WorldWideScience

Sample records for thermophiles annual progress

  1. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Duo-Chuan Li

    2011-01-01

    Full Text Available Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.

  2. Annual progress report 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a brief description of the progress made in each section of the Institut. Research activities of the Protection department include, radiation effects on man, radioecology and environment radioprotection techniques. Research activities of the Nuclear Safety department include, reactor safety analysis, fuel cycle facilities safety analysis, safety research programs. The third section deals with nuclear material security including security of facilities, security of nuclear material transport and monitoring of nuclear material management [fr

  3. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  4. Thermophilic xylanases: from bench to bottle.

    Science.gov (United States)

    Basit, Abdul; Liu, Junquan; Rahim, Kashif; Jiang, Wei; Lou, Huiqiang

    2018-01-17

    Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing. Thermostable xylanases display high-specific activity at elevated temperatures and distinguish themselves in biochemical properties, structures, and modes of action from their mesophilic counterparts. Natural xylanases can be further improved through genetic engineering. Rapid progress with genome editing, writing, and synthetic biological techniques have provided unlimited potential to produce thermophilic xylanases in their natural hosts or cell factories including bacteria, yeasts, and filamentous fungi. This review will discuss the biotechnological potential of xylanases from thermophilic microorganisms and the ways they are being optimized and produced for various industrial applications.

  5. Physiology of thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, L G

    1979-01-01

    Thermophilic micro-organisms have all of the properties normally found in mesophilic micro-organisms. These include metabolic pathways, regulatory mechanisms such as allosteric or feedback control, repression and induction of protein synthesis, growth yields and metabolic rates. The main difference between thermophiles and mesophiles is the former's capacity to grow at high temperatures. The basis for this capacity is the thermophile's capability to synthesize proteins, complex structures and membranes that are stable or are stabilized and functional at thermophilic temperatures. It is proposed that the maximum and minimum growth temperatures are normally determined by properties associated with proteins, and that the membrane plays a lesser role in determining these temperatures. Enzymes and other proteins from thermophiles, except for having higher thermostability, are very similar to corresponding proteins from mesophiles. The higher thermostability is generally dependent on subtle changes in the composition and sequence of the amino acids and rarely dependent on non-proteinaceous factors. Although over 100 proteins have been purified from thermophiles and compared with corresponding proteins from mesophiles, the exact nature of the higher thermostability has yet to be determined in a protein from a thermophile.

  6. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hyd...

  7. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Ljungdahl, L.G.

    1984-01-01

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 47 0 C and 70 0 C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  8. Thermophilic lignocellulose deconstruction.

    Science.gov (United States)

    Blumer-Schuette, Sara E; Brown, Steven D; Sander, Kyle B; Bayer, Edward A; Kataeva, Irina; Zurawski, Jeffrey V; Conway, Jonathan M; Adams, Michael W W; Kelly, Robert M

    2014-05-01

    Thermophilic microorganisms are attractive candidates for conversion of lignocellulose to biofuels because they produce robust, effective, carbohydrate-degrading enzymes and survive under harsh bioprocessing conditions that reflect their natural biotopes. However, no naturally occurring thermophile is known that can convert plant biomass into a liquid biofuel at rates, yields and titers that meet current bioprocessing and economic targets. Meeting those targets requires either metabolically engineering solventogenic thermophiles with additional biomass-deconstruction enzymes or engineering plant biomass degraders to produce a liquid biofuel. Thermostable enzymes from microorganisms isolated from diverse environments can serve as genetic reservoirs for both efforts. Because of the sheer number of enzymes that are required to hydrolyze plant biomass to fermentable oligosaccharides, the latter strategy appears to be the preferred route and thus has received the most attention to date. Thermophilic plant biomass degraders fall into one of two categories: cellulosomal (i.e. multienzyme complexes) and noncellulosomal (i.e. 'free' enzyme systems). Plant-biomass-deconstructing thermophilic bacteria from the genera Clostridium (cellulosomal) and Caldicellulosiruptor (noncellulosomal), which have potential as metabolic engineering platforms for producing biofuels, are compared and contrasted from a systems biology perspective. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents.

    Science.gov (United States)

    Miroshnichenko, Margarita L; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

  10. FY2011 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  11. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  12. Workforce Training and Economic Development Fund: 2015 Annual Progress Report

    Science.gov (United States)

    Iowa Department of Education, 2015

    2015-01-01

    The Department of Education, Division of Community Colleges, will annually provide the State Board of Education with The Workforce Training and Economic Development (WTED) Fund Annual Progress Report. Administration and oversight responsibility for the fund was transferred from the Iowa Economic Development Authority to the Iowa Department of…

  13. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae

    Directory of Open Access Journals (Sweden)

    Eivind B. Drejer

    2018-05-01

    Full Text Available Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B. methanolicus, B. coagulans, B. smithii, B. licheniformis, Geobacillus thermoglucosidasius, G. kaustophilus, and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.

  15. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as ....... Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 550 C could be obtained at 610 C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature.......Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...

  16. In vitro production of thymine dimer by ultroviolet irradiation of DNA from mesophilic and thermophilic bacteria

    International Nuclear Information System (INIS)

    Yein, F.S.; Stenesh, J.

    1989-01-01

    Thymine dimer was produced in vitro by ultraviolet irradiation of DNA, isolated from the mesophile Bacillus licheniformis and the thermophile B. stearothermophilus. Irradiation was performed at three different temperaturs (35, 45 and 55 C) and the thymine dimer was isolated and determined. An HPLC procedure was developed that permitted temperature was greater for the thermophile than for the mesophile. Formation of thymine dimer increased with temperature for both organisms but more so for the thermophile; over the temperature range of 35-55 C, the average increase in thymine dimer production for the themrophile was about 4-times that for the mesophile. The melting out temperature, as a function of increasing irradiation temperature, was essentially unchanged for the mesophilic DNA, but decreased progressively for the thermophilic DNA. These results are discussed in terms of the macromolecular theory of to the macromolecular theory of the thermophily. (author). 31 refs.; 4 figs.; 3 tabs

  17. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  18. Southeastern Community College Annual Progress Report, December 1995.

    Science.gov (United States)

    Gardner, R. Gene

    Presenting information on the status of Southeastern Community College (SCC), in Iowa, this annual progress report highlights basic institutional data, financial information, and improvements and planned changes of the college as of 1995. Part 1 presents basic data on SCC, including facility locations, assessed property valuation, district…

  19. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  20. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Science.gov (United States)

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  1. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  2. 10 CFR 905.14 - Does Western require annual IRP progress reports?

    Science.gov (United States)

    2010-01-01

    ... Section 905.14 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Integrated Resource Planning § 905.14 Does Western require annual IRP progress reports? Yes, customers must submit IRP progress... projected goals and implementation schedules, and energy and capacity benefits and renewable energy...

  3. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  4. Thermophilic Fungi: Their Physiology and Enzymes†

    Science.gov (United States)

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  5. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  6. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential.

    Science.gov (United States)

    Singh, Bijender

    2016-01-01

    Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.

  7. Thermophilic microorganisms in biomining.

    Science.gov (United States)

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  8. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.

    Science.gov (United States)

    Radianingtyas, Helia; Wright, Phillip C

    2003-12-01

    Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.

  9. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  10. Florida Progress Corporation 1991 annual report

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Florida Progress Corporation is a utility holding company with assets of 5 billion dollars. Its principal subsidiary is the Florida Power Corporation; others are the Electric Fuels Corporation, the Mid-Continent Life Assurance Company, the Talquin Corporation, the Progress Credit Corporation and Advanced Separation Technologies Incorporated. The annual report describes achievements during the year. To meet growing energy demand Florida Power is building new peaking and base-load generating units, purchasing power from neighbouring utilities and cogenerators, and building more bulk power transmission line capacity in the state. Emphasis has been placed on meeting load growth by demand-site management. Attention is given to balancing energy needs with concerns for the environment, and there is an award-winning recycling program. The Electric Fuels Corporation major area of business is coal mining and transportation services. Advanced Separation Technologies has sold several of its patented ion separation machines. The report includes consolidated financial statements for the year ended 31 December 1991

  11. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...... for thermophilic digestion along with the implications for the methanogenic bacteria active at these temperatures....

  12. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Federal Facility Agreement Annual Progress Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1999-08-04

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

  14. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  15. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  16. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  17. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  18. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  19. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  20. Characterization of annual disease progression of multiple sclerosis patients: A population-based study

    DEFF Research Database (Denmark)

    Freilich, Jonatan; Manouchehrinia, Ali; Trusheim, Mark

    2017-01-01

    Previous research characterizing factors influencing multiple sclerosis (MS) disease progression has typically been based on time to disease milestones (Kaplan-Meier, Cox hazard regression, etc.). A limitation of these methods is the handling of the often large groups of patients not reaching...... the milestone. To characterize clinical factors influencing MS disease progression as annual transitions from each Expanded Disability Status Scale (EDSS). The annual progression of 11,964 patients from the Swedish MS Registry was analysed with 10 multinomial logistic regressions, that is, one for transition...... from each full EDSS with explanatory variables age, sex, age at onset, time in current EDSS, highest prior EDSS, MS course and treatment. All factors (except sex) investigated had statistically significant impacts on transitions from at least one EDSS. However, significance and size of the effect...

  1. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  2. Thermophilic biofiltration of benzene and toluene.

    Science.gov (United States)

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

  3. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    International Nuclear Information System (INIS)

    None

    2001-01-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports

  4. Federal Facility Agreement Annual Progress Report for Fiscal Year 1998

    International Nuclear Information System (INIS)

    Palmer, E.

    1999-01-01

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement

  5. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  6. Survival of thermophilic and hyper-thermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

    International Nuclear Information System (INIS)

    Beblo, K.; Wirth, R.; Huber, H.; Douki, T.; Schmalz, G.; Rachel, R.

    2011-01-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylo-genetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyper-thermophilic microorganisms. (authors)

  7. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  8. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  9. Thermophilic fungi in the new age of fungal taxonomy.

    Science.gov (United States)

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.

  10. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  11. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  12. StreamNet: FY 1999 annual progress report

    International Nuclear Information System (INIS)

    Columbia River Inter-Tribal Fish Commission

    2000-01-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views of this report are the author's and do not necessarily represent the views of BPA. This annual report covers progress made by: Columbia River Inter-Tribal Fish Commission Idaho; Department of Fish and Game; Montana Department of Fish, Wildlife and Parks; Oregon Department of Fish and Wildlife; Pacific States Marine Fisheries Commission; Shoshone-Bannock Tribes; US Fish and Wildlife Service; Washington Department of Fish and Wildlife; and FY1999 StreamNet Quickplan

  13. Energy transduction and transport processes in thermophilic bacteria

    NARCIS (Netherlands)

    Konings, W. N.; Tolner, B.; Speelmans, G.; Elferink, M. G. L.; de Wit, J. G.; Driessen, A. J. M.

    1992-01-01

    Bacterial growth at the extremes of temperature has remained a fascinating aspect in the study of membrane function and structure. The stability of the integral membrane proteins of thermophiles make them particularly amenable to study. Respiratory enzymes of thermophiles appear to be functionally

  14. Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.

    Science.gov (United States)

    Colleran, E; Pender, S

    2002-01-01

    The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.

  15. Comparative economic assessment of ethanol production under mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Mistry, P.B.

    1991-01-01

    Key technical factors affecting the economics of bioethanol production are critically analyzed with special reference to the relative merits of thermophilic and mesophilic fermentation. A number of novel process schemes to take advantage of thermophilic operation are discussed. Analysis of the capital and operating costs for a range of flowsheets then provides a basis for critical study. Estimates for thermophilic production are compared with those for a sugar cane based mesophilic process (using S. cerevisiae). For the thermophilic fermentation, the basic kinetic and yield constants are based on projected values for a strain of B. stearothermophilus. Compared to mesophilic operation, thermophilic operation results in reduced capital, operating and feed costs. The feed cost still accounts for a large proportion (75%) of the total production cost. However, on a feed-cost-free basis, a reduction in production cost of up to 32% could be realized by changing to thermophilic operation from existing yeast-based processes, after minor process modifications. 20 refs., 10 figs., 8 tabs

  16. Thermophilic (55 - 65°C) and extreme thermophilic (70 - 80°C) sulfate reduction in methanol and formate-fed UASB reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Camarero, E.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The feasibility of thermophilic (55-65 degreesC) and extreme thermophilic (70-80 degreesC) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular

  17. Cellulolytic potential of thermophilic species from four fungal orders

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Lene

    2013-01-01

    and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles....... Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45 ºC. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we......Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi...

  18. Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor.

    Science.gov (United States)

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert

    2018-07-01

    This paper investigates the feasibility and advantages of using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor system for the co-digestion of Thickened Waste Activated Sludge (TWAS) and Fat, Oil and Grease (FOG) to produce biogas in high quantity and quality. The performance of the dual-stage hyper-thermophilic (70°C)/thermophilic (55°C) anaerobic co-digestion system is evaluated and compared to the performance of a single-stage thermophilic (55°C) reactor that was used to co-digest the same FOG-TWAS mixtures. Both co-digestion reactors were compared to a control reactor (the control reactor was a single-stage thermophilic reactor that only digested TWAS). The effect of FOG% in the co-digestion mixture (based on total volatile solids) and the reactor hydraulic retention time (HRT) on the biogas/methane production and the reactors' performance were thoroughly investigated. The FOG% that led to the maximum methane yield with a stable reactor performance was determined for both reactors. The maximum FOG% obtained for the single-stage thermophilic reactor at 15 days HRT was found to be 65%. This 65% FOG resulted in 88.3% higher methane yield compared to the control reactor. However, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor proved to be more efficient than the single-stage thermophilic co-digestion reactor, as it was able to digest up to 70% FOG with a stable reactor performance. The 70% FOG in the co-digestion mixture resulted in 148.2% higher methane yield compared to the control at 15 days HRT. 70% FOG (based on total volatile solids) is so far the highest FOG% that has been proved to be useful and safe for semi-continuous reactor application in the open literature. Finally, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor also proved to be efficient and stable in co-digesting 40% FOG mixtures at lower HRTs (i.e., 9 and 12 days) and still produce high methane yields and Class A effluents

  19. Thermophilic Fungi: Their Physiology and Enzymes†

    OpenAIRE

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending Itp to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although wides...

  20. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  1. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  2. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    Science.gov (United States)

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  3. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  4. Annual report on reactor safety research projects. Reporting period 2011. Progress report

    International Nuclear Information System (INIS)

    2011-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  5. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  6. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    International Nuclear Information System (INIS)

    2013-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  7. Annual report on reactor safety research projects. Reporting period 2015. Progress report

    International Nuclear Information System (INIS)

    2015-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft tor Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are ·' prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. it has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  8. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents

    Directory of Open Access Journals (Sweden)

    Begüm D. Topçuoğlu

    2016-08-01

    Full Text Available Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4+ generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from the H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.

  9. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  10. The community's research and development programme on decommissioning of nuclear installations. Fourth annual progress report 1988

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This is the fourth annual progress report on the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme at 31 December 1988. The fourth progress report describes the objectives, scope and work programme of the 72 research contracts concluded, as well as the progress of work achieved and the results obtained in 1988

  11. The Community's research and development programme on decommissioning of nuclear installations. Third annual progress report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1987. The third progress report describes the objectives, scope and work programme of the 69 research contracts concluded, as well as the progress of work achieved and the results obtained in 1987

  12. Bioprospecting thermophiles for cellulase production: a review.

    Science.gov (United States)

    Acharya, Somen; Chaudhary, Anita

    2012-07-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  13. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.

    Science.gov (United States)

    Chen, Shen-Yi; Chou, Li-Chieh

    2016-08-01

    Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.

  14. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Science.gov (United States)

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  15. State of the art and future perspectives of thermophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Mladenovska, Zuzana; Iranpour, R.

    2002-01-01

    The slate of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures...... over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start......-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65degreesC or more may be necessary in the future to meet the demands for full sanitation of the waste material...

  16. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption

    Science.gov (United States)

    Summit, Melanie; Baross, John A.

    1998-12-01

    High-temperature microbes were present in two hydrothermal event plumes (EP96A and B) resulting from the February-March 1996 eruptions along the North Gorda Ridge. Anaerobic thermophiles were cultured from 17 of 22 plume samples at levels exceeding 200 organisms per liter; no thermophiles were cultured from any of 12 samples of background seawater. As these microorganisms grow at temperatures of 50-90°C, they could not have grown in the event plume and instead most probably derived from a subseafloor environment tapped by the event plume source fluids. Event plumes are thought to derive from a pre-existing subseafloor fluid reservoir, which implies that these thermophiles are members of a native subseafloor community that was present before the eruptive event. Thermophiles also were cultured from continuous chronic-style hydrothermal plumes in April 1996; these plumes may have formed from cooling lava piles. To better understand the nutritional, chemical, and physical constraints of pre-eruptive crustal environments, seven coccoidal isolates from the two event plumes were partially characterized. Results from nutritional and phylogenetic studies indicate that these thermophiles are heterotrophic archaea that represent new species, and probably a new genus, within the Thermococcales.

  17. Comparison of the thermostability of cellulases from various thermophilic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczak, G; Breuil, C; Yamada, J; Saddler, J N

    1987-10-01

    The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (> 45/sup 0/C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.

  18. Bioprospecting thermophiles for cellulase production: a review

    Directory of Open Access Journals (Sweden)

    Somen Acharya

    2012-09-01

    Full Text Available Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  19. The Community's research and development programme on decommissioning of nuclear installations (1989-1993). Annual progress report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This is the second annual progress report of the European Community's programme (1989-93) of research on decommissioning of nuclear installations. It shows the status of the programme on 31 December 1991. This second progress report summarizes the objectives, scope and work programme of the 76 research contracts concluded, as well as the progress of work achieved and the results obtained in 1991

  20. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  1. 76 FR 45862 - Agency Information Collection Activities: New Collection; Semi-Annual Progress Report for...

    Science.gov (United States)

    2011-08-01

    ... the Services, Training, Education and Policies to Reduce Domestic Violence, Dating Violence, Sexual... Collection; Semi- Annual Progress Report for Grantees From the Services, Training, Education and Policies To Reduce Domestic Violence, Dating Violence, Sexual Assault and Stalking in Secondary Schools Grant Program...

  2. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    Science.gov (United States)

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  4. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae.

    Science.gov (United States)

    van den Brink, Joost; Facun, Kryss; de Vries, Michel; Stielow, J Benjamin

    2015-12-01

    Thermophilic fungi have the potential to produce industrial-relevant thermostable enzymes, in particular for the degradation of plant biomass. Sordariales is one of the few fungal orders containing several thermophilic taxa, of which many have been associated with the production of thermostable enzymes. The evolutionary affiliation of Sordariales fungi, especially between thermophiles and non-thermophilic relatives, is however poorly understood. Phylogenetic analysis within the current study was based on sequence data, derived from a traditional Sanger and highly multiplexed targeted next generation sequencing approach of 45 isolates. The inferred phylogeny and detailed growth analysis rendered the trait 'thermophily' as polyphyletic within Chaetomiaceae (Sordariales, Sordariomycetes), and characteristic to: Myceliophthora spp., Thielavia terrestris, Chaetomium thermophilum, and Mycothermus thermophilus. Compared to mesophiles, the isolates within thermophilic taxa produced enzyme mixtures with the highest thermostability of known cellulase activities. Temperature profiles of the enzyme activities correlated strongly with the optimal growth temperatures of the isolates but not with their phylogenetic relationships. This strong correlation between growth and enzyme characteristics indicated that detailed analysis of growth does give predictive information on enzyme physiology. The variation in growth and enzyme characteristics reveals these fungi as an excellent platform to better understand fungal thermophily and enzyme thermostability. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.

    Science.gov (United States)

    Gagliano, M C; Braguglia, C M; Petruccioli, M; Rossetti, S

    2015-05-01

    Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Commercial waste treatment program annual progress report for FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  7. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  8. Screening of Thermophilic Bacteria Produce Xylanase from Sapan Sungai Aro Hot Spring South Solok

    Science.gov (United States)

    Irdawati, I.; Syamsuardi, S.; Agustien, A.; Rilda, Y.

    2018-04-01

    xylanase is one of the enzymes with great prospects as hemicellulose hydrolyzing enzyme. Global annual market demand for this enzyme reach US 200 million. This enzyme catalyzes the xylan (hemicellulose) reactions breaking into xilooligosakarida and xylose. Xylanase can be applied to various industrial sectors such as bread, sugar xylose, biofuels, especially in bleaching paper (bleaching) pulp. Xylanase Isable to replace conventional chemical bleaching using chlorine that is not friendly for the environment. Currently xylanase production is extracted from the thermophilic bacteria for enzyme stability at high temperatures that are suitable for industrial applications. Thermophilic bacteria can be isolated from a hot spring, one of the which is a source of Sapan Sungai Aro Hot Spring, located in the district South Solok. The aim of this study was to select and identification of thermophilic bacteria can produce xylanase.This roomates is a descriptive study, which was Carried out in the Laboratory of Microbiology, Mathematic and Science Faculty of Padang State University, and Laboratory of Bacteriology, BasoVeterinary Research Center. The research procedure consisted of the preparation and sterilization of materials and tools, medium manufacturing, regeneration, selection and identification. Selection is performed by using a semiquantitative screening plate that contains xylan substrate. Identification is based on microscopic and biochemical characteristics until the genus level.Selection results Showed 12 out of 16 isolates had xilanolitik activity, with the highest activity is SSA2 with xilanolitik index of 0.74. The top five index producehigestxilanolitik isolates that are SSA2, SSA3 and SSA4 identified as Bacillus sp. 1., and SSAS6 and SSA7 is Bacillus sp. 2.

  9. The Community's research and development programme on decommissioning of nuclear installations. Second annual progress report (year 1986)

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1986. This second progress report describes the objectives, scope and work programme of the 58 research contracts concluded, as well as the progress of work achieved and the results obtained in 1986

  10. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal.

    Science.gov (United States)

    Courtens, Emilie Np; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-09-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.

  11. Diversity of thermophilic archaeal isolates from hot springs in Japan

    Science.gov (United States)

    Itoh, Takashi; Yoshikawa, Naoto; Takashina, Tomonori

    2005-09-01

    In the light of the significance of extremophiles as model organisms to access possible extraterrestiral life, we provide a short review of the systematics of thermophilic Archaea, and introduce our exploratory research of novel thermophilic Archaea from hot springs in Japan. Up to date, we have isolated 162 strains of the thermophilic Archaea from hot springs in Japan by the enrichment method or the most probable number/PCR method, and the 16S rRNA gene sequences were determined to reveal their phylogenetic diversity. The sequence comparison illustrated that the isolates belonged to the orders Sulfolobales (117 isolates) , Thermoproteales (29 isolates), Desulfurococcales (8 isolates) and Thermoplasmatales (8 isolates), and there were six separate lineages representing new genera, and at least seven new species as predicted by the phylogenetic distance to known species. The collection of isolates not only included novel taxa but would give some implication for a necessity to reevaluate the current taxonomy of the thermophilic Archaea.

  12. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  13. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.

    Science.gov (United States)

    Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2007-08-15

    This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.

  14. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    Science.gov (United States)

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  16. Exogenous cellulases of thermophilic micromycetes. Pt. 1. Selection of producers

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Kvachadze, L; Aleksidze, T; Chartishvili, D K

    1986-01-01

    More than 600 micromycetes - representatives of different genera have been investigated for their ability to produce exogenous cellulases. Most of the investigated cultures were found to produce these enzymes, 24 cultures being thermophilic, and 18 thermotolerant. Cellulase or its derivatives proved to be the most favourable carbon source for cellulase secretion. None of the thermophilic cultures studied manifested the ability of exogenous exoglucanase biosynthesis. Using UV-rays as mutagen, a mutant strain A. terreus T-49 has been obtained being characterized by an increased endo-glucanase and cellobiase activity, as compared to the initial strains. The cellulase preparations of thermophilic micromycetes contain one cellulasic component: endo-glucanase, or two: endo-glucanase and cellobiase.

