMCase activity improved by methanol (166%, chloroform (152%, while it was inhibited by DMF (61%. The CMCase activity was enhanced in the presence of Mg+2 (110%, Cu+2 (116%, Triton X-100 (118% and it retained 57% of its activity at 30% NaCl. The compatibility of HSC7 CMCase varied for each laundry detergent, with higher stability being observed in the presence of Taj® and darya®. This enzyme, that is able to work under extreme conditions, has potential applications in various industries.

  17. Prevalence of Thermophilic Campylobacter in Cattle Production at Slaughterhouse Level in France and Link Between C. jejuni Bovine Strains and Campylobacteriosis

    Directory of Open Access Journals (Sweden)

    Amandine Thépault

    2018-03-01

    significantly lower in cattle. Moreover, significant overlap was observed between genotypes from both origins, with 3 of the 4 main cattle clusters present in human isolates. This study provides new insights on the epidemiology of thermophilic Campylobacter and C. jejuni in cattle production in France and their potential implication in human infection.

  18. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5–9-fold increase...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  19. Production of high concentration of L-lactic acid from cellobiose by thermophilic Bacillus coagulans WCP10-4.

    Science.gov (United States)

    Ong, Shufen Angeline; Ng, Zhi Jian; Wu, Jin Chuan

    2016-07-01

    Thermophilic Bacillus coagulans WCP10-4 is found to be able to convert cellobiose to optically pure L-lactic acid. Its β-glucosidase activity is detected in whole cells (7.3 U/g dry cells) but not in culture medium, indicating the intracellular location of the enzyme. Its β-glucosidase activity is observed only when cultured using cellobiose as the sole carbon source, indicating that the expression of this enzyme is tightly regulated in cells. The enzyme is most active at 50 °C and pH 7.0. The supplement of external β-glucosidase during fermentation of cellobiose (106 g/l) by B. coagulans WCP10-4 increased the fermentation time from 21 to 23 h and decreased the lactic acid yield from 96.1 to 92.9 % compared to the control without β-glucosidase supplementation. B. coagulans WCP10-4 converted 200 g/l of cellobiose to 196.3 g/l of L-lactic acid at a yield of 97.8 % and a productivity of 7.01 g/l/h. This result shows that B. coagulans WCP10-4 is a highly efficient strain for converting cellobiose to L-lactic acid without the need of supplementing external β-glucosidases.

  20. Assessment of wet explosion as a pretreatment method to enhance methane production from agricultural residues and energy crops

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis

    2011-01-01

    In the present study, wet explosion has been studied as a pretreatment method for increasing the methane yield from wheat straw, miscantus and willow. Among the three biomasses tested, wheat straw and miscanthus were the most promising in terms of methane production, yielding around 265 m...... not necessarily imply increased methane yield....

  1. Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-15

    The objective of this study was to investigate the effect of the feed-to-microbe (F/M) ratios on anaerobic digestion of Chinese cabbage waste (CCW) generated from a kimchi factory. The batch test was conducted for 96 days under mesophilic (36.5 °C) (Experiment I) and thermophilic (55 °C) conditions (Experiment II) at F/M ratios of 0.5, 1.0 and 2.0. The first-order kinetic model was evaluated for methane yield. The biogas yield in terms of volatile solids (VS) added increased from 591 to 677 mL/g VS under mesophilic conditions and 434 to 639 mL/g VS under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. Similarly, the volumetric biogas production increased from 1.479 to 6.771 L/L under mesophilic conditions and from 1.086 to 6.384 L/L under thermophilic conditions when F/M ratio increased from 0.5 to 2.0. The VS removal increased from 59.4 to 75.6% under mesophilic conditions and from 63.5 to 78.3% under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The first-order kinetic constant (k, 1/day) decreased under the mesophilic temperature conditions and increased under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The difference between the experimental and predicted methane yield was in the range of 3.4-14.5% under mesophilic conditions and in the range of 1.1-3.0% under thermophilic conditions. The predicted methane yield derived from the first-order kinetic model was in good agreement with the experimental results. Published by Elsevier Ltd.

  2. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...... hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion...... of 5% pork by-products mixed with pig manure at 37 degrees C showed 40% higher methane production compared to digestion of manure alone....

  3. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2016-01-01

    Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Key factors influencing the potential of catch crops for methane production

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Fernandez-Varela, Raquel; Uellendahl, Hinrich

    2014-01-01

    explained up to 84.6% and 71.6% of the total variation for 2010 and 2011 samples, respectively. Specific methane yield, climate conditions (rainfall and temperature) and total nitrogen in the biomass were the variables classifying the different catch crops. Catch crops in the Brassicaceae and Graminaceae......Catch crops are grown in crop rotation primarily for soil stabilization. The excess biomass of catch crops was investigated for its potential as feedstock for biogas production. Ten variables affecting catch crop growth and methane potential were evaluated. Field trials and methane potential were...... studied for 14 different catch crops species, with 19 samples harvested in 2010 and 36 harvested in 2011. Principal component analysis was applied to the data to identify the variables characterizing the potential for the different catch crops species for methane production. Two principal components...

  6. Method for determination of methane potentials of solid organic waste

    International Nuclear Information System (INIS)

    Hansen, Trine L.; Schmidt, Jens Ejbye; Angelidaki, Irini; Marca, Emilia; Jansen, Jes la Cour; Mosboek, Hans; Christensen, Thomas H.

    2004-01-01

    A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 deg. C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH 4 /g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH 4 /g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH 4 /g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested

  7. Sequential Statistical Optimization of Media Components for the Production of Glucoamylase by Thermophilic Fungus Humicola grisea MTCC 352

    Directory of Open Access Journals (Sweden)

    Vinayagam Ramesh

    2014-01-01

    Full Text Available Glucoamylase is an industrially important enzyme which converts soluble starch into glucose. The media components for the production of glucoamylase from thermophilic fungus Humicola grisea MTCC 352 have been optimized. Eight media components, namely, soluble starch, yeast extract, KH2PO4, K2HPO4, NaCl, CaCl2, MgSO4·7H2O, and Vogel’s trace elements solution, were first screened for their effect on the production of glucoamylase and only four components (soluble starch, yeast extract, K2HPO4, and MgSO4·7H2O were identified as statistically significant using Plackett-Burman design. It was fitted into a first-order model (R2=0.9859. Steepest ascent method was performed to identify the location of optimum. Central composite design was employed to determine the optimum values (soluble starch: 28.41 g/L, yeast extract: 9.61 g/L, K2HPO4: 2.42 g/L, and MgSO4·7H2O: 1.91 g/L. The experimental activity of 12.27 U/mL obtained was close to the predicted activity of 12.15. High R2 value (0.9397, low PRESS value (9.47, and AARD values (2.07% indicate the accuracy of the proposed model. The glucoamylase production was found to increase from 4.57 U/mL to 12.27 U/mL, a 2.68-fold enhancement, as compared to the unoptimized medium.

  8. Syngas production from the reforming of methane over catalysts

    Indian Academy of Sciences (India)

    FARIS A J AL-DOGHACHI

    2017-11-11

    Nov 11, 2017 ... NixO (x= 0, 0.03, 0.07, 0.15; 1 wt% Co each), we performed the dry reforming of methane. The catalysts were prepared by K2CO3 co-precipitation from aqueous nickel nitrate hexahydrate and magnesium nitrate hexahydrate. Impregnation of cobalt(II)acetylacetonate onto MgO-NiO was then conducted.

  9. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    Science.gov (United States)

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-08-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  10. Microbial diversity and dynamics during methane production from municipal solid waste.

    Science.gov (United States)

    Bareither, Christopher A; Wolfe, Georgia L; McMahon, Katherine D; Benson, Craig H

    2013-10-01

    The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry

    International Nuclear Information System (INIS)

    Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y.

    2017-01-01

    Highlights: • The addition of trace metals in form of nanoparticles reduced the lag phase. • Nanoparticles reduced time to achieve the highest biogas and methane production. • Biogas and methane production were proportional to nanoparticles concentration. • Nanoparticles biostimulate the methanogenic bacteria and increase their activity. - Abstract: Nanoparticles (NPs) were hypothesized to enhance the anaerobic process and to accelerate the slurry digestion, which increases the biogas and methane production. The effects of NPs on biogas and methane production were investigated using a specially designed batch anaerobic system. For this purpose, a series of 2 L biodigesters were manufactured and implemented to study the effects of Cobalt (Co) and Nickel (Ni) nanoparticles with different concentrations on biogas and methane production. The best results of NPs additives were determined based on the statistical analysis (Least Significant Difference using M-Stat) of biogas and methane production, which were 1 mg/L Co NPs and 2 mg/L Ni NPs (p < 0.05). These NPs additives delivered the highest biogas and methane yields in comparison with their other concentrations (0.5, 1, and 2 mg/L), their salts (CoCl 2 , and NiCl 2 ) and the control. Furthermore, the addition of 1 mg/L Co NPs and 2 mg/L Ni NPs significantly increased the biogas volume (p < 0.05) by 1.64 and 1.74 times the biogas volume produced by the control, respectively. Moreover, the aforementioned additives significantly increased the methane volume (p < 0.05) by 1.86 and 2.01 times the methane volume produced by the control, respectively. The highest specific biogas and methane production were attained with 2 mg/L Ni NPs (p < 0.05), and were 614.5 ml Biogas g −1 VS and 361.6 ml CH 4 g −1 VS, respectively compared with the control which yielded only 352.6 ml Biogas g −1 VS and 179.6 ml CH 4 g −1 VS.

  12. Physiology and Genetics of Biogenic Methane-Production from Acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sowers, Kevin R

    2013-04-04

    Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdh::lacZ operon fusion. Results of this study will reveal whether this critical

  13. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  14. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  15. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...... production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed...

  16. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

    Science.gov (United States)

    Oremland, R.S.; Marsh, L.M.; Polcin, S.

    1982-01-01

    It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.

  17. Improving methane production using hydrodynamic cavitation as pre-treatment

    OpenAIRE

    Abrahamsson, Louise

    2016-01-01

    To develop anaerobic digestion (AD), innovative solutions to increase methane yields in existing AD processes are needed. In particular, the adoption of low energy pre-treatments to enhance biomass biodegradability is needed to provide efficient digestion processes increasing profitability. To obtain these features, hydrodynamic cavitation has been evaluated as an innovative solutions for AD of waste activated sludge (WAS), food waste (FW), macro algae and grass, in comparison with steam expl...

  18. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  19. An efficient method to improve the production of methane from anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Li, Xiaolan; Xu, Xueqin; Huang, Shansong; Zhou, Yun; Jia, Haijiang

    2017-10-01

    Methane production from waste activated sludge (WAS) anaerobic digestion is always low due to slow hydrolysis rate and inappropriate ratio of carbon to nitrogen (C/N). In this work, a novel approach, i.e., co-digestion of WAS and tobacco waste (TW) using ozone pretreatment, to greatly enhance the production of methane is reported. Experimental results showed the optimal C/N and ozone dosage for methane production was 24:1 and 90 mg/g suspended solids, and the corresponding methane production was 203.6 mL/g volatile suspended solids, which was 1.3-fold that in mono-WAS digestion. Further investigation showed the co-digestion of WAS and TW was beneficial to the consumptions of protein and cellulose; also, the presence of ozone enhanced the disruption of organic substrates and production of short chain fatty acids, which provided sufficient digestion substrates for methane generation. Analysis of microbial community structure suggested that members of the phyla Bacteroidetes and Firmicutes were the dominant species when ozone pretreatment was applied. The findings obtained in this work might be of great importance for the treatment of WAS and TW.

  20. Effects of Geraniol and Camphene on in Vitro Rumen Fermentation and Methane Production

    Directory of Open Access Journals (Sweden)

    Joch M.

    2017-06-01

    Full Text Available The objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1 on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre. The ionophore antibiotic monensin (8 mg/l was used as positive control. Compared to control, geraniol significantly (P 0.05 methane production and slightly decreased (P < 0.05 VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.

  1. Coalbed methane production base established in Southeast Kansas

    International Nuclear Information System (INIS)

    Stoeckinger, W.T.

    1992-01-01

    This paper reports that revenue from coalbed methane gas sales is growing and currently far exceeds that of what little conventional gas is produced in southeastern Kansas. And this only 2-1/2 years after Stroud Oil Properties, Wichita, brought in the first coalbed methane well in the Sycamore Valley in Montgomery County 6 miles north of Independence. Another operator contributing to the success is Conquest Oil, Greeley, Colo. Conquest acquired a lease with 20 old wells near Sycamore, recompleted five of them in Weir coal, and has installed a compressor. It hopes to being selling a combined 300 Mcfd soon. Great Eastern Energy, Denver, reportedly can move 2 MMcfd from its Sycamore Valley holdings. The fever is spreading into Northeast Kansas, where a venture headed by Duncan Energy Co. and Farleigh Oil Properties, also of Denver, plan 12 coalbed methane wildcats. The two companies received in October 1991 from the Kansas Corporation Commission (KCC) a 40 acre well spacing for seven counties and an exclusion from burdensome gas testing procedures. The test procedures are on the books but not applicable to coal gas wells

  2. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    DEFF Research Database (Denmark)

    De Abreu, Angela Alexandra Valente; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2012-01-01

    .0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. DGGE results revealed no significant difference on the bacterial community composition between operational periods...... and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5. Conclusions...... Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency...

  3. Temperature response of methane production in liquid manures and co-digestates

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olsen, Anna Berg; Petersen, Søren O.

    2016-01-01

    Intensification of livestock production makes correct estimation of methanogenesis in liquidmanure increasingly important for inventories of CH4 emissions. Such inventories currently rely on fixed methane conversion factors as knowledge gaps remain with respect to detailed temperature responses...... gradient incubator and CH4 production was measured by gas chromatographic analysis of headspace gas after a 17-h incubation period. Methane production potentials at 5–37 °C were described by the Arrhenius equation (modelling efficiencies, 79.2–98.1%), and the four materials showed a consistent activation...

  4. Potential of biogas and methane production from anaerobic digestion of poultry slaughterhouse effluent

    Directory of Open Access Journals (Sweden)

    Natália da Silva Sunada

    2012-11-01

    Full Text Available The objective of this study was to evaluate the efficiency of anaerobic digestion on the treatment of effluent from poultry slaughterhouse. The experiment was conducted at the Laboratory of Waste Recycling from Animal Production/FCA/UFGD. During four weeks, eight experimental digesters, semi-continuous models, were loaded and set according to the hydraulic retention time (HRT of 7, 14, 21 and 28 days, and according to the solid fraction treatment, separated with 1 mm sieve or without separation. The average weekly production of biogas and methane as well as the methane concentrations, the potential production per amount of chemical oxygen demand (COD added and reduced, the concentrations of N, P and K at the beginning and end of process, and the most likely numbers of total and thermotolerant coliforms were evaluated. For data analysis, a completely randomized design was performed in a 4 × 2 factorial arrangement (4 HRT: 7, 14, 21 and 28 days and separation with 1 mm sieve or without separation, with repetition over time. The highest production of biogas and methane was statistically significant for the HRT of 7 and 14 days (5.29 and 2.38 L of biogas and 4.28 and 1.73 L of methane, respectively. There was an interaction between HRT and the separation of the solid with sieve and the highest production was obtained in the treatment without separation. Similar behavior was observed for the potential production with a maximum of 0.41 m³ methane.kg-1 COD added with an HRT of 7 days without separation of the solid fraction. The separation of the solid fraction is not recommended in the pretreatment of liquid effluent from poultry slaughterhouse, once the potential for production and production of methane and biogas were reduced with this treatment.

  5. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  6. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    NARCIS (Netherlands)

    Ozgur, E.; Afsar, N.; Vrije, de G.J.; Yucel, M.; Gunduz, U.; Claassen, P.A.M.; Eroglu, I.

    2010-01-01

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous

  7. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  8. Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation.

    Science.gov (United States)

    Martin, N; Guez, M A U; Sette, L D; Da Silva, R; Gomes, E

    2010-01-01

    Thermophilic organisms produce thermostable enzymes, which have a number of applications, justifying the interest in the isolation of new thermophilic strains and study of their enzymes. Thirty-four thermophilic and thermotolerant fungal strains were isolated from soil, organic compost, and an industrial waste pile based on their ability to grow at 45 degrees C and in a liquid medium containing pectin as the only carbon source. Among these fungi, 50% were identified at the genus level as Thermomyces, Aspergillus, Monascus, Chaetomium, Neosartoria, Scopulariopsis, and Thermomucor. All isolated strains produced pectinase during solid-state fermentation (SSF). The highest polygalacturonase (PG) activity was obtained in the culture medium of thermophilic strain N31 identified as Thermomucor indicae-seudaticae. Under SSF conditions on media containing a mixture of wheat bran and orange bagasse (1:1) at 70% of initial moisture, this fungus produced the maximum of 120 U/ml of exo-PG, while in submerged fermentation (SmF) it produced 13.6 U/ml. The crude PG from SmF was more thermostable than that from SSF and exhibited higher stability in acidic pH.

  9. Co-digestion of solid waste: Towards a simple model to predict methane production.

    Science.gov (United States)

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  11. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  13. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  14. Enhanced methane production from pig slurry with pulsed electric field pre-treatment.

    Science.gov (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2018-02-01

    Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m 3 ). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m 3 . In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.

  15. Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement.