  17. The UK fuel poverty strategy: 5th annual progress report 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This fifth annual progress report details government progress in 2007 in tackling fuel poverty and movement towards targets. The United Kingdom were the first country in the world to recognise the issue of fuel poverty and to put in place measures to tackle the issue, including spending 20 billion pounds sterling on benefits and programmes since the year 2000. The report covers progress to date, schemes and initiatives to tackle fuel poverty, the energy market and looks ahead to the future. Progress and development of the schemes across the devolved nations are also considered. This report is the first to publish the Government's proposals for the Carbon Emissions Reduction Target (CERT) priority group, which were laid before Parliament on 5th December 2007. This report is the first to present the fuel poverty figures for 2005, and shows the effects of rising energy prices. The Government continues to take action to ensure that the energy market is working properly, and to encourage reform in the EU on energy market liberalisation - this should reduce pressure on prices. Those in fuel poverty have much to gain by switching supplier and this report outlines the action taken by Ofgem and Energywatch to encourage this

  18. 76 FR 30388 - Agency Information Collection Activities: New collection Semi-Annual Progress Report for Grantees...

    Science.gov (United States)

    2011-05-25

    ... Grantees from the Services, Training, Education and Policies to Reduce Domestic Violence, Dating Violence... collection Semi- Annual Progress Report for Grantees From the Services, Training, Education and Policies To Reduce Domestic Violence, Dating Violence, Sexual Assault and Stalking in Secondary Schools Grant Program...

  19. Experimental assessment of factors influencing dewatering properties of thermophilically digested biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianpeng; Mavinic, Donald S.; Kelly, Harlan G.; Ramey, William D.

    2003-07-01

    Beneficial land application of processed wastewater sludges (biosolids) is a cost-effective, and environmentally sustainable option for the final disposal of sludges, because nutrients and organic matters in the sludge are recovered and reused as a resource. Thermophilic sludge digestion produces Class A biosolids, which can be reused without restrictions. Recent experience from full-scale thermophilic sludge digestion facilities in North America revealed that, dewatering thermophilically digested biosolids required more polymers to condition than mesophilically digested biosolids. This paper reports a laboratory study that investigated factors having significant impacts on dewatering properties of digested biosolids, and assessed the relationship among digestion, dewatering properties, and characteristics of thermophilically digested biosolids. The experimental work used batch-operated, bench-scale aerobic sludge digesters. Dewaterability was measured as Capillary Suction Time (CST). The study found that feed sludge composition significantly affected dewaterability of digested sludge. Higher percentage of the secondary sludge in the feed sludge corresponded to more significant deterioration in dewaterability. The effect of thermophilic digestion temperatures on dewaterabilty was rapid, occurred within 3-hour of digestion, indicting a heat shock effect, rather than a microbiological effect. When a high shear was applied to the sludge in digesters, it resulted In a significant deterioration in dewaterability in the digested sludge. It appears there was a strong correlation between dewaterability and extracellular biopolymers. Enzymes (protease) treatment confirmed that role of extracellular proteins in affecting the dewatering properties of thermophilic biosolids, also revealed the complex nature of biopolymers' effect on dewaterability. Such effects might be due to protein-polysaccharides interactions, hydrogen bonding, or hydrophilic and hydrophobic

  20. Diversity of Cultured Thermophilic Anaerobes in Hot Springs of Yunnan Province, China

    Science.gov (United States)

    Lin, L.; Lu, Y.; Dong, X.; Liu, X.; Wei, Y.; Ji, X.; Zhang, C.

    2010-12-01

    Thermophilic anaerobes including Archaea and Bacteria refer to those growing optimally at temperatures above 50°C and do not use oxygen as the terminal electron acceptor for growth. Study on thermophilic anaerobes will help to understand how life thrives under extreme conditions. Meanwhile thermophilic anaerobes are of importance in potential application and development of thermophilic biotechnology. We have surveyed culturable thermophilic anaerobes in hot springs (pH6.5-7.5; 70 - 94°C) in Rehai of Tengchong, Bangnazhang of Longlin, Eryuan of Dali,Yunnan, China. 50 strains in total were cultured from the hot springs water using Hungate anaerobic technique, and 30 strains were selected based on phenotypic diversity for analysis of 16S rDNA sequences. Phylogenetic analysis showed that 28 strains belonged to the members of five genera: Caldanaerobacter, Calaramator, Thermoanaerobacter, Dictyoglomus and Fervidobacterium, which formed five branches on the phylogenetic tree. Besides, 2 strains of methanogenic archaea were obtained. The majority of the isolates were the known species, however, seven strains were identified as novel species affiliated to the five genera based on the lower 16S rDNA sequence similarities (less than 93 - 97%) with the described species. This work would provide the future study on their diversity, distribution among different regions and the potential application of thermophilic enzyme. Supported by State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences(SKLMR-080605)and the Foundation of State Natural Science (30660009, 30960022, 31081220175).

  1. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Kimura, Satoshi; Ishii, Masaharu; Igarashi, Yasuo

    2014-09-01

    Three thermophilic methanogens (Methanothermobacter thermautotrophicus, Methanosaeta thermophila, and Methanosarcina thermophila) were investigated for their ability to reduce poorly crystalline Fe(III) oxides (ferrihydrite) and the inhibitory effects of ferrihydrite on their methanogenesis. This study demonstrated that Fe(II) generation from ferrihydrite occurs in the cultures of the three thermophilic methanogens only when H2 was supplied as the source of reducing equivalents, even in the cultures of Mst. thermophila that do not grow on and produce CH4 from H2/CO2. While supplementation of ferrihydrite resulted in complete inhibition or suppression of methanogenesis by the thermophilic methanogens, ferrihydrite reduction by the methanogens at least partially alleviates the inhibitory effects. Microscopic and crystallographic analyses on the ferrihydrite-reducing Msr. thermophila cultures exhibited generation of magnetite on its cell surfaces through partial reduction of ferrihydrite. These findings suggest that at least certain thermophilic methanogens have the ability to extracellularly transfer electrons to insoluble Fe(III) compounds, affecting their methanogenic activities, which would in turn have significant impacts on materials and energy cycles in thermophilic anoxic environments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features.

    Science.gov (United States)

    Lu, Haiqiang; Zhang, Huitu; Shi, Pengjun; Luo, Huiying; Wang, Yaru; Yang, Peilong; Yao, Bin

    2013-09-01

    A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH 5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50-85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH 4.0-7.0 and 25.6 % even at pH 9.0) and good stability from pH 3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.

  3. Nuclear Structure Group annual progress report June 1974 -May 1975

    International Nuclear Information System (INIS)

    1975-06-01

    This is the first annual progress report of the Nuclear Structure Group of the University of Birmingham. The introduction lists the main fields of study of the Group as: polarisation penomena and optical model studies using 3 He and 4 He probes; photonuclear physics; heavy-ion physics; and K- meson physics. The programme is related to particle accelerators at Birmingham, Oxford, Harwell and the Rutherford Laboratory. The body of the report consists of summaries of 38 experiments undertaken by members of the Group. The third section contains 10 notes on instrumentation topics. Appendices contain lists of (a) personnel, (b) papers published or submitted during the period. (U.K.)

  4. Progress of emphysema in severe α1-antitrypsin deficiency as assessed by annual CT

    International Nuclear Information System (INIS)

    Dirksen, A.; Friis, M.; Olesen, K.P.

    1997-01-01

    Purpose: To assess serial CT as a measure of the progress of emphysema in patients with severe α 1 -antitrypsin deficiency (phenotype PiZ). Material and Methods: In a randomized placebo-controlled study of α 1 -antitrypsin augmentation therapy, 22 patients with moderate emphysema were followed for 2-4 years with an annual lung CT. The images were analysed by means of semiautomatic lung detection, and the degree of emphysema was quantitated by the density-mask and the percentile methods. The influence of lung volume was standardised by a regression model. Results: A highly significant decline in Hounsfield units (HU) was found in low-density areas, corresponding to a mean (SE) annual loss of lung tissue of 2.1 (0.4) g/l lung volume. Analysis of a single slice at 5 cm below the level of the carina gave comparable results: 2.4 (0.4) g/l. Conclusion: Serial CT is a sensitive measure of the progress of emphysema in patients with severe α 1 -antitrypsin deficiency. (orig.)

  5. IAEA and EU Review Progress on Cooperation, Agree on Next Steps at Annual Meeting

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) and the European Union (EU) reviewed progress achieved in working together on a range of nuclear activities and agreed to further enhance cooperation during their sixth annual Senior Officials Meeting in Vienna. The talks on 8 February at the IAEA’s headquarters provided a forum for exchanging views on strengthening collaboration on nuclear safety, security, safeguards, sustainable development, nuclear energy research and increasing innovation. The two organizations welcomed the fruitful cooperation and progress achieved over the past years. They agreed to deepen cooperation in several areas, particularly in the promotion of nuclear applications for sustainable development.

  6. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  7. Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yohei; Harada, Hideki [Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Lee, Dong-Yeol [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Chi, Yong-Zhi [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Li, Yu-You [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Department of Environmental Science, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Yu, Han-Qing [School of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2009-06-15

    In this study, the effects of the hydraulic retention time (HRT), pH and substrate concentration on the thermophilic hydrogen production of starch with an upflow anaerobic sludge bed (UASB) reactor were investigated. Starch was used as a sole substrate. Continuous hydrogen production was stably attained with a maximum H{sub 2} yield of 1.7 mol H{sub 2}/mol glucose. A H{sub 2}-producing thermophilic granule was successfully formed with diameter in the range of 0.5-4.0 mm with thermally pretreated methanogenic granules as the nuclei. The metabolic pathway of the granules was drastically changed at each operational parameter. The production of formic or lactic acids is an indication of the deterioration of hydrogen production for H{sub 2}-producing thermophilic granular sludge. (author)

  8. Xylanase, CM-cellulase and avicelase production by the thermophilic fungus Sporotrichum thermophile

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A; Merchant, R; Yaguchi, M

    1983-01-01

    When wheat straw was used as C source, S. thermophile produced large amounts of xylanase extracellularly in addition to CM-cellulase and Avicelase. These enzymes were isolated by alcohol precipitation, desalting, and column chromatography. The molecular weights were estimated to be 25,0065,000 and 84,000 for xylanase, CM-cellulase, and Avicelase, respectively. Serine and threonine were the most abundant amino acids and these enzymes are very acidic proteins.

  9. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    Science.gov (United States)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  10. Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9

    NARCIS (Netherlands)

    Mougiakos, Ioannis; Bosma, Elleke F.; Weenink, Koen; Vossen, Eric; Goijvaerts, Kirsten; Oost, van der John; Kranenburg, van Richard

    2017-01-01

    Well-developed genetic tools for thermophilic microorganisms are scarce, despite their industrial and scientific relevance. Whereas highly efficient CRISPR/Cas9-based genome editing is on the rise in prokaryotes, it has never been employed in a thermophile. Here, we apply Streptococcus pyogenes

  11. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  12. Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum

    OpenAIRE

    Stams, Alfons J. M.; Grolle, Katja C. F.; Frijters, Carla T. M.; Van Lier, Jules B.

    1992-01-01

    Thermophilic propionate-oxidizing, proton-reducing bacteria were enriched from the granular methanogenic sludge of a bench-scale upflow anaerobic sludge bed reactor operated at 55°C with a mixture of volatile fatty acids as feed. Thermophilic hydrogenotrophic methanogens had a high decay rate. Therefore, stable, thermophilic propionate-oxidizing cultures could not be obtained by using the usual enrichment procedures. Stable and reproducible cultivation was possible by enrichment in hydrogen-p...

  13. Dewaterability of thermophilically digested biosolids: effects of temperature and cellular polymeric substances

    International Nuclear Information System (INIS)

    Zhou, J.; Mavinic, D.S.; Kelly, H.G.; Ramey, W.D.

    2002-01-01

    Thermophilic processes digest sludge at high temperatures to produce Class A biosolids.Recent research work revealed that digestion temperature is the predominant factor affecting dewaterability of thermophilic biosolids. This paper presents findings of a laboratory study that investigated how various digestion temperatures affect dewaterability of digested biosolids, studied the phase partition of the substances affecting dewaterability in digested biosolids, and tested the role of cellular polymeric substances in affecting dewaterability.Secondary sludges were digested at 40-70 o C or 22 o C for up to 12 days. Centrate from thermophilically digested biosolids were treated with protease and boiling. This study found that, during the first few hours of digestion, higher temperatures resulted in more rapid and more significant deterioration in dewaterability than lower digestion temperatures. Continued digestion resulted in either improved (60 o C or 70 o C), or unchanged (40 o C or 50 o C), or gradually deteriorated dewaterability (22 o C). The substances affecting dewaterability were primarily located in the liquid phase of thermophilically digested biosolids. Boiling treatment did not result in significant changes in dewaterability. Protease treatment of the liquid phase of thermophilic biosolids improved dewaterability by 13-19%. Such an improvement confirmed the role of proteins in affecting dewaterability. (author)

  14. Anaerobic thermophilic culture-system

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, L G; Wiegel, J K.W.

    1981-04-14

    A mixed culture system of Thermoanaerobacter ethanolicus and Clostridium thermocellum is employed for anaerobic, thermophilic ethanol fermentation of cellulose. By cellulase action, monosaccharides are formed which inhibit the growth of C. thermocellum, but are fermented by T. ethanolicus. Thus, at a regulated pH-value of 7.5, this mixed culture system of micro organisms results in a cellulose fermentation with a considerably higher ethanol yield.

  15. Pennsylvania State University Breazeale Nuclear Reactor. Thirtieth annual progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1985-08-01

    This report is the thirtieth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor and covers such topics as: personnel; reactor facility; cobalt-60 facility; education and training; Radionuclear Application Laboratory; Low Level Radiation Monitoring Laboratory; and facility research utilization

  16. Western Research Institute: Annual technical progress report, October 1987--September 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report describes the technical progress made by the Western Research Institute of the University of Wyoming Research Institute of the University of Wyoming Research Corporation on work performed for the period October 1, 1987 through September 30, 1988. This research involves five resource areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. Under the terms of the cooperative agreement, an annual project plan has been approved by DOE. The work reported herein reflects the implementation of the research in the plan and follows the structure used therein. 49 refs., 32 figs., 87 tabs.

  17. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  18. (Hyper)thermophilic Enzymes: Production and Purification

    NARCIS (Netherlands)

    Falcicchio, P.; Levisson, M.; Kengen, S.W.M.; Koutsopoulos, S.

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our

  19. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  20. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  1. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  2. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.

    Science.gov (United States)

    Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F

    2001-03-01

    This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite.

  3. Thermophilic composting of municipal solid waste

    International Nuclear Information System (INIS)

    Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S.

    2009-01-01

    Process of composting has been developed for recycling of organic fraction of municipal solid waste (MSW). The bioreactor design was modified to reduce the composting process time. The main goal of this investigation was to find the optimal value of time period for composting of MSW in thermophilic bioreactor under aerobic condition. The temperature profiles correlated well with experimental data obtained during the maturation process. During this period biological degraders are introduced in to the reactor to accelerate the composting process. The compost materials were analyzed at various stages and the environmental parameters were considered. The final composting materials contained large organic content with in a short duration of 40 days. The quantity of volume reduction of raw MSW was 78%. The test result shows that the final compost material from the thermophilic reactor provides good humus to build up soil characteristics and some basic plant nutrients

  4. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    Science.gov (United States)

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.

  5. Characterisation of community structure of bacteria in parallel mesophilic and thermophilic pilot scale anaerobe sludge digesters.

    Science.gov (United States)

    Tauber, T; Berta, Brigitta; Székely, Anna J; Gyarmati, I; Kékesi, Katalin; Márialigeti, K; Tóth, Erika M

    2007-03-01

    The aim of the present work was to compare the microbial communities of a mesophilic and a thermophilic pilot scale anaerobe sludge digester. For studying the communities cultivation independent chemotaxonomical methods (RQ and PLFA analyses) and T-RFLP were applied. Microbial communities of the mesophilic and thermophilic pilot digesters showed considerable differences, both concerning the species present, and their abundance. A Methanosarcina sp. dominated the thermophilic, while a Methanosaeta sp. the mesophilic digester among Archaea. Species diversity of Bacteria was reduced in the thermophilic digester. Based on the quinone patterns in both digesters the dominance of sulphate reducing respiratory bacteria could be detected. The PLFA profiles of the digester communities were similar though in minor components characteristic differences were shown. Level of branched chain fatty acids is slightly lower in the thermophilic digester that reports less Gram positive bacteria. The relative ratio of fatty acids characteristic to Enterobacteriaceae, Bacteroidetes and Clostridia shows differences between the two digesters: their importance generally decreased under thermophilic conditions. The sulphate reducer marker (15:1 and 17:1) fatty acids are present in low quantity in both digesters.

  6. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...... energy of 13.4kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results...

  7. Supplement to thermophilic hydrolysis of liquid manures. Bilag til termofil hydrolyse af gylle

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    A supplement to ''Thermophilic hydrolysis of liquid manures'' which contains descriptions of testing methods and results for determining the influence of additives such as propionic acid or triolein on chemical reactions in connection with the decomposition of liquid manures under thermophilic conditions. (AB).

  8. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  9. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  10. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  11. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    Science.gov (United States)

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor

  12. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  13. Production of thermophilic and acidophilic endoglucanases by ...

    African Journals Online (AJOL)

    Production of thermophilic and acidophilic endoglucanases by mutant Trichoderma atroviride 102C1 using agro-industrial by-products. ... The effect of the carbon (sugarcane bagasse: SCB) and nitrogen (corn steep liquor: CSL) sources on ...

  14. Discrimination of thermophilic and mesophilic proteins

    Directory of Open Access Journals (Sweden)

    Vaisman Iosif I

    2010-05-01

    Full Text Available Abstract Background There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts. Results We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures. Conclusions Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.

  15. [Conversion of acetic acid to methane by thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  16. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    Directory of Open Access Journals (Sweden)

    Karlsson Eva

    2007-03-01

    Full Text Available Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

  17. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils.

    Science.gov (United States)

    Wu, Xiao-Lei; Friedrich, Michael W; Conrad, Ralf

    2006-03-01

    Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.

  18. Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host

    DEFF Research Database (Denmark)

    Mei, Yuxia; Peng, Nan; Zhao, Shumiao

    2012-01-01

    , giving SisEstA. Upon Escherichia coli expression, only the thioredoxin-tagged EstA recombinant protein was soluble. The fusion protein was then purified, and removing the protein tag yielded EcSisEstA. Both forms of the thermophilic EstA enzyme were characterized. We found that SisEstA formed dimer...... that of EcSisEstA at 90°C. This indicated that thermophilic enzymes yielded from homologous expression should be better biocatalysts than those obtained from mesophilic expression.......A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification...

  19. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years.

    Science.gov (United States)

    de Rezende, Júlia Rosa; Kjeldsen, Kasper Urup; Hubert, Casey R J; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker

    2013-01-01

    Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 °C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 10(4) per cm(3) at the surface and decreased exponentially to 10(0) per cm(3) at 6.5 m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments.

  20. Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making.

    Science.gov (United States)

    Bala, Anju; Singh, Bijender

    2017-06-01

    Sporotrichum thermophile BJAMDU5 secreted high titres of xylanolytic and cellulolytic enzymes in solid state fermentation using mixture of wheat straw and cotton oil cake (ratio 1:1) at 45 °C, pH 5.0 after 72 h inoculated with 2.9 × 10 7  CFU/mL conidiospores. Supplementation of solid medium with lactose and ammonium sulphate further enhanced the production of hydrolytic enzymes. Among different surfactants studied, Tween 80 enhanced the production of all enzymes [3455 U/g DMR (dry mouldy residue), 879.26 U/g DMR, 976.28 U/g DMR and 35.10 U/g DMR for xylanase, CMCase (Carboxymethylcellulase), FPase (Filter paper activity) and β-glucosidase, respectively] as compared to other surfactants. Recycling of solid substrate reduced the production of all these enzymes after second cycle. End products analysis by TLC showed the ability of hydrolytic enzymes of S. thermophile to liberate monomeric (xylose and glucose) as well as oligomeric (xylobiose, cellobiose and higher ones) sugars. Supplementation of enzyme resulted in improved nutritional properties of the bread. Formation of oligomeric sugars by xylanase enzyme of S. thermophile BJAMDU5 make it a good candidate in food industry.

  1. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report, September 1, 1979-May 15, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peck, H.D. Jr.; Ljungdahl, L.G.

    1980-01-01

    Reseach progress is reported for the period September, 1979 to May, 1980. Studies on the mesophilic and thermophilic microorganisms fermenting cellulose to various products (ethanol, acetate, CO/sub 2/, H/sub 2/, and methane) are summarized. (ACR)

  2. γ-irradiation resistance and UV-sensitivity of extremely thermophilic archebacteria and eubacteria

    International Nuclear Information System (INIS)

    Kopylov, V.M.; Bonch-Osmolovskaya, E.A.; Svetlichnyi, V.A.; Miroshnichenko, M.L.; Skobkin, V.S.

    1993-01-01

    Cells of extremely thermophilic sulfur-dependent archebacteria Desulfurococcus amylolyticus Z533 and Thermococcus stelleri K15 are resistant to γ-irradiation. These archebacteria survive γ-irradiation at a dose of up to 5 kGy but are no longer viable after 8-9 kGy. Comparison of the survival profiles showed that archebacteria are 12 to 25 times more resistant to γ-irradiation at moderate doses (LD 50 and LD 90 ) than E. coli K12 but are 2 to 2.5 times more sensitive than D. radiodurans. γ-irradiation at a dose of 1 to 2.5 kGy killed extremely thermophilic anaerobic eubacteria Thermotoga maritima 2706 and Thermodesulfobacterium P. All extreme thermophiles studied were more sensitive to UV-irradiation than E. coli

  3. Risø annual report 2001

    DEFF Research Database (Denmark)

    2002-01-01

    In this annual report, we present a small selection of Risø’s achievements in 2001. A more detailed review of Risø’s projects can be found in the Risø Annual Accounts for 2001 as well as in the annual progress reports prepared by the individual researchdepartments.......In this annual report, we present a small selection of Risø’s achievements in 2001. A more detailed review of Risø’s projects can be found in the Risø Annual Accounts for 2001 as well as in the annual progress reports prepared by the individual researchdepartments....

  4. Molecular characterization of thermophilic Campylobacter species ...

    African Journals Online (AJOL)

    We identified two species of thermophilic Campylobacter in companion dogs in Jos. Majority of C. jejuni were isolated from mucoid faeces while mixed infections of the two species were more common among diarrhoeic dogs. Pet owners should observe strict hand hygiene especially after handling dogs or their faeces to ...

  5. Annual progress report

    International Nuclear Information System (INIS)

    Russek, A.

    1975-06-01

    Progress has been made in calculation of cross-sections for dielectronic and radiative recombination when hot electrons are incident on partially stripped impurity ions. Calculations were completed for the cases of 1 keV and 10 keV electrons incident on ions of arbitrary Z with ionization state consistent with a 1 keV plasma temperature. It was found that dielectronic recombination dominates radiative recombination by a factor of 100 at 1 keV incident electron energy to a factor of 1000 at 10 keV incident electron energy. The work is now being extended to other plasma temperatures and is being improved by more accurate calculation of the matrix elements involved. Progress was also made in the calculation of accurate bremsstrahlung and higher order radiative processes which also occur when hot electrons are incident on partially stripped impurity ions. Formal expressions for the matrix elements have been obtained for cross-sections in a fully relativistic partial wave analysis for bremsstrahlung radiation both with and without electron excitation of the target ion. Final evaluation now awaits the evaluation of the relativistic radial integrals involved in these matrix elements. (U.S.)

  6. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries.

    Science.gov (United States)

    Cobucci-Ponzano, Beatrice; Strazzulli, Andrea; Iacono, Roberta; Masturzo, Giuseppe; Giglio, Rosa; Rossi, Mosè; Moracci, Marco

    2015-10-01

    The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.

    Science.gov (United States)

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-02-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2(T). Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing D-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD(+), and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    OpenAIRE

    Aanniz,Tarik; Ouadghiri,Mouna; Melloul,Marouane; Swings,Jean; Elfahime,Elmostafa; Ibijbijen,Jamal; Ismaili,Mohamed; Amar,Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. ...

  9. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds.

    Science.gov (United States)

    Korniłłowicz-Kowalska, Teresa; Kitowski, Ignacy

    2013-02-01

    A study was performed on the numbers and species diversity of thermophilic fungi (growing at 45 °C in vitro) in 38 nests of 9 species of wetland birds, taking into account the physicochemical properties of the nests and the bird species. It was found that in nests with the maximum weight (nests of Mute Swan), the number and diversity of thermophilic fungi were significantly greater than in other nests, with lower weight. The diversity of the thermophilic biota was positively correlated with the individual mass of bird and with the level of phosphorus in the nests. The dominant species within the mycobiota under study was Aspergillus fumigatus which inhabited 95% of the nests under study, with average frequency of ca. 650 cfu g(-1) of dry mass of the nest material. In a majority of the nests studied (nests of 7 bird species), the share of A. fumigatus exceeded 50% of the total fungi growing at 45 °C. Significantly higher frequencies of the fungal species were characteristic of the nests of small and medium-sized piscivorous species, compared with the other bird species. The number of A. fumigatus increased with increase in the moisture level of the nests, whereas the frequency of occurrence of that opportunistic pathogen, opposite to the general frequency of thermophilic mycobiota, was negatively correlated with the level of phosphorus in the nest material, and with the body mass and length of the birds. The authors indicate the causes of varied growth of thermophilic fungi in nests of wetland birds and, in particular, present a discussion of the causes of accumulation of A. fumigatus, the related threats to the birds, and its role as a source of transmission in the epidemiological chain of aspergillosis.

  10. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Directory of Open Access Journals (Sweden)

    Judit Ribera

    Full Text Available A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  11. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Science.gov (United States)

    Ribera, Judit; Estupiñán, Mónica; Fuentes, Alba; Fillat, Amanda; Martínez, Josefina; Diaz, Pilar

    2017-01-01

    A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  12. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter

    International Nuclear Information System (INIS)

    Gannoun, H.; Bouallagui, H.; Okbi, A.; Sayadi, S.; Hamdi, M.

    2009-01-01

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 deg. C) and thermophilic (55 deg. C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6 g COD/L d in mesophilic conditions and at OLRs from 0.9 to 9 g COD/L d in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/L d in mesophilic conditions, while the highest OLRs i.e. 9 g COD/L d led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/L d. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  13. Molecular diversity of thermophilic bacteria isolated from Pasinler hot spring (Erzurum, Turkey)

    OpenAIRE

    ADIGÜZEL, Ahmet; İNAN, Kadriye; ŞAHİN, Fikrettin; ARASOĞLU, Tulin; GÜLLÜCE, Medine

    2011-01-01

    The present study was conducted to determine the phenotypic and genotypic characterization of thermophilic bacteria isolated from Pasinler hot spring, Erzurum, Turkey. Fatty acid profiles, BOX PCR fingerprints, and 16S rDNA sequence data were used for the phenotypic and genotypic characterization of thermophilic bacteria. Totally 9 different bacterial strains were selected based on morphological, physiological, and biochemical tests. These strains were characterized by molecular tests includi...

  14. Estimation of extracellular lipase enzyme produced by thermophilic bacillus sp. isolated from arid and semi-arid region of Rajasthan, India

    OpenAIRE

    Deeksha Gaur; Pankaj Kumar Jain; Yamini Singh Sisodia; Vivek Bajpai

    2012-01-01

    Thermophilic organisms can be defined as microorganisms which are adapted to live at high temperatures. The enzymes produce by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipase enzymes capable of degradation of lipid at temperatures higher than those of mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite useful in te...

  15. Screening of complex thermophilic microbial community and ...

    African Journals Online (AJOL)

    Screening of complex thermophilic microbial community and application during municipal solid waste aerobic composting. ... African Journal of Biotechnology ... Complex microbial community HP83 and HC181 were applied during municipal solid waste aerobic composting that was carried out in a composting reactor under ...

  16. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  17. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  18. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    Science.gov (United States)

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  19. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    Directory of Open Access Journals (Sweden)

    Tarik Aanniz

    2015-06-01

    Full Text Available The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240 thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5% represented by B. licheniformis (119, B. aerius (44, B. sonorensis (33, B. subtilis (subsp. spizizenii (2 and subsp. inaquosurum (6, B. amyloliquefaciens (subsp. amyloliquefaciens (4 and subsp. plantarum (4, B. tequilensis (3, B. pumilus (3 and Bacillus sp. (19. Only six isolates (2.5% belonged to the genus Aeribacillus represented by A. pallidus (4 and Aeribacillus sp. (2. In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  20. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Julien Jorda

    2011-01-01

    Full Text Available Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  1. Widespread disulfide bonding in proteins from thermophilic archaea.

    Science.gov (United States)

    Jorda, Julien; Yeates, Todd O

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  2. Evolvability of thermophilic proteins from archaea and bacteria.

    Science.gov (United States)

    Takano, Kazufumi; Aoi, Atsushi; Koga, Yuichi; Kanaya, Shigenori

    2013-07-16

    Proteins from thermophiles possess high thermostability. The stabilization mechanisms differ between archaeal and bacterial proteins, whereby archaeal proteins are mainly stabilized via hydrophobic interactions and bacterial proteins by ion pairs. High stability is an important factor in promoting protein evolution, but the precise means by which different stabilization mechanisms affect the evolution process remain unclear. In this study, we investigated a random mutational drift of esterases from thermophilic archaea and bacteria at high temperatures. Our results indicate that mutations in archaeal proteins lead to improved function with no loss of stability, while mutant bacterial proteins are largely destabilized with decreased activity at high temperatures. On the basis of these findings, we suggest that archaeal proteins possess higher "evolvability" than bacterial proteins under temperature selection and are additionally able to evolve into eukaryotic proteins.

  3. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Crouthamel, C.E.

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor

  4. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    Science.gov (United States)

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Annual Progress report - General Task

    International Nuclear Information System (INIS)

    Wesnousky, S.G.

    1993-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing tasks

  6. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Werken, van de H.J.G.; Verhaart, M.R.A.; Vanfossen, A.L.; Willquist, K.; Lewis, D.L.; Nichols, J.D.; Goorissen, H.P.; Mongodin, E.F.; Nelson, K.E.; Niel, van E.W.J.; Stams, A.J.M.; Ward, D.E.; Vos, de W.M.; Oost, van der J.; Kelly, R.M.; Kengen, S.W.M.

    2008-01-01

    Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO(2), and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose

  7. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  8. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana

    Six strains of thermophilic anaerobic acetate-utilizing methanogens were isolated from different full-scale thermophilic biogas plants in China and Denmark. The strain isolated from the Chinese biogas plant was designated KN-6P and the isolates from the Danish full-scale biogas plants were......, utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...... designated HG-1P, LVG-4P R1-1P, SO-2P and V-1P. The isolates were characterized morphologically and physiologically, and their immunological and phylogenetic relatedness to already known isolated strains were established. All isolated strains were identified as organisms belonging to genus Methanosarcina...

  9. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.

    Science.gov (United States)

    Maugini, Elisa; Tronelli, Daniele; Bossa, Francesco; Pascarella, Stefano

    2009-04-01

    Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding of the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientist both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through application of protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperhermophilic structures and their mesophilic homologs. Comparative studies were useful in the identification of a few recurrent themes which the evolution utilized in different combinations in different protein families. These studies were mostly carried out at the monomer level. However, maintenance of a proper quaternary structure is an essential prerequisite for a functional macromolecule. At the environmental temperatures experienced typically by hyper- and thermophiles, the subunit interactions mediated by the interface must be sufficiently stable. Our analysis was therefore aimed at the identification of the molecular strategies adopted by evolution to enhance interface thermostability of oligomeric enzymes. The variation of several structural properties related to protein stability were tested at the subunit interfaces of thermophilic and hyperthermophilic oligomers. The differences of the interface structural features observed between the hyperthermophilic and thermophilic enzymes were compared with the differences of the same properties calculated from pairwise comparisons of oligomeric mesophilic proteins contained in a reference dataset. The significance of the observed differences of structural properties was measured by a t-test. Ion pairs and hydrogen bonds do not vary significantly while hydrophobic contact area increases specially in hyperthermophilic interfaces. Interface

  10. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years

    DEFF Research Database (Denmark)

    Rezende, Julia Rosa de; Kjeldsen, Kasper Urup; Hubert, Casey RJ

    2013-01-01

    S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S r......RNA and dsrAB sequences in Arctic surface sediment 3000km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 104 per cm3 at the surface and decreased...... in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments....

  11. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    Science.gov (United States)

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Increased saccharification of kallar grass using ultrafiltrated enzyme from sporrotrichum thermophile

    International Nuclear Information System (INIS)

    Latif, F.; Rajoka, M.I.; Malik, K.A.

    1991-01-01

    The local wild type strain of sporotrichum thermophile when grown on untreated lingo cellulose was found to produce a greater level of B-glucosidase component along with other cellulase/xylanase components than most of the reported wild type potent strains. Culture filtrate obtained, when grown on 4% leptochloa fusca (kallar grass) was used as such and after concentration by ultrafiltration technique for saccharification purpose. Concentrated enzymes titre was increased to 1.2 and 4.0 U/ml for Fp-ase and B-glucosidase, respectively. There were losses in the enzyme titre obtained through ultrafiltration possibly due to adsorption on to the ultrafiltration membrane. Enzyme preparations used, saccharifide 5% kallar grass to 70, 55, 75 and 60% (theoretical basis) from cellulases of S. thermophile concentrate, dilute, T. reesei alone and in supplementation with B-glucosidase from A. niger, respectively. Analysis by HPLC revealed slightly higher glucose yield from S. thermophile enzyme preparations, whereas higher level of xylose was attained from T. reesei preparations. Rest of the sugars pooled as Oligo-sugars were found in almost similar concentrations. (author)

  13. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1983-01-01

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported

  14. Extremely thermophilic microorganisms for biomass conversion: status and prospects.

    Science.gov (United States)

    Blumer-Schuette, Sara E; Kataeva, Irina; Westpheling, Janet; Adams, Michael Ww; Kelly, Robert M

    2008-06-01

    Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea (T(opt)>or=80 degrees C) utilize alpha- and beta-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria (T(opt)>or=80 degrees C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 degrees C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by 'free' primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as 'secondary cellulases') reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as 'hypothetical proteins'. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.

  15. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    Science.gov (United States)

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen form an anaerobic reactor fed with methanol

    NARCIS (Netherlands)

    Jiang, B.; Parshina, S.N.; Doesburg, van W.C.J.; Lomans, B.P.; Stams, A.J.M.

    2005-01-01

    A novel thermophilic, obligately methylotrophic, methanogenic archaeon, strain L2FAWT, was isolated from a thermophilic laboratory-scale upflow anaerobic sludge blanket reactor fed with methanol as the carbon and energy source. Cells of strain L2FAWT were non-motile, irregular cocci, 0·7¿1·5 µm in

  17. Up-Streaming Process for Glucose Oxidase by Thermophilic Penicillium sp. in Shake Flask

    OpenAIRE

    Muhammad Mohsin JAVED; Aroosh SHABIR; Sana ZAHOOR; Ikram UL-HAQ

    2012-01-01

    The present study is concerned with the production of glucose oxidase (GOD) from thermophilic Penicillium sp. in 250 mL shake flask. Fourteen different strains of thermophilic Penicillium sp. were isolated from the soil and were screened for glucose oxidase production. IIBP-13 strain gave maximum extra-cellular glucose oxidase production as compared to other isolates. Effect of submerged fermentation in shaking and static conditions, different carbon sources and incubation period on the produ...

  18. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    Science.gov (United States)

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Startup and stability of thermophilic anaerobic digestion of OFMSW

    KAUST Repository

    El-Fadel, Mutasem E.; Saikaly, Pascal; Ghanimeh, Sophia A.

    2013-01-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and more recently as a greenhouse gas (GHG) mitigation measure. In this context, AD systems operating at thermophilic temperatures (55-60°C)-compared to mesophilic temperatures (35-40°C)-have the unique feature of producing hygienic soil conditioners with greater process efficiency, higher energy yield, and more GHG savings. Startup of AD systems is often constrained by the lack of acclimated seeds, leading to process instability and failure. The authors focus on strategies to startup thermophilic digesters treating OFMSW in the absence of acclimated seeds and examines constraints associated with process stability and ways to overcome them. Relevant gaps in the literature and future research needs are delineated. © 2013 Taylor & Francis Group, LLC.

  20. Production of D-xylanases by thermophilic fungi using different methods of culture

    Energy Technology Data Exchange (ETDEWEB)

    Grajek, W

    1986-01-01

    Seven thermophilic strains of fungi were examined for their ability to produce D-xylanase in liquid and solid-state fermentations. It was confirmed that the best producers of xylanase, among microorganisms used, were H. lanuginosa and S. thermophile in liquid fermentation, and T. aurantiacus and H. lanuginosa in solid-state fermentations. The higher productivity of xylanase, namely 18,72 IU/ml, was obtained in liquid culture of H. lanuginosa. The pH and temperature optima of enzymes from liquid and solid-state cultures of fungi used were also presented.

  1. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  2. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.

    Science.gov (United States)

    Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

    2012-02-10

    Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    Science.gov (United States)

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  4. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shu-Hsien; Yang, Shang-Shyng [Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 10617, (Taiwan); Liu, Ching-Piao [Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 91201, (Taiwan)

    2007-05-15

    Food waste is approximately one quarter of the total garbage in Taiwan. To investigate the feasibility of microbial conversion of food waste to multiple functional biofertilizer, food waste was mixed with bulking materials, inoculated with thermophilic and lipolytic microbes and incubated at 50{sup o}C in a mechanical composter. Microbial inoculation enhanced the degradation of food wastes, increased the total nitrogen and the germination rate of alfalfa seed, shortened the maturity period and improved the quality of biofertilizer. In food waste inoculated with thermophilic and lipolytic Brevibacillus borstelensis SH168 for 28 days, total nitrogen increased from 2.01% to 2.10%, ash increased from 24.94% to 29.21%, crude fat decreased from 4.88% to 1.34% and the C/N ratio decreased from 18.02 to 17.65. Each gram of final product had a higher population of thermophilic microbes than mesophilic microbes. Microbial conversion of food waste to biofertilizer is a feasible and potential technology in the future to maintain the natural resources and to reduce the impact on environmental quality. (author)

  5. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    Science.gov (United States)

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2003. Progress report

    International Nuclear Information System (INIS)

    2003-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of the investigations into the safety of nuclear power plants by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system ''Joint Safety Research Index'' of the CEC (commission of the european communities). The reports are arranged in sequence of their project numbers

  7. Annual report on reactor safety research projects sponsored by the Ministry for Research and Technology of the Federal Republic of Germany. Reporting period 1993. Progress report

    International Nuclear Information System (INIS)

    1994-10-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general information of progress in reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP)

  8. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions

    DEFF Research Database (Denmark)

    Johansen, Anders; Bangsø Nielsen, Henrik; Hansen, Christian M.

    2013-01-01

    did not affect egg survival during the first 48h and it took up to 10days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites......, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C...

  9. Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion.

    Science.gov (United States)

    Menon, Ajay; Wang, Jing-Yuan; Giannis, Apostolos

    2017-01-01

    The aim of this study was to enhance the biogas productivity of two-phase thermophilic anaerobic digestion (AD) using food waste (FW) as the primary substrate. The influence of adding four trace metals (Ca, Mg, Co, and Ni) as micronutrient supplement in the methanogenic phase of the thermophilic system was investigated. Initially, Response Surface Methodology (RSM) was applied to determine the optimal concentration of micronutrients in batch experiments. The results showed that optimal concentrations of 303, 777, 7 and 3mg/L of Ca, Mg, Co and Ni, respectively, increased the biogas productivity as much as 50% and significantly reduced the processing time. The formulated supplement was tested in continuous two-phase thermophilic AD system with regard to process stability and productivity. It was found that a destabilized thermophilic AD process encountering high VFA accumulation recovered in less than two weeks, while the biogas production was improved by 40% yielding 0.46L CH 4 /gVS added /day. There was also a major increase in soluble COD utilization upon the addition of micronutrient supplement. The results of this study indicate that a micronutrient supplement containing Ca, Mg, Co and Ni could probably remedy any type of thermophilic AD process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process.

    Science.gov (United States)

    Gagliano, Maria Cristina; Braguglia, Camilla Maria; Rossetti, Simona

    2014-09-01

    Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples. In situ probing revealed that thermo-adaptive mechanisms shaping the 16S rRNA gene may affect the identification of thermophilic microorganisms. The novel developed FISH probe extends the possibility to study the widespread thermophilic syntrophic interaction of Coprothermobacter spp. with hydrogenotrophic methanogenic archaea, whose establishment is a great benefit for the whole anaerobic system. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Isolation of thermophilic Desulfotomaculum strains with methanol and sulphite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum

    NARCIS (Netherlands)

    Goorissen, H.P.; Stams, A.J.M.; Hansen, T.A.

    2003-01-01

    Four strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from hot solfataric fields in the Krafla area of north-east Iceland, using methanol and sulfite as substrates. Morphologically, these strains resembled thermophilic Desulfotomaculum species. The

  12. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    Science.gov (United States)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  13. Cellulolytic properties of an extremely thermophilic anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, J A; Morgan, H W; Daniel, R M [Waikato Univ., Hamilton (New Zealand). Microbial Biochemistry and Biotechnology Unit

    1990-09-01

    An extremely thermophilic anaerobe was isolated from a New Zealand hot spring by incubating bacterial mat strands in a medium containing xylan. The Gramreaction-negative organism that was subsequently purified had a temperature optimum of 70deg C and a pH optimum of 7.0. The isolate, designated strain H173, grew on a restricted range of carbon sources. In batch culture H173 could degrade Avicel completely when supplied at 5 or 10 g l{sup -1}. There was an initial growth phase, during which a cellulase complex was produced and carbohydrates fermented to form acetic and lactic acids, followed by a phase where cells were not metabolising but the cellulase complex actively converted cellulose to glucose. When co-cultered with strain Rt8.B1, an ethanologenic extreme thermophile, glucose was fermented to ethanol and acetate, and no reducing sugars accumulated in the medium. In pH controlled batch culture H173 produced an increased amount of lactate and acetate but there was again a phase when reducing sugars accumulated in the medium, and these were converted to ethanol by co-culture with Rt8.B1. (orig.).

  14. Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.

    Science.gov (United States)

    Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W

    2017-11-01

    Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.

  15. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords......, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also...

  16. CEA Annual progress report 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report presents the general organization of the CEA, the international relations and politics in nuclear field, the activities (military application, nuclear applied research, ANDRA (National Agency for Radioactive Waste Management), nuclear safety and protection, fundamental research, applied research other than nuclear), the industrial group; among topics about men and means, the budget execution of the public establishment of research. In annex, the nuclear power plants around the world and the principal legislative texts related to CEA or atomic energy published in 1986 [fr

  17. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    and xylose and to tolerate the inhibitory compounds present in lignocellulosic hydrolysates is therefore apparent. Several thermophilic anaerobic xylan degrading bacteria from our culture collection (EMB group at BioCentrum-DTU) have been screened for a potential ethanol producer from hemicellulose...... hydrolysates, and out of the screening test, one particular strain (A10) was selected for the best performance. The strain was morphologically and physiologically characterized as Thermoanaerobacter mathranii strain A10. Unlike other thermophilic anaerobic bacteria, the wild-type strain Thermoanaerobacter...... Thermoanaerobacter BG1L1 was further studied. The experiments were carried out in a continuous immobilized reactor system (a fluidized bed reactor), which is likely to be the process design configuration for xylose fermentation in a Danish biorefinery concept for production of fuel ethanol. The immobilization...

  18. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  19. Development and application of the electrochemical etching technique. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This annual progress report documents further advances in the development and application of electrochemical etching of polycarbonate foils (ECEPF) for fast, intermediate, and thermal neutron dosimetry as well as alpha particle dosimetry. The fast (> 1.1 MeV) and thermal neutron dosimetry techniques were applied to a thorough investigation of the neutron contamination inherent in and about the primary x-ray beam of several medical therapy electron accelerators. Because of the small size of ECEPF dosimeters in comparison to other neutron meters, they have an unusually low perturbation of the radiation field under measurement. Due to this small size and the increased sensitivity of the ECEPF dosimeter over current techniques of measuring neutrons in a high photon field, the fast neutron contamination in the primary x-ray beam of all the investigated accelerators was measured with precision and found to be greater than that suggested by the other, more common, neutron dosimetry methods.

  20. Development and application of the electrochemical etching technique. Annual progress report

    International Nuclear Information System (INIS)

    1980-08-01

    This annual progress report documents further advances in the development and application of electrochemical etching of polycarbonate foils (ECEPF) for fast, intermediate, and thermal neutron dosimetry as well as alpha particle dosimetry. The fast (> 1.1 MeV) and thermal neutron dosimetry techniques were applied to a thorough investigation of the neutron contamination inherent in and about the primary x-ray beam of several medical therapy electron accelerators. Because of the small size of ECEPF dosimeters in comparison to other neutron meters, they have an unusually low perturbation of the radiation field under measurement. Due to this small size and the increased sensitivity of the ECEPF dosimeter over current techniques of measuring neutrons in a high photon field, the fast neutron contamination in the primary x-ray beam of all the investigated accelerators was measured with precision and found to be greater than that suggested by the other, more common, neutron dosimetry methods

  1. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis.

    Science.gov (United States)

    Xu, Lin; Wu, Yue-Hong; Zhou, Peng; Cheng, Hong; Liu, Qian; Xu, Xue-Wei

    2018-05-23

    Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079 T and P. tepidarius DSM 10594 T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. P. cryptus DSM 12079 T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079 T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P. cryptus DSM 12079 T and the other Porphyrobacter strains. The primary substitution types were changes from glycine/serine to alanine. P. cryptus DSM 12079 T was the sole thermophile within the genus Porphyrobacter. Phylogenomic analysis and amino acid frequencies indicated that amino acid substitutions might play an important role in the thermophily of P. cryptus DSM 12079 T . Bioinformatic analysis revealed that major amino acid substitutional types

  2. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    International Nuclear Information System (INIS)

    Hinga, K.R.

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  3. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hinga, K.R. (ed.)

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.

  4. Thermophillic and thermotolerant fungi isolated from the thermal effluent of nuclear power generating reactors

    International Nuclear Information System (INIS)

    Rippon, J.W.; Gerhold, R.; Heath, M.

    1980-01-01

    Over a period of a year, samples of water, foam, microbial mat, soil and air were obtained from areas associated with the cooling canal of a nuclear power station. The seventeen sample sites included water in the cooling canal that was thermally enriched and soil and water adjacent to, up-stream, downstream and at a distance from the generator. Air samples were taken at the plant and at various disstances from the plant. Fifty-two species of thermotolerant and thermophilic fungi were isolated. Of these, eleven species are grouped as opportunistic Mucorales or opportunistic Aspergillus sp. One veterinary pathogen was also isolated (Dactylaria gallopara). The opportunistic/pathogenic fungi were found primarily in the intake bay, the discharge bay and the cooling canal. Smaller numbers were obtained at both upstream and downstream locations. Soil samples near the cooling canal reflected an enrichment of thermophilous organisms, the previously mentioned opportunistic Mucorales and Aspergillus spp. Their numbers were found to be greater than that usually encountered in a mesophilic environment. However, air and soil samples taken at various distances from the power station indicated no greater abundance of these thermophilous fungi than would be expected from a thermal enriched environment. Our results indicate that there was no significant dissemination of thermophilous fungi from the thermal enriched effluents to the adjacent environment. These findings are consistent with the results of other investigators. (orig.)

  5. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 degrees C.

    Science.gov (United States)

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-10-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 degrees C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 degrees C and 55 degrees C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH(4)/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5L vs. 3-3.5 L CH(4)/kg COD x day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 oC

    International Nuclear Information System (INIS)

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-01-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 o C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 o C and 55 o C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH 4 /kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH 4 /kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  7. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  8. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  9. Twenty-ninth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor, July 1, 1983-June 30, 1984

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1984-07-01

    The twenty-ninth annual progress report of the operation of the Pennsylvania State University Breazeale Reactor is submitted in accordance with the requirements of Contract DE-AC02-76ER03409 with the United States Department of Energy. This report also provides the University administration with a summary of the operation of the facility for the past year

  10. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Yu, Bo; Yang, Min

    2016-07-01

    This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comparative microbiological-hygienic studies in mesophilic and thermophilic fouling of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pohlig-Schmitt, M.; Philipp, W.; Wekerle, J.; Strauch, D.