    Science.gov (United States)

    Zou, Lianpei; Ma, Chaonan; Liu, Jianyong; Li, Mingfei; Ye, Min; Qian, Guangren

    2016-12-01

    Anaerobic batch tests were performed to investigate the methane production enhancement and solid transformation rates from food waste (FW) by high voltage pulse discharge (HVPD) pretreatment. The total cumulative methane production with HVPD pretreatment was 134% higher than that of the control. The final volatile solids transformation rates of FW with and without HVPD pretreatment were 54.3% and 32.3%, respectively. Comparison study on HVPD pretreatment with acid, alkali and ultrasonic pretreatments showed that the methane production and COD removal rates of FW pretreated with HVPD were more than 100% higher than the control, but only about 50% higher can be obtained with other pretreatments. HVPD pretreatment could be a promising pretreatment method in the application of energy recovery from FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4 of a biological methane production (BMP process performed with Methanothermobacter marburgensis

    Directory of Open Access Journals (Sweden)

    Sébastien Bernacchi

    2014-12-01

    Full Text Available 1. Specht M, Brellochs J, Frick V, et al. (2010 Storage of renewable energy in the natural gas grid. Erdoel, Erdgas, Kohle 126: 342-345.2. Thauer RK, Kaster AK, Goenrich M, et al. (2010 Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79: 507-536.3. Liu Y, Whitman WB (2008 Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125: 171-189.4. Kaster AK, Goenrich M, Seedorf H, et al. (2011 More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea ID 973848: 1-23.5. Seifert AH, Rittmann S, Herwig C (2014 Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis Appl Energ 132: 155-162.6. Bernacchi S, Weissgram M, Wukovits W, et al. (2014 Process efficiency simulation for key process parameters in biological methanogenesis. AIMS bioengineering 1: 53-71.7. Thauer RK, Kaster AK, Seedorf H, et al. (2008 Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579-591.8. Schill N, van Gulik WM, Voisard D, et al. (1996 Continuous cultures limited by a gaseous substrate: development of a simple, unstructure mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng 51: 645-658.9. Jud G, Schneider K, Bachofen R (1997 The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J Ind Microbiol Biotechnol 19: 246-251.10. Tsao JH, Kaneshiro SM, Yu SS, et al. (1994 Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43: 258-261.11. Schill N, van Gulik WM, Voisard D, et al. (1996 Continuous cultures limited by a gaseous substrate: development of a

  17. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods

    International Nuclear Information System (INIS)

    Rahim, Ismail; Nomura, Shinfuku; Mukasa, Shinobu; Toyota, Hiromichi

    2015-01-01

    This research involves two in-liquid plasma methods of methane hydrate decomposition, one using radio frequency wave (RF) irradiation and the other microwave radiation (MW). The ultimate goal of this research is to develop a practical process for decomposition of methane hydrate directly at the subsea site for fuel gas production. The mechanism for methane hydrate decomposition begins with the dissociation process of methane hydrate formed by CH 4 and water. The process continues with the simultaneously occurring steam methane reforming process and methane cracking reaction, during which the methane hydrate is decomposed releasing CH 4 into H 2 , CO and other by-products. It was found that methane hydrate can be decomposed with a faster rate of CH 4 release using microwave irradiation over that using radio frequency irradiation. However, the radio frequency plasma method produces hydrogen with a purity of 63.1% and a CH conversion ratio of 99.1%, which is higher than using microwave plasma method which produces hydrogen with a purity of 42.1% and CH 4 conversion ratio of 85.5%. - Highlights: • The decomposition of methane hydrate is proposed using plasma in-liquid method. • Synthetic methane hydrate is used as the sample for decomposition in plasma. • Hydrogen can be produced from decomposition of methane hydrate. • Hydrogen purity is higher when using radio frequency stimulation.

  18. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  19. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    DEFF Research Database (Denmark)

    Tomás, Ana Faria

    on the sugar composition of the rapeseed straw. This was 50 % and 14 % higher than the yield obtained with the bacteria or the yeast alone, respectively. When T. pentosaceus was immobilized in rapeseed straw, an improvement of 11 % in ethanol production was observed in batch mode. In continuous mode...... of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered......, it was shown that hydraulic retention time (HRT) affected ethanol yield, and a dramatic shift from ethanol to acetate and lactate production occurred at an HRT of 6 h. The maximum ethanol yield and concentration, 1.50 mol mol-1 consumed sugars and 12.4 g l-1, were obtained with an HRT of 12 h. The latter...

  20. Structure and activity of thermophilic methanogenic microbial communities exposed to quaternary ammonium sanitizer.

    Science.gov (United States)

    Fernandez-Bayo, Jesus D; Toniato, Juliano; Simmons, Blake A; Simmons, Christopher W

    2017-06-01

    Food processing facilities often use antimicrobial quaternary ammonium compound (QAC) sanitizers to maintain cleanliness. These QACs can end up in wastewaters used as feedstock for anaerobic digestion. The aim of this study was to measure the effect of QAC contamination on biogas production and structure of microbial communities in thermophilic digester sludge. Methane production and biogas quality data were analyzed in batch anaerobic digesters containing QAC at 0, 15, 50, 100 and 150mg/L. Increasing sanitizer concentration in the bioreactors negatively impacted methane production rate and biogas quality. Microbial community composition data was obtained through 16S rRNA gene sequencing from the QAC-contaminated sludges. Sequencing data showed no significant restructuring of the bacterial communities. However, significant restructuring was observed within the archaeal communities as QAC concentration increased. Further studies to confirm these effects on a larger scale and with a longer retention time are necessary. Copyright © 2016. Published by Elsevier B.V.

  1. Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production.

    Science.gov (United States)

    Lee, Jung-Yeol; Park, Jeong-Hoon; Park, Hee-Deung

    2017-10-01

    Direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea via conductive materials is reported as an efficient method to produce methane in anaerobic organic waste digestion. A voltage can be applied to the conductive materials to accelerate the DIET between two groups of microorganisms to produce methane. To evaluate this hypothesis, two sets of anaerobic serum bottles with and without applied voltage were used with a pair of graphite rods as conductive materials to facilitate DIET. Initially, the methane production rate was similar between the two sets of serum bottles, and later the serum bottles with an applied voltage of 0.39V showed a 168% higher methane production rate than serum bottles without an applied voltage. In cyclic voltammograms, the characteristic redox peaks for hydrogen and acetate oxidation were identified in the serum bottles with an applied voltage. In the microbial community analyses, hydrogenotrophic methanogens (e.g. Methanobacterium) were observed to be abundant in serum bottles with an applied voltage, while methanogens utilizing carbon dioxide (e.g., Methanosaeta and Methanosarcina) were dominant in serum bottles without an applied voltage. Taken together, the applied voltage on conductive materials might not be effective to promote DIET in methane production. Instead, it appeared to generate a condition for hydrogenotrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane

    International Nuclear Information System (INIS)

    Espinoza-Escalante, Froylan M.; Pelayo-Ortiz, Carlos; Navarro-Corona, Jose; Gonzalez-Garcia, Yolanda; Bories, Andre; Gutierrez-Pulido, Humberto

    2009-01-01

    The objective of this work was to study the effect of three operational parameters (pH, hydraulic retention time (HRT) and growing temperature) on a semi-continuous bioreactor treating Tequila's vinasses by anaerobic digestion (AD). The response was measured through four response variables: total reducing sugars (TRS) consumption, VFA's, hydrogen and methane production. Trials were done according to a factorial design. The experimental results were studied through a multiple response optimization (MRO) analysis to find single and multiple optimums for the above-mentioned variables. Mathematical models that can describe the effect of the operational parameters on each response variable were found. In this study it is shown that hydrogen production is favored at thermophilic growth (55 deg. C), operating the reactor at a slight acidic pH range and at the higher HRT in the boundaries of the experimental region

  3. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Escalante, Froylan M.; Pelayo-Ortiz, Carlos; Navarro-Corona, Jose; Gonzalez-Garcia, Yolanda [Department of Chemical Engineering, University of Guadalajara, Blvd. M. Garcia Barragan No. 1421, Guadalajara CP 44430 (Mexico); Bories, Andre [INRA-Unite Experimentale de Pech-Rouge, 11430 Gruissan (France); Gutierrez-Pulido, Humberto [Department of Mathematics, University of Guadalajara, Blvd. M. Garcia Barragan No. 1421, Guadalajara CP 44430 (Mexico)

    2009-01-15

    The objective of this work was to study the effect of three operational parameters (pH, hydraulic retention time (HRT) and growing temperature) on a semi-continuous bioreactor treating Tequila's vinasses by anaerobic digestion (AD). The response was measured through four response variables: total reducing sugars (TRS) consumption, VFA's, hydrogen and methane production. Trials were done according to a factorial design. The experimental results were studied through a multiple response optimization (MRO) analysis to find single and multiple optimums for the above-mentioned variables. Mathematical models that can describe the effect of the operational parameters on each response variable were found. In this study it is shown that hydrogen production is favored at thermophilic growth (55 C), operating the reactor at a slight acidic pH range and at the higher HRT in the boundaries of the experimental region. (author)

  4. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  5. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    anaerobic bacterial strains growing optimally at 70-80degreesC for their ethanol production from D-Xylose. The new isolates came from different natural and man-made systems such as hot springs, paper pulp mills and brewery waste water. The test was composed of three different steps; (i) test for conversion...

  6. Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment

    Directory of Open Access Journals (Sweden)

    Altaf Ahmed Simair

    2017-06-01

    Full Text Available The high cost of fermentation media is one of the technical barriers in amylase production from microbial sources. Amylase is used in several industrial processes or industries, for example, in the food industry, the saccharification of starchy materials, and in the detergent and textile industry. In this study, marine microorganisms were isolated to identify unique amylase-producing microbes in starch agar medium. More than 50 bacterial strains with positive amylase activity, isolated from marine water and soil, were screened for amylase production in starch agar medium. Bacillus sp. BCC 021-50 was found to be the best amylase-producing strain in starch agar medium and under submerged fermentation conditions. Next, fermentation conditions were optimized for bacterial growth and enzyme production. The highest amylase concentration of 5211 U/mL was obtained after 36 h of incubation at 50 °C, pH 8.0, using 20 g/L molasses as an energy source and 10 g/L peptone as a nitrogen source. From an application perspective, crude amylase was characterized in terms of temperature and pH. Maximum amylase activity was noted at 70 °C and pH 7.50. However, our results show clear advantages for enzyme stability in alkaline pH, high-temperature, and stability in the presence of surfactant, oxidizing, and bleaching agents. This research contributes towards the development of an economical amylase production process using agro-industrial residues.

  7. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov

    2008-01-01

    ) within a wide range of pH (4.5-8) and temperature (45-7 degrees C), with the optimal temperature 60 degrees C and optimal initial pH about 6.25. Maximum of H(2) production rate was registered from hour 8 to hour 16 in late exponential phase. The H(2) production was drastically reduced in a prolonged...... fermentation (24 h) and stopped at pH 4.5 due to the accumulation of organic acids. The maximum H(2) production yield and rate at sucrose concentration of 20 gl(-1), pH 6.25 and temperature 60 degrees C were 2.53 mol H(2) mol(-1) hexose and 12.12 mmol H(2) l(-1) h(-1), respectively. Organic nitrogen amended...... medium improved the H(2) production with 68% compared to inorganic nitrogen amended medium. The strain performed ethanol-acetate type fermentation in inorganic nitrogen amended medium, while it performed butyrate-acetate type fermentation in organic nitrogen amended medium. (C) 2008 International...

  8. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production

    NARCIS (Netherlands)

    Caizán Juanarena, Leire; Heijne, Ter Annemiek; Buisman, Cees J.N.; Wal, van der Annemieke

    2016-01-01

    The use of renewable biomass for production of heat and electricity plays an important role in the circular economy. Degradation of wood biomass to produce heat is a clean and novel process proposed as an alternative to wood burning, and could be used for various heating applications. So far,

  9. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production

    NARCIS (Netherlands)

    Caizan Juanarena, Leire; ter Heijne, Annemiek; Buisman, Cees; Van der Wal, A.

    2016-01-01

    The use of renewable biomass for production of heat and electricity plays an important role in the circular economy. Degradation of wood biomass to produce heat is a clean and novel process proposed as an alternative to wood burning, and could be used for various heating applications. So far, wood

  10. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung Chung [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Huang, Chi-Yu.; Fu, Tzu-Ning [Department of Environmental Engineering and Science, Tunghai University, Taichung 407 (China); Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-08-15

    Hydrogen gas was produced via dark fermentation from natural cellulosic materials and {alpha}-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H{sub 2} production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of {alpha}-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H{sub 2} via dark fermentation using seven H{sub 2}-producing bacterial isolates. The bioH{sub 2} production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (C{sub RS,o}) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H{sub 2}-producing efficiency with a cumulative H{sub 2} production of 270 ml/l from {alpha}-cellulose hydrolysate (C{sub RS,o} = 4.52 mg/l) and a H{sub 2} yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (C{sub RS,o} = 1.22 g/l). (author)

  11. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    Science.gov (United States)

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L.

  12. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    Science.gov (United States)

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of Plant Secondary Metabolites on Methane Production and Fermentation Parameters in In vitro Ruminal Cultures

    Directory of Open Access Journals (Sweden)

    Mihaela Giuburunca

    2014-10-01

    Full Text Available Enteric fermentation process is of concern worldwide for its contribution to global warming. It is known that ruminant animals, due to natural fermentation process contribute substantially to the increase in methane production. Methanogenesis process represents besides its contribution to greenhouse gases emissions an energy loss to the animal. To reduce ruminal methane productions in an ecologically and sustainable way, many attempts have been initiated, such as: uses of chemicals additives or ionophore antibiotics, defaunation process or immunization against ruminal methanogenesis. In the last years, a new strategy has been evaluated whether plant secondary metabolites can be used as natural additives to reduce ruminal methane emissions. The present study has been conducted to investigate the effects of trans-cinnamic, caffeic, p-coumaric acids and catechin hydrate, four plant secondary metabolites (PSMs on methane production and fermentation in in vitro ruminal cultures. The four PSMs were added anaerobically in a 6 mM concentration to 100 ml serum bottles containing 500 mg grass hay as a substrate, 10 ml rumen fluid collected from a fistulated sheep before morning feeding and 40 ml 141 DSM culture medium. The bottles were incubated at 39 ̊C. After 24 h, the following variables were measured: total gas volume, pH, methane and volatile fatty acids (VFAs production. The results showed that caffeic (p = 0.058 and p-coumaric (p = 0.052 acids tended to decrease methane production in comparison to control but the decrease was not statistic significantly at α= 0.05. The other two PSMs had no significant effect on methane production. Addition of PSMs did not affected the total gas volume, the pH and VFAs profile (P>0.05 in relation to the control (no PSM added. In conclusion, caffeic and p-coumaric acids in 6 mM concentration showed some promising effects for decreasing ruminal methane emissions without affecting ruminal fermentation parameters but

  14. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep.

    Science.gov (United States)

    van Zijderveld, S M; Gerrits, W J J; Apajalahti, J A; Newbold, J R; Dijkstra, J; Leng, R A; Perdok, H B

    2010-12-01

    Twenty male crossbred Texel lambs were used in a 2 × 2 factorial design experiment to assess the effect of dietary addition of nitrate (2.6% of dry matter) and sulfate (2.6% of dry matter) on enteric methane emissions, rumen volatile fatty acid concentrations, rumen microbial composition, and the occurrence of methemoglobinemia. Lambs were gradually introduced to nitrate and sulfate in a corn silage-based diet over a period of 4 wk, and methane production was subsequently determined in respiration chambers. Diets were given at 95% of the lowest ad libitum intake observed within one block in the week before methane yield was measured to ensure equal feed intake of animals between treatments. All diets were formulated to be isonitrogenous. Methane production decreased with both supplements (nitrate: -32%, sulfate: -16%, and nitrate+sulfate: -47% relative to control). The decrease in methane production due to nitrate feeding was most pronounced in the period immediately after feeding, whereas the decrease in methane yield due to sulfate feeding was observed during the entire day. Methane-suppressing effects of nitrate and sulfate were independent and additive. The highest methemoglobin value observed in the blood of the nitrate-fed animals was 7% of hemoglobin. When nitrate was fed in combination with sulfate, methemoglobin remained below the detection limit of 2% of hemoglobin. Dietary nitrate decreased heat production (-7%), whereas supplementation with sulfate increased heat production (+3%). Feeding nitrate or sulfate had no effects on volatile fatty acid concentrations in rumen fluid samples taken 24h after feeding, except for the molar proportion of branched-chain volatile fatty acids, which was higher when sulfate was fed and lower when nitrate was fed, but not different when both products were included in the diet. The total number of rumen bacteria increased as a result of sulfate inclusion in the diet. The number of methanogens was reduced when nitrate was

  15. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor.

    Science.gov (United States)

    España-Gamboa, Elda I; Mijangos-Cortés, Javier O; Hernández-Zárate, Galdy; Maldonado, Jorge A Domínguez; Alzate-Gaviria, Liliana M

    2012-11-21

    A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  16. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    Directory of Open Access Journals (Sweden)

    España-Gamboa Elda I

    2012-11-01

    Full Text Available Abstract Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD removal efficiency was 69% at an optimum organic loading rate (OLR of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  17. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin

    2017-10-01

    This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Assessment of metabolic properties and kinetic parameters of methanogenic sludge by on-line methane production rate measurements

    NARCIS (Netherlands)

    Gonzalez-Gil, G.; Kleerebezem, R.; Lettinga, G.

    2002-01-01

    This report presents a new approach to studying the metabolic and kinetic properties of anaerobic sludge from single batch experiments. The two main features of the method are that the methane production is measured on-line with a relatively cheap system, and that the methane production data can be

  19. Increasing the concentration of linolenic acid in diets fed to Jersey cows in late lactation does not affect methane production

    Science.gov (United States)

    Oil and fat products has shown to reduce methane, however, limited research compares different fat sources effects on methane production. A study using 8 multiparous (325 ± 17 DIM) (mean ± SD) lactating dairy cows, was conducted to determine effects of feeding canola/tallow vs. extruded byproduct co...

  20. Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater.

    Science.gov (United States)

    Huang, Lu; Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Liao, Xindi; Liang, Juanboo; Wu, Yinbao

    2014-10-01

    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (pproduction under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester. Copyright © 2014. Published by Elsevier B.V.

  1. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses

    OpenAIRE

    Kulivand, Mahya; Kafilzadeh, Farokh

    2015-01-01

    Eight different grasses collected from pastures of the Kermanshah province (Kermanshah, Iran), at mid-vegetative stage were used to study the relationships between their chemical compositions, kinetic parameters of in vitro gas production and rumen methane production. There was a positive correlation (r = 0.62, p < 0.05) between crude protein (CP) content of grasses and total gas production (A) at 96h incubation. Negative correlations were also observed between acid detergent fiber (ADF) cont...

  3. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  4. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-12-01

    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  5. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate t...

  6. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Roč. 9, č. 7 (2014), e102659 E-ISSN 1932-6203 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : methane production * methanogenic Archaea * digestive tracts of millipedes Subject RIV: EG - Zoology Impact factor: 3.234, year: 2014

  7. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were e...

  8. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions

    NARCIS (Netherlands)

    Hatew, B.; Hayot Carbonero, C.; Stringano, E.; Sales, L.F.; Smith, L.M.J.; Mueller-Harvey, I.; Hendriks, W.H.; Pellikaan, W.F.

    2015-01-01

    Sainfoin is a non-bloating temperate forage legume with a moderate-to-high condensed tannin (CT) content. This study investigated whether the diversity of sainfoin accessions in terms of CT structures and contents could be related to rumen in vitro gas and methane (CH4) production and fermentation

  9. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics

    NARCIS (Netherlands)

    HUYEN, N. T.; FRYGANAS, C.; UITTENBOGAARD, G.; MUELLER-HARVEY, I.; VERSTEGEN, M. W. A.; HENDRIKS, W. H.; PELLIKAAN, W. F.

    2016-01-01

    An in vitro study was conducted to investigate the effects of condensed tannin (CT) structural properties, i.e. average polymer size (or mean degree of polymerization), percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane (CH 4 ) production and fermentation

  10. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics

    NARCIS (Netherlands)

    Huyen, N.T.; Fryganas, C.; Uittenbogaard, G.; Mueller-Harvey, I.; Verstegen, M.W.A.; Hendriks, W.H.; Pellikaan, W.F.

    2016-01-01

    An in vitro study was conducted to investigate the effects of condensed tannin (CT) structural properties, i.e. average polymer size (or mean degree of polymerization), percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane (CH4) production and

  11. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea

    DEFF Research Database (Denmark)

    Lloyd, Karen; Teske, Andreas; Alperin, Marc J.

    2011-01-01

    versus methane production in sediments from the White Oak River estuary, North Carolina. ANME-1 consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA), the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 exist as single rod...

  12. Heat production, respiratory quotient, and methane loss subsequent to LPS challenge in beef heifers

    Science.gov (United States)

    Respiration calorimetry was used to measure energy utilization during an acute phase response (APR) to lipopolysaccharide (LPS). Eight Angus heifers (208 +/- 29.2 kg) were randomly assigned to one of two calorimeters in four 2-day periods for measurement of heat production (HP), methane (CH4), and r...

  13. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture

    NARCIS (Netherlands)

    Salvador, Andreia F.; Martins, Gilberto; Melle-Franco, Manuel; Serpa, Ricardo; Stams, Alfons J.M.; Cavaleiro, Ana J.; Pereira, M.A.; Alves, M.M.

    2017-01-01

    Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of

  14. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin

    2016-01-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate fro...

  15. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    KAUST Repository

    Siegert, Michael

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  16. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production

    DEFF Research Database (Denmark)

    Liu, Wenzong; Cai, Weiwei; Guo, Zechong

    2016-01-01

    Methane production rate (MPR) in waste activated sludge (WAS) digestion processes is typically limitedby the initial steps of complex organic matter degradation, leading to a limited MPR due to sludgefermentation speed of solid particles. In this study, a novel microbial electrolysis AD reactor (ME...

  17. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate...

  18. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    Science.gov (United States)

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  19. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  20. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells

    Directory of Open Access Journals (Sweden)

    Michael eSiegert

    2015-01-01

    Full Text Available High current densities in microbial electrolysis cells (MECs result from the predominance of various Geobacter species on the anode. MECs inoculated from different sources often converge in terms of current production and predominance of Geobacter species despite variability in the inoculum community. Relatively less is known about the effects of inoculum source on methane gas production in MECs, and specifically whether archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD sludge dominated by acetoclastic Methanosaeta species, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% w/v resulted in the highest methane production rates (0.27 mL mL–1 cm–2, gas volume normalized by liquid volume and cathode projected area and highest peak current densities (0.5 mA cm–2 for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and qPCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  1. Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Rouez, Maxime; Crest, Marion; Trably, Eric; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-11-01

    Dry anaerobic digestion is a promising option for food waste treatment and valorization. However, accumulation of ammonia and volatile fatty acids often occurs, leading to inefficient processes and digestion failure. Co-digestion with cardboard may be a solution to overcome this problem. The effect of the initial substrate to inoculum ratio (0.25 to 1gVS·gVS -1 ) and the initial total solids contents (20-30%) on the kinetics and performance of dry food waste mono-digestion and co-digestion with cardboard was investigated in batch tests. All the conditions produced methane efficiently (71-93% of the biochemical methane potential). However, due to lack of methanogenic activity, volatile fatty acids accumulated at the beginning of the digestion and lag phases in the methane production were observed. At increasing substrate to inoculum ratios, the initial acid accumulation was more pronounced and lower cumulative methane yields were obtained. Higher amounts of soluble organic matter remained undegraded at higher substrate loads. Although causing slightly longer lag phases, high initial total solids contents did not jeopardize the methane yields. Cardboard addition reduced acid accumulation and the decline in the yields at increasing substrate loads. However, cardboard addition also caused higher concentrations of propionic acid, which appeared as the most last acid to be degraded. Nevertheless, dry co-digestion of food waste and cardboard in urban areas is demonstrated asan interesting feasible valorization option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S

    2014-01-01

    A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize...

  4. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    Science.gov (United States)

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  5. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    KAUST Repository

    Luo, Xi

    2014-08-05

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse- electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH 4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. © 2014 American Chemical Society.

  6. Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zverlov, Vladimir V.; Hiegl, Wolfgang; Koeck, Daniela E.; Koellmeier, Tanja; Schwarz, Wolfgang H. [Department of Microbiology, Technische Universitaet Muenchen, Freising-Weihenstephan (Germany); Kellermann, Josef [Max Planck Institute for Biochemistry, Am Klopferspitz, Martinsried (Germany)

    2010-12-15

    Adding plant biomass to a biogas reactor, hydrolysis is the first reaction step in the chain of biological events towards methane production. Maize silage was used to enrich efficient hydrolytic bacterial consortia from natural environments under conditions imitating those in a biogas plant. At 55-60 C a more efficient hydrolyzing culture could be isolated than at 37 C. The composition of the optimal thermophilic bacterial consortium was revealed by sequencing clones from a 16S rRNA gene library. A modified PCR-RFLP pre-screening method was used to group the clones. Pure anaerobic cultures were isolated. 70% of the isolates were related to Clostridium thermocellum. A new culture-independent method for identification of cellulolytic enzymes was developed using the isolation of cellulose-binding proteins. MALDI-TOF/TOF analysis and end-sequencing of peptides from prominent protein bands revealed cellulases from the cellulosome of C. thermocellum and from a major cellulase of Clostridium stercorarium. A combined culture of C. thermocellum and C. stercorarium was shown to excellently degrade maize silage. A spore preparation method suitable for inoculation of maize silage and optimal hydrolysis was developed for the thermophilic bacterial consortium. This method allows for concentration and long-term storage of the mixed culture for instance for inoculation of biogas fermenters. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Enhanced methane production of vinegar residue by response surface methodology (RSM).

    Science.gov (United States)

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2017-12-01

    As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This study applied central composite design of response surface methodology to investigate the influences of feed to inoculum ratio, organic loading, and initial pH on methane production and optimize anaerobic digestion condition. The maximum methane yield of 203.91 mL gVS -1 and biodegradability of 46.99% were obtained at feed to inoculum ratio of 0.5, organic loading of 31.49 gVS L -1 , and initial pH of 7.29, which was considered as the best condition. It has a very significant improvement of 69.48% for methane production and 52.02% for biodegradability compared with our previous study. Additionally, a high methane yield of 182.09 mL gVS -1 was obtained at feed to inoculum ratio of 1.5, organic loading of 46.22 gVS L -1 , and initial pH of 7.32. And it is more appropriate to apply this condition in industrial application owing to the high feed to inoculum ratio and organic loading. Besides, a significant interaction was found between feed to inoculum ratio and organic loading. This study maximized the methane production of vinegar residue and made a good foundation for further study and future industrial application.

  8. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    Science.gov (United States)

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.

    Science.gov (United States)

    Haas, Y de; Windig, J J; Calus, M P L; Dijkstra, J; Haan, M de; Bannink, A; Veerkamp, R F

    2011-12-01

    Mitigation of enteric methane (CH₄) emission in ruminants has become an important area of research because accumulation of CH₄ is linked to global warming. Nutritional and microbial opportunities to reduce CH₄ emissions have been extensively researched, but little is known about using natural variation to breed animals with lower CH₄ yield. Measuring CH₄ emission rates directly from animals is difficult and hinders direct selection on reduced CH₄ emission. However, improvements can be made through selection on associated traits (e.g., residual feed intake, RFI) or through selection on CH₄ predicted from feed intake and diet composition. The objective was to establish phenotypic and genetic variation in predicted CH₄ output, and to determine the potential of genetics to reduce methane emissions in dairy cattle. Experimental data were used and records on daily feed intake, weekly body weights, and weekly milk production were available from 548 heifers. Residual feed intake (MJ/d) is the difference between net energy intake and calculated net energy requirements for maintenance as a function of body weight and for fat- and protein-corrected milk production. Predicted methane emission (PME; g/d) is 6% of gross energy intake (Intergovernmental Panel on Climate Change methodology) corrected for energy content of methane (55.65 kJ/g). The estimated heritabilities for PME and RFI were 0.35 and 0.40, respectively. The positive genetic correlation between RFI and PME indicated that cows with lower RFI have lower PME (estimates ranging from 0.18 to 0.84). Hence, it is possible to decrease the methane production of a cow by selecting more-efficient cows, and the genetic variation suggests that reductions in the order of 11 to 26% in 10 yr are theoretically possible, and could be even higher in a genomic selection program. However, several uncertainties are discussed; for example, the lack of true methane measurements (and the key assumption that methane

  10. Low pressure microenvironments: Methane production at 50 mbar and 100 mbar by methanogens

    Science.gov (United States)

    Mickol, Rebecca L.; Kral, Timothy A.

    2018-04-01

    Low pressure is often overlooked in terms of possible biocidal effects when considering a habitable environment on Mars. Few experiments have investigated the ability for microorganisms to actively grow under low pressure conditions, despite the atmosphere being a location on Earth where organisms could be exposed to these pressures. Three species of methanogens (Methanobacterium formicicum, Methanosarcina barkeri, Methanococcus maripaludis) were tested for their ability to actively grow (demonstrate an increase in methane production and optical density) within low-pressure microenvironments at 50 mbar or 100 mbar. M. formicicum was the only species to demonstrate both an increase in methane and an increase in optical density during the low-pressure exposure period for experiments conducted at 50 mbar and 100 mbar. In certain experiments, M. barkeri showed an increase in optical density during the low-pressure exposure period, likely due to the formation of multicellular aggregates, but minimal methane production (<1%). During incubation following exposure to low pressure, cultures of all species resumed methane production and increased in optical density. Thus, low pressure may not be a biocidal factor for certain methanogen species, with growth possible under low-pressure conditions. Results indicate that low pressure exposure may just be inhibitory during the exposure itself, and metabolism may resume following incubation under more ideal conditions. Further work is needed to address growth/survival under Mars surface pressures.

  11. Waste lipids to energy: how to optimize methane production from long‐chain fatty acids (LCFA)

    Science.gov (United States)

    Alves, M. Madalena; Pereira, M. Alcina; Sousa, Diana Z.; Cavaleiro, Ana J.; Picavet, Merijn; Smidt, Hauke; Stams, Alfons J. M.

    2009-01-01

    Summary The position of high‐rate anaerobic technology (HR‐AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR‐AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long‐chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment. PMID:21255287

  12. Employing response surface methodology (RSM) to improve methane production from cotton stalk.

    Science.gov (United States)

    Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang

    2018-03-01

    China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.

  13. High rate production of hydrogen/methane from various substrates and wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2004-01-01

    To treat soluble and solid wastes and recover energy from them, high rate methane fermentation, especially using the UASB (upflow anaerobic sludge blanket) reactor, and hydrogen fermentation using various microorganisms and microbial consortia have been investigated intensively in Japan. In this chapter, recent works on high rate methane fermentation in Japan are reviewed, focusing on: 1) basic studies into the applicability of the UASB reactor for various substrates such as propionate, lactate, ethanol, glucose and phenol; 2) its applications to unfeasible conditions, such as lipid and protein containing wastes, low temperature and high salt-containing wastes; 3) progress made in the field of advanced UASB reactors, and; 4) research into methane fermentation from solid wastes, such as from cellulosic materials, municipal sewage sludge, and mud sediments. Following this, although hydrogen fermentation with photosynthetic microorganisms or anaerobic bacteria was researched, for this review we have focused on fermentative hydrogen production using strictly or facultative anaerobes and microbial consortia in Japan, since high rate production of hydrogen-methane via a two-stage process was judged to be more attractive for biological hydrogen production and wastewater treatments.

  14. Diets in methane emissions during rumination process in cattle production systems

    Directory of Open Access Journals (Sweden)

    Luz Elena Santacoloma Varón

    2011-05-01

    Full Text Available The population of ruminants in the world is increasing, since its products constitute a source of protein of high nutritional value for the human population; nevertheless, this increase, will contribute in great proportion to the global warming and to the deterioration of the ozone layer, since between the subproducts of the ruminal fermentation, carbonic gas and methane are found. &e last one is produced by the anaerobic bacteria present in the rumen that di'erent types of substrata use, principally H2 and CO2. &e action of the bacteria producers of methane depends to a great extent on the type of substrata presented in the diet, and of the chemical and physical characteristics of the same one. &erefore, it is possible to diminish the e'ects that the productive systems of ruminants have on the environment, o'ering the animals nutritional alternatives that besides reducing the emission of methane to the atmosphere, will also reduce the energetic losses that for this concept it presents in the ruminants. In the present review the idea of using forages of the tropic that contain secondary metabolics that could concern the population of protozoan’s combined with forages of high nutritional value is presented and the idea of obtaining very good proved productive results is possible to simultaneously diminishes the gas emission of methane to the atmosphere

  15. Stimulation Of The Methane Production With The Use Of Changing Of The Rock Massif Physical Conditions

    Directory of Open Access Journals (Sweden)

    Baev Mikhail

    2017-01-01

    Full Text Available The commercial coalbed methane production success is majorly defined by the effectiveness of the use of special gas inflow stimulation methods. The necessity of using of such methods issubject to the aspects of searching and displacement of methane within the coal compound. Theanalysis of the ways of methane production stimulation from virgin coal formations is given. The description of the process of hydraulic fracturing (fracturing as the most common stimulation method during the commercial coalbed methane production as well as its major advantages are presented. The present work provides data about the initiated laboratory research of sands collected from Kemerovo region deposits for the purpose of finding of the most prospective samples by means of anchoring of fractures. The prospectivity and ability to implement the hydraulic fracturing with the use of locally available sands acting as proppants are shown. The influence of the strain-stress state of the rock massif on the alteration of permeability and the necessity of its extension study with respect to different technological features of hydraulic fracturing is shown

  16. Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

    Science.gov (United States)

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia. PMID:25028969

  17. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    Science.gov (United States)

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  18. Enhancement of fermentative hydrogen production in an extreme-thermophilic (70°C) mixed-culture environment by repeated batch cultivation.

    Science.gov (United States)

    Lu, Wenjing; Fan, Gaoyuan; Zhao, Chenxi; Wang, Hongtao; Chi, Zifang

    2012-05-01

    Repeated batch cultivation was applied to enrich hydrogen fermentative microflora under extreme-thermophilic (70°C) environment. Initial inoculums received from a hydrogen producing reactor fed with organic fraction of household solid wastes. In total seven transfers was conducted and maximum hydrogen yield reached 296 ml H(2)/g (2.38 mol/mol) glucose and 252 ml H(2)/g (2.03 mol/mol) for 1 and 2 g/l glucose medium, respectively. It was found that hydrogen production was firstly decreased and got increased gradually from third generation. Acetate was found to be the main metabolic by-product in all batch cultivation. Furthermore, the diversity of bacterial community got decreased after repeated batch cultivation. It was proved that repeated batch cultivation was a good method to enhance the hydrogen production by enriching the mixed cultures of dominant species.

  19. Modelling and control of bio-methanization for energy production

    International Nuclear Information System (INIS)

    Hess, Jonathan

    2007-01-01

    Anaerobic digestion involves a complex ecosystem that progressively degrades the organic matter into carbon dioxide and (bio)methane. The biomethane is an highly energetic environmental friendly biofuel which can replace natural gas in the perspective of sustainable development. However biogas is still valorised below its potential. This is mainly due to a lack of dedicated methods that would ensure the anaerobic plant durability and the stability of the biogas composition. Two approaches are considered to improve liquid waste valorisation. On the one hand we develop methods to monitor anaerobic plants instabilities and prevent dysfunctions, and on the other hand we propose to control the biogas quality. These methods require accurate models to predict the process evolution. We propose a fine modeling of the liquid-gas exchange, and we show that the seeming transfer coefficient k L a depends on the biogas flow-rate. This leads to a linear relation between the dissolved CO 2 and the biogas quality, which is used to improve an existing model for anaerobic digestion. A risk index based on a stability analysis of a simple model is introduced. This approach is applied on a real anaerobic plant and we show that the criterion allows to detect a potential destabilisation, earlier than the usual monitored parameters (pH, VFA). Eventually we present a control strategy of the biogas quality based on the regulation of the digester alkalinity. Several control laws are experimentally validated on a pilot plant. (author) [fr

  20. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  1. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    Science.gov (United States)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that

  2. Methane production rates from natural organics of glacial lake clay and granitic groundwater

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Stroes-Gascoyne, S.; Hawkins, J.L.; Hamon, C.J.; Motycka, M.