    Investigations concerning the inactivation of microbial pathogens (bacteria, viruses and parasites) during anaerobic, alkaline dignestion of sludge are described. A thermophilic (54/sup 0/C) and a mesophilic (34/sup 0/C) operated biogas model plant were compared from the point of view of hygiene. Is was found that in the thermophilic process Salmonella senftenberg survived 13,5 h, Streptococcus faecium 55 h, Streptococcus faecalis 42 h and Klebsiella pneumoniae 0,5 h. Within 30 min eggs of Ascaris suum lost their infectivity Bovine Parvovirus was inactivated after 1 d to 2 d treatment. Survival times under mesophilic conditions of 13 d for Salmonella senftenberg and more than 8 mouth for Streptococcus faecium were found. Poliovirus Type 1 was inactivated in 8 d while Bovine Parvovirus survived no longer than 15 d. The results obtained in the thermophilic process were compared to those after heat treatment of the test microorganisms in ampules exposed in a wather-bath under defined conditions to 54/sup 0/C. It was found, that the bacteria survived only about half the time in this case. Poliovirus Type 1 was inactivated after 0,75 h and Bovine Parvovirus after 7 d exposure. (orig.RB)

  12. Progress Report

    Science.gov (United States)

    2018-05-16

    This report summarizes the annual progress of EPA’s Clean Air Markets Programs such as the Acid Rain Program (ARP) and the Cross-State Air Pollution Rule (CSAPR). EPA systematically collects data on emissions, compliance, and environmental effects, these data are highlighted in our Progress Reports.

  13. Production of α-amylase from some thermophilic Aspergillus species ...

    African Journals Online (AJOL)

    In this study, thermostable amylase activities of some thermophilic Aspergillus species were evaluated. The suitable medium and microorganisms for α-amylase synthesis were selected. Subsequently, the α-amylase activity of the microorganism was researched. In the measurements made on the 7th day of production on ...

  14. The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process.

    Science.gov (United States)

    Fu, Shan-Fei; He, Shuai; Shi, Xiao-Shuang; Katukuri, Naveen Reddy; Dai, Meng; Guo, Rong-Bo

    2015-12-01

    Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Feasibility of Thermophilic Caldimonas manganoxidans as a Platform for Efficient PHB Production.

    Science.gov (United States)

    Hsiao, Li-Jung; Lin, Ji-Hong; Sankatumvong, Pantitra; Wu, Tzong-Ming; Li, Si-Yu

    2016-11-01

    Recently, poly(3-hydroxybutyrate) (PHB) has been found in a few thermophilic strains where several advantages can be gained from running fermentation at high temperatures. Caldimonas manganoxidans, a thermophilic gram-negative bacterium, was investigated for the feasibility as a PHB-producing strain. It is suggested that the best fermentation strategy for achieving the highest PHB concentration of 5.4 ± 1.1 g/L (from 20 g/L glucose) in 24 h is to use the fermentation conditions that are favored for the bacterial growth, yet temperature and pH should be chosen at conditions that are favored for the PHB content. Besides, the above fermentation conditions produce PHB that has a high molecular weight of 1274 kDa with a low polydispersity index (PDI) of 1.45, where the highest Mw of PHB of 1399 kDa (PDI of 1.32) is obtained in this study. To the best knowledge of authors, C. manganoxidans has the best PHB productivity among the thermophiles and is comparable to those common PHB-producing mesophiles.

  16. A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, M [Ottawa Univ., Dept. of Biology, ON (Canada); Yaguchi, M [Inst. for Biological Sciences, National Research Council of Canada, Ottawa, ON (Canada); Watson, D C [Inst. for Biological Sciences, National Research Council of Canada, Ottawa, ON (Canada); Wong, K K.Y. [Chair of Forest Products Biotechnology, Faculty of Forestry, British Columbia Univ., Vancouver, BC (Canada); Breuil, C [Chair of Forest Products Biotechnology, Faculty of Forestry, British Columbia Univ., Vancouver, BC (Canada); Saddler, J N [Chair of Forest Products Biotechnology, Faculty of Forestry, British Columbia Univ., Vancouver, BC (Canada)

    1993-12-01

    Two thermophilic xylanases (xylanase II from Thielavia terrestris 255B and the 32-kDa xylanase from Thermoascus crustaceus 235E) were studied to determine if they had different and complementary modes of action when they hydrolysed various types of xylans. Partial amino acid sequencing showed that these two enzymes belonged to different families of [beta]-1,4-glycanases. Xylanase II achieved faster solubilization of insoluble xylan whereas the 32-kDa xylanase was more effective in producing xylose and short xylooligomers. An assessment of the combined hydrolytic action of the two xylanases did not reveal any co-operative action. The sugars released when the two thermophilic xylanases were used together were almost identical to those released when the 32-kDa xylanase acted alone. The two xyalanses were able to remove about 12% of the xylan remaining in an aspen kraft pulp. This indicated that either one of these thermophilic enzymes may be useful for enhancing the bleaching of kraft pulps. (orig.)

  17. Protein dynamics and stability: The distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering

    International Nuclear Information System (INIS)

    Meinhold, Lars; Clement, David; Tehei, M.; Daniel, R.M.; Finney, J.L.; Smith, Jeremy C.

    2008-01-01

    The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two

  18. Gas Fermentation using Thermophilic Moorella Species for production of Biochemicals

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna

    Gas fermentation is a promising technology which gained increasing attention over the last years. In this process, acetogenic bacteria convert gases rich in H2, CO2, and CO, into compounds of higher value. The gas can derive from industrial off-gas or from waste streams via gasification. In the gas...... fermentation processes that are nearly on commercial level, mesophilic acetogens are used to mainly produce ethanol and butanediol. However, thermophilic acetogens, such as Moorella thermoacetica would allow for easy downstream processing when producing volatile products such as acetone. This thesis starts...... with a review of the feedstock potential for gas fermentation and how thermophilic production strains as well as unconventional fermentation processes such as mixotrophy can help to exploit this potential. I analyzed a process with respect to thermodynamic and economic considerations, in which acetone...

  19. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    Science.gov (United States)

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  20. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    Directory of Open Access Journals (Sweden)

    Sonia Y Lam

    2011-03-01

    Full Text Available Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity.Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy.Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  1. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  2. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications

    NARCIS (Netherlands)

    Falcicchio, P.; Wolterink-van Loo, S.; Franssen, M.C.R.; Oost, van der J.

    2014-01-01

    Generating new carbon-carbon (C-C) bonds in an enantioselective way is one of the big challenges in organic synthesis. Aldolases are a natural tool for stereoselective C-C bond formation in a green and sustainable way. This review will focus on thermophilic aldolases in general and on

  3. Azo dye reduction by mesophilic and thermophilic anaerobic consortia

    NARCIS (Netherlands)

    Santos, dos A.B.; Madrid, de M.P.; Stams, A.J.M.; Lier, van J.B.; Cervantes, F.J.

    2005-01-01

    The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 C) and thermophilic (55 C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the

  4. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers

    Directory of Open Access Journals (Sweden)

    Céline Brochier-Armanet

    2006-01-01

    Full Text Available Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 °C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.

  5. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers.

    Science.gov (United States)

    Brochier-Armanet, Céline; Forterre, Patrick

    2007-05-01

    Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT) to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 degrees C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.

  6. Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Hulshoff Pol, L.W.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    The effect of NaCl on thermophilic (55degreesC) methanol conversion in the presence of excess of sulfate (COD/SO42-=0.5) was investigated in two 6.5L lab-scale upflow anaerobic sludge bed reactors inoculated with granular sludge previously not adapted to NaCl
    The effect of NaCl on thermophilic

  7. Thermophilic anaerobic oxidation of methane by marine microbial consortia.

    Science.gov (United States)

    Holler, Thomas; Widdel, Friedrich; Knittel, Katrin; Amann, Rudolf; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Teske, Andreas; Boetius, Antje; Wegener, Gunter

    2011-12-01

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.

  8. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  9. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    Science.gov (United States)

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  10. TtMCO: A highly thermostable laccase-like multicopper oxidase from the thermophilic Thermobaculum terrenum

    DEFF Research Database (Denmark)

    Brander, Søren; Mikkelsen, Jørn Dalgaard; Kepp, Kasper Planeta

    2015-01-01

    This paper reports the identification, heterologous expression in Escherichia coli and characterization of TtMCO from the thermophilic bacterium Thermobaculum terrenum, the first laccase-like multi-copper oxidase (LMCO) from the distinct Phylum Chloroflexi. TtMCO has only 39% identity to its...... closest characterized homologue, CotA from Bacillus subtilis, but sequence and spectrophotometry confirmed copper coordination similar to that of LMCOs. TtMCO is extremely thermophilic with a half-time of inactivation of 2.24 days at 70 degrees C and 350 min at 80°C and pH 7, consistent...

  11. Annual progress report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The technical support activities of the IPSN to competent administrations in 1980 has been marked: namely by the authorizations of divergence for 9 units EdF-PWR of 900 MW, the authorization project of creation and extension of reprocessing plant of COGEMA at the Hague UP 2 -800 and the authorization of starting up of the third unit of production of the EURODIF enrichment plant at Tricastin. On the other hand, IPSN has participated at the elaboration of a certain number of legislative and regulation texts relative to the control of nuclear matter, to radioprotection standards and to criteria of safety. For the safety of breeder, the test made at CABRI pile, in the international research program has given confirmation of the validity of theoretical models used in accidents calculations, hypothetical accidents which has allowed to reactualize safety criteria which have to be used for the development of this type of reactor. In worker radioprotection the results obtained in laboratory on the effect of radon, the progress made in personal dosimetry and the action of radioprotection undertaken in uranium mines constitutes a coherent effort. The deep drilling in granit (1000 m) and the experimental associated program which has finished the indispensable scientific data for the future policy in matter of storage of radioactives wastes. IPSN has contributed to progress made in the rules of exploitation of reactors, in the definition of wastes containment -specially at the output of reprocessing plant- in handling machines in hazardeous areas and in the study of environment [fr

  12. Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Yokohigashi, Yukako; Okano, Kenji; Omasa, Takeshi; Ohtake, Hisao

    2013-03-01

    The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher.

  13. Thermophilic anaerobic co-digestion of poultry litter and thin stillage.

    Science.gov (United States)

    Sharma, Deepak; Espinosa-Solares, Teodoro; Huber, David H

    2013-05-01

    The purpose of this study was to test whether the performance of a thermophilic CSTR digester that has been stabilized on poultry litter will be enhanced or diminished by the addition of thin stillage as co-substrate. Replicate laboratory digesters, derived from a stable pilot-scale digester, were operated with increasing ratios (w/w) of thin stillage/poultry litter feedstock. After a period of adaptation to 20% and 40% thin stillage, digester performance showed increases in biogas, percent methane and COD removal, as well as a decrease in volatile acids. Peak performance occurred with 60% thin stillage. However, 80% thin stillage caused significant reduction of performance, including declines of methanogenic activity and COD removal. In conclusion, supplementing the thermophilic digestion of poultry litter with thin stillage improved the bioenergy (methane) output, but thin stillage became inhibitory at high concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The Activity of Cellulase from Thermophilic Fungi Isolated from CaneBagasses

    International Nuclear Information System (INIS)

    Aris-Toharisman; Akyunul-Jannah

    2000-01-01

    The activity of cellulase from thermophilic fungi isolated from canebagasses has been measured. This wild strain, named fungal strain PJ-2,secreted a large amount of cellulolytic enzyme components consisting of 0.46units of avicelase, 0.8 units of carboxymethyl cellulose hydrolizing enzyme(CMCase) and 0.5 units of β-glucosidase per ml of culture broth oncultivation in Mandels Reese medium for 7 days at 500 o C. These cellulasesproduction was lower than that of Trichoderma reesei NRRL 3653 producing 0.5units/ml avicelase, 1.6 units/ml CMCase and 0.4 units/ml ofβ-glucosidase cultivated in the same medium at 30 o C. However,thermophilic fungi may be potential to be exploited in lignocellulosedegradation at the tropical areas as the process usually needs temperature ofabove 50 o C. (author)

  15. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  16. Clinical Investigation Program Annual Progress Report

    Science.gov (United States)

    1988-10-20

    Presented: Interna- tional Symposium on Orthopedics, Mexico , September 1987. Publications: In preparation. 147 FAMC A.P.R. (RCS MED 300) Detail Summary...Infection: A Prospective Study. Presented: 2nd Annual Symposium of the Rocky Moun- tain Flow Cytometry Users Group, Albuquerque, New Mexico , 10-11...Podgore, COL, MC (9) Dept/ISvc: Pediatrics (10) Associate Investigators (11) Key Words: Myron J. Levin, M.D. varicella vaccine U Co. HSC (12

  17. Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataficum sp nov

    NARCIS (Netherlands)

    Goorissen, H.P.; Boschker, H.T.S.; Stams, A.J.M.; Hansen, T.A.

    2003-01-01

    Four strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from hot solfataric fields in the Krafla area of north-east Iceland, using methanol and sulfite as substrates. Morphologically, these strains resembled thermophilic Desulfotomaculum species. The

  18. Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataficum sp nov

    NARCIS (Netherlands)

    Goorissen, HP; Boschker, HTS; Stams, AJM; Hansen, TA

    Four strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from hot solfataric fields in the Krafla area of north-east Iceland, using methanol and sulfite as substrates. Morphologically, these strains resembled thermophilic Desulfotomaculum species. The

  19. Isolation of soil thermophilic strains of actinomycetes for the ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... to high fructose (Pandey et al., 2000; Asgher et al., 2007). *Corresponding ... can be increased by pH, temperature or substrates. ... The following media were used for isolating thermophilic strains of ... To observe the effect of different culture conditions on α-amylase .... Influence of pH on the inactivation of.

  20. Thermophilic and alkalophilic xylanases from several Dictyoglomus isolates

    Energy Technology Data Exchange (ETDEWEB)

    Mathrani, I M; Ahring, B K [Technical Univ. of Denmark, Lyngby (Denmark). Anaerobic Microbiology/Biotechnology Group

    1992-10-01

    Supernatant xylanases from three thermophilic and strictly anaerobic Dictyoglomus strains isolated from very different environments were examined: The type species, D. thermophilum[sup T], from a hot-spring in Japan; strain B1, a recently described strictly xylanutilizing Dictyoglomus from a paper-pulp factory in Finland; and strain B4a, isolated from a thermal pool on Iceland. The highest enzymatic activity observed from batch-culture supernatant with 4 g l[sup -1] of beech xylan as growth substrate was 3.8x10[sup -6] kat l[sup -1]. The K[sub m] for the xylanases of strain B1 was 4.7 g beech xylan l[sup -1]. The xylanases of all the isolates had a broad range of activity with respect to pH, showing good activity from pH 5.5 to near 9.0. The xylanases from the three isolates had a very high temperature optimum of 80deg C, maximum temperature for extended activity between 80 and 90deg C, and a thermal half-life of over 1 h at 90deg C for strain B1. The application of thermophilic alkalophilic xylanases to paper pulping was discussed. (orig.).

  1. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria

    NARCIS (Netherlands)

    Ilyas, Sadia; Anwar, Munir A.; Niazi, Shahida B.; Ghauri, M. Afzal

    The present work was aimed at studying the bioleachability of metals from electronic scrap by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans and an unidentified acidophilic

  2. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  3. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Zambare, Vasudeo; Zambare, Archana; Christopher, Lew P. [Center for Bioprocessing Research & Development, South Dakota School of Mines and Technology, Rapid City 57701, SD (United States); Muthukumarappan, Kasiviswanath [Center for Bioprocessing Research & Development, South Dakota State University, Brookings 57007, SD (United States)

    2011-07-01

    A thermophilic microbial consortium (TMC) producing hydrolytic (cellulolytic and xylanolytic) enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass) at 60C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover) than cellulase activity (up to 367 U/l on prairie cord grass). Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 60C and 70C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase), and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase). A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of Escherichia coli

  4. Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Willquist, Karin; Emnéus, Jenny

    2011-01-01

    Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellul...... in the intracellular electron flow and to probe redox enzyme properties of a strictly anaerobic thermophile in vivo.......Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellular...... the NADH-dependent lactate dehydrogenase, upon which more NADH was directed to membrane-associated enzymes for ferricyanide reduction, leading to a higher electrochemical signal. The method is noninvasive and the results presented here demonstrate that this method can be used to accurately detect changes...

  5. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Grajek, W

    1987-05-01

    Six thermophilic fungi were examined for their ability to produce cellulolytic enzymes in liquid (LF) and solid-state fermentation (SSF). The best cellulase activities were achieved by Thermoascus aurantiacus and Sporotrichum thermophile. Taking into consideration that solid-state medium obtained from 100 g of dry sugar-beet pulp occupies about 1 l of fermentor volume equivalent to 1 l of LF, it was confirmed that enzyme productivity per unit volume from both fungi was greater in SSF than in LF. The cellulase system obtained by SSF with T. aurantiacus contained 1.322 IU/l of exo-..beta..-D-glucanase, 53.269 IU/l of endo-..beta..-D-glucanase and 8.974 IU/l of ..beta..-D-glucosidase. The thermal and pH characteristics of cellulases from solid-state fermentation of T. aurantiacus and S. thermophile are described.

  6. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  7. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii.

    OpenAIRE

    Konisky, J; Michels, P C; Clark, D S

    1995-01-01

    The application of 50-MPa pressure did not increase the thermostabilities of adenylate kinases purified from four related mesophilic and thermophilic marine methanogens. Thus, while it has been reported that some thermophilic enzymes are stabilized by pressure (D. J. Hei and D. S. Clark, Appl. Environ. Microbiol. 60:932-939, 1994), hyperbaric stabilization is not an intrinsic property of all enzymes from deep-sea thermophiles.

  8. Annual Research Progress Report, Fiscal Year 1979,

    Science.gov (United States)

    1979-10-01

    nasopharyngeal angiofibroma : A case report. 63rd Annual Clinical Assembly The Osteopathic College of Ophthalmology and Otolaryngology, May 1979, Sulphur Springs...Combined surgical management of a juvenile nasopharyngeal angiofibroma : A case report. The Laryngoscope. Perry, F.P. Hyperbaric oxygen in the treatment of

  9. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  10. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  11. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    International Nuclear Information System (INIS)

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-01-01

    Highlights: ► Catalytic mechanisms of thermophilic–mesophilic enzymes may differ. ► Product release is rate-determining for thermophilic IGPS at low temperatures. ► But at higher temperatures, proton transfer from the general acid is rate-limiting. ► Rate-determining step is different still for mesophilic IGPS. ► Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic–mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 °C for thermophilic IGPS, near its adaptive temperature (75 °C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO 2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  12. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Skiadas, Ioannis V.

    2003-01-01

    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic...... digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences...... between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pretreatment at 70 degreesC on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pretreatment step showed very positive effect on the methane potential and production rate upon...

  13. A constant flux of diverse thermophilic bacteria into the cold arctic seabed

    DEFF Research Database (Denmark)

    Hubert, Casey; Loy, Alexander; Nickel, Maren

    2009-01-01

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable...... supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 108 spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis......, fermentation, and sulfate reduction upon induction at 50°C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may...

  14. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    Science.gov (United States)

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better

  15. Structural and physicochemical properties of polar lipids from thermophilic archaea.

    Science.gov (United States)

    Ulrih, Natasa Poklar; Gmajner, Dejan; Raspor, Peter

    2009-08-01

    The essential general features required for lipid membranes of extremophilic archaea to fulfill biological functions are that they are in the liquid crystalline phase and have extremely low permeability of solutes that is much less temperature sensitive due to a lack of lipid-phase transition and highly branched isoprenoid chains. Many accumulated data indicate that the organism's response to extremely low pH is the opposite of that to high temperature. The high temperature adaptation does not require the tetraether lipids, while the adaptation of thermophiles to acidic environment requires the tetraether polar lipids. The presence of cyclopentane rings and the role of polar heads are not so straightforward regarding the correlations between fluidity and permeability of the lipid membrane. Due to the unique lipid structures and properties of archaeal lipids, they are a valuable resource in the development of novel biotechnological processes. This microreview focuses primarily on structural and physicochemical properties of polar lipids of (hyper)thermophilic archaea.

  16. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    Science.gov (United States)

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  18. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  19. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    Science.gov (United States)

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  20. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    Science.gov (United States)

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  1. Annual progress report FY 1977

    International Nuclear Information System (INIS)

    Hansen, K.F.; Henry, A.F.

    1977-07-01

    Progress is summarized in a project directed toward development of numerical methods suitable for the computer solution of problems in reactor dynamics and safety. Specific areas of research include methods of integration of the time-dependent diffusion equations by finite difference and finite element methods; representation of reactor properties by various homogenization procedures; application of synthesis methods; and development of response matrix techniques

  2. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-01-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program

  3. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 oC)

    International Nuclear Information System (INIS)

    Kotsopoulos, Thomas A.; Fotidis, Ioannis A.; Tsolakis, Nikolaos; Martzopoulos, Gerassimos G.

    2009-01-01

    A continuous stirred tank reactor (CSTR) (750 cm 3 working volume) was operated with pig slurry under hyper-thermophilic (70 o C) temperature for hydrogen production. The hydraulic retention time (HRT) was 24 h and the organic loading rate was 24.9 g d -1 of volatile solid (VS). The inoculum used in the hyper-thermophilic reactor was sludge obtained from a mesophilic methanogenic reactor. The continuous feeding with active biomass (inoculum) from the mesophilic methanogenic reactor was necessary in order to achieve hydrogen production. The hyper-thermophilic reactor started to produce hydrogen after a short adapted period of 4 days. During the steady state period the mean hydrogen yield was 3.65 cm 3 g -1 of volatile solid added. The high operation temperature of the reactor enhanced the hydrolytic activity in pig slurry and increased the volatile fatty acids (VFA) production. The short HRT (24 h) and the hyper-thermophilic temperature applied in the reactor were enough to prevent methanogenesis. No pre-treatment methods or other control methods for preventing methanogenesis were necessary. Hyper-thermophilic hydrogen production was demonstrated for the first time in a CSTR system, fed with pig slurry, using mixed culture. The results indicate that this system is a promising one for biohydrogen production from pig slurry.

  4. Methanogenic H2 syntrophy among thermophiles: a model of metabolism, adaptation and survival in the subsurface

    Science.gov (United States)

    Topcuoglu, B. D.; Stewart, L. C.; Butterfield, D. A.; Huber, J. A.; Holden, J. F.

    2016-12-01

    Approximately 1 giga ton (Gt, 1015 g) of CH4 is formed globally per year from H2, CO2 and acetate through methanogenesis, largely by methanogens growing in syntrophic association with anaerobic microbes that hydrolyze and ferment biopolymers. However, our understanding of methanogenesis in hydrothermal regions of the subseafloor and potential syntrophic methanogenesis at thermophilic temperatures (i.e., >50°C) is nascent. In this study, the growth of natural assemblages of thermophilic methanogens from Axial Seamount was primarily limited by H2 availability. Heterotrophs supported thermophilic methanogenesis by H2 syntrophy in microcosm incubations of hydrothermal fluids at 55°C and 80°C supplemented with tryptone only. Based on 16S rRNA gene sequencing, only heterotrophic archaea that produce H2, H2-consuming methanogens, and sulfate reducing archaea were found in 80°C tryptone microcosms from Marker 113 vent. No bacteria were found. In 55°C tryptone microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. In order to model the impact of H2 syntrophy at hyperthemophilic temperatures, a co-culture was established consisting of the H2-producing hyperthermophilic heterotroph Thermococcus paralvinellae and a H2-consuming hyperthermophilic methanogen Methanocaldococcus bathoardescens. When grown alone in a chemostat, the growth rates and steady-state cell concentrations of T. paralvinellae decreased significantly when a high H2 (70 µM) background was present. H2 inhibition was ameliorated by the production of formate, but in silico modeling suggests less energetic yield for the cells. H2 syntrophy relieved H2 inhibition for both the heterotroph and the methanogenic partners. The results demonstrate that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important alternative energy source for thermophilic autotrophs in marine geothermal environments.

  5. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion.

    Science.gov (United States)

    Hendriks, A T W M; van Lier, J B; de Kreuk, M K

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Science.gov (United States)

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  7. Annual Program Progress Report under DOE/PHRI Cooperative Agreement: (July 1, 2001-June 30, 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Palafox, Neal A., MD, MPH

    2002-07-31

    OAK B188 DOE/PHRI Special Medical Care Program in the Republic of the Marshall Islands (RMI)Annual Program Progress Report. The DOE Marshall Islands Medical Program continued, in this it's 48th year, to provide medical surveillance for the exposed population from Rongelap and Utrik and the additional DOE patients. The program was inaugurated in 1954 by the Atomic Energy Commission following the exposure of Marshallese to fallout from a nuclear test (Castle Bravo) at Bikini Atoll. This year marks the fourth year in which the program has been carried out by PHRI under a cooperative agreement with DOE. The DOERHRI Special Medical Care Program, awarded the cooperative agreement on August 28, 1998, commenced its health care program on January 15, 1999, on Kwajalein and January 22, 1999, on Majuro. This report details the program for the July 1, 2001, through the June 30, 2002, period. The program provides year-round, on-site medical care to the DOE patient population residing in the Republic of the Marshall Islands (RMI) and annual examinations to those patients living in Hawaii and on the Continental U.S.