    1996-05-01

    Engineered barrier materials are an integral part of the proposed Canadian concept for the disposal of used nuclear fuel or high level waste. Components of these barriers, such as the buffer and backfill clays surrounding the waste containers in a vault, and granitic groundwater, naturally contain small quantities of organic material (up to about 1.2 wt%). Despite high temperatures, space and water limitations and radiation effects, the question remains whether gas could be produced from these organics as a result of biological processes. Degradation of organic carbon by microbes can produce gases such as carbon dioxide (C0 2 ) and methane (CH 4 ). This work demonstrates that methane is produced in natural systems containing 2 . In deep fracture zone groundwater, the largest methane production rate was 0.19 mole %/day or 5 μg CH 4 /L groundwater per day, at STP. This can be compared with the methane production rate of 1 μg CH 4 /(kg clay · day) at STP in an earlier experiment containing added organic material. Using this rate of 5 pg CH 4 /(L groundwater · day) (3.75 μg C/(L groundwater · day)), all of the organic C in the groundwater, assuming it is equally bioavailable, would have been converted to CH 4 during the timeframe of this experiment. Enhanced methane production occurred with an increase in natural organic carbon, an increase in the microbe population and with the addition of Fe. Steady-state methane production rates of 10 to 25 μg CH 4 / L groundwater per day have been repeatedly observed in clay-free systems. The effects of microbial metabolism, the requirement for a facilitating consortium, the Eh, the pH, the salinity, the groundwater sulphate concentration, the presence of methanotrophs and the sorption effects of clay interlayers are discussed as possible explanations for the inhibition of methanogenesis and methane production in the presence of clay and crushed granite. (author). 49 refs., 11 tabs., 12 figs

  3. Assessment of methane emissions from oil and gas production pads using mobile measurements.

    Science.gov (United States)

    Brantley, Halley L; Thoma, Eben D; Squier, William C; Guven, Birnur B; Lyon, David

    2014-12-16

    A new mobile methane emissions inspection approach, Other Test Method (OTM) 33A, was used to quantify short-term emission rates from 210 oil and gas production pads during eight two-week field studies in Texas, Colorado, and Wyoming from 2010 to 2013. Emission rates were log-normally distributed with geometric means and 95% confidence intervals (CIs) of 0.33 (0.23, 0.48), 0.14 (0.11, 0.19), and 0.59 (0.47, 0.74) g/s in the Barnett, Denver-Julesburg, and Pinedale basins, respectively. This study focused on sites with emission rates above 0.01 g/s and included short-term (i.e., condensate tank flashing) and maintenance-related emissions. The results fell within the upper ranges of the distributions observed in recent onsite direct measurement studies. Considering data across all basins, a multivariate linear regression was used to assess the relationship of methane emissions to well age, gas production, and hydrocarbon liquids (oil or condensate) production. Methane emissions were positively correlated with gas production, but only approximately 10% of the variation in emission rates was explained by variation in production levels. The weak correlation between emission and production rates may indicate that maintenance-related stochastic variables and design of production and control equipment are factors determining emissions.

  4. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    Directory of Open Access Journals (Sweden)

    Kaushik Pal

    2015-09-01

    Full Text Available Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11, cereal and grass forages (n=11, and different straws and shrubs (n=12, which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01 among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter was lower (p<0.01 for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01 for shrubs than straws. Methane production was correlated (p<0.05 with concentrations of crude protein (CP, ether extract and non-fibrous carbohydrate (NFC negatively, and with neutral detergent (NDF and acid detergent fiber (ADF positively. Potential gas production was negatively correlated (p=0.04 with ADF, but positively (p<0.01 with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05, but by NDF and ADF negatively (p<0.05. Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05 positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease methane production.

  5. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhance...... hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction and volatile fatty acid (VFA) production at different hydraulic retention times (HRT......). A single-stage thermophilic (55°C) reactor R2 was used as control. VS reduction and biogas yield of the combined system was 78 – 89% and 640 – 790 ml/g-VS, respectively. While the VS reduction in the combined system was up to 7% higher than in the single-stage treatment, no increase in methane yield...

  6. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  7. Methane-rich syngas production from hydrocarbon fuels using multi-functional catalyst/capture agent

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Nicholas S.; Shekhawat, Dushyant; Berry, David A.; Surdoval, Wayne A.

    2017-02-07

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 400.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 400.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 400.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 400-900.degree. C. and pressures in excess of 10 atmospheres.

  8. Effect of Buffalo Dung to the Water Ratio on Production of Methane through Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2014-04-01

    Full Text Available Generation of methane from animal dung through AD (Anaerobic Digestion is the most feasible way to get energy from it. Pakistan has about 70 million heads of cattle and buffalos, and about 90 million heads of sheep and goats. The dung from these animals can overcome the energy crisis and can fulfill the future energy demands of Pakistan. In present study, buffalo dung is used as the substrate for anaerobic digestion process, whereas the production of methane was analyzed as the function of buffalo dung to water ratio. Six batch reactors with different buffalo dung to water ratios were incubated in the AMPTS (Automatic Methane Potential Test Setup for 51 days. The highest methane production was observed from the buffalo dung to water ratio of 2.0 i.e. 226.4 NmL/gVS loss , followed by 198.6 NmL/ gVS loss from the buffalo dung to the water ratio of 1.0. The suitable hydraulic retention time of the anaerobic digester treating buffalo dung was observed as 20 days

  9. Effects of continuous addition of nitrate to a thermophilic anaerobic digestion system

    International Nuclear Information System (INIS)

    Rivard, C.J.

    1983-01-01

    The biodegradation of complex organic matter is regulated partially by the ability to dump electrons which build up in the form of reduced nicotinamide adenine dinucleotide (NAD). The effects of the continuous addition of the oxidant, nitrate, were investigated on a single-stage, thermophilic, anaerobic digester. The digester acclimated rapidly to nitrate addition. The continuous addition of nitrate resulted in a constant inhibition of total gas (30%) and methane production (36%). Reduction in total gas and methane production was accompanied by increases in sludge pH and acetate, propionate, and ammonium ion pools. Effluent particle size distribution revealed a shift to smaller particle sizes in the nitrate-pumped sludge. The continuous addition of nitrate resulted in lower numbers of methanogens and sulfate reducers in the sludge, with increases in nitrate-reducing and cellulose-degrading microorganisms. These findings indicate that added nitrate underwent dissimilatory reduction to ammonium ion, as determined from gas analysis, ammonium pools, and 15 N-nitrate-label experiments. Continuous nitrate addition to a single-phase digestion system was determined to inhibit methane production from biomass and wastes. Thus for the single-stage digestion system in which maximum methane production is desired, the addition of nitrate is not recommended. However, in a multistage digestion system, the continuous addition of nitrate in the primary stage to increase the rate and extent of degradation of organic matter to volatile fatty acids, which then would serve as feed to a second stage, may be advantageous

  10. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.

    Science.gov (United States)

    Stolze, Yvonne; Bremges, Andreas; Rumming, Madis; Henke, Christian; Maus, Irena; Pühler, Alfred; Sczyrba, Alexander; Schlüter, Andreas

    2016-01-01

    Biofuel production from conversion of biomass is indispensable in the portfolio of renewable energies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermophilic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the thermophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisiensis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluviitoga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed applicability and reliability of the binning approach. The four highly covered

  12. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    International Nuclear Information System (INIS)

    Panichnumsin, Pornpan; Nopharatana, Annop; Ahring, Birgitte; Chaiprasert, Pawinee

    2010-01-01

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 o C) and at a constant OLR of 3.5 kg VS m -3 d -1 and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g -1 VS added and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity.

  13. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Panichnumsin, Pornpan [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Thungkru, Bangkok 10140 (Thailand); Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, Bangkhuntien, Bangkok 10150 (Thailand); Nopharatana, Annop [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand); Ahring, Birgitte [AAU, Copenhagen Institute of Technology, Lautrupvang 15, 2750 Ballerup (Denmark); Chaiprasert, Pawinee [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand)

    2010-08-15

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 C) and at a constant OLR of 3.5 kg VS m{sup -3} d{sup -1} and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g{sup -1} VS{sub added} and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity. (author)

  14. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    Science.gov (United States)

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  16. 4-Component seismic survey in the first offshore production test of methane hydrate

    Science.gov (United States)

    Kobayashi, T.; Saeki, T.; Fujii, T.; Aoki, N.; Inamori, T.; Asakawa, E.; Takahashi, H.; Fujii, Y.

    2016-12-01

    JOGMEC conducted a gas production test in the offshore field where methane hydrates exist in the first offshore production test in March 2013. 4-component seismic survey was carried out as geophysical monitoring to assess the dissociation behaviour of methane hydrates by comparing the characteristics of seismic data before and after the gas production test. The data acquisition was performed three times using an ocean bottom cable (OBC), which installed on the sea bottom of 1000m water depth around the gas production well, consists of 36 receiver devices at an interval of 26.5 meters. The first data acquisition was performed in August 2012 before the gas production test. The second and final data acquisitions were performed in April and August 2013 after the gas production test respectively. The shooting operations using air gun source were executed in 2D lines along OBC and in pseudo 3D layout. The OBC was not collected, a connection with a recording boat was disconnected, the terminal of the OBC was waterproofed, and it had been left in the survey area after the first and the second data acquisitions. The terminal of the OBC installing on the sea bottom was fished and the OBC was reconnected into the recording boat before the second and the final data acquisitions. The OBC had been left on the sea bottom for 8 months and 4 months respectively, but the OBC could work normally and provided high quality data. In the result of the analysis of the acquired data, the change in physical properties and the decrease in impedance were seen by the data comparison before and after the gas production test, and the result which suggests dissociation of methane hydrates was obtained. In addition, the increase phenomenon of impedance from the second to the final data acquisition was seen, which suggests a possibility of the regeneration of methane hydrates.

  17. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, Guido [Siluria Technologies, Inc., San Francisco, CA (United States); Chachra, Gaurav [Siluria Technologies, Inc., San Francisco, CA (United States); Jonnavittula, Divya [Siluria Technologies, Inc., San Francisco, CA (United States)

    2017-12-30

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The output of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.

  18. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid.

    Science.gov (United States)

    Saengkerdsub, Suwat; Kim, Woo-Kyun; Anderson, Robin C; Nisbet, David J; Ricke, Steven C

    2006-04-01

    Short-chain volatile fatty acids (VFA) and methane are the products from a wide variety of microorganisms living in the gastrointestinal tract. The objective of this study was to examine effects of feedstuff and select nitro compounds on VFA and methane production during in vitro incubation of laying hen cecal contents and rumen fluid from cattle and sheep. In the first experiment, one of the three nitro compound was added to incubations containing cecal contents from laying hens supplemented with either alfalfa (AF) or layer feed (LF). Both feed material influenced VFA production and acetic acid was the primary component. Incubations with nitro ethanol and 2-nitropropanol (NP) had significantly (Pmethane production in the incubations although methane was lower (Pmethane production in incubations of both rumen fluids. The results show that NE impedes methane production, especially in incubations of chicken cecal contents.

  19. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    Science.gov (United States)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  20. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    Science.gov (United States)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  1. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge.

    Science.gov (United States)

    Algapani, Dalal E; Wang, Jing; Qiao, Wei; Su, Min; Goglio, Andrea; Wandera, Simon M; Jiang, Mengmeng; Pan, Xiang; Adani, Fabrizio; Dong, Renjie

    2017-11-01

    Anaerobic digestion (AD) of FW shows instability due to both the presence of high lipids and accumulation of volatile fatty acids. In this study, AD of food waste (FW) was optimized by removing lipids (LRFW) and by co-digestion with sewage sludge (1:1w/w on dry matter). The results obtained showed that lipids extraction increased FW methane yield from 400 to 418mL-gVS added -1 under mesophilic conditions (35°C) and from 426 to 531mL-gVS added -1 in thermophilic conditions (55°C). Two degradation phases (k 1 and k 2 ) described FW and LRFW degradation. In the thermophilic, LRFW-k 1 (0.1591d -1 ) was slightly higher than that of FW (k 1 of 0.1543d -1 ) and in the second stage FW-k 2 of 0.0552d -1 was higher than that of LRFW (k 2 of 0.0117d -1 ). The majority of LRFW was degraded in the first stage. FW and sewage sludge co-digestion reduced VFA accumulation, preventing media acidification and improving process stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows

    DEFF Research Database (Denmark)

    Olijhoek, Dana; Hellwing, Anne Louise Frydendahl; Brask, Maike

    2016-01-01

    . Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen......Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility...... fermentation and no effects on nutrient digestibility....

  3. Synthesis gas production through redox cycles of bimetallic oxides and methane

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I.S.; Vigil, M.D.D.; Gutierrez, J.S.; Collins-Martinez, V.; Ortiz, A.L. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    High-purity hydrogen is required by fuel cells to produce electricity with high efficiency and reduced emissions. Therefore, new and cost effective technologies must be developed that can produce hydrogen to supply the increased demand of the current world market. These new technologies have to overcome several challenges such as large size, weight and cost, high temperature requirements for the process and other associated obstacles such as slow start-ups, storage and transportation issues. Hydrogen production through the partial oxidation of methane (POX) is a well known technology at industrial scale. This paper examined the synthesis, characterization and evaluation of iron (Fe) cerium (Ce) zirconium (Zr) with different Fe to CeZr ratios as oxygen carrier to produce syngas through the partial oxidation of methane. The paper also examined the effect of adding nickel (Ni) to FeCeZr as a catalyst to promote the partial oxidation and the proper assessment of the carbon formation within the reaction system. The paper described the experiment with particular reference to synthesis, characterization and reaction evaluation. The results were presented using X-ray diffraction; crystallite size and BET surface area; reaction evaluation by TGA; and evaluation of the partial oxidation of methane. Experimental values showed a clear trend towards the partial oxidation of methane reaction with samples containing Ni. 28 tabs., 4 tabs., 2 figs.

  4. Optimization of methane production by combining organic waste and cow manure as feedstock in anaerobic digestion

    Science.gov (United States)

    Theresia, Martha; Priadi, Cindy Rianti

    2017-03-01

    The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.

  5. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions

    Science.gov (United States)

    Lee, Mark A.; Davis, Aaron P.; Chagunda, Mizeck G. G.; Manning, Pete

    2017-03-01

    Livestock numbers are increasing to supply the growing demand for meat-rich diets. The sustainability of this trend has been questioned, and future environmental changes, such as climate change, may cause some regions to become less suitable for livestock. Livestock and wild herbivores are strongly dependent on the nutritional chemistry of forage plants. Nutrition is positively linked to weight gains, milk production and reproductive success, and nutrition is also a key determinant of enteric methane production. In this meta-analysis, we assessed the effects of growing conditions on forage quality by compiling published measurements of grass nutritive value and combining these data with climatic, edaphic and management information. We found that forage nutritive value was reduced at higher temperatures and increased by nitrogen fertiliser addition, likely driven by a combination of changes to species identity and changes to physiology and phenology. These relationships were combined with multiple published empirical models to estimate forage- and temperature-driven changes to cattle enteric methane production. This suggested a previously undescribed positive climate change feedback, where elevated temperatures reduce grass nutritive value and correspondingly may increase methane production by 0.9 % with a 1 °C temperature rise and 4.5 % with a 5 °C rise (model average), thus creating an additional climate forcing effect. Future methane production increases are expected to be largest in parts of North America, central and eastern Europe and Asia, with the geographical extent of hotspots increasing under a high emissions scenario. These estimates require refinement and a greater knowledge of the abundance, size, feeding regime and location of cattle, and the representation of heat stress should be included in future modelling work. However, our results indicate that the cultivation of more nutritious forage plants and reduced livestock farming in warming regions

  6. Crude glycerin in anaerobic co-digestion of dairy cattle manure increases methane production

    Directory of Open Access Journals (Sweden)

    Silvana Simm

    Full Text Available ABSTRACT Anaerobic digestion of crude glycerin (CG along with animal waste has been an excellent option for increasing the production of biogas and methane to achieve efficiency in the treatment of both residues. This study aimed to evaluate improvements in specific productions of biogas and methane, reductions in solid and fibrous components in substrates prepared with dairy cattle manure and CG (containing 14 % glycerol. With these residues, experimental substrates were prepared and placed in 25 batch digesters. Initial content of the TS in the influent was 4 % and CG was added in increasing doses (0, 5, 10, 15 and 20 % relative to total solids (TS of the influent. Results were submitted to ANOVA and orthogonal contrasts to assess the effects of linear and quadratic order and thereby estimate the optimal CG doses through the adjusted models. The highest values for specific production of methane (0.19 and 0.26 L g−1 of TS and volatile solids (VS added, respectively were reached with the CG inclusions of 6 and 8 %, respectively. Total production of biogas with the inclusion of 6 % CG was 11 % higher when compared to the control treatment. The largest reduction in VS (48 % was achieved with the addition of 4 % CG. Addition of CG at levels between 3 and 8 % improved the efficiency of the process of anaerobic digestion with dairy cattle manure.

  7. In vitro methane production and quality of corn silage treated with maleic acid

    Directory of Open Access Journals (Sweden)

    Kanber Kara

    2015-12-01

    Full Text Available This study aimed to determine the effects of maleic acid (MA addition to corn at ensiling on silage quality and in vitro methane and total gas production, metabolisable energy (ME, and organic matter digestibility (OMD parameters by using in vitro gas production techniques. Forage corn was ensiled either without (control group: MA 0 or with three different dosages of maleic acid, 0.5% (MA 0.5, 1.0% (MA 1.0, and 1.5% (MA 1.5 w/w of the fresh material for 60 days. As a result of this study, neutral detergent fibre level was decreased in the MA 1.5 group (P<0.05. The 0.5, 1.0, and 1.5% addition of maleic acid to forage corn at ensiling increased lactic acid concentration (P<0.05 in silage and reduced propionic acid (P<0.05. Iso-valeric acid concentration in the organic acids of the silage was decreased with maleic acid addition (P<0.05. The maleic acid addition decreased in vitro ruminal methane production (P<0.01. The silage pH value, and acetic, butyric and isobutyric acid concentrations and in vitro total gas production, OMD, and ME values did not change by MA addition (P>0.05. It was concluded that MA addition could reduce methane emission without any negative effects on silage nutrient composition or in vitro ruminal fermentation parameters.

  8. Two phases fermentative process for hydrogen and methane production from cassava wastewater

    Directory of Open Access Journals (Sweden)

    Aryane Mota Oliveira

    2017-04-01

    Full Text Available Introduction: Hydrogen and methane production was investigated in two phases of fermentative process. Objective: At the acidogenic phase, an anaerobic fluidized bed reactor was fed with cassava wastewater producing hydrogen. Methods: Expanded clay was used as a support material for biomass immobilization. The reactor was operated with HRT ranging from 8-1 h. Results: The best hydrogen yield production was 1.91 mol H2/mol glucose at HRT of 2 h. At the methanogenic phase, the acidogenic process effluent fed a fixed-bed reactor producing methane. Conclusion: Sururu (Mytella falcata shells was used as support acted as pH neutralizer in the fixed-bed reactor, yielding best (0.430±0.150 Lmethane/gCOD with 12h HRT phase.

  9. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pal, K.; Patra, A. K.; Sahoo, K.

    2015-07-01

    Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11), cereal and grass forages (n=11), and different straws and shrubs (n=12), which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01) among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter) was lower (p<0.01) for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01) for shrubs than straws. Methane production was correlated (p<0.05) with concentrations of crude protein (CP), ether extract and non-fibrous carbohydrate (NFC) negatively, and with neutral detergent (NDF) and acid detergent fiber (ADF) positively. Potential gas production was negatively correlated (p=0.04) with ADF, but positively (p<0.01) with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05), but by NDF and ADF negatively (p<0.05). Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05) positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease. (Author)

  10. Lipase production from a novel thermophilic Bacillus sp.: application of Plackett-Burman design for evaluating culture conditions affecting enzyme formation.

    Science.gov (United States)

    Abdel-Fattah, Yasser R; Soliman, Nadia A; Gaballa, Ahmed A; Sabry, Soraya A; El-Diwany, Ahmed I

    2002-01-01

    A novel thermophilic Bacillus sp. capable of producing lipase was locally isolated. Phylogenetic analysis based on 16SrDNA sequence revealed its close relationship to Bacillus thermoleovorans. Plackett-Burman experimental design was used to evaluate cultural conditions affecting lipase production process. Fifteen variables and four dummy variables were examined in the experimental design. Tween 80, temperature, olive oil, aeration, beef extract and inoculum age were found to be the highest positive significant variables affecting lipase activity, whereas pH and calcium chloride were the highest negative significant variables. Moreover, Tween 80, temperature and olive oil positively affected lipase specific activity. On the other hand, gum arabic, inoculum size and calcium chloride had the highest negative effect on lipase specific activity. This study would improve the further optimization steps on the bioprocess development track.

  11. Thermophilic Campylobacter spp. in Danish broiler production: a cross-sectional survey and a retrospective analysis of risk factors for occurrence in broiler flocks

    DEFF Research Database (Denmark)

    Hald, Birthe; Wedderkopp, A.; Madsen, Mogens

    2000-01-01

    In order to elucidate the rate of thermophilic Campylobacter spp, carriage in Danish broiler production and to identify risk factors for occurrence of campylobacter in broiler flocks, a total of 88 randomly selected broiler flocks were tested for campylobacter infection, and a subsequent study...... of risk factors based on a questionnaire was conducted, The sample material comprised cloacal swabs from live birds before slaughter, and neck skin samples from carcasses at the end of the processing line. A total of 52% of the flocks were found Campylobacter spp.-positive before slaughter. At the end...... of processing, 24% of the flocks were positive. The species distribution was 87% Campylobacter jejuni, 8% Campylobacter coli and 5% Campylobacter lari, The following parameters were identified as significant risk factors: lack of a hygiene barrier (odds ratio (OR) = 3.1, 1.1

  12. Diets in methane emissions during rumination process in cattle production systems

    OpenAIRE

    Luz Elena Santacoloma Varón

    2011-01-01

    The population of ruminants in the world is increasing, since its products constitute a source of protein of high nutritional value for the human population; nevertheless, this increase, will contribute in great proportion to the global warming and to the deterioration of the ozone layer, since between the subproducts of the ruminal fermentation, carbonic gas and methane are found. &e last one is produced by the anaerobic bacteria present in the rumen that di'erent types of substrata use,...

  13. Syngas production by CO₂ reforming of methane over Co/Mg Ni x ...

    Indian Academy of Sciences (India)

    Keywords. Synthesis gas; H₂ production; dry-reforming of biogas; MgO-NiO catalyst. Abstract. By using catalysts of Co/Mg1−xNixO (x= 0, 0.03, 0.07, 0.15; 1 wt% Co each), we performed the dry reforming of methane. The catalysts were prepared by K ₂ CO ₃ co-precipitation from aqueous nickel nitrate hexahydrate and ...

  14. Evaluation of methane production features and kinetics of ...

    African Journals Online (AJOL)

    zino

    2015-06-03

    Jun 3, 2015 ... determine the biogas and biomethane production potential of the different components of BSW waste in. Yunnan and comparable subtropical regions using a proximate analysis method. We used different model for instance, the Gompertz equation, the logistic equation and transference function to analyze ...

  15. Methane production in an anaerobic osmotic membrane bioreactor using forward osmosis: Effect of reverse salt flux

    KAUST Repository

    Li, Sheng

    2017-05-10

    This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO3 and KH2PO4 as draw solutes. Results showed that KH2PO4 exhibited the lowest RSF in terms of molar concentration 19.1 mM/(m2.h), while for KCl and KNO3 it was 32.2 and 120.8 mM/(m2.h), respectively. Interestingly, bio-methane production displayed an opposite order with KH2PO4, followed by KCl and KNO3. Pyrosequencing results revealed the presence of different bacterial communities among the tested fertilizers. Bacterial community of sludge exposed to KH2PO4 was very similar to that of DI-water and KCl. However, results with KNO3 were different since the denitrifying bacteria were found to have a higher percentage than the sludge with other fertilizers. This study demonstrated that RSF has a negative effect on bio-methane production, probably by influencing the sludge bacterial community via environment modification.

  16. Acclimation of methane production weakens ecosystem response to climate warming in a northern peatland

    Science.gov (United States)

    MA, S.; Huang, Y.; Jiang, J.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.

    2017-12-01

    Warming-induced increases in greenhouse gases from terrestrial ecosystems represent a positive feedback to twenty-first-century climate warming, but the magnitude of this stimulatory effect remains uncertain. Acclimation of soil respiration and photosynthesis have been found to slow down the feedback due to the substrate limitation and thermal adaptation. However, acclimation of ecosystem methane emission to climate warming has not been well illustrated, despite that methane is directly responsible for approximately 20% of global warming since pre-industrial time. In this study, we used the data-model fusion approach to explore the potential acclimation of methane emission to climate warming. We assimilated CH4 static chamber flux data at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experimental site into the ecosystem model, TECO_SPRUCE. The SPRUCE project has been conducted to study the responses of northern peatland to climate warming (+0, +2.25, +4.5, +6.75, +9 °C) and elevated atmospheric CO2 concentration (+0 and +500 ppm). The warming treatments were initiated from June 2014. We estimated parameter values using environmental and flux data in those five warming treatment levels from 2014 to 2016 for the acclimation study. The key parameters that were estimated for methane emissions are the potential ratio of CO2 converted to CH4 (r_me), Q10 for CH4 production (Q10_pro), maximum oxidation rate (Omax) and the factor of transport ability at plant community level (Tveg). Among them, r_me and Q10_pro were well constrained in each treatment plot. Q10 decreased from 3.33 (control) to 1.22 (+9˚C treatment) and r_me decreased from 0.675 (control) to 0.505 (+9˚C treatment). The acclimation will dampen the warming effect on methane production and emission. Current ecosystem models assumed constant Q10 for CH4 production and CH4/CO2 conversion ratio in the future warmed climate. The assumption is likely to overestimate the methane

  17. Evaluation of a gas in vitro system for predicting methane production in vivo

    DEFF Research Database (Denmark)

    Danielsson, Rebecca; Ramin, Mohammad; Bertilsson, Jan

    2017-01-01

    in vivo studies, were selected to include diets varying in nutrient composition. Methane production was measured in all in vivo studies by respiration chambers or the GreenFeed system (C-Lock Inc., Rapid City, SD). Overall, the in vitro system predicted CH4 production well (R2 = 0.96), but the values...... known to affect CH4 production such as dry matter intake, digestibility, and dietary concentrations of fat and starch. However, some factors included in the model were not well predicted by the system, with residuals negatively related to neutral detergent fiber concentration and positively related...

  18. Methane production by mariculture on land. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, K.

    1985-01-01

    It was the aim of this program to have the whole cycle running, consisting of algae production, harvesting, fermentation to biogas, and mineral nutrient recycling into the algae ponds in the form of the fermentation residue (sludge). For this purpose two pilot ponds with a total area of 160 m/sup 2/ have been installed and operated which provided a lot of new experience and success in this new field: concerning pond regime, harvesting procedure and species control. As a preparatory step for the fermentation at pilot scale (which is a subject of the next period), the anaerobic digesteability of micro and macro algae was tested at the laboratory scale. The recycling of unoxidized fermentation sludge directly into the algae ponds has successfully been tested over a period of 4 months; it was finished by seasonal circumstances in November 1981. Finally, the productivities of 3 different algal strains, candidates for energy farming, were tested and compared. Tetraselmis showed the highest productivity yielding 65 tons/ha/yr, followed by Oscillatoria with about 88% of this, and Ulva with 68%. It seems, however, that with the last species the optimal yield has not yet been reached.

  19. Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Requies, J.; Cabrero, M.A.; Barrio, V.L.; Cambra, J.F.; Gueemez, M.B.; Arias, P.L. [School of Engineering (UPV/EHU), Department of Chemical and Environmental Engineering, 48013 Bilbao (Spain); La Parola, V.; Pena, M.A.; Fierro, J.L.G. [Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2006-08-15

    In the present work, Ni/{alpha}-Al{sub 2}O{sub 3} catalysts modified with different amounts of CaO and MgO were used for the production of hydrogen by catalytic partial oxidation (CPO) and wet-CPO processes of methane. In the wet-CPO process, small additions of water were introduced into the feed of the reactor to improve both the H{sub 2} yield and methane conversion. The addition of water is also beneficial because coke formation becomes thermodynamically unfavorable. The catalysts were characterized before and after the reaction with XRD, XPS, TPR and TPO techniques. Several methane decomposition tests and methane pulse experiments were carried out with a view to correlating the ability of metal sites to activate methane in the absence of oxygen with the performance for CPO and wet-CPO reactions. (author)

  20. Microbial Insights into Shifting Methane Production Potential in Thawing Permafrost

    Science.gov (United States)

    Crossen, K.; Wilson, R.; Raab, N.; Neumann, R.; Chanton, J.; Saleska, S. R.; Rich, V. I.

    2017-12-01

    Permafrost, which stores 50% of global soil carbon, is thawing rapidly due to climate change, and resident microbes are contributing to changing carbon gas emissions. Predictions of the fate of carbon in these regions is poorly constrained; however, improved, careful mapping of microbial community members influencing CO2 and CH4 emissions will help clarify the system response to continued change. In order to more fully understand connections between the microbial communities, major geochemical transformations, and CO2 and CH4 emissions, peat cores were collected from the active layers of three permafrost habitats spanning a thaw gradient (collapsed palsa, bog, and fen) at Stordalen Mire, Abisko, Sweden. Anaerobic incubations of shallow and deep subsamples from these sites were performed, with time-course characterization of the changes in microbial communities, peat geochemistry, and carbon gas production. The latter were profiled with 16S rRNA amplicon sequencing, and targeted metagenomes. The communities within each habitat and depth were statistically distinct, and changed significantly over the course of the incubations. Acidobacteria was consistently the dominant bacterial phylum in all three habitat types. With increased thaw, the relative abundance of Actinobacteria tended to decrease, while Chloroflexi and Bacteroidetes increased with thaw. The relative abundance of methanogens increased with thaw and with depth within each habitat. Over time in the incubations, the richness of the communities tended to decrease. Homoacetogenesis (CO2 + H2 -> CH3COOH) has been documented in other peatlands, and homoacetogens can influence CH4 production by interacting with methanogens, competing with hydrogenotrophs while providing substrate for acetoclasts. Modelling of microbial reaction networks suggests potential for highest homoacetogenesis rates in the collapsed palsa, which also contains the highest relative abundances of lineages taxonomically affiliated with known

  1. Methane production from the anaerobic digestion of some marine macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Habig, C.; Ryther, J.H.

    1983-01-01

    Recently, considerable interest has developed concerning the use of biomass as an alternative fuel source. Among the possible substrates, marine plant biomass has frequently been mentioned, primarily due to the fact that such plants do not have competing, more valuable uses for food or fiber and their cultivation does not compete for valuable agricultural lands. Also, recent research has demonstrated that at least one potential marine energy crop, the red alga Graciliaria tikvahiae, is capable of extremely high production rates that equal or exceed those of terrestrial plants, and are rivaled by the productivity of another possible aquatic energy crop, the water hyacinth. To date, seaweed energy research has emphasized cultivation, while a marked paucity of information exists regarding the comparative performance of these algae as a methanogenic substrate. Only two species, the giant kelp, Macrocystic pyrifera and Gracilaria tikvahiae, have been tested in fermentation trials. The relative merits of a red, a green, and a brown alga, run vis a vis at four different loading rates, are discussed in this report. In addition, two loading procedures were utilized to assess what if any, effect they might have on digester performance. (Refs. 14).

  2. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    Science.gov (United States)

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28.

    Science.gov (United States)

    Zeng, Wei; Chen, Guiguang; Wang, Qinglong; Zheng, Shuangfeng; Shu, Lin; Liang, Zhiqun

    2014-03-01

    A thermophilic strain Bacillus subtilis GXA-28 with capability of γ-PGA production was characterized, and its product was identified. The effect of temperatures on cell growth, γ-PGA yield and molecular weight were investigated. Results showed that γ-PGA yield reached 19.92g/L at 45°C with a high productivity of 0.91g/L/h, and the molecular weight reached 3.03×10(6)Da. Then, the flux distribution and the key enzyme activities at 2-oxoglutarate branch under specified temperature were determined to illustrate the possible metabolic mechanism contributing to the improved γ-PGA production. Results indicated that the fluxes from iso-citrate to 2-oxoglutarate and from 2-oxoglutarate to glutamate were increased with high activity of isocitrate dehydrogenase and glutamate dehydrogenase, which led to enhance γ-PGA production. This work firstly employed temperature control strategy to improve γ-PGA production, and provided novel information on the metabolic mechanism of γ-PGA biosynthesis in Bacillus species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Pigments in Thermophilic fungi

    OpenAIRE

    Somasundaram, T; Rao, Sanjay SR; Maheshwari, R

    1986-01-01

    UV and visible absorption spectra of thermophilic fungi were obtained by photoacoustic spectroscopy. Based on these data as well as on the chem. properties and IR spectra, it is suggested that the pigments may be hydroxylated polycyclic quinones.

  5. The hydrolytic stage in high solids temperature phased anaerobic digestion improves the downstream methane production rate.

    Science.gov (United States)

    Buffière, P; Dooms, M; Hattou, S; Benbelkacem, H

    2018-07-01

    The role of the hydrolytic stage in high solids temperature phased anaerobic digestion was investigated with a mixture of cattle slurry and maize silage with variable ratios (100, 70 and 30% volatile solids coming from cattle slurry). It was incubated for 48 h at 37, 55, 65 and 72 °C. Soluble chemical oxygen demand and biochemical methane potential were measured at 0, 24 and 48 h. Higher temperatures improved the amount of solubilized COD, which confirmed previously reported results. Nevertheless, solubilization mostly took place during the first 24 h. The rate of methane production in post-hydrolysis BMPs increased after 48 h hydrolysis time, but not after 24 h. The first order kinetic constant rose by 40% on average. No correlation was observed between soluble COD and downstream methane production rate, indicating a possible modification of the physical structure of the particulate solids during the hydrolytic stage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Nitrogen recycling and methane production using Gracilaria tikvahiae: a closed system approach

    Energy Technology Data Exchange (ETDEWEB)

    Habig, C.; Andrews, D.A.; Ryther, J.H.

    1984-01-01

    The macroalga Gracilaria tikvahiae (Rhodophyta) was used in a closed system of materials to study methane production and nitrogen recycling. Twenty liter carboys served as digesters. The performance of these digesters mirrors results obtained with two- and four litre Gracilaria digesters with respect to optimal retention times for biogas production, methane content, and bioconversion efficiency to methane. Three groups of Gracilaria were cultivated in 850-L vaults to compare growth performance under three different enrichment treatments. These treatments consisted of an unfertilized group, a group raised on a typical commercial enrichment regime, and a group raised on the residues removed from the digester when additional substrate was loaded into the digester. The results indicate that growth of Gracilaria on the digester residue enrichment scheme is statistically similar to growth using a commercial enrichment mixture. In addition, the nitrogen content of the digester residue is described, along with nitrogen assimilation by Gracilaria and nitrogen recycling efficiencies. Both nitrogen assimilation and recycling efficiency closely parallel the ammonium content of the residue enrichment media. (Refs. 18).

  7. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    Science.gov (United States)

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recent Advances in Supported Metal Catalysts for Syngas Production from Methane

    Directory of Open Access Journals (Sweden)

    Mohanned Mohamedali

    2018-03-01

    Full Text Available Over the past few years, great attention is paid to syngas production processes from different resources especially from abundant sources, such as methane. This review of the literature is intended for syngas production from methane through the dry reforming (DRM and the steam reforming of methane (SRM. The catalyst development for DRM and SRM represents the key factor to realize a commercial application through the utilization of more efficient catalytic systems. Due to the enormous amount of published literature in this field, the current work is mainly dedicated to the most recent achievements in the metal-oxide catalyst development for DRM and SRM in the past five years. Ni-based supported catalysts are considered the most widely used catalysts for DRM and SRM, which are commercially available; hence, this review has focused on the recent advancements achieved in Ni catalysts with special focus on the various attempts to address the catalyst deactivation challenge in both DRM and SRM applications. Furthermore, other catalytic systems, including Co-based catalysts, noble metals (Pt, Rh, Ru, and Ir, and bimetallic systems have been included in this literature review to understand the observed improvements in the catalytic activities and coke suppression property of these catalysts.

  9. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal.

    Science.gov (United States)

    Watanabe, Ryoya; Tada, Chika; Baba, Yasunori; Fukuda, Yasuhiro; Nakai, Yutaka

    2013-12-01

    The use of Japanese cedar charcoal as a support material for microbial attachment could enhance methane production during anaerobic digestion of crude glycerol and wastewater sludge. Methane yield from a charcoal-containing reactor was approximately 1.6 times higher than that from a reactor without charcoal, and methane production was stable over 50 days when the loading rate was 2.17 g chemical oxygen demand (COD) L(-1) d(-1). Examination of microbial communities on the charcoal revealed the presence of Uncultured Desulfovibrio sp. clone V29 and Pelobacter seleniigenes, known as 1,3-propandiol degraders. Hydrogenotrophic methanogens were also detected in the archaeal community on the charcoal. Methanosaeta, Methanoregula, and Methanocellus were present in the charcoal-containing reactor. The concentration of propionate in the charcoal-containing reactor was also lower than that in the control reactor. These results suggest that propionate degradation was enhanced by the consumption of hydrogen by hydrogenotrophic methanogens on the charcoal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production.

    Science.gov (United States)

    Sambusiti, C; Ficara, E; Rollini, M; Manzoni, M; Malpei, F

    2012-01-01

    The aim of this study was to determine the effect of sodium hydroxide pretreatment on the chemical composition and the methane production of ensiled sorghum forage and wheat straw. NaOH pretreatment was conducted in closed bottles, at 40 °C for 24 h. Samples were soaked in a NaOH solution at different dosages (expressed in terms of total solids (TS) content) of 1 and 10% gNaOH/gTS, with a TS concentration of 160 gTS/L. At the highest NaOH dosage the reduction of cellulose, hemicelluloses and lignin was 31, 66 and 44%, and 13, 45 and 3% for sorghum and wheat straw, respectively. The concentration of soluble chemical oxygen demand (CODs) in the liquid phase after the pretreatment was also improved both for wheat straw and sorghum (up to 24 and 33%, respectively). Total sugars content increased up to five times at 10% gNaOH/gTS with respect to control samples, suggesting that NaOH pretreatment improves the hydrolysis of cellulose and hemicelluloses. The Biochemical Methane Potential (BMP) tests showed that the NaOH pretreatment favoured the anaerobic degradability of both substrates. At 1 and 10% NaOH dosages, the methane production increased from 14 to 31% for ensiled sorghum forage and from 17 to 47% for wheat straw. The first order kinetic constant increased up to 65% for sorghum and up to 163% for wheat straw.

  11. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  12. Methane Carbon Isotopic Composition Reveals Changing Production Pathways Across a Gradient of Permafrost Thaw

    Science.gov (United States)

    Rocci, K.; Burke, S. A.; Clariza, P.; Malhotra, A.; McCalley, C. K.; Verbeke, B. A.; Werner, S. L.; Roulet, N. T.; Varner, R. K.

    2017-12-01

    Methane (CH4) emission in areas of discontinuous permafrost may increase with warming temperatures resulting in a positive feedback to climate change. Characterizing the production pathways of CH4, which may be inferred by measuring carbon isotopes, can help determine underlying mechanistic changes. We studied CH4 flux and isotopic composition of porewater (δ13C-CH4) in a sub-arctic peatland in Abisko, Sweden to understand controls on these factors across a thaw gradient during four growing seasons. Methane chamber flux measurements and porewater samples were collected in July 2013, and over the growing seasons of 2014 to 2016. Samples were analyzed on a Gas Chromatograph with a Flame Ionization Detector for CH4 concentrations and a Quantum Cascade Laser for carbon isotopes. Increased emission rates and changing isotopic signatures were observed across the thaw gradient throughout the growing season. While CH4 flux increased with increases in temperature and shallower water table, δ13C-CH4 exhibited a seasonal pattern that did not correlate with measured environmental variables, suggesting dependence on other factors. The most significant controlling factor for both flux and isotopic signature was plant community composition, specifically, the presence of graminoid species. Graminoid cover increases with thaw stage so both CH4 emissions and δ13C-CH4 are likely to increase in a warmer world, suggesting a shift toward the acetoclastic pathway of methane production.

  13. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis

    DEFF Research Database (Denmark)

    Cai, Weiwei; Han, Tingting; Guo, Zechong

    2016-01-01

    AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m3 CH4/m3/d). And COD removal is increased ~15% over AD control. When changing to sludge......Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic...... fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study...

  14. Enhanced methane production and its kinetics model of thermally pretreated lignocellulose waste material.

    Science.gov (United States)

    Veluchamy, C; Kalamdhad, Ajay S

    2017-10-01

    The objective of the study was to assess the effect of substrate concentration by specific methanogenic activity (SMA) of thermally pretreated pulp and paper mill sludge. Different substrate concentration through food to microorganism ratio varied from 1.0 to 3.0 was carried out in a mesophilic condition as biochemical methane potential assay. Experimental results offered that cellulose removal rate spikes up to 60.2%. The specific methane gas production and biodegradability were increased up to 303mL of CH 4 /g VS and 73% respectively. By increasing the substrate concentration, SMA was significantly improved in a linear manner. The net energy of 8735kJ was gained after thermal pretreatment. In addition to that three kinetics model were used, among that the modified Gompertz and logistic function models represent and reproduce the experimental data, while the earlier has the better fit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

    Science.gov (United States)

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  16. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  17. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    Science.gov (United States)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  18. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge

    Directory of Open Access Journals (Sweden)

    A. Nielfa

    2015-03-01

    Full Text Available The co-digestion of two problematic and available wastes, namely Organic Fraction Municipal Solid Waste (OFMSW and biological sludge, was carried out in this work. Biochemical Methane Potential (BMP tests are a useful tool for determining the best substrate and co-digestion configurations, however there are some methodologies destined to save costs and time from this process by using the theoretical final methane potential of a substrate from its organic composition. Besides there are some models capable not only of reproducing the methane curve behavior, but also of predicting final methane productions from the first days of experimentation. Methodologies based in the elemental composition for the determination of theoretical production fit better with the experimental results and behavior, nevertheless the Gompertz model was capable of predicting the final productivity within the 7th day of experiment, selecting at the same time the co-digestion of 80% OFMSW and 20% Biological sludge as the optimum.

  19. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014: top–down estimate from ethane and methane column observations

    Directory of Open Access Journals (Sweden)

    P. Hausmann

    2016-03-01

    Full Text Available Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999–2014 are derived from solar Fourier transform infrared (FTIR measurements at the Zugspitze summit (47° N, 11° E; 2964 m a.s.l. and at Lauder (45° S, 170° E; 370 m a.s.l.. Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr−1 (parts-per-billion per year at the Zugspitze and 6.0 [5.3, 6.7] ppb yr−1 at Lauder (95 % confidence intervals. Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i increased methane emissions from tropical wetlands, followed by (ii increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as a tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8]  ×  10−2 ppb yr−1 for 2007–2014, while a negative trend persists at Lauder after 2007 (−0.4 [−0.6, −0.1]  ×  10−2 ppb yr−1. Zugspitze methane and ethane time series are significantly correlated for the period 2007–2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio (EMR of 12–19 %. We present optimized emission scenarios for 2007–2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007–2014 from oil and natural gas sources of 1–11 Tg yr−1 along with an overall methane emission increase of 24–45 Tg yr−1. Based on these results, the oil and natural gas emission contribution (C to the renewed methane increase is deduced using three different emission scenarios with dedicated EMR ranges

  20. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    Science.gov (United States)

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-01-01

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S in in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  2. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Fiedel, Nicolai Russell

    2014-01-01

    production yield. To date there are not any reliable methods to alleviate the ammonia toxicity effect and/or to efficiently digest ammonia-rich waste. In the current study, bioaugmentation as a possible method to alleviate ammonia toxicity effect in a mesophilic continuously stirred-tank reactor (CSTR...... this study clearly demonstrated a 31.3% increase in methane production yield in the CSTR reactor, at steady-state, after bioaugmentation. Additionally, high-throughput 16S rRNA gene sequencing analysis showed a fivefold increase in relative abundance of Methanoculleus spp. after bioaugmentation. On contrary...

  3. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  4. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    Science.gov (United States)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  5. Anaerobic digestion of slaughterhouse by-products

    Energy Technology Data Exchange (ETDEWEB)

    Hejnfelt, Anette; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2009-08-15

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 C and for some experiments also at 37 C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm{sup 3} kg{sup -1} respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm{sup -3} and 7 g N dm{sup -3} respectively. Pretreatment (pasteurization: 70 C, sterilization: 133 C), and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 C showed 40% higher methane production compared to digestion of manure alone. (author)

  6. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  7. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Science.gov (United States)

    Mansell, J. Matthew; Abney, Morgan B.

    2012-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.

  8. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2017-04-24

    Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  9. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  10. Increasing Methane Production by Anaerobic Co-Digestion of Slaughterhouse with Fruit and Vegetable Wastes

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2016-12-01

    Full Text Available Despite fossil fuels, the energy supply from biogas process is of renewable energy resources; this kind of energy can be generated in all parts of the world. Thus, the potential of anaerobic co-digestion for production of methane from wastes of an industrial slaughterhouse and fruit and vegetable center in the Hamadan city, west of Iran, was investigated. The digester was operated under the mesophilic (35 - 37°C condition for a period of 40 days with 3 different C/N ratios (20/1, 30/1 and 40/1. Before operation of digester, the amounts of C and N in the wastes were measured and during the experiments pH and composition of the biogas were determined. The cumulative amounts of the generated total biogas and methane at the 3 examined C/N ratios 20/1, 30/1 and 40/1 were, respectively 181, 201.7 and 162.5 L and 129.8, 149.2 and 114 L. The results indicated that the highest contents of biogas and methane (201.68 and 149.29 L, respectively were obtained at C/N of 30 within 31 days.

  11. Methane assisted solid oxide co-electrolysis process for syngas production

    Science.gov (United States)

    Wang, Yao; Liu, Tong; Lei, Libin; Chen, Fanglin

    2017-03-01

    In this study, methane assisted high temperature steam/CO2 co-electrolysis process is performed on symmetrical cells with a configuration of SFM-SDC/LSGM/SFM-SDC to produce high-quality synthesis gas (syngas, a mixture of H2 and CO). The Nernst potential has been evaluated for solid oxide cells in the methane assisted mode, which is reduced by nearly one order of magnitude through substituting the anode atmosphere from air to methane. The open circuit voltage (OCV) is -0.06 V at 800 °C, and an electrolysis current density of -242 mAcm-2 has been obtained at 850 °C and 0.3 V. Effects of operating conditions on products composition have been revealed by using the chemical equilibrium co-electrolysis model and HSC software. High-quality syngas with high conversion rate of CO2 to CO as well as ideal H2/CO molar ratio of 2 could be achieved in both electrode sides by adjusting appropriate operating conditions. The short-term cell voltage is slightly fluctuant less than 0.05 V at 850 °C and -120 mAcm-2, in which condition carbon deposition has been observed in the SFM-SDC anode due to the low O2-/CH4 ratio.

  12. Electrohydrolysis pretreatment for enhanced methane production from lignocellulose waste pulp and paper mill sludge and its kinetics.

    Science.gov (United States)

    Veluchamy, C; Raju, V Wilson; Kalamdhad, Ajay S

    2018-03-01

    A novel electrohydrolysis pretreatment enhances methane production from lignocellulose material during anaerobic digestion. A biochemical methane potential assay was carried out to determine the effect of direct current and the efficacy of electrohydrolysis pretreatment on biogas production. Methane yield was increased by 13.8%, to 301 ± 3 mL CH 4 /g VS, when lignocellulosic waste was pretreated with electrohydrolysis. A net energy gain of 13,224 kJ was realized after electrohydrolysis pretreatment, which was 1.51 times higher than reported for thermal pretreatment. In addition, two kinetic models were used, including the modified Gompertz model to reproduce the experimental data. These finding support the potential for increased methane recovery from lignocellulosic waste using electrohydrolysis as a pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage.

    Science.gov (United States)

    Sambusiti, C; Rollini, M; Ficara, E; Musatti, A; Manzoni, M; Malpei, F

    2014-03-01

    Biochemical methane potential (BMP) tests were run on ensiled sorghum forage using four inocula (urban, agricultural, mixture of agricultural and urban, granular) and differences on their metabolic and enzymatic activities were also discussed. Results indicate that no significant differences were observed in terms of BMP values (258±14NmLCH4g(-1)VS) with a slightly higher value when agricultural sludge was used as inoculum. Significant differences can be observed among different inocula, in terms of methane production rate. In particular the fastest biomethanization occurred when using the urban sludge (hydrolytic kinetic constant kh=0.146d(-1)) while the slowest one was obtained from the agricultural sludge (kh=0.049d(-1)). Interestingly, positive correlations between the overall enzymatic activities and methane production rates were observed for all sludges, showing that a high enzymatic activity may favour the hydrolysis of complex substrate and accelerate the methanization process of sorghum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Parametric study on catalytic tri-reforming of methane for syngas production

    International Nuclear Information System (INIS)

    Chein, Rei-Yu; Wang, Chien-Yu; Yu, Ching-Tsung

    2017-01-01

    A two-dimensional numerical model for syngas production from tri-reforming of methane (TRM) in adiabatic tubular fixed-bed reactors was established. From the results obtained, it was found that reactant must be preheated to certain temperatures for TRM activation. Although the delay factor accounting for the varying catalytic bed activities produced different temperature and species mole fraction profiles in the reactor upstream, the reactor performance was delay factor independent if the reactor outlet results were used because nearly identical temperature and species mole fraction variations were obtained at the reactor downstream. The numerical results also indicated that reverse water-gas shift reaction plays an important role for H 2 and CO yields. With higher O 2 in reactant, high temperature resulted, leading to lower H 2 /CO ratio. The absence of H 2 O in the reactant caused dry reforming of methane as the dominant reaction, resulting in H 2 /CO ratio close to unity. With the absence of CO 2 in the reactant, steam reforming of methane was the dominant reaction, resulting in H 2 /CO ratio close to 3. Using flue gas from combustion as TRM feedstock, it was found that H 2 /CO ratio was enhanced using lower CH 4 amount in reactant. High-temperature flue gas was suggested for TRM for the activation requirement. - Highlights: • Reactant must be preheated to certain temperature for tri-reforming of methane (TRM) activation. • A delay factor is used to account for varying catalytic activity. • TRM performance is delay factor independent when reactor outlet results are used. • Water-gas shift reaction plays an important role in H 2 yield, CO yield and H 2 /CO ratio in TRM. • Low CH 4 and high temperature are suggested when flue gas is used in TRM.

  15. Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation.

    Science.gov (United States)

    Jokela, J P Y; Vavilin, V A; Rintala, J A

    2005-03-01

    Municipal grey waste (i.e. the remaining fraction in municipal waste management systems in which putrescibles (biowaste) and other recyclables (paper, metals, glass) are source-segregated) was manually sorted into six main fractions on the basis of composition and also separated by sieving (100 mm mesh size) into two fractions, oversized and undersized, respectively. In practice, in waste management plant the oversized fraction is (or will be) used to produce refuse-derived fuel and the undersized landfilled after biological stabilisation. The methane yields and nitrogen solubilisation of the grey waste and the different fractions (all studied samples were first milled to 5 mm particle samples) were determined in a 237-day methane production batch assay and in a water elution test, respectively. The grey waste was found to contained remnants of putrescibles and also a high amount of other biodegradable waste, including packaging, cartons and cardboard, newsprint, textiles and diapers. These waste fractions comprised 41%-w/w of the grey waste and produced 40-210 m3 methane (total solids (TS))(-1) and less than 0.01 g NH4-N kg TS(added)(-1) except diapers which produced 9.8 g NH4-N kg TS(added)(-1) in the batch assays. In the case of the two sieved fractions and on mass bases, most of the methane originated from the oversized fraction, whereas most of the NH4-N was solublised from the undersized fraction. The first-order kinetic model described rather well the degradation of each grey waste fraction and component, showing the different components to be in the range 0.021-0.058 d(-1), which was around one-sixth of the values reported for the source-segregated putrescible fraction of MSW.

  16. SOIL CONTROLLING FACTORS OF METHANE GAS PRODUCTION FROM FLOODED RICE FIELDS IN PATI DISTRICT, CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    P. Setyanto

    2016-10-01

    Full Text Available Atmospheric methane (CH4 is recognized as one of the most important greenhouse gases. Methane, with some 15-30 times greater infrared-absorbing capability than CO2 on a mass basis, may account for 20% of anticipated global warming. Soils are one of the key factors, which play an important role in CH4 production and emission. However, data on CH4 emission from different soil types and the characteristics affecting CH4 production are lacking when compared to data on agronomic practices. This study was conducted to investigate the potential of CH4 production of selected soils in Java, and determine the limiting factors of CH4 production. The results showed that addition of 1% glucose to the soils led to an increase in CH4 production by more than twelve fold compared to no glucose addition. The CH4 production potential ranged between 3.21 and 112.30 mg CH4 kg-1 soil. The lowest CH4 production potential occurred in brown-grayish Grumosol, while the highest was in dark-gray Grumosol. Chemical and physical properties of the soils have great influence on CH4 production. Stepwise multiple regression analysis of CH4 production and soil characteristics showed that pH and the contents of Fe2O3, MnO2, SO4, and silt in the soil strongly influenced CH4 production. Results of this study can be used for further development of a model on CH4 emission from rice fields.

  17. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I

    2014-07-01

    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C.

    Science.gov (United States)

    Wang, Liang; Ou, Mark S; Nieves, Ismael; Erickson, John E; Vermerris, Wilfred; Ingram, L O; Shanmugam, K T

    2015-12-01

    In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented). This volumetric productivity is among the highest reported for batch fermentations. Sugars from acid and enzyme-treated sweet sorghum bagasse were also fermented to butyrate by this organism with a molar yield of 0.81 (based on the amount of cellulose and hemicellulose). By combining the results from juice and bagasse, the calculated yield of butyric acid is approximately 90 kg per tonne of fresh sweet sorghum stalk. This study demonstrates that C. thermobutyricum can be an effective microbial biocatalyst for production of bio-based butyrate from renewable feedstocks at 50°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Establishment and assessment of an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    Science.gov (United States)

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population

    Directory of Open Access Journals (Sweden)

    Ehsan Oskoueian

    2013-01-01

    Full Text Available This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40 was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly ( decreased the dry matter degradability. The gas production significantly ( decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly ( increased the gas production. The flavonoids suppressed methane production significantly (. The total VFA concentration significantly ( decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly ( reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly ( reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly ( suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation.

  3. In vitro methane and gas production with inocula from cows and goats fed an identical diet.

    Science.gov (United States)

    Mengistu, Genet; Hendriks, Wouter H; Pellikaan, Wilbert F

    2018-03-01

    Fermentative capacity among ruminants can differ depending on the type of ruminant species and the substrate fermented. The aim was to compare in vitro cow and goat rumen inocula in terms of methane (CH 4 ) and gas production (GP), fermentation kinetics and 72 h volatile fatty acids (VFA) production using the browse species Acacia etbaica, Capparis tomentosa, Dichrostachys cinerea, Rhus natalensis, freeze-dried maize silage and grass silage, and a concentrate as substrates. Total GP, CH 4 and VFA were higher (P ≤ 0.008) in goat inoculum than cows across substrates. The half-time for asymptotic GP was lower (P Methane production and as a percentage of total GP was higher (P < 0.0001) and the half-time tended (P = 0.059) to be at a later time for goats compared to cows. Goat inoculum showed higher fermentative activity with a concomitant higher CH 4 production compared to cows. This difference highlights the ability of goats to better utilise browse species and other roughage types. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate.

    Science.gov (United States)

    Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier

    2016-12-01

    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.

  5. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Investigating the Plasma-Assisted and Thermal Catalytic Dry Methane Reforming for Syngas Production: Process Design, Simulation and Evaluation

    Directory of Open Access Journals (Sweden)

    Evangelos Delikonstantis

    2017-09-01

    Full Text Available The growing surplus of green electricity generated by renewable energy technologies has fueled research towards chemical industry electrification. By adapting power-to-chemical concepts, such as plasma-assisted processes, cheap resources could be converted into fuels and base chemicals. However, the feasibility of those electrified processes at large scale has not been investigated yet. Thus, the current work strives to compare, for first time in the literature, plasma-assisted production of syngas, from CH4 and CO2 (dry methane reforming, with thermal catalytic dry methane reforming. Specifically, both processes are conceptually designed to deliver syngas suitable for methanol synthesis (H2/CO ≥ 2 in mole. The processes are simulated in the Aspen Plus process simulator where different process steps are investigated. Heat integration and equipment cost estimation are performed for the most promising process flow diagrams. Collectively, plasma-assisted dry methane reforming integrated with combined steam/CO2 methane reforming is an effective way to deliver syngas for methanol production. It is more sustainable than combined thermal catalytic dry methane reforming with steam methane reforming, which has also been proposed for syngas production of H2/CO ≥ 2; in the former process, 40% more CO2 is captured, while 38% less H2O is consumed per mol of syngas. Furthermore, the plasma-assisted process is less complex than the thermal catalytic one; it requires higher amount of utilities, but comparable capital investment.

  7. Evaluation of system performance and microbial communities of a temperature-phased anaerobic digestion system treating dairy manure: thermophilic digester operated at acidic pH.

    Science.gov (United States)

    Lv, Wen; Zhang, Wenfei; Yu, Zhongtang

    2013-08-01

    A temperature-phased anaerobic digestion system with the thermophilic digester acidified by acidogenesis products (referred to as AT-TPAD) was evaluated to treat high-strength dairy cattle manure at a 15-day retention time. Three temperatures (50, 55, and 60°C) were tested on the thermophilic digester, and 50°C was found to be the optimal temperature for overall performance of the AT-TPAD system, achieving 31% VS removal and 0.22 L methane/g VS fed. The mesophilic digester contributed significantly more to the overall system performance than the thermophilic digester. The thermophilic and the mesophilic digesters had different microbial communities under all conditions, and both microbial communities exhibited dynamic changes in response to different conditions. Certain microbial groups were found significantly correlated with the system performance. Methanosarcina was the most important methanogen genus of the AT-TPAD system and its population abundance was inversely correlated with high concentrations of volatile fatty acids (VFA). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Acetoanaerobium noterae bacteria addition in the diet on methane production and performance of sheep

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2008-11-01

    Full Text Available A study on utilization of Acetoanaerobium noterae to decrease enteric methane production through feeding trial using sheep has been conducted. Animals used were young, male composite breed sheep with an initial liveweight of 19.1 kg. Twenty four animals were randomly distributed into 3 groups of dietary treatment and each group consisted of 8 animals. The diet fed to the animals were elephant grass (ad libitum and the commercial concentrate containing 16% crude protein (200 g head–1 day–1. The treatments were (I. Control (K; (II. K + Cultural Preparate of A. noterae (SKAn; and (III. K + SKAn + Aksapon SR (as defaunator. Feeding trials was conducted for 12 weeks. The measurements observed were feed consumption, body weight gain, dry matter digestibility, rumen ecosystem, and enteric methane production. In vivo dry matter digestibility was measured by collecting the faeces and urine of the animals kept in metabolism cages for 7 days effective period. The results showed that effectivity of A. noterae action as methanogenesis inhibitor was improved when it was combined with defaunator. Compared to control treatment, the treatments of SKAn with and without Aksapon SR could significantly improve (P<0.05 daily gain (increased by 21 and 32%; feed conversion ratio (decreased by 20 and 26%; enteric methane production (decreased by 15 and 20%; and the effect of SKAn on percentage composition of acetic acid in the rumen was obvious when the SKAn was combined with Aksapon SR. It is concluded that SKAn with and without Aksapon SR can be used as methanogenesis inhibitor on ruminant animals.

  9. Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production

    International Nuclear Information System (INIS)

    Wang, Zhe; Fan, Weiyu; Zhang, Guangqing; Dong, Shuang

    2016-01-01

    Highlights: • A novel MC–CLC process for H 2 production is proposed. • Energy utilisation of three MC processes is analysed by exergy analysis. • MC–CLC has the highest exergy efficiency compared with MC-CH 4 and MC-H 2. • MC-H 2 provides an advantage of absence of CO 2 generation. - Abstract: This paper proposes a novel hydrogen production process by Methane Cracking thermally coupled with Chemical Looping Combustion (MC–CLC) which provides an advantage of inherent capture of CO 2 . The energy utilisation performance of the MC–CLC process is compared with that of conventional Methane Cracking with combusting CH 4 (MC-CH 4 ) and Methane Cracking with combusting H 2 (MC-H 2 ) using exergy analysis, with focus on exergy flows, destruction and efficiency. The three MC processes are simulated using Aspen Plus software with detailed heat integration. In these processes, the majority of the exergy destruction occurs in the combustors or CLC mostly due to the high irreversibility of combustion. The CO 2 capture unit has the lowest exergy efficiency in the MC-CH 4 process, leading to a lower overall exergy efficiency of the process. The combustor in the MC-H 2 process has a much higher energy efficiency than that in the MC-CH 4 process or the CLC in the MC–CLC process. Although the use of H 2 as fuel decreases the H 2 production rate, the MC-H 2 process provides the advantage of an absence of CO 2 generation, and stores more chemical exergy in the solid carbon which can be utilised appropriately. The MC–CLC process obtains the highest exergy efficiency among the three models and this is primarily due to the absence of a CO 2 capture penalty and the CLC’s higher fuel utilization efficiency than the conventional combustion process.

  10. Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing

    International Nuclear Information System (INIS)

    Janke, Leandro; Weinrich, Sören; Leite, Athaydes F.; Terzariol, Filippi K.; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2017-01-01

    Highlights: • NaOH pretreatment was tested to improve degradation of SCS for methane production. • Low NaOH concentration accelerated AD of SCS but not increased the methane yield. • Mild and high NaOH concentrations accelerated and increased methane yield of SCS. • NaOH use increased OPEX but provided a higher profitability than the untreated SCS. • Anaerobic reactor price showed a high influence on sensitivity analysis. - Abstract: Sodium hydroxide (NaOH) as an alkaline pretreatment method to enhance the degradation kinetics of sugarcane straw (SCS) for methane production was investigated with a special focus on the benefits for designing the anaerobic digestion process. For that, SCS was previously homogenized by milling in 2 mm particle size and pretreated in NaOH solutions at various concentrations (0, 3, 6 and 12 g NaOH/100 g SCS) and the methane yields were determined in biochemical methane potential (BMP) tests. The obtained experimental data were used to simulate a large-scale semi-continuous process (100 ton SCS day −1 ) according to a first-order reaction model and the main economic indicators were calculated based on cash flows of each pretreatment condition. The BMP tests showed that by increasing the NaOH concentration the conversion of the fibrous fraction of the substrate to methane was not only accelerated (higher α value), but also increased by 11.9% (from 260 to 291 mL CH 4 gVS −1 ). By using the experimental data to simulate the large-scale process these benefits were translated to a reduction of up to 58% in the size of the anaerobic reactor (and consequently in electricity consumption for stirring), while the methane yield increased up to 28%, if the liquid fraction derived from the pretreatment process is also used for methane production. Although the use of NaOH for substrate pretreatment has considerably increased the operational expenditures (from 0.97 up to 1.97 € × 10 6 year −1 ), the pretreatment method was able to

  11. Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production.

    Science.gov (United States)

    Trzcinski, Antoine Prandota; Tian, Xinbo; Wang, Chong; Lin, Li Leonard; Ng, Wun Jern

    2015-01-01

    This article focuses on the combination of ultrasonic and thermal treatment of sewage sludge (SS). The combination involved ultrasonicating a fraction of the sludge and thermal treatment at various temperatures and this resulted in solubilization of proteins and carbohydrates, and so contributing to increased COD solubilization. During the treatment, SCOD, soluble proteins and carbohydrates increased from 760 mg L(-1) to 10,200 mg L(-1), 110 mg L(-1) to 2,900 mg L(-1) and 60 mg L(-1) to 630 mg L(-1), respectively. It was found ultrasonication of only a fraction of the sludge (>20%) followed by thermal treatment led to significant improvement compared to thermal and ULS treatments applied on their own. At 65°C, the kinetic of solubilization was improved and the hyper-thermophilic treatment time could be reduced to a few hours when ultrasonication was used first. A linear correlation (R(2) = 95%) was found between the SCOD obtained after ultrasonication pre-treatment and anaerobic biodegradability. The combined treatment resulted in 20% increase in biogas production during the anaerobic digestion of the pre-treated sludge.

  12. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress.

    Directory of Open Access Journals (Sweden)

    Ricardo Jasso-Chávez

    Full Text Available Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4-1% O2 (atmospheric for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells. In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii the thiol-molecules (cysteine + coenzyme M-SH + sulfide and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.

  13. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, Jack [Geological Survey Of Alabama, Tuscaloosa, AL (United States); McIntyre-Redden, Marcella [Geological Survey Of Alabama, Tuscaloosa, AL (United States); Mann, Steven [Geological Survey Of Alabama, Tuscaloosa, AL (United States); Merkel, David [Geological Survey Of Alabama, Tuscaloosa, AL (United States)

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  14. Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett-Burman and response surface methodological approaches.

    Science.gov (United States)

    Chaiyaso, Thanongsak; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Hanmoungjai, Prasert

    2011-01-01

    Cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 was cultivated in a basal medium with rice straw as sole source of carbon and as an inducible substrate. Variable medium components were selected in accordance with the Plackett-Burman experimental design. The optimization conditions of physical factors (pH and temperature levels) were then combined in further studies through the response surface methodology approach. Only two significant components, rice straw and yeast extract, were chosen for the optimization studies. A second-order quadratic model was constructed by central composite design (CCD). The model revealed that both pH and temperature levels were significant, and were dependent on xylanase production. Under these experimental designs, the xylanase yield increased from 51.11 to 274.49 U/mL (3,400 to 10,000 U/g of rice straw) or about 537% higher than an unoptimized basal medium. The optimum conditions to achieve maximum yield of xylanase were 27.45 g/L of rice straw and 5.42 g/L of yeast extract under relatively neutral conditions of pH 7.11, 50.03 °C, and a incubation period.

  15. Production and partial characterization of alkaline polygalacturonase secreted by thermophilic Bacillus sp. SMIA-2 under submerged culture using pectin and corn steep liquor

    Directory of Open Access Journals (Sweden)

    Marcela Vicente Vieira de Andrade

    2011-03-01

    Full Text Available Polygalacturonase production by the thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.5% (w/v apple pectin and supplemented with 0.3% (w/v corn steep liquor, reached its maximum after 36 hours with levels of 39 U.mL-1. The increase in apple pectin and corn steep liquor concentrations in the medium from 0.5 and 0.3%, respectively, to 0.65%, markedly affected the production of polygalacturonase, whose activity increased four times, reaching a maximum of 150.3 U.mL-1. Studies on polygalacturonase characterization revealed that the optimum temperature of this enzyme was between 60-70 °C. Thermostability profile indicated that the enzyme retained about 82 and 63% of its activity at 60 and 70 °C, respectively, after 2 hours of incubation. The optimum pH of the enzyme was found to be 10.0. After incubation of crude enzyme solution at room temperature for 2 hours at pH 8.0, a decrease of about 29% on its original activity was observed. At pH 10.0, the decrease was 25%.

  16. Acidulocompost, a food waste compost with thermophilic lactic acid fermentation: its effects on potato production and weed growth

    Directory of Open Access Journals (Sweden)

    Naomi Asagi

    2016-01-01

    Full Text Available Acidulocomposting recycles food wastes by means of thermophilic lactic acid fermentation. This process can decrease ammonia volatilization and odor emission during processing and produce compost with high nitrogen (N content. To compare the yield of potatoes (Solanum tuberosum L. ‘Dansyakuimo’ and the suppression of weeds with acidulocompost (AC and those with conventional composts and inorganic fertilizer (IF, we conducted field experiments in Miyagi Prefecture, northeastern Japan. Potatoes were cultivated in 2008 and 2009 in an Andosol field treated with AC, conventional food waste compost (FWC, poultry manure compost (PMC, cattle manure compost (CMC, IF, or no fertilizer (NF. AC, but not the other treatments, delayed the emergence of potatoes, and suppressed the emergence of weeds, but it did not inhibit potato growth during the late growth stage or yield. Potato N uptake and tuber yield with AC were significantly higher than those with NF and similar to those with FWC, PMC, and IF. The N uptake efficiencies (ratio of difference between N uptake in the treatment and the control to added N for AC (10.4–12.7% in 2008 and 2009 were similar to those for FWC and PMC (10.2–13.1%, higher than those for CMC (–1.3 to 6.3%, but significantly lower than those for IF (30.2–42.3%. Our findings indicate that AC has an N supply capacity similar to those of FWC and PMC and additionally suppresses the emergence and growth of weeds.

  17. Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate.

    Science.gov (United States)

    Liu, Yong; Huang, Shaobin; Zhang, Yongqing; Xu, Fuqian

    2014-07-01

    Polyhydroxyalkanoates (PHAs) are aliphatic polyesters accumulated intracellularly by both Gram-negative and Gram-positive bacteria. However, compared to the PHAs of Gram-negative bacteria, few endotoxins (lipopolysaccharides, LPS), which would be co-purified with PHAs and cause immunogenic reactions, are found in the PHAs produced by Gram-positive bacteria. A thermophilic Gram-positive bacterium K5, which exhibited good growth and polyhydroxybutyrate (PHB)-accumulating ability, has been isolated and characterized from a biotrickling filter designed for the removal of NOx from flue gas in a coal-fired power plant in China. Based on the biochemical characterization and 16S rRNA gene sequence (Genbank accession no. JX437933), the strain K5 has been identified as Bacillus shackletonii, which has rarely been reported in the literature, and this report is the first time that B. shackletonii has been found to accumulate PHB. The strain K5 was able to utilize glucose as carbon source to synthesize PHB at a broad range of temperatures (from 35 to 50°C), and the ideal temperature was 45°C. The strain K5 could effectively yield PHB of up to 69.9% of its cell dry weight (CDW) (2.28 g/L) in flask experiments employing glucose as carbon source at 45°C, followed by 56.8% and 52.3% of its CDW when using sodium succinate and glycerol as carbon source, respectively. For batch cultivation, the strain K5 was able to produce PHB of up to 72.6% of its cell dry weight (9.76 g/L) employing glucose as carbon source at 45°C and pH7.0. Copyright © 2014. Published by Elsevier B.V.

  18. Methane emissions and production potentials of forest swamp wetlands in the Eastern Great Xing'an Mountains, Northeast China.

    Science.gov (United States)

    Yu, Bing; Stott, Philip; Yu, Hongxian; Li, Xiaoyu

    2013-11-01

    Measurements of methane flux at a few inundated sites in China have been extrapolated to obtain estimates on a national scale. To enable those national estimates to be refined and to compare flux from geographically separated sites comprising the same wetland types, we used a closed chamber method to measure methane flux in uninundated Betula platyphylla-and Larix gmelinii-dominated peatlands in the Northeast China. Our measurements were taken from both vegetated and bare soil surfaces, and we compared flux with environmental measures including vegetation biomass, soil temperature and soil characteristics. We found that methane flux was low, and that there were no significant differences between wetland types, indicating that environmental influences were dominant. We found that flux was positively correlated to temperature in the surface layers of the soil, the above-ground biomass of the shrub and herb layers, total soil carbon and total soil nitrogen; and we suggest that emissions may be due to anaerobic microcosms in the surface layers. The methane production potentials of the soils were low and similar between both sites but inconsistent with the differences between fluxes, and inconsistent with production potentials and fluxes reported from the same wetland types elsewhere, indicating that there were subtle environmental differences between wetlands classed as being of the same type. Differences between fluxes in vegetated chambers with bare soil chambers were insignificant, indicating that no methane emission through aerenchyma occurred at our sites. We concluded that wetland type was not an accurate predictor of methane flux.

  19. Use of short-term breath measures to estimate daily methane production by cattle.

    Science.gov (United States)

    Velazco, J I; Mayer, D G; Zimmerman, S; Hegarty, R S

    2016-01-01

    Methods to measure enteric methane (CH4) emissions from individual ruminants in their production environment are required to validate emission inventories and verify mitigation claims. Estimates of daily methane production (DMP) based on consolidated short-term emission measurements are developing, but method verification is required. Two cattle experiments were undertaken to test the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate did not differ from DMP measured in respiration chambers (RC). Short-term emission rates were obtained from a GreenFeed Emissions Monitoring (GEM) unit, which measured emission rate while cattle consumed a dispensed supplement. In experiment 1 (Expt. 1), four non-lactating cattle (LW=518 kg) were adapted for 18 days then measured for six consecutive periods. Each period consisted of 2 days of ad libitum intake and GEM emission measurement followed by 1 day in the RC. A prototype GEM unit releasing water as an attractant (GEM water) was also evaluated in Expt. 1. Experiment 2 (Expt. 2) was a larger study based on similar design with 10 cattle (LW=365 kg), adapted for 21 days and GEM measurement was extended to 3 days in each of the six periods. In Expt. 1, there was no difference in DMP estimated by the GEM unit relative to the RC (209.7 v. 215.1 g CH(4)/day) and no difference between these methods in methane yield (MY, 22.7 v. 23.7 g CH(4)/kg of dry matter intake, DMI). In Expt. 2, the correlation between GEM and RC measures of DMP and MY were assessed using 95% confidence intervals, with no difference in DMP or MY between methods and high correlations between GEM and RC measures for DMP (r=0.85; 215 v. 198 g CH(4)/day SEM=3.0) and for MY (r=0.60; 23.8 v. 22.1 g CH(4)/kg DMI SEM=0.42). When data from both experiments was combined neither DMP nor MY differed between GEM- and RC-based measures (P>0.05). GEM water-based estimates of DMP and MY were lower than RC and GEM (PCattle

  20. Fast production of methane by anaerobic digestion. Annual progress report, May 24, 1976--May 23, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Finney, C.D.; Evans II, R.S.; Finney, K.A.

    1977-06-01

    Since the productional cost of methane generated by anaerobic digestion of cellulose is on the economic borderline and the cost could be reduced by increasing the rate of the digestion process, a research program was undertaken to delineate the most promising areas of development. The concept that the step involving transfer of products from solution is rate-limiting and inhibiting in anaerobic digestion was supported by all evidence available. The most significant design implication of this concept is that faster gas production can be achieved in a two-stage digestion system in which unreactive solids are eliminated after the hydrolysis step so that the effluent to the gas-producing stage possesses a low viscosity. The advantages and disadvantages of three hydrolysis methods (enzymatic, anaerobic, and acid) are reviewed.

  1. Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure

    DEFF Research Database (Denmark)

    Wijesinghe, D. Thushari N.; Dassanayake, Kithsiri B.; Scales, Peter J.

    2018-01-01

    Anaerobic digestion is one of the most effective methods for treating swine manure by converting it into green energy, and efficiently reducing methane (CH4) emission to the atmosphere. Low C/N ratio of swine manure and the production of high levels of total ammoniacal nitrogen (TAN) during...... acidogenesis due to the high N contents of swine manure considerably reduce CH4 yield. The reduction of N during anaerobic digestion by the addition of zeolite improves CH4 production and reduces potential environmental threats associated with ammonia (NH3) emissions from anaerobic digestion of swine manure....... The main objective of this study was to determine the optimum Australian zeolite dose that produces maximum NH4 + recovery at optimum CH4 production. In laboratory experiments, swine manure was treated with natural and sodium zeolites at 0, 10, 40, 70, 100 mg/L and digested anaerobically for 60 days...

  2. Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion

    International Nuclear Information System (INIS)

    Bohutskyi, Pavlo; Chow, Steven; Ketter, Ben; Betenbaugh, Michael J.; Bouwer, Edward J.

    2015-01-01

    Highlights: • Semi-continuous AD of untreated and enzymatically pretreated lipid extracted algae. • Coupled biodiesel and methane process yields 40% more energy than biodiesel alone. • Thermal pretreatment (150–170 °C) of whole algae was more effective than enzymatic. • Addition of 5% of AD effluent was optimal to support high growth of Nannochloropsis. • AD effluent can partly replace chemical fertilizer for algal growth. - Abstract: Sustainable mass production of algal biofuels requires a reduction in nutrient demand and efficient conversion into fuels of all biomass including lipid-extracted algal residues (LEA). This study evaluated methane production, nutrient recovery and recycling from untreated and enzymatically pretreated Nannochloropsis LEA using semi-continuous anaerobic digestion (AD). Additionally, this process was compared to methane generation from whole Nannochloropsis alga (WA) and thermally pretreated WA. The methane production from untreated LEA and WA reached up to 0.22 L and 0.24 L per gram of biomass volatile solids (VS), respectively, corresponding to only 36–38% of the theoretical potential. Additionally, observed VS reduction was only 40–50% confirming biomass recalcitrance to biodegradation. While enzymatic treatment hydrolyzed up to 65% of the LEA polysaccharides, the methane production increased by only 15%. Alternatively, WA thermal pretreatment at 150–170 °C enhanced methane production up to 40%. Overall, an integrated process of lipid conversion into biodiesel coupled with LEA conversion into methane generates nearly 40% more energy compared to methane production from WA, and about 100% more energy than from biodiesel alone. Additionally, the AD effluent contained up to 60–70% of the LEA phosphorus content, 30–50% of the nitrogen, sulfur, calcium and boron, 20% of the iron and cobalt, and 10% of manganese, zinc and copper, which can partially replace chemical fertilizers during algal cultivation. Consequently

  3. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lôbo; Lima, Diego Roberto Sousa; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-01-01

    This study aimed to optimize through design of experiments, the process variables (temperature - T, time - t and solid-to-liquid ratio - SLR) for sugarcane bagasse (SB) autohydrolysis (AH) to obtain hemicellulose hydrolyzates (HH) prone to anaerobic digestion (AD) and biochemical methane production (BMP). The results indicated that severe AH conditions, which lead to maximum hemicelluloses dissolution and sugar content in the HH, were not the best for BMP, probably due to the accumulation of toxic/recalcitrant compounds (furans and lignin). Mild AH conditions (170°C, 35min and SLR=0.33) led to the highest BMP (0.79Nm(3)kg TOC(-1)), which was confirmed by the desirability tool. HH produced by AH carried out at the desired condition DC2 (178.6°C, 43.6min and SLR=0.24) showed the lowest accumulation of inhibitory compounds and volatile fatty acids (VFA) and highest BMP (1.56Nm(3)kg TOC(-1)). The modified Gompertz model best fit the experimental data and led to a maximum methane production rate (R) of 2.6mmol CH4d(-1) in the best condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    Science.gov (United States)

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-07-01

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Improving agricultural straw preparation logistics stream in bio-methane production: experimental studies and application analysis.

    Science.gov (United States)

    Tao, Luo; Junting, Pan; Xi, Meng; Hailong, Huang; Yan, Long; Xia, Xiong; Ruyi, Huang; Zili, Mei

    2017-10-01

    Long-term production in commercial straw biogas plants has been rare in China due to inefficiencies in the logistics stream. Biomass densification could be a potential solution to this issue. Therefore, we conducted a study to evaluate whether biomass densification is a more efficient and sustainable option. We performed methane production experiments to investigate fermentation characteristics of briquettes (with a new pretreatment, model II) and rubs (with a common pretreatment, model I). A 3000-m 3 biogas plant was used to conduct a comparative analysis with solar eMergy joules. Results showed that the methane yield of briquettes of corn stover was 66.74% higher than that of rubs, and the briquettes had better digestion performance in terms of CH 4 content, VFA, and alcohol. The two models required almost the same eMergy investment input, while model II obtained a greater quantity of net eMergy (16.5% higher) in comparison with model I. The net eMergy yield ratio (EYR) (biogas only) of model I and model II was 0.99 and 1.67, respectively, showing less market competitiveness for commercial operations with model I. Meanwhile, the logistic costs of model II could be reduced to approximately US $34,514 annually.

  7. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  8. Coalbed Methane Production System Simulation and Deliverability Forecasting: Coupled Surface Network/Wellbore/Reservoir Calculation

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2017-01-01

    Full Text Available As an unconventional energy, coalbed methane (CBM mainly exists in coal bed with adsorption, whose productivity is different from conventional gas reservoir. This paper explains the wellbore pressure drop, surface pipeline network simulation, and reservoir calculation model of CBM. A coupled surface/wellbore/reservoir calculation architecture was presented, to coordinate the gas production in each calculation period until the balance of surface/wellbore/reservoir. This coupled calculation method was applied to a CBM field for predicting production. The daily gas production increased year by year at the first time and then decreased gradually after several years, while the daily water production was reduced all the time with the successive decline of the formation pressure. The production of gas and water in each well is almost the same when the structure is a star. When system structure is a dendritic surface system, the daily gas production ranked highest at the well which is the nearest to the surface system collection point and lowest at the well which is the farthest to the surface system collection point. This coupled calculation method could be used to predict the water production, gas production, and formation pressure of a CBM field during a period of time.

  9. Methane Pyrolysis for Hydrogen & Carbon Nanotube Recovery from Sabatier Products, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible catalytic methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  10. Methane Pyrolysis for Hydrogen & Carbon Nanotube Recovery from Sabatier Products, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible catalytic methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  11. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    Science.gov (United States)

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate.

    Science.gov (United States)

    Kim, Jungmin; Kang, Chang-Min

    2015-01-01

    The co-digestion of multiple substrates is a promising method to increase methane production during anaerobic digestion. However, limited reliable data are available on the anaerobic co-digestion of food waste leachate with microalgal biomass. This report evaluated methane production by the anaerobic co-digestion of different mixtures of food waste leachate, algal biomass, and raw sludge. Co-digestion of substrate mixture containing equal amounts of three substrates had higher methane production than anaerobic digestion of individual substrates. This was possibly due to a proliferation of methanogens over the entire digestion period induced by multistage digestion of different substrates with different degrees of degradability. Thus, the co-digestion of food waste, microalgal biomass, and raw sludge appears to be a feasible and efficient method for energy conversion from waste resources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  14. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures

    NARCIS (Netherlands)

    Eerten-Jansen, van M.C.A.A.; Jansen, N.C.; Plugge, C.M.; Wilde, de V.; Buisman, C.J.N.; Heijne, ter A.

    2015-01-01

    BACKGROUND In a methane-producing bioelectrochemical system (BES) microorganisms grow on an electrode and catalyse the conversion of CO2 and electricity into methane. Theoretically, methane can be produced bioelectrochemically from CO2 via direct electron transfer or indirectly via hydrogen, acetate

  15. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    NARCIS (Netherlands)

    Eerten-Jansen, van M.C.A.A.; Heijne, ter A.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in

  16. Short communication: Genetic study of methane production predicted from milk fat composition in dairy cows

    NARCIS (Netherlands)

    Engelen, van S.; Bovenhuis, H.; Dijkstra, J.; Arendonk, van J.A.M.; Visker, M.H.P.W.

    2015-01-01

    Dairy cows produce enteric methane, a greenhouse gas with 25 times the global warming potential of CO2. Breeding could make a permanent, cumulative, and long-term contribution to methane reduction. Due to a lack of accurate, repeatable, individual methane measurements needed for breeding, indicators

  17. Anacardic Acid Isolated From Cashew Nut Shell (Anacardium occidentale Affects Methane and Other Products in the Rumen Fermentation

    Directory of Open Access Journals (Sweden)

    A. Saenab

    2017-08-01

    Full Text Available Biofat is a hexane extract containing several bioactive compounds with anacardic acid as the major compound. This study aimed to examine the effect of anacardic acid on rumen fermentation, especially methane and its degradation in the in vitro rumen fermentation. The study was arranged in a completely randomized block design. The treatments were control (substrate or complete feed, biofat (substrate + 0.75 uL/mL biofat, and anacardic acid (substrate + 0.75 uL/mL anacardic acid. Measured variables were total gas production, methane, pH, concentration of ammonia (NH3, dry matter degrability (DMD, organic matter degrability (OMD, and neutral detergent fiber degrability (NDFD in the rumen. The chromatogram GC-MS analysis results indicated that the anacardic acid isolation process of the biofat produced nearly pure isolate (99.44%, and significantly decreased the production of methane by 51.21% and 39.62%, respectively. Anacardic acid degradation pattern in the in vitro rumen test showed a shifting of retention factor (Rf value after anacardic acid being incubated with the degradation of anacardic acid occurred after 24 h of fermentation. In conclusion, anacardic acid isolated from biofat has a dominant role to reduce the in vitro methane production. Anacardic acid is very potential to be used as a methane reducing agent.

  18. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals

    DEFF Research Database (Denmark)

    Øverland, Margareth; Tauson, Anne-Helene; Shearer, Karl

    2010-01-01

    Bacterial proteins represent a potential future nutrient source for monogastric animal production because they can be grown rapidly on substrates with minimum dependence on soil, water, and climate conditions. This review summarises the current knowledge on methane-utilising bacteria as feed...... ingredients for animals. We present results from earlier work and recent findings concerning bacterial protein, including the production process, chemical composition, effects on nutrient digestibility, metabolism, and growth performance in several monogastric species, including pigs, broiler chickens, mink...... (Mustela vison), fox (Alopex lagopus), Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Atlantic halibut (Hippoglossus hippoglossus). It is concluded that bacterial meal (BM) derived from natural gas fermentation, utilising a bacteria culture containing mainly the methanotroph...

  19. Methane production as from the mixture of the urban solid waste lixiviate and municipal wastewater

    International Nuclear Information System (INIS)

    Monroy-Hermosillo, Oscar; Ramírez-Vives, Florina; Rodríguez-Pimentel, Reyna I.; Rodríguez-Pérez, Suyén

    2015-01-01

    The generation of solid wastes and wastewater in Mexico , as other countries, has increased considerably of late years, so its treatment is very important to reduce the pollution. In this work are presented the results on the anaerobic digestion of lixiviate generated with the hydrolysis and acidogenesis of the organic fraction of municipal solid waste recollected in the Universidad Autónoma Metropolitana-Unidad Iztapalapa coffee shop. Theses lixiviated were diluted with municipal wastewater to different organic loads (2,3-20 gCOD/L.d) and after treated anaerobically in UASB reactor. Biogas's average production in the last load of the UASB reactor was up to 12 L/L.d with an efficiency to remove COD on top of 90 % and a production of methane of 0,38 LCH4. gSSV-1. (author)

  20. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows

    DEFF Research Database (Denmark)

    Brask, Maike; Lund, Peter; Weisbjerg, Martin Riis

    2013-01-01

    The purpose of this experiment was to study the effect of the physical form of rapeseed fat on methane (CH4) mitigation properties, feed digestion, and rumen fermentation. Four lactating ruminal-, duodenal-, and ileal-cannulated Danish Holstein dairy cows (143 d in milk, milk yield of 34.3 kg) were...... in open-circuit respiration chambers. Additional fat reduced the CH4 production per kilogram of dry matter intake and as a proportion of the gross energy intake by 11 and 14%, respectively. Neither the total tract nor the rumen digestibility of organic matter (OM) or neutral detergent fiber were....... The rumen ammonia concentration was not affected by the ration. The milk and energy-corrected milk yields were unaffected by the fat supplementation. In conclusion, rapeseed is an appropriate fat source to reduce the enteric CH4 production without affecting neutral detergent fiber digestion or milk...

  1. Genetic resources for methane production from biomass described with gene ontology

    Directory of Open Access Journals (Sweden)

    Endang ePurwantini

    2014-12-01

    Full Text Available Methane (CH4 is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing gold standards for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/.

  2. Production decline type curves analysis of a finite conductivity fractured well in coalbed methane reservoirs

    Science.gov (United States)

    Wei, Mingqiang; Wen, Ming; Duan, Yonggang; Fang, Quantang; Ren, Keyi

    2017-04-01

    Production decline type curves analysis is one of the robust methods used to analyze transport flow behaviors and to evaluate reservoir properties, original gas in place, etc. Although advanced production decline analysis methods for several well types in conventional reservoirs are widely used, there are few models of production decline type curves for a fractured well in coalbed methane (CBM) reservoirs. In this work, a novel pseudo state diffusion and convection model is firstly developed to describe CBM transport in matrix systems. Subsequently, based on the Langmuir adsorption isotherm, pseudo state diffusion and convection in matrix systems and Darcy flow in cleat systems, the production model of a CBM well with a finite conductivity fracture is derived and solved by Laplace transform. Advanced production decline type curves of a fractured well in CBM reservoirs are plotted through the Stehfest numerical inversion algorithm and computer programming. Six flow regimes, including linear flow regime, early radial flow in cleat systems, interporosity flow regime, late pseudo radial flow regime, transient regime and boundary dominated flow regime, are recognized. Finally, the effect of relevant parameters, including the storage coefficient of gas in cleat systems, the transfer coefficient from a matrix system to the cleat system, the modified coefficient of permeability, dimensionless fracture conductivity and dimensionless reservoir drainage radius, are analyzed on type curves. This paper does not only enrich the production decline type curves model of CBM reservoirs, but also expands our understanding of fractured well transport behaviors in CBM reservoirs and guides to analyze the well's production performance.

  3. Effect of pre-treatments on methane production potential of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaki, A.; Ronkainen; Rintala, J.A. [Jyvaskla Univ. (Finland). Dept. of Biological and Environmental Sciences; Viinikainen, T.A. [Jyvaskla Univ. (Finland). Dept. of Chemistry

    2004-07-01

    Energy crops, that is, crops grown specifically for energy purposes are an alternative to food production in areas with sufficient agricultural land. Crop residues are also a potential source of energy. The anaerobic digestion of solid materials is limited by hydrolysis of complex polymeric substances such as lignocellulose. The methane producing potential of ligno cellulosic material is to pretreat the substrate in order to break up the polymer chains to more easily accessible soluble compounds. In this study, three different substrates were used: sugar beet tops, grass hay, and straw of oats. Biological pretreatments were the following: enzyme treatment, composting, white-rot fungi treatment. Also, pretreatment in water was tried. Chemical pretreatments included peracetic acid treatment, and treatment with two different alkalis. Alkaline pretreatments of hay and sugar beet tops have the potential to improve the methane yield. For instance, the yield of grass hay was increased 15 per cent by one particular alkaline treatment. Straw did not respond to any of the treatments tried. 18 refs., 1 tab., 2 figs.

  4. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae.

    Science.gov (United States)

    El-Mashad, Hamed M

    2013-03-01

    Anaerobic batch digestion of four feedstocks was conducted at 35 and 50 °C: switchgrass; Spirulina platensis algae; and two mixtures of both switchgrass and S. platensis. Mixture 1 was composed of 87% switchgrass (based on volatile solids) and 13% S. platensis. Mixture 2 was composed of 67% switchgrass and 33% S. platensis. The kinetics of methane production from these feedstocks was studied using four first order models: exponential, Gompertz, Fitzhugh, and Cone. The methane yields after 40days of digestion at 35 °C were 355, 127, 143 and 198 ml/g VS, respectively for S. platensis, switchgrass, and Mixtures 1 and 2, while the yields at 50 °C were 358, 167, 198, and 236 ml/g VS, respectively. Based on Akaike's information criterion, the Cone model best described the experimental data. The Cone model was validated with experimental data collected from the digestion of a third mixture that was composed of 83% switchgrass and 17% S. platensis. Published by Elsevier Ltd.

  5. Preliminary study of acrylamide monomer decomposition during methane fermentation of dairy waste sludge.

    Science.gov (United States)

    Mroczek, Ewelina; Konieczny, Piotr; Lewicki, Andrzej; Waśkiewicz, Agnieszka; Dach, Jacek

    2016-07-01

    Polyacrylamide (PAM) used in sludge dewatering exists widely in high-solid anaerobic digestion. Acrylamide is registered in the list of chemicals demonstrating toxic, carcinogenic and mutagenic properties. Therefore, it is reasonable to ask about the mobility of such residual substances in the environment. The study was carried out to assess the impact of the mesophilic (39±1°C) and thermophilic (54±1°C) fermentation process on the level of acrylamide monomer (AMD) content in the dairy sludge. The material was analysed using high-performance liquid chromatography (HPLC) for quantification of AMD. The results indicate that the process of methane fermentation continues regardless of the temperature effects on the degradation of AMD in dairy sludge. The degree of reduction of acrylamide monomer for thermophilic fermentation is 100%, while for mesophilic fermentation it is 91%. In practice, this means that biogas technology eliminates the risk of AMD migration to plant tissue. Moreover, it should be stressed that 90% of cumulative biogas and methane production was reached one week earlier under thermophilic conditions - the dynamics of the methanisation process were over 20% faster. Copyright © 2016. Published by Elsevier B.V.

  6. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Science.gov (United States)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  7. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    Parawira, W.; Read, J.S.; Mattiasson, B.; Bjoernsson, L.

    2008-01-01

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-st