  8. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  9. Domestic sewage sludge composting in a rotary drum reactor: optimizing the thermophilic stage.

    Science.gov (United States)

    Rodríguez, Luis; Cerrillo, María I; García-Albiach, Valentín; Villaseñor, José

    2012-12-15

    The aim of this paper was to study the influence of four process variables (turning frequency, gas-phase oxygen level, type of bulking agent and sludge/bulking agent mixing ratio) on the performance of the sewage sludge composting process using a rotary drum pilot scale reactor, in order to optimize the thermophilic stage and reduce the processing time. Powdered sawdust, wood shavings, wood chips, prunings waste and straw were used as bulking agents and the thermophilic stage temperature profile was used as the main indicator for gauging if the composting process was developing correctly. Our results showed that a 12 h(-1) turning frequency and an oxygen concentration of 10% were the optimal conditions for the composting process to develop. The best results were obtained by mixing the sewage sludge with wood shavings in a 3:1 w/w ratio (on a wet basis), which adapted the initial moisture content and porosity to an optimal range and led to a maximum temperature of 70 °C being reached thus ensuring the complete removal of pathogens. Moisture, C:N ratio, pH, organic matter, heavy metals, pathogens and stability were all analysed for every mixture obtained at the end of the thermophilic stage. These parameters were compared with the limits established by the Spanish regulation on fertilizers (RD 824/2005) in order to assess if the compost obtained could be used on agricultural soils. The right combination of having optimal process variables combined with an appropriate reactor design allowed the thermophilic stage of the composting process to be speeded up, hence obtaining a compost product, after just two weeks of processing that (with the exception of the moisture content) complied with the Spanish legal requirements for fertilizers, without requiring a later maturation stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Design of A solar Thermophilic Anaerobic Reactor for Small Farms

    NARCIS (Netherlands)

    Mashad, El H.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    A 10 m(3) completely stirred tank reactor has been designed for anaerobic treatment of liquid cow manure under thermophilic conditions (50degreesC), using a solar heating system mounted on the reactor roof. Simulation models for two systems have been developed. The first system consists of loose

  11. 1985. Progress annual report

    International Nuclear Information System (INIS)

    1986-06-01

    Tore Supra construction has been vigorously continued. The whole cryogenic system has been entirely delivered. On TFR priority has been given to electron cyclotron resonance heating; but also neutral heating mechanisms, pellet injection, plasma-wall interaction in the presence of pumped limiter, impurity transport and plasma turbulence have been studied and progress on diagnostics have been made. On Petula, with lower hybrid wave, the numerous results on ion heating, current drive, plasma stability in the presence of non-inductive current and on Tore Supra technical problems are important. At last, theoretical and numerical results are concerned with plasma equilibrium macroscopic evolution of plasma, RF heating, plasma instabilities, magnetic islands, turbulence, transport coefficients and spectroscopy [fr

  12. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes.

    Science.gov (United States)

    Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik

    2012-04-01

    Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production.

    Science.gov (United States)

    Benassi, Vivian Machado; de Lucas, Rosymar Coutinho; Jorge, João Atílio; Polizeli, Maria de Lourdes Teixeira de Moraes

    2014-01-01

    Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 °C, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 °C. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form) were higher in cultures grown at high temperatures (35-40 °C), while the correspondent extracellular activities were favorably secreted from cultures at 30 °C. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes.

  14. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  15. Thermophilic Bacteria Colony Growwth and its Consequences in the Food Industry

    Czech Academy of Sciences Publication Activity Database

    Melzoch, K.; Votruba, Jaroslav; Sekavová, B.; Piterková, L.; Rychtera, M.

    2004-01-01

    Roč. 22, č. 1 (2004), s. 1-8 ISSN 1212-1800 R&D Projects: GA ČR GA525/03/0375 Institutional research plan: CEZ:AV0Z5020903 Keywords : thermophilic bacteria * colony growth Subject RIV: EE - Microbiology, Virology

  16. Chemical and biological nonproliferation program. FY99 annual report; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community

  17. Annual report 2009-10

    International Nuclear Information System (INIS)

    2009-01-01

    The annual progress for the year 2009-10 for Pakistan Atomic Energy Commission (PAEC) is presented. The progress of various Center and their contribution for the uplift of nuclear programme have been described. The progress report fully explained under various topics as under: Highlights, Nuclear Power, Engineering, Physical Sciences, Biological Sciences, Nuclear Materials, Safety, Quality, Human Resource Development, PAEC General Health Services, Projects / International Collaboratioin and publications. (A.B.)

  18. Seasonal Variability of Thermophilic Campylobacter Spp. in Raw Milk Sold by Automatic Vending Machines in Lombardy Region.

    Science.gov (United States)

    Bertasi, Barbara; Losio, Marina Nadia; Daminelli, Paolo; Finazzi, Guido; Serraino, Andrea; Piva, Silvia; Giacometti, Federica; Massella, Elisa; Ostanello, Fabio

    2016-06-03

    In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1%) in different months during the three years considered. The statistical analysis showed a significant difference (P<0.01) of the prevalence of positive samples for thermophilic Campylobacter spp. between warmer and cooler months (2.3 vs 0.6%). The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  19. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals.

    Science.gov (United States)

    Archibald, S Bruce; Johnson, Kirk R; Mathewes, Rolf W; Greenwood, David R

    2011-12-22

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene.

  20. Annual report on Reactor Safety Research Projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 1999. Progress report

    International Nuclear Information System (INIS)

    2000-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technologie (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to the classification system ''Joint Safety Research Index'' of the CEC (commission of the European communities). The reports are arranged in sequence of their project numbers. (orig.)

  1. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  2. Performance of thermophilic anaerobic digesters using inoculum mixes with enhanced methanogenic diversity

    KAUST Repository

    Ghanimeh, Sophia; El-Fadel, Mutasem; Saikaly, Pascal

    2017-01-01

    Reportedly, various mixes of seeds were quasi-randomly selected to startup anaerobic digesters. In contrast, this study examines the impact of inoculating thermophilic anaerobic digesters with a designed mix of non-acclimated seeds based

  3. Global transport of thermophilic bacteria in atmospheric dust.

    Science.gov (United States)

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, Chris [Los Alamos National Laboratory; Bruce, David [Los Alamos National Laboratory; Challacome, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Philippe [CNRS, UNIV LYON; Necsula, Anamaria [CNRS, UNIV LYON; Daubin, Vincent [CNRS, UNIV LYON; Medigue, Claudine [CNRS/GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [DOE JOINT GENOME INST.; Pujic, Pierre [CNRS, UNIV LYON; Richardson, Paul [DOE JOINT GENOME INST; Berry, Alison M [UC DAVIS

    2008-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  5. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Necsulea, Anamaria [UNIV LYON; Daubin, Vincent [UNIV LYON; Medigue, Claudine [GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [JGI; Pujic, Pierre [UNIV LYON; Berry, Alison M [UC DAVIS; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Phillipe [UNIV LYON

    2009-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  6. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    Science.gov (United States)

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 1 of 2

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-04-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared of each Appendix for inclusion in the Energy Data Base

  8. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 2 of 2

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-04-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume II, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  9. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    Science.gov (United States)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  10. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    Science.gov (United States)

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  11. Establishment of thermophilic anaerobic terephthalic acid degradation system through one-step temperature increase startup strategy - Revealed by Illumina Miseq Sequencing.

    Science.gov (United States)

    Ma, Kai-Li; Li, Xiang-Kun; Wang, Ke; Meng, Ling-Wei; Liu, Gai-Ge; Zhang, Jie

    2017-10-01

    Over recent years, thermophilic digestion was constantly focused owing to its various advantage over mesophilic digestion. Notably, the startup approach of thermophilic digester needs to be seriously considered as unsuitable startup ways may result in system inefficiency. In this study, one-step temperature increase startup strategy from 37 °C to 55 °C was applied to establish a thermophilic anaerobic system treating terephthalic acid (TA) contained wastewater, meanwhile, the archaeal and bacterial community compositions at steady periods of 37 °C and 55 °C during the experimental process was also compared using Illumina Miseq Sequencing. The process operation demonstrated that the thermophilic TA degradation system was successfully established at 55 °C with over 95% COD reduction. For archaea community, the elevation of operational temperature from 37 °C to 55 °C accordingly increase the enrichment of hydrogenotrophic methanogens but decrease the abundance of the acetotrophic ones. While for bacterial community, the taxonomic analysis suggested that Syntrophorhabdus (27.40%) was the dominant genus promoting the efficient TA degradation under mesophilic condition, whereas OPB95 (24.99%) and TA06 (14.01%) related populations were largely observed and probably take some crucial role in TA degradation under thermophilic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. CTR plasma engineering studies. Annual progress report, 1 December 1984-30 November 1985

    International Nuclear Information System (INIS)

    Miley, G.H.

    1985-01-01

    Work under this project is focused on plasma engineering developments in support of fusion reactor studies. The work described in this annual progress report covers a variety of topics ranging from plasma transport modelling for compact tori to radiation heating of the first wall in a fusion device. Sections 2 and 3 decribe computer codes developed for use with field-reversed configurations such as spheromaks and field-reversed mirrors. Section 4 presents an evaluation of the feasibility of heating a RFP-type reactor to ignition with ohmic current input alone. Sections 5 and 6 describe new work that has been initiated on optimal control theory for fusion reactors. Sections 7 to 9 discuss recent results on alpha-particle transport, instabilities, and diagnostics. In the final section, methods for analysis of the poloidal variation in the thermal wall loading of a tokamak reactor are discussed and some typical results are presented

  13. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-01-01

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S in in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  14. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You, E-mail: yyli@epl1.civil.tohoku.ac.jp [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an (China)

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  15. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2015-01-01

    Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.

  16. Thermophilic Sulfate Reduction in Hydrothermal Sediment of Lake Tanganyika, East-Africa

    DEFF Research Database (Denmark)

    ELSGAARD, L.; PRIEUR, D.; MUKWAYA, GM

    1994-01-01

    at up to 70 and 75 degrees C, with optima at 63 and 71 degrees C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit...

  17. Thermophilic archaea activate butane via alkyl-coenzyme M formation.

    Science.gov (United States)

    Laso-Pérez, Rafael; Wegener, Gunter; Knittel, Katrin; Widdel, Friedrich; Harding, Katie J; Krukenberg, Viola; Meier, Dimitri V; Richter, Michael; Tegetmeyer, Halina E; Riedel, Dietmar; Richnow, Hans-Hermann; Adrian, Lorenz; Reemtsma, Thorsten; Lechtenfeld, Oliver J; Musat, Florin

    2016-11-17

    The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C 1 -compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C 4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding β-oxidation enzymes, carbon monoxide dehydrogenase and reversible C 1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.

  18. Isolation and Screening of Thermophilic Bacilli from Compost for Electrotransformation and Fermentation: Characterization of Bacillus smithii ET 138 as a New Biocatalyst

    NARCIS (Netherlands)

    Bosma, E.F.; Weijer, van de A.H.P.; Daas, M.J.A.; Oost, van der J.; Vos, de W.M.; Kranenburg, van R.

    2015-01-01

    Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic,

  19. Industrial relevance of thermophilic Archaea.

    Science.gov (United States)

    Egorova, Ksenia; Antranikian, Garabed

    2005-12-01

    The dramatic increase of newly isolated extremophilic microorganisms, analysis of their genomes and investigations of their enzymes by academic and industrial laboratories demonstrate the great potential of extremophiles in industrial (white) biotechnology. Enzymes derived from extremophiles (extremozymes) are superior to the traditional catalysts because they can perform industrial processes even under harsh conditions, under which conventional proteins are completely denatured. In particular, enzymes from thermophilic and hyperthermophilic Archaea have industrial relevance. Despite intensive investigations, our knowledge of the structure-function relationships of their enzymes is still limited. Information concerning the molecular properties of their enzymes and genes has to be obtained to be able to understand the mechanisms that are responsible for catalytic activity and stability at the boiling point of water.

  20. Diversity, Localization, and Physiological Properties of Filamentous Microbes Belonging to Chloroflexi Subphylum I in Mesophilic and Thermophilic Methanogenic Sludge Granules

    Science.gov (United States)

    Yamada, Takeshi; Sekiguchi, Yuji; Imachi, Hiroyuki; Kamagata, Yoichi; Ohashi, Akiyoshi; Harada, Hideki

    2005-01-01

    We previously reported that the thermophilic filamentous anaerobe Anaerolinea thermophila, which is the first cultured representative of subphylum I of the bacterial phylum Chloroflexi, not only was one of the predominant constituents of thermophilic sludge granules but also was a causative agent of filamentous sludge bulking in a thermophilic (55°C) upflow anaerobic sludge blanket (UASB) reactor in which high-strength organic wastewater was treated (Y. Sekiguchi, H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada, Appl. Environ. Microbiol. 67:5740-5749, 2001). To further elucidate the ecology and function of Anaerolinea-type filamentous microbes in UASB sludge granules, we surveyed the diversity, distribution, and physiological properties of Chloroflexi subphylum I microbes residing in UASB granules. Five different types of mesophilic and thermophilic UASB sludge were used to analyze the Chloroflexi subphylum I populations. 16S rRNA gene cloning-based analyses using a 16S rRNA gene-targeted Chloroflexi-specific PCR primer set revealed that all clonal sequences were affiliated with the Chloroflexi subphylum I group and that a number of different phylotypes were present in each clone library, suggesting the ubiquity and vast genetic diversity of these populations in UASB sludge granules. Subsequent fluorescence in situ hybridization (FISH) of the three different types of mesophilic sludge granules using a Chloroflexi-specific probe suggested that all probe-reactive cells had a filamentous morphology and were widely distributed within the sludge granules. The FISH observations also indicated that the Chloroflexi subphylum I bacteria were not always the predominant populations within mesophilic sludge granules, in contrast to thermophilic sludge granules. We isolated two mesophilic strains and one thermophilic strain belonging to the Chloroflexi subphylum I group. The physiological properties of these isolates suggested that these populations may contribute to the

  1. 1983. Annual progress report

    International Nuclear Information System (INIS)

    1984-01-01

    A beautiful experiment series for studying high energy excitation structures (10 to 80 MeV), concerning very heavy and asymmetric systems. CEV-Alice contributions to annual report concern Hg and Er high spin energy levels. About reaction mechanisms, the following contributions can be noticed: proton backward emission experiment results of high energy, at 200 MeV, on numerous targets; spectroscopic studies of direct transfer reactions by 18 O with measurement of angular distributions until 0 0 ; many heavy ion experiments around 30 MeV/u concerning the mechanism evolution between 10 and 100 MeV. Pion coherent production experiments have been made this year on energy dependence of the reaction 3 He+ 3 He → 6 Li+π + , considered as an existing model test. Cross section measurement of the elementary reactions (p,π + ) on three targets of very different masses, in a large energy scale and a wide angular domain, have been measured at the Synchrocyclotron. Concerning the nuclear structure in low and medium energy levels, elastic scattering and transfer studies are to be noticed particularly in transition nuclei region. Exotic nuclei rich in neutrons, with medium mass, Fe, Co, Ni, Zn have been studied using the 14 C beam of the Orsay tandem. The radiochemistry group work is essentially centered on actinides study [fr

  2. An efficient Azorean thermophilic consortium for lignocellulosic biomass degradation

    OpenAIRE

    Martins, Rita; Teixeira, Mário; Toubarro, Duarte; Simões, Nelson; Domingues, Lucília; Teixeira, J. A.

    2015-01-01

    [Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potent...

  3. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  4. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production

    Directory of Open Access Journals (Sweden)

    Vivian Machado Benassi

    2014-12-01

    Full Text Available Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 ºC, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 ºC. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form were higher in cultures grown at high temperatures (35-40 ºC, while the correspondent extracellular activities were favorably secreted from cultures at 30 ºC. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes.

  5. Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei.

    Science.gov (United States)

    Zhou, Peng; Zhang, Guoqiang; Chen, Shangwu; Jiang, Zhengqiang; Tang, Yanbin; Henrissat, Bernard; Yan, Qiaojuan; Yang, Shaoqing; Chen, Chin-Fu; Zhang, Bing; Du, Zhenglin

    2014-04-21

    The zygomycete fungi like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. To date, over hundreds of fungal genomes are publicly available. However, Zygomycetes have been rarely investigated both genetically and genomically. Here, we report the genome of R. miehei CAU432 to explore the thermostable enzymatic repertoire of this fungus. The assembled genome size is 27.6-million-base (Mb) with 10,345 predicted protein-coding genes. Even being thermophilic, the G + C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than 50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes. Based on the existence of a large repertoire of amylolytic, proteolytic and lipolytic genes in the genome, R. miehei has potential in the production of a variety of such enzymes.

  6. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production

    Science.gov (United States)

    Benassi, Vivian Machado; de Lucas, Rosymar Coutinho; Jorge, João Atílio; Polizeli, Maria de Lourdes Teixeira de Moraes

    2014-01-01

    Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 °C, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 °C. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form) were higher in cultures grown at high temperatures (35–40 °C), while the correspondent extracellular activities were favorably secreted from cultures at 30 °C. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes. PMID:25763055

  7. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    Science.gov (United States)

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-11-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m 2 , and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermophilic and unusually acidophilic amylase produced by a thermophilic acidophilic bacillus sp

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, F

    1982-01-01

    Bacillus sp. 11-1S, a thermophilic acidophilic bacterial strain, produced an extracellular amylase with unusual characteristics. The enzyme was purified 40-fold by SE-Sephadex column chromatography. The pH optimum for activity was 2.0, and substantial activity was noted in the pH range of 1.5-3.5. The optimal temperature was 70 degrees C, but the activity decreased markedly in lower reaction temperatures. Arrhenius plots of the reaction showed two straight lines intersecting at about 50 degrees C. The activity or stability of the enzyme was not likely to depend on Ca2+. The molecular weight of the enzyme was 54,000 calculated from the electrophoretic mobility. The enzyme behaved like an alpha-amylase (1,4-alpha-D- glucan glucanohydrolase, E.C. 3.2.1.1). About 34% of glucosidic linkages of soluble starch was hydrolyzed at 65 degrees C and pH 2.0, in 24 hours, and the major products were maltotriose and maltose. (Refs. 14).

  10. Clinical Investigation Program Annual Progress Report

    Science.gov (United States)

    1989-10-01

    Meeting, Washington DC, September 1989 Parsons MK: Acute Shift of Right Ventricular Distensibility After Balloon Pulmonary Vavuloplasty. American Heart...selected range of motion using both concentric and eccentric muscular contractions. PROGRESS: No. of Subjects Enrolled - To Date: 8 Reporting Period: 8 1

  11. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

    Directory of Open Access Journals (Sweden)

    McClendon Shara D

    2012-07-01

    Full Text Available Abstract Background Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Results Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. Conclusions T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for

  12. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions.

    Science.gov (United States)

    McClendon, Shara D; Batth, Tanveer; Petzold, Christopher J; Adams, Paul D; Simmons, Blake A; Singer, Steven W

    2012-07-28

    Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction, without strain development or

  13. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium thermosaccharo......Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...... molasses. Furthermore, the mixed gas with a volumetric content of 16.5% H2, 38.7% CO2, and 44.8% CH4, containing approximately 15% energy by hydrogen is viable to be bio‐hythane....

  14. CTR plasma engineering studies. Annual progress report, 1 December 1985-30 November 1986

    International Nuclear Information System (INIS)

    Miley, G.H.

    1986-01-01

    The work described in this annual progress report covers a variety of topics ranging from alpha instabilities and current drive techniques to radiation heating of the first wall in a fusion device. Section II discusses work carried out on alpha instabilities, including comments on problems anticipated in the proposed compact ignition experiment and also recent studies of effects in tandem mirrors. Sections III and IV describe our recent efforts on RFP modelling. This includes a detailed study of oscillating field current drive (F-Θ) pumping and also parametric studies of ignition requirements. Section V presents a report of our application of control theory techniques to the stabilization of an elongated tokamak (ET) using feedback control of the plasma elongation. Section VI discusses our most recent study of the first-wall thermal response to plasma energy deposition while Section VII reviews our continuing study of techniques to radiation harden a wall detector for measuring alpha distributions in a burning plasma

  15. Gelria glutamica gen. nov., sp. a thermophilic oligately syntrophic glutamate-degrading anaerobe

    NARCIS (Netherlands)

    Plugge, C.M.; Balk, M.; Zoetendal, E.G.; Stams, A.J.M.

    2002-01-01

    A novel anaerobic, Gram-positive, thermophilic, spore-forming, obligately syntrophic, glutamate-degrading bacterium, strain TGO(T), was isolated from a propionate-oxidizing methanogenic enrichment culture. The axenic culture was obtained by growing the bacterium on pyruvate. Cells were rod-shaped

  16. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura

    2015-01-01

    This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred...... production and CO2 conversion was recorded. The consequent increase of pH did not inhibit the process indicating adaptation of microorganisms to higher pH levels. The effects of H2 on the microbial community were studied using high-throughput Illumina random sequences and full-length 16S rRNA genes extracted...... to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher efficiency of CH4...

  17. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    Science.gov (United States)

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  18. 2. Semi-annual progress report 1980, no 17

    International Nuclear Information System (INIS)

    1981-01-01

    This semi-annual report deals with the experimental research carried out at the Departement de Recherche Fondamentale de Grenoble (fission, nuclear spectroscopy, heavy ion reactions, physical metallurgy, magnetism, organic molecules, theoretical chemistry, molecular physical chemistry, cellular biology, vegetal biology) [fr

  19. Neutron scattering. Annual progress report 1997; Neutronenstreuung. Annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Allenspach, P.; Boeni, B.; Fischer, P.; Furrer, A. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Neutronenstreuung

    1998-02-01

    The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs.

  20. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: Expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications.

    Science.gov (United States)

    Ranjan, Bibhuti; Satyanarayana, T

    2016-02-01

    The codon-optimized phytase gene of the thermophilic mold Sporotrichum thermophile (St-Phy) was expressed in Pichia pastoris. The recombinant P. pastoris harboring the phytase gene (rSt-Phy) yielded a high titer of extracellular phytase (480 ± 23 U/mL) on induction with methanol. The recombinant phytase production was ~40-fold higher than that of the native fungal strain. The purified recombinant phytase (rSt-Phy) has the molecular mass of 70 kDa on SDS-PAGE, with K m and V max (calcium phytate), k cat and k cat/K m values of 0.147 mM and 183 nmol/mg s, 1.3 × 10(3)/s and 8.84 × 10(6)/M s, respectively. Mg(2+) and Ba(2+) display a slight stimulatory effect, while other cations tested exert inhibitory action on phytase. The enzyme is inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K and 2,3-bunatedione, but resistant to both pepsin and trypsin. The rSt-Phy is useful in the dephytinization of broiler feeds efficiently in simulated gut conditions of chick leading to the liberation of soluble inorganic phosphate with concomitant mitigation in antinutrient effects of phytates. The addition of vanadate makes it a potential candidate for generating haloperoxidase, which has several applications.

  1. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    Science.gov (United States)

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  2. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2010-08-02

    Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  4. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.5

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fifth one, the content is about radiation protection and nuclear chemical industry.

  5. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments.

    Science.gov (United States)

    Thummes, Kathrin; Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2007-12-01

    Since compost is widely used as soil amendment and the fact that during the processing of compost material high amounts of microorganisms are released into the air, we investigated whether compost may act as a carrier for thermophilic methanogens to temperate soils. All eight investigated compost materials showed a clear methane production potential between 0.01 and 0.98 micromol CH(4) g dw(-1)h(-1) at 50 degrees C. Single strand conformation polymorphism (SSCP) and cloning analysis indicated the presence of Methanosarcina thermophila, Methanoculleus thermophilus, and Methanobacterium formicicum. Bioaerosols collected during the turning of a compost pile showed both a highly similar SSCP profile compared to the corresponding compost material and clear methane production during anoxic incubation in selective medium at 50 degrees C. Both observations indicated a considerable release of thermophilic methanogens into the air. To analyse the persistence of compost-borne thermophilic methanogens in temperate oxic soils, we therefore studied their potential activity in compost and compost/soil mixtures, which was brought to a meadow soil, as well as in an agricultural soil fertilised with compost. After 24h anoxic incubation at 50 degrees C, all samples containing compost showed a clear methanogenic activity, even 1 year after application. In combination with the in vitro observed resilience of the compost-borne methanogens against desiccation and UV radiation we assume that compost material acts as an effective carrier for the distribution of thermophilic methanogens by fertilisation and wind.

  6. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  7. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  8. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  9. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  10. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  11. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  12. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    Science.gov (United States)

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  13. Cloning, expression, crystallization and preliminary X-ray characterization of cytochrome c552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus

    International Nuclear Information System (INIS)

    Ichiki, Shin-ichi; Nakamura, Shota; Ohkubo, Tadayasu; Kobayashi, Yuji; Hasegawa, Jun; Uchiyama, Susumu; Nishihara, Hirofumi; Mizuta, Keiko; Sambongi, Yoshihiro

    2005-01-01

    Cytochrome c 552 of a moderate thermophile, H. thermoluteolus, was overexpressed in E. coli and crystallized for X-ray diffraction study. The amino-acid sequence of cytochrome c 552 (PH c 552 ) from a moderately thermophilic bacterium, Hydrogenophilus thermoluteolus, was more than 50% identical to that of cytochrome c from an extreme thermophile, Hydrogenobacter thermophilus (HT c 552 ), and from a mesophile, Pseudomonas aeruginosa (PA c 551 ). The PH c 552 gene was overexpressed as a correctly processed holoprotein in the Escherichia coli periplasm. The overexpressed PH c 552 has been crystallized by vapour diffusion from polyethylene glycol 4000 pH 6.5. The crystals belong to space group C222 1 , with unit-cell parameters a = 48.98, b = 57.99, c = 56.20 Å. The crystals diffract X-rays to around 2.1 Å resolution

  14. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals

    Science.gov (United States)

    Archibald, S. Bruce; Johnson, Kirk R.; Mathewes, Rolf W.; Greenwood, David R.

    2011-01-01

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene. PMID:21543354

  15. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications

    Directory of Open Access Journals (Sweden)

    L eShivlata

    2015-09-01

    Full Text Available Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  16. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Molecular studies on protein- and carbohydrate-converting ezymes from thermophilic bacteria

    NARCIS (Netherlands)

    Kluskens, L.D.

    2004-01-01

    Microorganisms that are able to grow at hightemperatures are calledthermophiles(>55

  18. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    Science.gov (United States)

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights

  19. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    Science.gov (United States)

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  20. Anaerobic digestion of whole stillage from dry-grind corn ethanol plant under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Eskicioglu, Cigdem; Kennedy, Kevin J; Marin, Juan; Strehler, Benjamin

    2011-01-01

    Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88±8 L (49±5 L CH4) and 96±19 L (65±14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD=254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Occurrence and molecular characterization of cultivable mesophilic and thermophilic obligate anaerobic bacteria isolated from paper mills.

    Science.gov (United States)

    Suihko, Maija-Liisa; Partanen, Laila; Mattila-Sandholm, Tiina; Raaska, Laura

    2005-08-01

    The aim of this work was to characterize the cultivable obligate anaerobic bacterial population in paper mill environments. A total of 177 anaerobically grown bacterial isolates were screened for aerotolerance, from which 67 obligate anaerobes were characterized by automated ribotyping and 41 were further identified by partial 16S rDNA sequencing. The mesophilic isolates indicated 11 different taxa (species) within the genus Clostridium and the thermophilic isolates four taxa within the genus Thermoanaerobacterium and one within Thermoanaerobacter (both formerly Clostridium). The most widespread mesophilic bacterium was closely related to C. magnum and occurred in three of four mills. One mill was contaminated with a novel mesophilic bacterium most closely related to C. thiosulfatireducens. The most common thermophile was T. thermosaccharolyticum, occurring in all four mills. The genetic relationships of the mill isolates to described species indicated that most of them are potential members of new species. On the basis of identical ribotypes clay could be identified to be the contamination source of thermophilic bacteria. Automated ribotyping can be a useful tool for the identification of clostridia as soon as comprehensive identification libraries are available.

  2. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    Science.gov (United States)

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  3. Microbial community dynamics in thermophilic undefined milk starter cultures.

    Science.gov (United States)

    Parente, Eugenio; Guidone, Angela; Matera, Attilio; De Filippis, Francesca; Mauriello, Gianluigi; Ricciardi, Annamaria

    2016-01-18

    Model undefined thermophilic starter cultures were produced from raw milk of nine pasta-filata cheesemaking plants using a selective procedure based on pasteurization and incubation at high temperature with the objective of studying the microbial community dynamics and the variability in performances under repeated (7-13) reproduction cycles with backslopping. The traditional culture-dependent approach, based on random isolation and molecular characterization of isolates was coupled to the determination of pH and the evaluation of the ability to produce acid and fermentation metabolites. Moreover, a culture-independent approach based on amplicon-targeted next-generation sequencing was employed. The microbial diversity was evaluated by 16S rRNA gene sequencing (V1-V3 regions), while the microdiversity of Streptococcus thermophilus populations was explored by using novel approach based on sequencing of partial amplicons of the phosphoserine phosphatase gene (serB). In addition, the occurrence of bacteriophages was evaluated by qPCR and by multiplex PCR. Although it was relatively easy to select for a community dominated by thermophilic lactic acid bacteria (LAB) within a single reproduction cycle, final pH, LAB populations and acid production activity fluctuated over reproduction cycles. Both culture-dependent and -independent methods showed that the cultures were dominated by either S. thermophilus or Lactobacillus delbrueckii subsp. lactis or by both species. Nevertheless, subdominant mesophilic species, including lactococci and spoilage organisms, persisted at low levels. A limited number of serB sequence types (ST) were present in S. thermophilus populations. L. delbrueckii and Lactococcus lactis bacteriophages were below the detection limit of the method used and high titres of cos type S. thermophilus bacteriophages were detected in only two cases. In one case a high titre of bacteriophages was concurrent with a S. thermophilus biotype shift in the culture

  4. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  5. The Community's research and development programme on radioactive waste management and storage. Shared cost action. Annual progress report 1988. Volume 2

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Third annual progress report of the European Community's 1985-89 programme of research and development on radioactive waste management and disposal, carried out by public organizations and private firms in the Community under cost-sharing contracts with the Commission of the European Communities. This report describes the work to be carried out under research contracts already concluded before the end of 1988, as well as the work performed and the results obtained so far

  6. The Community's research and development programme on radioactive waste management and storage. Shared cost action. Annual progress report 1988. Volume 1

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Third annual progress report of the European Community's 1985-89 programme of research and development on radioactive waste management and disposal, carried out by public organizations and private firms in the Community under cost-sharing contracts with the Commission of the European Communities. This report describes the work to be carried out under research contracts already concluded before the end of 1988, as well as the work performed and the results obtained so far

  7. Multiple approaches to characterize the microbial community in a thermophilic anaerobic digester running on swine manure: a case study.

    Science.gov (United States)

    Tuan, Nguyen Ngoc; Chang, Yi-Chia; Yu, Chang-Ping; Huang, Shir-Ly

    2014-01-01

    In this study, the first survey of microbial community in thermophilic anaerobic digester using swine manure as sole feedstock was performed by multiple approaches including denaturing gradient gel electrophoresis (DGGE), clone library and pyrosequencing techniques. The integrated analysis of 21 DGGE bands, 126 clones and 8506 pyrosequencing read sequences revealed that Clostridia from the phylum Firmicutes account for the most dominant Bacteria. In addition, our analysis also identified additional taxa that were missed by the previous researches, including members of the bacterial phyla Synergistetes, Planctomycetes, Armatimonadetes, Chloroflexi and Nitrospira which might also play a role in thermophilic anaerobic digester. Most archaeal 16S rRNA sequences could be assigned to the order Methanobacteriales instead of Methanomicrobiales comparing to previous studies. In addition, this study reported that the member of Methanothermobacter genus was firstly found in thermophilic anaerobic digester. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Andrade Carolina M.M.C.

    1999-01-01

    Full Text Available Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.

  9. Characterization of technetium(vII) reduction by cell suspensions of thermophilic bacteria and archaea.

    Science.gov (United States)

    Chernyh, Nikolay A; Gavrilov, Sergei N; Sorokin, Vladimir V; German, Konstantin E; Sergeant, Claire; Simonoff, Monique; Robb, Frank; Slobodkin, Alexander I

    2007-08-01

    Washed cell suspensions of the anaerobic hyperthermophilic archaea Thermococcus pacificus and Thermoproteus uzoniensis and the anaerobic thermophilic gram-positive bacteria Thermoterrabacterium ferrireducens and Tepidibacter thalassicus reduced technetium [(99)Tc(VII)], supplied as soluble pertechnetate with molecular hydrogen as an electron donor, forming highly insoluble Tc(IV)-containing grayish-black precipitate. Apart from molecular hydrogen, T. ferrireducens reduced Tc(VII) with lactate, glycerol, and yeast extract as electron donors, and T. thalassicus reduced it with peptone. Scanning electron microscopy and X-ray microanalysis of cell suspensions of T. ferrireducens showed the presence of Tc-containing particles attached to the surfaces of non-lysed cells. This is the first report on the reduction in Tc(VII) by thermophilic microorganisms of the domain Bacteria and by archaea of the phylum Euryarchaeota.

  10. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  11. Continuous cultivation of a thermophilic bacterium Aeribacillus pallidus 418 for production of an exopolysaccharide applicable in cosmetic creams.

    Science.gov (United States)

    Radchenkova, N; Panchev, I; Vassilev, S; Kuncheva, M; Dobreva, S; Kambourova, M

    2015-11-01

    The aim of this study was to evaluate the effectiveness of continuous cultivation approach for exopolysaccharide (EPS) production by a thermophilic micro-organism and the potential of the synthesized EPS for application in cosmetic industry. Study on the ability of Aeribacillus pallidus 418, isolated as a good EPS producer, to synthesize the polymer in continuous cultures showed higher production in comparison with batch cultures. The degree of the EPS in the precipitate after continuous cultivation significantly increased. Non-Newtonian pseudoplastic and thixotropic behaviour of EPS determines the ability of the received cream to become more fluid after increasing time of application on the skin. This study demonstrates a highly efficient way for production of EPS from a continuous growth culture of A. pallidus 418 that have many advantages and can outperform batch culture by eliminating time for cleaning and sterilization of the vessel and the comparatively long lag phases before the organisms enter a brief period of high productivity. The valuable physico-chemical properties of the synthesized EPS influenced positively the properties of a commercial cream. EPSs from thermophilic micro-organisms are of special interest due to the advantages of the thermophilic processes and nonpathogenic nature of the polymer molecules. However, their industrial application is hindered by the comparatively low biomass and correspondingly EPS yield. Suggested continuous approach for EPS could have an enormous economic potential for an industrial scale production of thermophilic EPSs. © 2015 The Society for Applied Microbiology.

  12. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhance...... hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction and volatile fatty acid (VFA) production at different hydraulic retention times (HRT...

  13. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    Directory of Open Access Journals (Sweden)

    Xiao Zijun

    2012-12-01

    Full Text Available Abstract Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its

  14. New thermophilic anaerobes that decompose crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Taya, M; Hinoki, H; Suzuki, Y; Yagi, T; Yap, M G.S.; Kobayashi, T

    1985-01-01

    Two strains (designated as 25A and 3B) of cellulolytic, thermophilic, anaerobic, spore-forming bacteria were newly isolated from an alkaline hot spring through enrichment cultures at 60/sup 0/C. Though strain 25A was nearly identical to Clostridium thermocellum ATCC 27405 as a reference strain, strain 3B had some characteristics different from the reference; no flagellation, alkalophilic growth property (optimum pH of 7.5-8) and orange-colored pigmentation of the cell mass. Strain 3B effectively decomposed micro-crystalline cellulose (Avicel) and raw cellulosics (rice straw, newspaper, and bagasse) without physical or chemical pretreatments. 20 references, 2 figures, 2 tables.

  15. IKO Annual Report 1976

    International Nuclear Information System (INIS)

    1977-01-01

    The IKO Annual Report of 1976 relates their progress in different projects and project fields. The fields covered include electron scattering, pion and muon physics, theory, radio- and nuclear chemistry, technical department, MEA, nuclear reactions and nuclear spectroscopy

  16. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated...

  17. Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte: Inhibition and recovery against dissolved lignin during semi-continuous operation.

    Science.gov (United States)

    Koyama, Mitsuhiko; Watanabe, Keiko; Kurosawa, Norio; Ishikawa, Kanako; Ban, Syuhei; Toda, Tatsuki

    2017-08-01

    The long-term effect of alkaline pretreatment on semi-continuous anaerobic digestion (AD) of the lignin-rich submerged macrophyte Potamogeton maackianus was investigated using mesophilic and thermophilic conditions. In pretreated reactors, dissolved lignin accumulated to high levels. CH 4 production under the pretreated condition was higher than that of the untreated condition, but decreased from Days 22 (mesophilic) and 42 (thermophilic). However, CH 4 production subsequently recovered, although dissolved lignin accumulated. Further, the change in the microbial community was observed between conditions. These results suggest that dissolved lignin temporarily inhibited AD, although acclimatization to dissolved lignin occurred during long-term operation. During the steady state period, mesophilic conditions achieved a 42% increase in the CH 4 yield using pretreatment, while thermophilic conditions yielded an 8% increment. Because volatile fatty acids accumulated even after acclimatization during the thermophilic pretreated condition and was discharged with the effluent, improvement of the methanogenic step would enable enhanced CH 4 recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--isotope

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  19. Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material.

    Science.gov (United States)

    Thummes, Kathrin; Kämpfer, Peter; Jäckel, Udo

    2007-07-01

    To date, composting has been regarded as an aerobic process but it has been shown that composting piles are often sources of atmospheric methane. In order to gain a more comprehensive view on the diversity of methanogenic Archaea in compost, gas chromatographical methods and molecular cloning were used to study relationships of thermophilic archaeal communities and changes in methane production potential during compost maturation. According to the thermophilic methane production potential, wide differences could be detected between differently aged compost materials. In material derived from 3- and 4-week-old piles, low and no thermophilic methane production potential, respectively, was observed at 50 degrees C. Material from a 6-week-old pile showed the maximum methane production. With compost maturation, the production slowly decreased again with 6 weeks, 8 weeks, and mature compost showing an optimum methane production potential at 60 degrees C. At 70 degrees C, only 6-week-old material showed a comparable high production of methane. The 16S rRNA-based phylogenetic surveys revealed an increase of archaeal diversity with compost maturation. In the 6-week-old material, 86% of the sequences in the archaeal 16S rRNA library had the highest sequence similarities to Methanothermobacter spp. and the remaining 14% of the clones were related to Methanosarcina thermophila. Quantification of methanogens in 6-week-old material, on the basis of the methane production rate, resulted in values of about 2x10(7) cells per gram fresh weight. In 8-week-old and mature compost material, the proportion of sequences similar to Methanothermobacter spp. decreased to 34% and 0%, respectively. The mature compost material showed the highest variation in identified sequences, although 33% could be assigned to as yet uncultured Archaea (e.g. Rice cluster I, III, and IV). Our results indicate that compost harbours a diverse community of thermophilic methanogens, with changing composition

  20. Fiscal Year 1994 progress in implementing Section 120 of the Comprehensive Environmental Rresponse, Compensation, and Liability Act. Eighth annual report to Congress

    International Nuclear Information System (INIS)

    1995-07-01

    Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Public Law 96-510), commonly known as Superfund, in 1980. The Superfund Amendments and Reauthorization Act (SARA) (Public Law 99-499), which amended CERCLA in 1986, added Section 120 regarding the cleanup of contaminated sites at Federal facilities. Under Section 120(e)(5) of CERCLA, each department, agency, or instrumentality of the Federal government responsible for compliance with Section 120 must submit an annual report to Congress concerning its progress in implementing the requirements of Section 120. The report must include information on the progress in reaching Interagency Agreements (IAGs), conducting Remedial Investigation and Feasibility Studies (RI/FSs), and performing remedial actions. Federal agencies that own or operate facilities on the National Priorities List (NPL) are required to begin an RI/FS for these facilities within 6 months after being placed on the NPL. Remediation of these facilities is addressed in an IAG between the Federal agency, the U.S. Environmental Protection Agency (EPA), and in some instances the state within which the facility is located. This report, prepared by the U.S. Department of Energy's (DOE's) Office of Environmental Management, is being submitted to Congress in accordance with Section 120(e)(5) of CERCLA. It is DOE's Eighth Annual Report to Congress and provides information on DOE's progress in implementing CERCLA Section 120 in Fiscal Year 1994 (FY 94), i.e., from October 1, 1993, to September 30, 1994. In this report the words open-quotes siteclose quotes and open-quotes facilityclose quotes are used interchangeably

  1. Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-15

    The objective of this study was to investigate the effect of the feed-to-microbe (F/M) ratios on anaerobic digestion of Chinese cabbage waste (CCW) generated from a kimchi factory. The batch test was conducted for 96 days under mesophilic (36.5 °C) (Experiment I) and thermophilic (55 °C) conditions (Experiment II) at F/M ratios of 0.5, 1.0 and 2.0. The first-order kinetic model was evaluated for methane yield. The biogas yield in terms of volatile solids (VS) added increased from 591 to 677 mL/g VS under mesophilic conditions and 434 to 639 mL/g VS under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. Similarly, the volumetric biogas production increased from 1.479 to 6.771 L/L under mesophilic conditions and from 1.086 to 6.384 L/L under thermophilic conditions when F/M ratio increased from 0.5 to 2.0. The VS removal increased from 59.4 to 75.6% under mesophilic conditions and from 63.5 to 78.3% under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The first-order kinetic constant (k, 1/day) decreased under the mesophilic temperature conditions and increased under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The difference between the experimental and predicted methane yield was in the range of 3.4-14.5% under mesophilic conditions and in the range of 1.1-3.0% under thermophilic conditions. The predicted methane yield derived from the first-order kinetic model was in good agreement with the experimental results. Published by Elsevier Ltd.

  2. Sequential Detection of Thermophilic Lipase and Protease by Zymography.

    Science.gov (United States)

    Kurz, Liliana; Hernández, Zully; Contreras, Lellys M; Wilkesman, Jeff

    2017-01-01

    Lipase and protease present in cell-free fractions of thermophilic Bacillus sp. cultures were analyzed by polyacrylamide gel (PAG) electrophoresis. After run, the gel is electrotransferred to another PAG copolymerized with glycerol tributyrate, olive oil, and gelatin. This multi-substrate gel was incubated first for lipase detection, until bands appeared, and then stained with Coomassie for protease detection. Advantages of this sequential procedure are the detection of two different enzyme activities on a single PAG, beside time and resource saving.

  3. Acquired Thermotolerance and Heat Shock Proteins in Thermophiles from the Three Phylogenetic Domains

    DEFF Research Database (Denmark)

    Trent, Jonathan D.; Gabrielsen, Mette; Jensen, Bo

    1994-01-01

    Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown...

  4. Influence of variable feeding on mesophilic and thermophilic co-digestion of Laminaria digitata and cattle manure

    International Nuclear Information System (INIS)

    Sarker, Shiplu; Møller, Henrik Bjarne; Bruhn, Annette

    2014-01-01

    Highlights: • Anaerobic co-digestion of L. digitata and cattle manure, at ∼35 and ∼50 °C. • Mesophilic co-digestion showed somewhat stable specific methane, but increased volumetric yield. • Thermophilic co-digester yielded higher methane at higher input of algae compared to control. • Mesophilic co-digester performed better in terms of various parameters except methane yield. - Abstract: In this study the effect of various feeding ratios on mesophilic (∼35 °C) and thermophilic (∼50 °C) co-digestion of brown algae Laminaria digitata and cattle manure was investigated. Algae input of 15% VS caused no influence on specific methane yield from mesophilic co-digester while deteriorated the process parameters such as the development of propionic acid in total volatile fatty acids (tVFA) pattern of the thermophilic co-digester. The accumulation of tVFA continued for the latter reactor as the feeding ratio of algae enhanced to 24% VS, but the specific methane yield improved dramatically. Same rise in feeding once again showed no improvement in specific methane yield from mesophilic co-digester even though the other process parameters stabilized or, enriched such as the gain in average volumetric methane yield. For the last feeding ratio at 41% VS algae, specific methane yield from mesophilic co-digester slightly increased which however was not still comparable with the ultimate methane yield from the cattle manure alone. The thermophilic co-digestion on the other hand yielded maximum specific methane, together with the improvement in different process characteristics, as the feeding of algae maximized at the final stage. The trend of methane production from this reactor nevertheless was sharply downward towards the end of the experiment suggesting that the optimum feeding ratio has already been achieved for the present experimental conditions

  5. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity.

    Science.gov (United States)

    Wang, Caihong; Luo, Huiying; Niu, Canfang; Shi, Pengjun; Huang, Huoqing; Meng, Kun; Bai, Yingguo; Wang, Kun; Hua, Huifang; Yao, Bin

    2015-02-01

    Thermophilic β-mannanases are of increasing importance for wide industrial applications. In the current study, gene cloning, functional expression in Pichia pastoris, and characterization of a thermophilic β-mannanase (Man5A) from thermophilic Talaromyces leycettanus JCM12802 are reported. Deduced Man5A exhibits the highest identity with a putative β-mannanase from Talaromyces stipitatus ATCC10500 (70.3 %) and is composed of an N-terminal signal peptide, a fungal-type carbohydrate-binding module (CBM) of family 1, and a catalytic domain of glycosyl hydrolase (GH) family 5 at the C-terminus. Two recombinant proteins with different glycosylation levels, termed Man5A1 (72 kDa) and Man5A2 (60 kDa), were identified after purification. Both enzymes were thermophilic, exhibiting optimal activity at 85-90 °C, and were highly stable at 70 °C. Man5A1 and Man5A2 had a pH optimum of 4.5 and 4.0, respectively, and were highly stable over the broad pH range of 3.0-10.0. Most metal ions and sodium dodecyl sulfate (SDS) had no effect on the enzymatic activities. Man5A1 and Man5A2 exhibited high specific activity (2,160 and 1,800 U/mg, respectively) when using locust bean gum as the substrate. The CBM1 and two key residues D191 and R286 were found to affect Man5A thermostability. Man5A displays a classical four-site-binding mode, hydrolyzing mannooligosaccharides into smaller units, galactomannan into mannose and mannobiose, and glucomanman into mannose, mannobiose, and mannopentaose, respectively. All these properties make Man5A a good candidate for extensive applications in the bioconversion, pulp bleaching, textile, food, and feed industries.

  6. Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic archaea.

    OpenAIRE

    Ruggero, D; Londei, P

    1996-01-01

    Hybrid ribosomes obtained by mixing the ribosomal subunits of the extremely thermophilic archaea Sulfolobus solfataricus and Desulfurococcus mobilis were tested for their sensitivity to selected antibiotics. It is shown that structural differences in the large ribosomal subunits determine qualitatively and quantitatively the patterns of response to alpha-sarcin and paromomycin in these species.

  7. Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Bielen, A.A.M.; Willquist, K.; Engman, J.; Oost, van der J.; Niel, van E.W.J.; Kengen, S.W.M.

    2010-01-01

    The role of inorganic pyrophosphate (PPi) as an energy carrier in the central metabolism of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was investigated. In agreement with its annotated genome sequence, cell extracts were shown to exhibit PPi-dependent

  8. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    NARCIS (Netherlands)

    Vrije, de G.J.; Budde, M.A.W.; Lips, S.J.J.; Bakker, R.R.; Mars, A.E.; Claassen, P.A.M.

    2010-01-01

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis

  9. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2017-12-01

    In this work, winery wastes generated by a cellar producing approximately 300,000 hL of wine per year was monitored for a period of one year. On average, 196 L of wastewater, 0.1 kg of waste activated sludge (dry matter) and 1.6 kg of wine lees were produced per hectoliter of wine produced. Different winery wastes, deriving from different production steps, namely waste activated sludge from wastewater treatment and wine lees, were co-treated using an anaerobic digestion process. Testing was conducted on a pilot scale for both mesophilic and thermophilic conditions. The process was stable for a long period at 37 °C, with an average biogas production of 0.386 m 3 /kg COD fed . On the other hand, for thermophilic conditions, volatile fatty acids accumulated in the reactor and the process failed after one hydraulic retention time (23 days). In order to fix the biological process, trace elements (iron, cobalt and nickel) were added to the feed of the thermophilic reactor. Metals augmentation improved process stability and yields at 55 °C. The pH ranged between 7.8 and 8.0, and specific gas production was 0.450 m 3 /kg COD fed , which corresponded to dry matter and COD removals of 34% and 88%, respectively. Although the observed performances in terms of biogas production were good, the thermophilic process exhibited some limitations related to both the necessity of metals addition and the worse dewaterability properties. In fact, while the mesophilic digestates reached a good dewatering quality via the addition of 6.5 g of polymer per kg of dry matter, the required dosage for the thermophilic sludge was greater than 10 g/kg of dry matter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yohei; Tandukar, Madan; Kubota, Kengo; Harada, Hideki [Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You [Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Department of Urban and Environmental Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin, 300384 (China)

    2008-11-15

    In this work, effects of seed sludge on thermophilic hydrogen fermentation were investigated. Five different kinds of sludge were separately inoculated in completely stirred tank reactors (CSTRs), without any pretreatment. The reactors were operated in parallel with starch as substrate under thermophilic condition (55 C) at a hydraulic retention time (HRT) of 24 h for 50 days. Stable hydrogen production was achieved in all reactors. The highest hydrogen yield (2.32 mol H{sub 2}/mol glucose) was obtained from the reactor seeded with thermophilically digested activated sludge. The stoichiometric equation of hydrogen fermentation calculated using the data obtained in this study was expressed as follows: starch ([C{sub 6}H{sub 10}O{sub 5}]n) {yields} 2.32n H{sub 2} + 2.14n CO{sub 2} + 0.50n acetate + 0.63n butyrate + 0.11n cell (C{sub 5}H{sub 7}NO{sub 2}). Microbial community structure was analyzed by polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) and 16S rRNA gene cloning. Close relatives of the Thermoanaerobacterium were found to be the most predominated one in all reactors. (author)

  11. Seasonal variability of thermophilic Campylobacter spp. in raw milk sold by automatic vending machines in Lombardy Region

    Directory of Open Access Journals (Sweden)

    Barbara Bertasi

    2016-06-01

    Full Text Available In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1% in different months during the three years considered. The statistical analysis showed a significant difference (PCampylobacter spp. between warmer and cooler months (2.3 vs 0.6%. The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  12. Feasibility of thermophilic anaerobic processes for treating waste activated sludge under low HRT and intermittent mixing.

    Science.gov (United States)

    Leite, Wanderli; Magnus, Bruna Scandolara; Guimarães, Lorena Bittencourt; Gottardo, Marco; Belli Filho, Paulo

    2017-10-01

    Thermophilic anaerobic digestion (AD) arises as an optimized solution for the waste activated sludge (WAS) management. However, there are few feasibility studies using low solids content typically found in the WAS, and that consider uncommon operational conditions such as intermittent mixing and low hydraulic retention time (HRT). In this investigation, a single-stage pilot reactor was used to treat WAS at low HRT (13, 9, 6 and 5 days) and intermittent mixing (withholding mixing 2 h prior feeding). Thermophilic anaerobic digestion (55 °C) was initiated from a mesophilic digester (35 °C) by the one-step startup strategy. Although instabilities on partial alkalinity (1245-3000 mgCaCO 3 /L), volatile fatty acids (1774-6421 mg/L acetic acid) and biogas production (0.21-0.09 m 3 /m 3 reactor .d) were observed, methanogenesis started to recover in 18 days. The thermophilic treatment of WAS at 13 and 9 days HRT efficiently converted VS into biogas (22 and 21%, respectively) and achieved high biogas yield (0.24 and 0.22 m 3 /kgVS fed , respectively). Intermittent mixing improved the retention of methanogens inside the reactor and reduced the washout effect even at low HRT (5% TS). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are

  14. Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions

    DEFF Research Database (Denmark)

    Zhu, Xinyu; Kougias, Panagiotis; Treu, Laura

    2017-01-01

    Upflow anaerobic sludge blanket (UASB) reactor is one of the most applied technologies for various high-strength wastewater treatments. The present study analysed the microbial community changes in UASB granules during the transition from mesophilic to thermophilic conditions. Dynamicity...

  15. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.6--nuclear physics

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about nuclear physics, computational physics and particle accelerator

  16. Enrichment of Thermophilic Syntrophic Anaerobic Glutamate-Degrading Consortia using a Dialysis Membrane Reactor

    NARCIS (Netherlands)

    Plugge, C.M.; Stams, A.J.M.

    2002-01-01

    A dialysis cultivation system was used to enrich slow-growing moderately thermophilic anaerobic bacteria at high cell densities. Bicarbonate buffered mineral salts medium with 5 mM glutamate as the sole carbon and energy source was used and the incubation temperature was 55 degrees C. The reactor

  17. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotaga elfii

    NARCIS (Netherlands)

    Niel, van E.W.J.; Budde, M.A.W.; Haas, de G.G.; Wal, van der F.J.; Claassen, P.A.M.; Stams, A.J.M.

    2002-01-01

    Growth and hydrogen production by two extreme thermophiles during sugar fermentation was investigated. In cultures of Caldicellulosiruptor saccharolyticus grown on sucrose and Thermotoga elfii grown on glucose stoichiometries of 3.3 mol of hydrogen and 2 mol of acetate per mol C6-sugar unit were

  18. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    Science.gov (United States)

    Ivǎnuş, D.; ǎnuş, R. C., IV; Cǎlmuc, F.

    2010-06-01

    A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.

  19. Sustainability Annual Report 2013

    OpenAIRE

    2013-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  20. Sustainability Annual Report 2014

    OpenAIRE

    2014-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  1. Sustainability Annual Report 2017

    OpenAIRE

    2017-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  2. Sustainability Annual Report 2011

    OpenAIRE

    2011-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  3. Sustainability Annual Report 2012

    OpenAIRE

    2012-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  4. Sustainability Annual Report 2015

    OpenAIRE

    2015-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  5. Sustainability Annual Report 2016

    OpenAIRE

    2016-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  6. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  7. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration.

    Directory of Open Access Journals (Sweden)

    Luis Concha-Marambio

    Full Text Available Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1-2 μM at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown

  8. Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes.

    Science.gov (United States)

    Bayr, Suvi; Rantanen, Marianne; Kaparaju, Prasad; Rintala, Jukka

    2012-01-01

    Co-digestion of rendering and slaughterhouse wastes was studied in laboratory scale semi-continuously fed continuously stirred tank reactors (CSTRs) at 35 and 55 °C. All in all, 10 different rendering plant and slaughterhouse waste fractions were characterised showing high contents of lipids and proteins, and methane potentials of 262-572 dm(3)CH(4)/kg volatile solids(VS)(added). In mesophilic CSTR methane yields of ca 720 dm(3) CH(4)/kg VS(fed) were obtained with organic loading rates (OLR) of 1.0 and 1.5 kg VS/m(3) d, and hydraulic retention time (HRT) of 50 d. For thermophilic process, the lowest studied OLR of 1.5 kg VS/m(3) d, turned to be unstable after operation of 1.5 HRT, due to accumulating ammonia, volatile fatty acids (VFAs) and probably also long chain fatty acids (LCFAs). In conclusion, mesophilic process was found to be more feasible for co-digestion than thermophilic process, methane yields being higher and process more stable in mesophilic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  10. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    Science.gov (United States)

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  11. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp

    NARCIS (Netherlands)

    Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; van der Horst, Sjors; Theelen, Bart; de Vries, Ronald P.; van den Brink, Joost

    2016-01-01

    Background Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been

  12. Exogenous cellulases of thermophilic micromycetes. Pt. 2. Thermostability of enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Gogilashvili, L; Svanidze, R; Buachidze, T; Chirgadze, L; Nizharadze, D

    1986-01-01

    The ability of a large number of higher fungi to form extracellular cellulases is investigated. Some representatives of these fungi grow at 40-50/sup 0/C, and form extracellular cellulases exceeding cellulases of mesophilic fungi in thermostability. It is shown that cellulases of higher thermophilic fungi differ by their thermostability. The temperature optimum of cellulase action of higher fungi occurs within 60-62/sup 0/C.

  13. Alicyclobacillus acidocaldarius Thermophilic Esterase EST2's Activity in Milk and Cheese Models

    NARCIS (Netherlands)

    Mandrich, L.; Manco, M.; Rossie, M.; Floris, E.; Jansen-van den Bosch, T.; Smit, G.; Wouters, J.A.

    2006-01-01

    The aim of this work was to investigate the behavior of thermophilic esterase EST2 from Alicyclobacillus acidocaldarius in milk and cheese models. The pure enzyme was used to compare the EST2 hydrolytic activity to the activity of endogenous esterase EstA from Lactococcus lactis. The results

  14. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  15. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--nuclear agriculture

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  16. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  17. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Science.gov (United States)

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize

  18. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum.

    Directory of Open Access Journals (Sweden)

    Dongying Wu

    Full Text Available In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an "Assembling the Tree of Life" project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome and one of 919,596 bp (referred to as the megaplasmid. Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which

  19. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 2005. Progress report

    International Nuclear Information System (INIS)

    2005-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  20. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 2007. Progress report

    International Nuclear Information System (INIS)

    2007-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Research Management Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system 'Joint Safety Research Index (JSRI)'. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  1. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2004. Progress report

    International Nuclear Information System (INIS)

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  2. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2004. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  3. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.

    Science.gov (United States)

    van den Brink, Joost; van Muiswinkel, Gonny C J; Theelen, Bart; Hinz, Sandra W A; de Vries, Ronald P

    2013-02-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica.

  4. Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation

    DEFF Research Database (Denmark)

    Topakas, E.; Kalogeris, E.; Kekos, D.

    2003-01-01

    A number of factors affecting production of feruloyl esterase an enzyme that hydrolyse ester linkages of ferulic acid (FA) in plant cell walls, by the thermophylic fungus Sporotrichum thermophile under solid state fermentation (SSF) were investigated. Initial moisture content and type of carbon...

  5. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  6. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  7. The ntp operon encoding the Na+V-ATPase of the thermophile Caloramator fervidus

    NARCIS (Netherlands)

    Ubbink-Kok, Trees; Nijland, Jeroen; Slotboom, Dirk-Jan; Lolkema, Juke S.

    2006-01-01

    The V-type ATPase of the thermophile Caloramator fervidus is an ATP-driven Na+ pump. The nucleotide sequence of the ntpFIKECGABD operon containing the structural genes coding for the nine subunits of the enzyme complex was determined. The identity of the proteins in two pairs of subunits (D, E and

  8. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-10-01

    Full Text Available Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose and the effect of process parameters (pH, temperature and sugar concentration on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w dry matter. Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v dry matter. Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery.

  9. Modelling the competition between sulphate reducers and methanogens in a thermophilic methanol-fed bioreactor

    NARCIS (Netherlands)

    Spanjers, H.; Weijma, J.; Abusam, A.

    2002-01-01

    Sulphate can be removed from wastewater by means of biological anaerobic reduction to sulphide. The reduction requires the presence of a substrate that can serve as an electron donor. Methanol a suitable electron donor for sulphate reduction under thermophilic conditions. In an anaerobic system

  10. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  12. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    Science.gov (United States)

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p sewage sludge under mesophilic and thermophilic conditions.

  13. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on

  14. Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zverlov, Vladimir V.; Hiegl, Wolfgang; Koeck, Daniela E.; Koellmeier, Tanja; Schwarz, Wolfgang H. [Department of Microbiology, Technische Universitaet Muenchen, Freising-Weihenstephan (Germany); Kellermann, Josef [Max Planck Institute for Biochemistry, Am Klopferspitz, Martinsried (Germany)

    2010-12-15

    Adding plant biomass to a biogas reactor, hydrolysis is the first reaction step in the chain of biological events towards methane production. Maize silage was used to enrich efficient hydrolytic bacterial consortia from natural environments under conditions imitating those in a biogas plant. At 55-60 C a more efficient hydrolyzing culture could be isolated than at 37 C. The composition of the optimal thermophilic bacterial consortium was revealed by sequencing clones from a 16S rRNA gene library. A modified PCR-RFLP pre-screening method was used to group the clones. Pure anaerobic cultures were isolated. 70% of the isolates were related to Clostridium thermocellum. A new culture-independent method for identification of cellulolytic enzymes was developed using the isolation of cellulose-binding proteins. MALDI-TOF/TOF analysis and end-sequencing of peptides from prominent protein bands revealed cellulases from the cellulosome of C. thermocellum and from a major cellulase of Clostridium stercorarium. A combined culture of C. thermocellum and C. stercorarium was shown to excellently degrade maize silage. A spore preparation method suitable for inoculation of maize silage and optimal hydrolysis was developed for the thermophilic bacterial consortium. This method allows for concentration and long-term storage of the mixed culture for instance for inoculation of biogas fermenters. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. (Hyper)thermophilic enzymes: production and purification.

    Science.gov (United States)

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  16. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  17. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--nuclear fusion

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  18. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In

  19. Fermentation of Corn Fiber Hydrolysate to Lactic Acid by the Moderate Thermophile Bacillus coagulans

    Science.gov (United States)

    Composted manure from a dairy farm in Texas was examined for thermophilic microorganisms by enrichment in xylose broth medium. Forty randomly picked isolates were identified as strains of Bacillus coagulans by sequence analysis of rRNA genes. One strain, designated as MXL-9, could convert mixed su...

  20. Bicarbonate dosing: a tool to performance recovery of a thermophilic methanol-fed UASB reactor

    NARCIS (Netherlands)

    Paulo, P.L.; Lier, van J.B.; Lettinga, G.

    2003-01-01

    The thermophilic-anaerobic treatment of methanol-containing wastewater in an upflow anaerobic sludge blanket (UASB) reactor, was found to be quite sensitive to pH shocks, both acid and alkaline. The results of the recovery experiments of sludge exposed to an alkaline shock, indicated that the

  1. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.; Cataldo, Dominic A.; Valenta, Michelle M.; Gilmore, Tyler J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regarding agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a “client” of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.

  2. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Alessandro Abbà

    2017-01-01

    Full Text Available A thermophilic aerobic membrane reactor (TAMR treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C with high MLSS concentrations (up to 200 gTS L−1. The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.

  3. Nicotinamidase from the thermophilic archaeon Acidilobus saccharovorans: structural and functional characteristics.

    Science.gov (United States)

    Stekhanova, T N; Bezsudnova, E Y; Mardanov, A V; Osipov, E M; Ravin, N V; Skryabin, K G; Popov, V O

    2014-01-01

    Nicotinamidase is involved in the maintenance of NAD+ homeostasis and in the NAD+ salvage pathway of most prokaryotes, and it is considered as a possible drug target. The gene (ASAC_0847) encoding a hypothetical nicotinamidase has been found in the genome of the thermophilic archaeon Acidilobus saccharovorans. The product of this gene, NA_As0847, has been expressed in Escherichia coli, isolated, and characterized as a Fe(2+)-containing nicotinamidase (k(cat)/K(m) = 427 mM(-1)·sec(-1))/pyrazinamidase (k(cat)/K(m) = 331 mM(-1)·sec(-1)). NA_As0847 is a homodimer with molecular mass 46.4 kDa. The enzyme has high thermostability (T(1/2) (60°C) = 180 min, T(1/2) (80°C) = 35 min) and thermophilicity (T(opt) = 90°C, E(a) = 30.2 ± 1.0 kJ/mol) and broad pH interval of activity, with the optimum at pH 7.5. Special features of NA_As0847 are the presence of Fe2+ instead of Zn2+ in the active site of the enzyme and inhibition of the enzyme activity by Zn2+ at micromolar concentrations. Analysis of the amino acid sequence revealed a new motif of the metal-binding site (DXHXXXDXXEXXXWXXH) for homological archaeal nicotinamidases.

  4. Population dynamics during startup of thermophilic anaerobic digesters: The mixing factor

    KAUST Repository

    Ghanimeh, Sophia A.

    2013-11-01

    Two thermophilic digesters were inoculated with manure and started-up under mixed and stagnant conditions. The Archaea in the mixed digester (A) were dominated by hydrogenotrophic Methanobateriaceae (61%) with most of the methane being produced via syntrophic pathways. Methanosarcinales (35%) were the only acetoclastic methanogens present. Acetate dissipation seems to depend on balanced hydrogenotrophic-to-acetotrophic abundance, which in turn was statistically correlated to free ammonia levels. Relative abundance of bacterial community was associated with the loading rate. However, in the absence of mixing (digester B), the relationship between microbial composition and operating parameters was not discernible. This was attributed to the development of microenvironments where environmental conditions are significantly different from average measured parameters. The impact of microenvironments was accentuated by the use of a non-acclimated seed that lacks adequate propionate degraders. Failure to disperse the accumulated propionate, and other organics, created high concentration niches where competitive and inhibiting conditions developed and favored undesired genera, such as Halobacteria (65% in B). As a result, digester B experienced higher acid levels and lower allowable loading rate. Mixing was found necessary to dissipate potential inhibitors, and improve stability and loading capacity, particularly when a non-acclimated seed, often lacking balanced thermophilic microflora, is used. © 2013 Elsevier Ltd.

  5. Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs.

    Science.gov (United States)

    Amarouche-Yala, Samia; Benouadah, Ali; El Ouahab Bentabet, Abd; López-García, Purificación

    2014-11-01

    Geothermal springs in Algeria have been known since the Roman Empire. They mainly locate in Eastern Algeria and are inhabited by thermophilic organisms, which include cyanobacteria forming mats and concretions. In this work, we have investigated the cyanobacterial diversity of these springs. Cyanobacteria were collected from water, concretions and mats in nine hot springs with water temperatures ranging from 39 to 93 °C. Samples were collected for isolation in culture, microscopic morphological examination, and molecular diversity analysis based on 16S rRNA gene sequences. Nineteen different cyanobacterial morphotypes were identified, the most abundant of which were three species of Leptolyngbya, accompanied by members of the genera Gloeocapsa, Gloeocapsopsis, Stigonema, Fischerella, Synechocystis, Microcoleus, Cyanobacterium, Chroococcus and Geitlerinema. Molecular diversity analyses were in good general agreement with classical identification and allowed the detection of additional species in three springs with temperatures higher than 50 °C. They corresponded to a Synechococcus clade and to relatives of the intracellularly calcifying Candidatus Gloeomargarita lithophora. The hottest springs were dominated by members of Leptolyngbya, Synechococcus-like cyanobacteria and Gloeomargarita, whereas Oscillatoriales other than Leptolyngbya, Chroococcales and Stigonematales dominated lower temperature springs. The isolation of some of these strains sets the ground for future studies on the biology of thermophilic cyanobacteria.

  6. Population dynamics during startup of thermophilic anaerobic digesters: the mixing factor.

    Science.gov (United States)

    Ghanimeh, Sophia A; Saikaly, Pascal E; Li, Dong; El-Fadel, Mutasem

    2013-11-01

    Two thermophilic digesters were inoculated with manure and started-up under mixed and stagnant conditions. The Archaea in the mixed digester (A) were dominated by hydrogenotrophic Methanobateriaceae (61%) with most of the methane being produced via syntrophic pathways. Methanosarcinales (35%) were the only acetoclastic methanogens present. Acetate dissipation seems to depend on balanced hydrogenotrophic-to-acetotrophic abundance, which in turn was statistically correlated to free ammonia levels. Relative abundance of bacterial community was associated with the loading rate. However, in the absence of mixing (digester B), the relationship between microbial composition and operating parameters was not discernible. This was attributed to the development of microenvironments where environmental conditions are significantly different from average measured parameters. The impact of microenvironments was accentuated by the use of a non-acclimated seed that lacks adequate propionate degraders. Failure to disperse the accumulated propionate, and other organics, created high concentration niches where competitive and inhibiting conditions developed and favored undesired genera, such as Halobacteria (65% in B). As a result, digester B experienced higher acid levels and lower allowable loading rate. Mixing was found necessary to dissipate potential inhibitors, and improve stability and loading capacity, particularly when a non-acclimated seed, often lacking balanced thermophilic microflora, is used. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A thermophilic membrane bioreactor for treating and re-using paper mill effluent; Biorreactor de membrana termofilico para el tratamiento y reutilizacion de efluentes de papelera

    Energy Technology Data Exchange (ETDEWEB)

    Lopetegui Garnika, J.; Sancho Seuma, L.; Abad Oliva, A.

    2002-07-01

    Thermophilic operation of a membrane bioreactor offers many advantages; biodegradation rates increase with temperature and flux is higher because of water viscosity decrease. Therefore,poor sttleability related to thermophilic sludges is solved by ultrafiltration and a suspended solids and turbidity free effluent is obtained. That suppose a wider range of applications interns of water reuse. (Author) 18 refs.

  8. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.

    Science.gov (United States)

    Verhaart, Marcel R A; Bielen, Abraham A M; van der Oost, John; Stams, Alfons J M; Kengen, Servé W M

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are promising is this respect. In addition to the high polysaccharide-hydrolysing capacities of many of these organisms, an important advantage is their ability to use most of the reducing equivalents (e.g. NADH, reduced ferredoxin) formed during glycolysis for the production of hydrogen, enabling H2/hexose ratios of between 3.0 and 4.0. So, despite the fact that the hydrogen-yielding reactions, especially the one from NADH, are thermodynamically unfavourable, high hydrogen yields are obtained. In this review we focus on three different mechanisms that are employed by a few model organisms, viz. Caldicellulosiruptor saccharolyticus and Thermoanaerobacter tengcongensis, Thermotoga maritima, and Pyrococcus furiosus, to efficiently produce hydrogen. In addition, recent developments to improve hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea are discussed.

  9. Growth characteristics of selected thermophilic strains of cyanobacteria using crossed gradients of temperature and light

    Czech Academy of Sciences Publication Activity Database

    Hindák, F.; Kvíderová, Jana; Lukavský, Jaromír

    2013-01-01

    Roč. 68, č. 5 (2013), s. 830-837 ISSN 0006-3088 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985939 Keywords : cyanobacteria * thermophiles * growth characteristics Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.696, year: 2013

  10. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

    Science.gov (United States)

    Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S

    2015-01-01

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and

  11. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--Nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 28 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about Nuclear Information sub-volume

  12. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.8--nuclear agriculture sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 10 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about nuclear agriculture sub-volume

  13. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--isotope separation sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 37 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about isotope separation sub-volume

  14. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.6--computational physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 13 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about computational physics sub-volume

  15. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.10--nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear Information and computer applications

  16. FY2016 Lightweight Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  17. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles.

    Science.gov (United States)

    Li, Shuzhen; Zhong, Hui; Hu, Yuehua; Zhao, Jiancun; He, Zhiguo; Gu, Guohua

    2014-02-01

    This study investigated thermophilic bioleaching of a low grade nickel-copper sulfide using mixture of four acidophilic thermophiles. Effects of 0.2g/L l-cysteine on the bioleaching process were further evaluated. It aimed at offering new alternatives for enhancing metal recoveries from nickel-copper sulfide. Results showed a recovery of 80.4% nickel and 68.2% copper in 16-day bioleaching without l-cysteine; while 83.7% nickel and 81.4% copper were recovered in the presence of l-cysteine. Moreover, nickel recovery was always higher than copper recovery. l-Cysteine was found contributing to lower pH value, faster microbial growth, higher Oxidation-Reduction Potential (ORP), higher zeta potential and absorbing on the sulfide surfaces through amino, carboxyl and sulfhydryl groups. X-ray Diffraction (XRD) patterns of leached residues showed generation of S, jarosite and ammoniojarosite. Denaturing Gradient Gel Electrophoresis (DGGE) results revealed that l-cysteine could have variant impacts on different microorganisms and changed the microbial community composition dramatically during nickel-copper sulfide bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  19. BAM - Annual report 1975

    International Nuclear Information System (INIS)

    1976-06-01

    The annual report contains progress and activity reports of the presidential department, the departments metals and metal construction, civil engineering and building activities, organic matter, chemical safety engineering, special fields of materials testing, techniques independent of the type of material, an index, as well as general and statistic statements. (HK) [de

  20. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  1. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. FY13 Annual Progress Report for SECA Core Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-31

    This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation.

  3. Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2015-10-19

    This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.

  4. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  5. Hexavalent uranium reduction from solid phase by thermophilic bacterium Thermoterrabacterium ferrireducens

    International Nuclear Information System (INIS)

    Khijniak, T.V.; Slobodkin, A.I.; Bonch-Osmolovskaya, E.A.; Medvedeva-Lyalikova, N.N.; Coker, V.; Lloyd, J.R.; Birkeland, N.K.

    2005-01-01

    Full text of publication follows: It has been reported that in uranium-contaminated sites, solid-phase U(VI) present in sediments is resistant to microbial reduction. Also, it was demonstrated that mesophilic iron and sulfate-reducing bacteria can reduce hexavalent uranium and sulphate-reducing bacteria were able to grow via uranium reduction. Among thermophilic microorganisms reduction of hexavalent uranium has been demonstrated only for cell suspensions of two genera: Pyrobaculum and Thermus. In the present study, Thermoterrabacterium ferrireducens was tested for reduction of U(VI), a thermophilic, gram-positive anaerobic bacterium capable for growth with the reduction of various electron acceptors including Fe(III). Kinetic of bacterial growth, uranium reduction and influence of different uranium concentrations were investigated at 65 deg. C. Due to presence of phosphate in the basal medium yellow uranium phosphate precipitate was formed after addition of uranyl acetate. After 68 h of incubation control tubes without bacteria were contained yellow precipitate whereas in presence of bacteria precipitate turned to the grey color. In the control tubes uranium phosphates and other elements formed a uniform mixture of crystals, but in presence of bacteria the round shape particles, containing uranium, were found by Environmental Scan Electron Microscopy of air-dried or frozen samples. To determine valent state speciation spectroscopic investigations were performed also. Initial yellow uranium phosphate precipitate was separated and identified as uramphite - (NH 4 )(UO 2 )(PO 4 )*3H 2 O by X-Ray Powder Diffraction. Grey precipitate, which was formed by bacterial reduction, was identified as ningyoite - CaU(PO 4 ) 2 *H 2 O. The fact that final grey precipitate contain U(IV) was also confirmed by EXAFS investigation. High concentration of uranium has toxic effect. 1 and 2.5 mM of uranium (VI) support bacterial growth and bacterial biomass was accumulated, but if 5 or 10

  6. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...

  7. Growth characteristics of the thermophilic fungus Scytalidium thermophilum in relation to production of mushroom compost.

    NARCIS (Netherlands)

    Wiegant, W.M.

    1992-01-01

    Scytalidium thermophilum is an important thermophilic fungus in the production of mushroom compost. I investigated the characteristics of this organism and present a simple model with which fungal growth in compost can be described. The model is used to predict better circumstances for rapid indoor

  8. Bioleaching of pollymetallic sulphide concentrate using thermophilic bacteria

    Directory of Open Access Journals (Sweden)

    Vuković Milovan

    2014-01-01

    Full Text Available An extreme thermophilic, iron-sulphur oxidising bacterial culture was isolated and adapted to tolerate high metal and solids concentrations at 70°C. Following isolation and adaptation, the culture was used in a batch bioleach test employing a 5-l glass standard magnetic agitated and aerated reactor, for the bioleaching of a copper-lead-zinc collective concentrate. The culture exhibited stable leach performance over the period of leach operation and overall copper and zinc extractions higher than 97%. Lead sulphide is transformed into lead sulphate remaining in the bioleach residue due to the low solubility in sulphate media. Brine leaching of bioleach residue yields 95% lead extraction. [Projekat Ministarstva nauke Republike Srbije, br. 34023

  9. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    Science.gov (United States)

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Action of amylolytic and pullulytic enzymes from various anaerobic thermophiles on linear and branched glucose polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R [Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie; Antranikian, G [Technische Univ. Hamburg-Harburg, Hamburg (Germany, F.R.). Arbeitsbereich Biotechnologie 1

    1990-10-01

    A detailed study has been conducted on the action of starch hydrolyzing enzymes from thermophilic anaerobic bacteria belonging to the genera Clostridium, Thermoanaerobacter and Thermobacteroides. The appearance of multiple bands on polyacrylamide gels with amylolytic as well as pullulytic activities was shown to be a general feature of bacteria investigated. Analysis of the hydrolysis products of each protein band clearly demonstrated the capability of these organisms to hydrolyze {alpha}-1,4-glycosidic bonds in linear oligosaccharides and {alpha}-1,6-glycosidic linkages in pullulan. Furthermore, the enzyme system of thermophilic bacteria investigated was also capable of attacking in the {alpha}-1,6-linkages in branched oligosaccharides. Due to the action of these thermoactive enzymes with multiple specificity an almost complete hydrolysis of raw starch and maltodextrin could be achieved under the same conditions and in one step. (orig.).

  11. In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag

    DEFF Research Database (Denmark)

    Visone, Valeria; Han, Wenyuan; Perugino, Giuseppe

    2017-01-01

    Protein imaging, allowing a wide variety of biological studies both in vitro and in vivo, is of great importance in modern biology. Protein and peptide tags fused to proteins of interest provide the opportunity to elucidate protein location and functions, detect protein-protein interactions, and ......, and allowed visualization of the enzyme in living cells. To the best of our knowledge, this is the first report of in vivo imaging of any protein of a thermophilic archaeon, filling an important gap in available tools for cell biology studies in these organisms....... to production of a functional H5 protein, which was successfully labeled with appropriate fluorescent molecules and visualized in cell extracts as well as in Δogt live cells. H5 was fused to reverse gyrase, a peculiar thermophile-specific DNA topoisomerase endowed with positive supercoiling activity...

  12. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...

  13. Moorella stamsii sp. nov., a new anaerobic thermophilic hydrogenogenic carboxydotroph isolated from digester sludge

    NARCIS (Netherlands)

    Alves, J.I.; Gelder, van A.H.; Alves, M.M.; Sousa, D.Z.; Plugge, C.M.

    2013-01-01

    A novel anaerobic, thermophilic, carbon monoxide-utilizing bacterium, strain E3-O, was isolated from anaerobic sludge of a municipal solid waste digester. Cells were straight rods, 0.6 to 1µm in diameter and 2 to 3 µm in length, growing as single cells or in pairs. Cells formed round terminal

  14. Annual Research Progress Report. Fiscal Year 1989. Volume 1

    Science.gov (United States)

    1989-10-01

    Surgery, New Orleans, LA, 24-28 September 1989. Elledge, E.S. Tonsillar Squamous Cell Carcinoma Metastatic to a Branchial Cleft Cyst. American Academy of...Symposium, Washington, DC, 6 May 1989. Gibbons, D.R. Spontaneous Otorrhea from Tegmen and Labryinthine Congenital Anomalies . Annual Meeting of the...Head, H.D. Surgical Therapy in the Management of Coronary Anomalies . Ann. Thor. Surg., (in press). Neurosurgery Service Goldring, S., Gregorie, E

  15. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains

    DEFF Research Database (Denmark)

    Jensen, Marie Elisabeth Penderup; Ardö, Ylva Margareta; Vogensen, Finn Kvist

    2009-01-01

    -related Lact. helveticus strains indicated that one isolate was a Lact. helveticus. Partial sequencing of 16S rRNA confirmed this, and the remaining four strains were identified as Lactobacillus delbrueckii, Lactobacillus fermentum and Enterococcus faecium. The rep-PCR profile of the isolated Lact. helveticus......Aims: To isolate cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and compare them with dairy-related Lactobacillus helveticus strains using molecular typing methods. Methods and Results: The number of thermophilic bacteria in seven commercial cheeses...

  16. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  17. Annual report of waste generation and pollution prevention progress 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments

  18. Thermophilic Campylobacter spp. in turkey samples: evaluation of two automated enzyme immunoassays and conventional microbiological techniques

    DEFF Research Database (Denmark)

    Borck, Birgitte; Stryhn, H.; Ersboll, A.K.

    2002-01-01

    Aims: To determine the sensitivity and specificity of two automated enzyme immunoassays (EIA), EiaFoss and Minividas, and a conventional microbiological culture technique for detecting thermophilic Campylobacter spp. in turkey samples. Methods and Results: A total of 286 samples (faecal, meat...

  19. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains

    NARCIS (Netherlands)

    Bosma, E.F.; Weijer, van de A.H.P.; Vlist, L.; Vos, de W.M.; Oost, van der J.; Kranenburg, van R.

    2015-01-01

    BACKGROUND: Microbial conversion of biomass to fuels or chemicals is an attractive alternative for fossil-based fuels and chemicals. Thermophilic microorganisms have several operational advantages as a production host over mesophilic organisms, such as low cooling costs, reduced contamination risks

  20. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.

    1996-01-01

    solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...

  1. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    Science.gov (United States)

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Tryptophan Oxidative Metabolism Catalyzed by : A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jassim M. Al-Hassan

    2011-01-01

    Full Text Available Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7, when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.

  3. Novel Anoxybacillus flavithermus AK1: A Thermophile Isolated from a Hot Spring in Saudi Arabia

    KAUST Repository

    Khalil, Amjad

    2017-06-14

    Anoxybacillus flavithermus AK1 is a thermophilic bacterium that is able to survive at temperatures ranging from 55 to 60∘C. The AK1 strain was isolated from the hot spring “Al-Ain Alhara” located at a distance of 50 km southeast of the city of Gazan, Saudi Arabia. This study presents the morphological characterization of A. flavithermus AK1, including a detailed description of its complete genome sequence. A total of 50 contigs were used to produce a genome sequence of 2,630,664 bp that includes 2724 protein-coding genes and 75 RNA genes, 18 of which are rRNA genes. A comparison of this genome sequence with those of Anoxybacillus flavithermus strains that were previously submitted to NCBI revealed that the AK1 strain has the smallest genome size with the highest GC content. The strain can therefore be exploited for several biotechnological applications based on its high thermophilic potential.

  4. Protease Production by Different Thermophilic Fungi

    Science.gov (United States)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  5. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  6. Avoiding dangerous missense: thermophiles display especially low mutation rates.

    Directory of Open Access Journals (Sweden)

    John W Drake

    2009-06-01

    Full Text Available Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003-0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 10(4-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate.

  7. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  8. Energy Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Wolff, P.P.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division's mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division's expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division's programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination

  9. Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment

    International Nuclear Information System (INIS)

    Poh, P.E.; Chong, M.F.

    2014-01-01

    Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor was developed with the aim to minimize operational problems in the anaerobic treatment of Palm Oil Mill Effluent (POME) under thermophilic conditions. The performance of UASB-HCPB reactor on POME treatment was investigated at 55 °C. Subsequent to start-up, the performance of the UASB-HCPB reactor was evaluated in terms of i) effect of hydraulic retention time (HRT); ii) effect of organic loading rate (OLR); and iii) effect of mixed liquor volatile suspended solid (MLVSS) concentration on thermophilic POME treatment. Start-up up of the UASB-HCPB reactor was completed in 36 days, removing 88% COD and 90% BOD respectively at an OLR of 28.12 g L −1  d −1 , producing biogas with 52% of methane. Results from the performance study of the UASB-HCPB reactor on thermophilic POME treatment indicated that HRT of 2 days, OLR of 27.65 g L −1  d −1 and MLVSS concentration of 14.7 g L −1 was required to remove 90% of COD and BOD, 80% of suspended solid and at the same time produce 60% of methane. - Highlights: • UASB-HCPB was proposed for POME treatment under thermophilic conditions. • Start-up up of the UASB-HCPB reactor was completed in 36 days. • 88% COD and 90% BOD were removed at an OLR of 28.12 g COD/L.day during start-up. • HRT of 2 days and OLR of 27.65 g COD/L.day was required to produce 60% methane. • Methanosarcina sp. forms the majority of microbial population in the UASB section

  10. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to. gamma. -, UV-radiation or methylnitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, L A; Kuznetsovea, E A; Gaziev, A I

    1984-07-01

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to ..gamma..-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S/sub 1/-nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria.

  11. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to γ-, UV-radiation or methylnitrosourea

    International Nuclear Information System (INIS)

    Fomenko, L.A.; Kuznetsovea, E.A.; Gaziev, A.I.

    1984-01-01

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to γ-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S 1 -nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria. (orig.)

  12. The Community's research and development programme on decommissioning of nuclear installations: First annual progress report (year 1985)

    International Nuclear Information System (INIS)

    1986-01-01

    This is the first Annual Progress Report of the European Community's 1984-88 programme of research on the decommissioning of nuclear installations. It shows the status of implementation reached on 31 December 1985. The 1984-88 programme has the following contents: A. Research and development projects concerning the following subjects: Project No 1: Long-term integrity of building and systems; Project No 2: Decontamination for decommissioning purposes; Project No 3: Dismantling techniques; Project No 4: Treatment of specific waste materials: steel, concrete and graphite; Project No 5: Large containers for radioactive waste produced in the dismantling of nuclear installations; Project No 6: Estimation of the quantities of radioactive wastes arising from the decommissioning of nuclear installations in the Community; Project No 7: Influence of installation design features on decommissioning. B. Identification of guiding principles, namely: - certain guiding principles in the design and operation of nuclear installations with a view to simplifying their subsequent decommissioning, - guiding principles in the decommissioning of nuclear installations which could form the initial elements of a Community policy in this field. C. Testing of new techniques under real conditions, within the framework of large-scale decommissioning operations undertaken in Member States. This first progress report, covering the period of putting the programme into action, describes the work to be carried out under the 27 research contracts concluded, as well as initial work performed and first results obtained

  13. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  14. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica

    NARCIS (Netherlands)

    Redl, Stephanie; Sukumara, Sumesh; Ploeger, Tom; Wu, Liang; Ølshøj Jensen, Torbjørn; Nielsen, Alex Toftgaard; Noorman, H.J.

    2017-01-01

    Background: Syngas fermentation is a promising option for the production of biocommodities due to its abundance and compatibility with anaerobic fermentation. Using thermophilic production strains in a syngas fermentation process allows recovery of products with low boiling point from the off-gas

  15. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  16. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  17. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.; Ghazy, Mohamed A.; Sayed, Ahmed; Ouf, Amged; El-Dorry, Hamza; Siam, Rania

    2013-01-01

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  18. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--radiation research and radiation technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  19. Genome Sequence of Anoxybacillus geothermalis Strain GSsed3, a Novel Thermophilic Endospore-Forming Species

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Roussel-Delif, Ludovic; Jeanneret, Nicole; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Regenspurg, Simona; McMurry, Kim; Gleasner, Cheryl D.; Lo, Chien-Chi; Li, Paul; Vuyisich, Momchilo; Chain, Patrick S.

    2015-01-01

    Anoxybacillus geothermalis strain GSsed3 is an endospore-forming thermophilic bacterium isolated from filter deposits in a geothermal site. This novel species has a larger genome size (7.2 Mb) than that of any other Anoxybacillus species, and it possesses genes that support its phenotypic metabolic characterization and suggest an intriguing link to metals. PMID:26067952

  20. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about nuclear power (Pt.1)

  1. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  2. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Zamalloa, Carlos; Boon, Nico; Verstraete, Willy

    2012-01-01

    Highlights: ► We investigate the digestion of two algae biomasses in hybrid flow-through reactors. ► We determine the bio-methane potential of these biomasses through batch assays. ► Conversion efficiencies of 20–50% with an HRT of 2.2 days are possible. ► We valorise microalgae biomass by anaerobic digestion in a high rate reactor. -- Abstract: Two types of non-axenic algal cultures, one dominated by the freshwater microalgae Scenedesmus obliquus and the other by the marine microalgae Phaeodactylum tricornutum, were cultivated in two types of simple photobioreactor systems. The production rates, expressed on dry matter (DM) basis, were in the order of 0.12 and 0.18 g DM L −1 d −1 for S. obliquus and P. tricornutum respectively. The biogas potential of algal biomass was assessed by performing standardized batch digestion as well as digestion in a hybrid flow-through reactor (combining a sludge blanket and a carrier bed), the latter under mesophilic and thermophilic conditions. Biomethane potential assays revealed the ultimate methane yield (B 0 ) of P. tricornutum biomass to be about a factor of 1.5 higher than that of S. obliquus biomass, i.e. 0.36 and 0.24 L CH 4 g −1 volatile solids (VS) added respectively. For S. obliquus biomass, the hybrid flow-through reactor tests operated at volumetric organic loading rate (Bv) of 2.8 gVS L −1 d −1 indicated low conversion efficiencies ranging between 26–31% at a hydraulic retention time (HRT) of 2.2 days for mesophilic and thermophilic conditions respectively. When digesting P. tricornutum at a Bv of 1.9 gVS L −1 d −1 at either mesophilic or thermophilic conditions and at an HRT of 2.2 days, an overall conversion efficiency of about 50% was obtained. This work indicated that the hydrolysis of the algae cells is limiting the anaerobic processing of intensively grown S. obliquus and P. tricornutum biomass.

  3. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Moset, V.; Bertolini, E.; Cerisuelo, A.; Cambra, M.; Olmos, A.; Cambra-López, M.

    2014-01-01

    Sludge physicochemical composition, methane (CH 4 ) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH 4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH 4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  4. Improving the stability of thermophilic anaerobic digesters treating SS-OFMSW through enrichment with compost and leachate seeds

    KAUST Repository

    Ghanimeh, Sophia A.

    2013-03-01

    This paper examines the potential of improving the stability of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) by adding leachate and compost during inoculation. For this purpose, two stable thermophilic digesters, A (control) and B (with added leachate and compost), were subjected to a sustained substrate shock by doubling the organic loading rate for one week. Feeding was suspended then gradually resumed to reach the pre-shock loading rate (2. gVS/l/d). Digester A failed, exhibiting excessive increase in acetate and a corresponding decrease in pH and methane generation, and lower COD and solids removal efficiencies. In contrast, digester B was able to restore its functionality with 90% recovery of pre-shock methane generation rate at stable pH, lower hydrogen levels, and reduced VFAs and ammonia accumulation. © 2012 Elsevier Ltd.

  5. Improving the stability of thermophilic anaerobic digesters treating SS-OFMSW through enrichment with compost and leachate seeds

    KAUST Repository

    Ghanimeh, Sophia A.; El-Fadel, Mutasem E.; Saikaly, Pascal

    2013-01-01

    This paper examines the potential of improving the stability of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) by adding leachate and compost during inoculation. For this purpose, two stable thermophilic digesters, A (control) and B (with added leachate and compost), were subjected to a sustained substrate shock by doubling the organic loading rate for one week. Feeding was suspended then gradually resumed to reach the pre-shock loading rate (2. gVS/l/d). Digester A failed, exhibiting excessive increase in acetate and a corresponding decrease in pH and methane generation, and lower COD and solids removal efficiencies. In contrast, digester B was able to restore its functionality with 90% recovery of pre-shock methane generation rate at stable pH, lower hydrogen levels, and reduced VFAs and ammonia accumulation. © 2012 Elsevier Ltd.

  6. Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties

    International Nuclear Information System (INIS)

    Silvestre, G.; Illa, J.; Fernández, B.; Bonmatí, A.

    2014-01-01

    Highlights: • Thermophilic anaerobic codigestion of sewage sludge and grease waste (GW) doubles methane yield. • High GW doses in the influent leads to instability and LCFA accumulation in the effluent. • GW addition promotes acetoclastic activity whilst worsening the hydrogenothrophic activity. • The mesophilic codigestion with GW performs better than the thermophilic one. - Abstract: Thermophilic co-digestion of sewage sludge with three different doses of trapped grease waste (GW) from the pre-treatment of a WWTP has been assessed in a CSTR bench-scale reactor. After adding 12% and 27% of grease waste (on COD basis), the organic loading rate increased from 2.2 to 2.3 and 2.8 kg COD m −3 d −1 respectively, and the methane yield increased 1.2 and 2.2 times. Further GW increase (37% on COD basis) resulted in an unstable methane yield and in long chain fatty acids (LCFA) accumulation. Although this inestability, the presence of volatile fatty acids in the effluent was negligible, showing good adaptation to fats of the thermophilic biomass. Nevertheless, the presence of LCFA in the effluent worsens its dewatering properties. Specific methanogenic activity tests showed that the addition of grease waste ameliorates the acetoclastic activity in detriment of the hydrogenotrophic activity, and suggests that the tolerance to LCFA can be further enhanced by slowly increasing the addition of lipid-rich materials

  7. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.2--uranium mining and metallurgy sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 48 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining and metallurgy sub-volume

  8. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.3--nuclear power sub-volume (Pt.2)

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 86 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the third one, the content is about nuclear power sub-volume (Pt.2)

  9. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining, uranium metallurgy and nuclear power.

  10. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.2--uranium mining and metallurgy sub-volume

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining, uranium metallurgy and nuclear power.

  11. Radiochemistry Division: annual progress report: 1987

    International Nuclear Information System (INIS)

    1989-01-01

    The progress of Research and Development (R and D) activities during the year 1987 are reported in the form of summaries, which are presented under the headings (1) Actinide Chemistry, (2) Nuclear Chemistry, and (3) Spectroscopy. Microwave absorption studies of the high Tsub(c) oxide superconductor YBa 2 Cu 3 Osub(7-x) using electron paramagnetic resonance techniques are the new feature during the report year. Radioanalytical services and radiation sources in the form of electrodeposited sources or standard soluti ons were also given to the other Divisions, other units of the Department of Atomic Energy, and other organisations in the country. A list of papers by the members of the Division published in various journals and presented at various symposia, conferences etc. is given at the end of the report. (M.G.B.). refs., 51 tabs., 33 figs

  12. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series

  13. Annual Report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report from the Netherlands Centre for Energy Research, includes the progress made in the five main research areas: fission energy, nuclear fusion and superconductivity, combustion energy (including environmental research), current energy and non-energetic applications of nuclear fission. Studies performed by the Energy Study Centrum, a department within ECN, and the Bureau for Energy Research Projects are described. A financial report is presented and a list of publications included. (C.F.)

  14. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an

  15. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1991-February 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Poe, Thomas P.

    1992-12-31

    This document is the 1991 annual report of progress for the Bonneville Power Administration (BPA) research Project conducted by the US Fish and Wildlife Service (FWS). Our approach was to present the progress achieved during 1991 in a series of separate reports for each major project task. Each report is prepared in the format of a scientific paper and is able to stand alone, whatever the state of progress or completion. This project has two major goals. One is to understand the significance of selective predation and prey vulnerability by determining if substandard juvenile salmonids (dead, injured, stressed, diseased, or naive) are more vulnerable to predation by northern squawfish, than standard or normal juvenile salmonids. The second goal is to develop and test prey protection measures to control predation on juvenile salmonids by reducing predator-smolt encounters or predator capture efficiency.

  16. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium

    NARCIS (Netherlands)

    Santos, dos A.B.; Cervantes, F.J.; Madrid, de M.P.; Bok, de F.A.M.; Stams, A.J.M.; Lier, van J.B.

    2006-01-01

    The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium was studied. Additionally, the effects of different electron-donating substrates and the redox mediator riboflavin on dye reduction were assessed by using either a

  17. Biosurfactants from thermophilic dairy streptococci and their potential role in the fouling control of heat exchanger plates

    NARCIS (Netherlands)

    Busscher, HJ; vanderKuijlBooij, M; vanderMei, HC

    Recent work on biosurfactant release by thermophilic dairy streptococci is reviewed, There is a suggestion that Streptococcus thermophilus isolates may release biosurfactants that stimulate detachment of already-adhering cells and leave an anti-adhesive coating on a substratum. A previously

  18. FERMENTATION OF INULIN BY CLOSTRIDIUM-THERMOSUCCINOGENES SP-NOV, A THERMOPHILIC ANAEROBIC BACTERIUM ISOLATED FROM VARIOUS HABITATS

    NARCIS (Netherlands)

    DRENT, WJ; LAHPOR, GA; WIEGANT, WM; GOTTSCHAL, JC

    Four closely related strains of thermophilic bacteria were isolated via enrichment in batch and continuous culture with inulin as the sole source of carbon and energy by using inoculations from various sources. These new strains were isolated from beet pulp from a sugar refinery, soil around a

  19. Experimental studies on the Auburn Torsatron: Annual progress report

    International Nuclear Information System (INIS)

    Gandy, R.F.; Swanson, D.G.

    1988-10-01

    This paper discusses research programs in progress on the Auburn Torsatron. Topic areas covered are: ICR heating results; Compact Auburn Torsatron design; Compact Auburn Torsatron construction; and collaborations

  20. Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles.

    Science.gov (United States)

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-ichi; Ohmura, Naoya; Igarashi, Yasuo

    2011-05-01

    Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L(-1), the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L(-1). Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia.