WorldWideScience

Sample records for thermonuclear fusion ignition

  1. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  2. Thermonuclear plasma physic: inertial confinement fusion

    International Nuclear Information System (INIS)

    Bayer, Ch.; Juraszek, D.

    2001-01-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  3. Fast fission assisted ignition of thermonuclear microexplosions

    International Nuclear Information System (INIS)

    Winterberg, F.

    2006-01-01

    It is shown that the requirements for fast ignition of thermonuclear microexplosions can be substantially relaxed if the deuterium-tritium (DT) hot spot is placed inside a shell of U-238 (Th-232). An intense laser - or particle beam-projected into the shell leads to a large temperature gradient between the hot DT and the cold U-238 (Th-232), driving thermomagnetic currents by the Nernst effect, with magnetic fields large enough to entrap within the hot spot the α-particles of the DT fusion reaction. The fast fission reactions in the U-238 (Th-232) shell implode about 1/2 of the shell onto the DT, increasing its density and reaction rate. With the magnetic field generated by the Nernst effect, there is no need to connect the target to a large current carrying transmission line, as it is required for magnetized target fusion, solving the so-called ''stand off'' problem for thermonuclear microexplosions. (orig.)

  4. Chemically ignited thermonuclear reactions: A near-term means for a high specific impulse - High thrust propulsion system

    International Nuclear Information System (INIS)

    Winterberg, F.

    1982-01-01

    A proposal for the fissionless ignition of small thermonuclear reactions is made which involves the combination of the magnetic booster target inertial fusion concept with the chemical implosion of metallic shells. The magnetic booster employs a very dense and magnetically confined low yield thermonuclear plasma to trigger an inertially confined high yield plasma. Fissionless ignition permits smaller yields than with fission- or fusion-induced fusion bombs, yields that are appropriate for use in a spacecraft propulsion system. Each bomb would release about 10 to the 18th erg or 100 tons of TNT, and with one explosion per second, an average thrust of 10 to the third tons and a specific impulse of about 3000 seconds can be expected

  5. Ignition and burn control characteristics of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Chaniotakis, E.A.

    1990-01-01

    Achieving the long sought goal of fusion energy requires the attainment of an ignited and controlled thermonuclear plasma. Obtaining an ignited plasma in a tokamak device requires consideration of both the physics of the plasma and the engineering of the machine. With the aide of completely analytical procedure optimized and ignited tokamaks are obtained under various physics assumptions. These designs show the possible advantage of tokamaks characterized by high (∼4.5) aspect ratio, and high (∼15 T) toroidal magnetic field. The control of an ignited plasma is investigated by using auxiliary power modulation. With auxiliary power stable operating points can be created with Q ∼50. Recognizing the need for a fast 1 1/2-D transport model for studying profile effects the plasma transport equations are solved using variational methods. A computer model based on the variational method has been developed. This model solves the 1 1/2-D transport equation very fast with little loss of accuracy. 74 refs., 70 figs., 8 tabs

  6. Physics of thermo-nuclear fusion and the ITER project; La physique de la fusion thermonucleaire et le projet ITER

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee - DRFC, 13 - Saint-Paul-lez-Durance (France)

    2003-01-01

    This document gathers the slides of the 6 contributions to the workshop 'the physics of thermo-nuclear fusion and the ITER project': 1) the feasibility of magnetic confinement and the issue of heat recovery, 2) heating and current generation in tokamaks, 3) the physics of wall-plasma interaction, 4) recent results at JET, 5) inertial confinement and fast ignition, and 6) the technology of fusion machines based on magnetic confinement. This document presents the principles of thermo-nuclear fusion machines and gives a lot of technical information about JET, Tore-Supra and ITER.

  7. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3 -sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  8. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions

  9. Transition to thermonuclear burn in fusion plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1991-01-01

    An analytical investigation is made of the time evolution of the 1-D temperature profile in a fusion reactor plasma where the nonlinear energy balance equation is dominated by alpha-particle heating and thermal conduction losses. Special emphasis is given to the problem of establishing sufficient conditions for the transition to thermonuclear burn for given initial temperature profiles. In particular, it is demonstrated that for strongly nonlinear alpha-particle heating, temperature profiles initially peaked on-axis are more easily ignited than profiles similar in form to the equilibrium profile of the energy balance equation. Simple analytical criteria for ignition are established and are shown to compare favourably with results of numerical calculations. (author)

  10. Thermonuclear plasma physic: inertial confinement fusion; Physique des plasmas thermonucleaires: la fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Ch.; Juraszek, D

    2001-07-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  11. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1992-01-01

    The author gives a chronological account of the research about thermonuclear fusion and presents the principle of JET thermonuclear reactor based upon the magnetic confinement. The problems of heating and confining a thermonuclear plasma may be regarded as solved. They make possible the definition of the size and geometry needed to realize a next-step tokamak (ITER, NET projects)

  12. Thermonuclear reaction generation method and device

    International Nuclear Information System (INIS)

    Imazaki, Kazuo

    1998-01-01

    The present invention provides a method of and a device for causing thermonuclear reaction capable of obtaining extremely high profits (about 1000 times), capable of forming a target which is strong against instability upon implosion as a problem of an inertia process and capable of realizing utilization of nuclear fusion. Namely, elementary particles such as pion, muon and K particles are deposited a portion or some portion of thermonuclear fuel materials by using high energy ions and highly brilliant γ rays generated from a high energy accelerator. The thermonuclear fuel materials are compressed to high density. The nuclear fusion reaction is promoted to ignite and burn thermonuclear fuels. A portion of nuclear fuels is ignited selectively by the means. High profits can be obtained. Since there is no need to attain implosion rate required for self ignition of nuclear fuels, a target of low aspect ratio can be used. (I.S.)

  13. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  14. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  15. Shock Ignition of Thermonuclear Fuel with High Areal Density

    International Nuclear Information System (INIS)

    Betti, R.; Zhou, C. D.; Anderson, K. S.; Theobald, W.; Solodov, A. A.; Perkins, L. J.

    2007-01-01

    A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy

  16. Shock ignition of thermonuclear fuel with high areal density.

    Science.gov (United States)

    Betti, R; Zhou, C D; Anderson, K S; Perkins, L J; Theobald, W; Solodov, A A

    2007-04-13

    A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy.

  17. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  18. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  19. Advances in inertial confinement fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2010-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory-temperatures over 100 million K, densities of 1000 g/cm 3 , and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  20. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  1. Investigation of possibilities of ignition of target plasma in conditions of inertial thermonuclear synthesis

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gus'kov, S.Yu.; Rozanov, V.B.; Il'in, D.V.; Levkovskij, A.A.; Sherman, V.E.

    2001-01-01

    On the basis of mathematical simulation of thermonuclear burning of DT-plasma of laser targets one calculated G factors of thermonuclear intensification for a space and a spark ignitions at various parameters of target plasma and igniters (both isobaric and isochoric). One calculated the critical parameters of igniters upon reaching of which the efficient thermonuclear burst with G ∼ 100 took place. It is shown that further increase of temperature and of dimensions of igniters does not practically affect the efficiency of DT-fuel burnup and independently of the way of ignition G value may be estimated using a simple asymptotic expression. At the same time the values of the critical parameters of igniters depend essentially on the way of ignition and on target parameters. One studied in detail the spark ignition with isochoric igniter. Thermal energy generated at absorption of supershort additional laser pulse is shown to be the key critical parameter for the optimal isochoric igniters. Critical parameters of this energy are calculated [ru

  2. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    Complete text of publication follows. The National Ignition Facility (NIF), the world's largest and most energetic laser system built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF's 192 beams are capable of producing 1.8 MJ and 500 TW of ultraviolet light and are configured to create pressures as high as 100 GB, matter temperatures approaching 10 9 and densities over 1000 g/cm 3 . With these capabis70lities, the NIF will enable exploring scientific problems in strategic defense, basic science and fusion energy. One of the early NIF campaigns is focusing on demonstrating laboratory-scale thermonuclear ignition and burn to produce net fusion energy gains of 10-20 with 1.2 to 1.4 MJ of 0.35 μm light. NIF ignition experiments began late in FY2009 as part of the National Ignition Campaign (NIC). Participants of NIC include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE) as well as variety of national and international collaborators. The results from these initial experiments show great promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with low overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. The goal for NIC is to demonstrate a predictable fusion experimental platform by the end of 2012. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and

  3. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1984-01-01

    A simplified review on the status of the controlled thermonuclear fusion research aiming to present the motivation, objective, necessary conditions and adopted methods to reach the objective. (M.C.K.) [pt

  4. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  5. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  6. Thermonuclear ignition in the next generation tokamaks

    International Nuclear Information System (INIS)

    Johner, J.

    1989-04-01

    The extrapolation of experimental rules describing energy confinement and magnetohydrodynamic - stability limits, in known tokamaks, allow to show that stable thermonuclear ignition equilibria should exist in this configuration, if the product aB t x of the dimensions by a magnetic-field power is large enough. Quantitative application of this result to several next-generation tokamak projects show that those kinds of equilibria could exist in such devices, which would also have enough additional heating power to promote an effective accessible ignition

  7. Present status of Fast Ignition Realization EXperiment (FIREX) and inertial fusion energy development

    International Nuclear Information System (INIS)

    Azechi, H.; Fujimoto, Y.; Fujioka, S.

    2012-11-01

    Controlled thermonuclear ignition and subsequent burn will be demonstrated in a couple of years on the central ignition scheme. Fast ignition has the high potential to ignite a fuel using only about one tenth of laser energy necessary to the central ignition. This compactness may largely accelerate inertial fusion energy development. One of the most advanced fast ignition programs is the Fast Ignition Realization Experiment (FIREX). The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I from late 2010 to early 2011 has demonstrated a high (≈20%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that one can achieve the ignition temperature at the laser energy below 10 kJ. Given the demonstrations of the ignition temperature at FIREX-I and the ignition-and-burn at the National Ignition Facility, the inertial fusion research would then shift from the plasma physics era to power generation era. (author)

  8. First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility

    International Nuclear Information System (INIS)

    Glenzer, Siegfried H; Spears, Brian K; Edwards, M John; Berger, Richard L; Bleuel, Darren L; Bradley, David K; Caggiano, Joseph A; Callahan, Debra A; Castro, Carlos; Choate, Christine; Clark, Daniel S; Cerjan, Charles J; Collins, Gilbert W; Dewald, Eduard L; Di Nicola, Jean-Michel G; Di Nicola, Pascale; Divol, Laurent; Dixit, Shamasundar N; Alger, Ethan T; Casey, Daniel T

    2012-01-01

    Non-burning thermonuclear fuel implosion experiments have been fielded on the National Ignition Facility to assess progress toward ignition by indirect drive inertial confinement fusion. These experiments use cryogenic fuel ice layers, consisting of mixtures of tritium and deuterium with large amounts of hydrogen to control the neutron yield and to allow fielding of an extensive suite of optical, x-ray and nuclear diagnostics. The thermonuclear fuel layer is contained in a spherical plastic capsule that is fielded in the center of a cylindrical gold hohlraum. Heating the hohlraum with 1.3 MJ of energy delivered by 192 laser beams produces a soft x-ray drive spectrum with a radiation temperature of 300 eV. The radiation field produces an ablation pressure of 100 Mbar which compresses the capsule to a spherical dense fuel shell that contains a hot plasma core 80 µm in diameter. The implosion core is observed with x-ray imaging diagnostics that provide size, shape, the absolute x-ray emission along with bangtime and hot plasma lifetime. Nuclear measurements provide the 14.1 MeV neutron yield from fusion of deuterium and tritium nuclei along with down-scattered neutrons at energies of 10–12 MeV due to energy loss by scattering in the dense fuel that surrounds the central hot-spot plasma. Neutron time-of-flight spectra allow the inference of the ion temperature while gamma-ray measurements provide the duration of nuclear activity. The fusion yield from deuterium–tritium reactions scales with ion temperature, which is in agreement with modeling over more than one order of magnitude to a neutron yield in excess of 10 14 neutrons, indicating large confinement parameters on these first experiments. (paper)

  9. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  10. Inertial-confinement fusion with lasers

    International Nuclear Information System (INIS)

    Betti, R.; Hurricane, O. A.

    2016-01-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion

  11. Thermonuclear fusion: Current status and future prospects

    International Nuclear Information System (INIS)

    Bruhns, H.; Maisonnier, Ch.

    1992-01-01

    Thermonuclear Fusion holds great promises for becoming an important energy source for the future. Fusion research and development is undertaken in al major countries of the world. The European Community pursues fusion in a large programme which embraces all R and D in the field of magnetic confinement fusion in the Member States, and to which Sweden and Switzerland are fully associated. The long-term objective of the programme is the joint creation of safe, environmentally sound prototype reactors. The main R and D line of the Community Fusion Programme is fusion by toroidal magnetic confinement on the basis of the Tokamak concept. Some related concepts are also studied which possibly could offer advantages for a reactor, and keep-in-touch activities exist for other approaches. Several small and medium sized specialised devices in Associated Laboratories have been built by the Community Fusion Programme as well as the Joint European Torus (JET Joint Undertaking) which is the largest and the most successful fusion device in the world. Recently, fusion power in the megawatt range has been achieved in JET. The long timescale and the large effort needed for the development of fusion as an energy source have been important elements to foster international collaboration. Engineering Design Activities for an International Thermonuclear Experimental Reactor (ITER) are undertaken, under the auspices of the IAEA, by the European Community, Japan, the Russian Federation and the United States of America. The objective of ITER is to achieve self-sustained thermonuclear burn and its control under long-pulse operation and to provide basic data for the engineering of a demonstration fusion reactor. (author)

  12. Powerful lasers for thermonuclear fusion

    International Nuclear Information System (INIS)

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  13. Towards upper power levels: thermonuclear fusion

    International Nuclear Information System (INIS)

    Vedel, Jean

    1983-01-01

    This paper is a brief introduction to the use of power lasers to achieve controlled thermonuclear fusion. After shortly describing thermonuclear fusion and the conditions of temperature, density and duration required it is showed how the laser enables such conditions to be created. The neodymium-doped glass laser NOVA that is being installed at the Livermore laboratory in the USA is described; at the time of its completion in 1984, this laser will be the most powerful in the world. In comparison, the OCTAL laser in operation at the Limeil establishment ''Centre d'Etudes'' of ''Commissariat Francais a l'Energie Atomique'' (the French atomic energy authority) is more modest; it is presented here [fr

  14. Radiation assisted thermonuclear burn wave dynamics in heavy ion fast ignition of cylindrical deuterium-tritium fuel target

    International Nuclear Information System (INIS)

    Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.

    2015-01-01

    Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)

  15. An electromagnetic spherical phased array thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Okress, E.C.

    1983-01-01

    Discussed are salient physics aspects of a microwave singly reentrant spherical periodic phased array of uniformally distributed identical coaxial radiation elements in an essentially simulated infinite array environment. The array is capable of maintaining coherence or phase control (to the limit of the order of 300 GHz) of its spherically converging electromagnetic transverse magnetic mode radiation field, for confinement (and heating) of thermonuclear plasma in steady-state or inertial thermonuclear fusion. The array also incorporates capability for coaxial directional coupler extraction of fusionpower. The radiation elements of the array are shielded against DT Thermonuclear plasma emissions (i.e., neutrons and bremsstrahlung) by either sufficiently (available) low less tangent and cooled, spherically concentric shield (e.g., Titanium oxide); or alternately by identical material dome windows mounted on each radiation element's aperture of the array. The pump microwave power required for thermonuclear fusion feasibility comprises an array of phase-locked available klystron amplifiers (comparable gyratron amplifiers remain to be developed)

  16. Thermonuclear controlled fusion: international cooperation

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2001-01-01

    This report summarizes the current worldwide status of research in the field of thermonuclear controlled fusion as well as the international research programme planed for the next decades. The two main projects will be the ITER facility (International Thermonuclear Experimental Reactor) that should produce 10 times more energy than the energy injected, and the IFMIF (International Fusion Materials Irradiation Facility) designed to study the reactions of materials under intense neutron fluxes. The future of the pioneering JET facility (Joint European Torus) is also discussed. The engagement of the various countries (USA, Japan, Germany, Russian Federation and Canada) and international organisations (EURATOM and IEA) in terms of investment and research is described. Switzerland is involved in this program through an agreement with EURATOM and is mainly dedicated to experimental studies with the TCV machine in Lausanne and numerical studies of plasma configurations. It will participate to the development of the microwave plasma heating system for the ITER machine

  17. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion

    International Nuclear Information System (INIS)

    Betti, R.; Zhou, C.

    2005-01-01

    Scaling relations to optimize implosion parameters for fast-ignition inertial confinement fusion are derived and used to design high-gain fast-ignition targets. A method to assemble thermonuclear fuel at high densities, high ρR, and with a small-size hot spot is presented. Massive cryogenic shells can be imploded with a low implosion velocity V I on a low adiabat α using the relaxation-pulse technique. While the low V I yields a small hot spot, the low α leads to large peak values of the density and areal density. It is shown that a 750 kJ laser can assemble fuel with V I ≅1.7x10 7 cm/s, α≅0.7, ρ≅400 g/cc, ρR≅3 g/cm 2 , and a hot-spot volume of less than 10% of the compressed core. If fully ignited, this fuel assembly can produce high gains of interest to inertial fusion energy applications

  18. Particle-induced thermonuclear fusion

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1980-01-01

    A nuclear fusion process for igniting a nuclear fusion pellet in a manner similar to that proposed for laser beams uses, an array of pulsed high energy combined particle beams, focused to bombard the pellet for isentropically compressing it to a Fermi-degenerate state by thermal blow-off and balanced beam momentum transfer. (author)

  19. In depth fusion flame spreading with a deuterium—tritium plane fuel density profile for plasma block ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2012-01-01

    Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10 12 J/m 2 , has been reached. Recently, fast ignition by employing clean petawatt—picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium—tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electron—ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, E* t , for the x ≠ 0 layers is 1.95 × 10 12 J/m 2 . Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent. (physics of gases, plasmas, and electric discharges)

  20. Thermonuclear targets for direct-drive ignition by a megajoule laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bel’kov, S. A.; Bondarenko, S. V. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Vergunova, G. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Garanin, S. G. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Demchenko, N. N.; Doskoch, I. Ya.; Kuchugov, P. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Rozanov, V. B.; Stepanov, R. V.; Yakhin, R. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-10-15

    Central ignition of a thin two-layer-shell fusion target that is directly driven by a 2-MJ profiled pulse of Nd laser second-harmonic radiation has been studied. The parameters of the target were selected so as to provide effective acceleration of the shell toward the center, which was sufficient for the onset of ignition under conditions of increased hydrodynamic stability of the ablator acceleration and compression. The aspect ratio of the inner deuterium-tritium layer of the shell does not exceed 15, provided that a major part (above 75%) of the outer layer (plastic ablator) is evaporated by the instant of maximum compression. The investigation is based on two series of numerical calculations that were performed using one-dimensional (1D) hydrodynamic codes. The first 1D code was used to calculate the absorption of the profiled laser-radiation pulse (including calculation of the total absorption coefficient with allowance for the inverse bremsstrahlung and resonance mechanisms) and the spatial distribution of target heating for a real geometry of irradiation using 192 laser beams in a scheme of focusing with a cubo-octahedral symmetry. The second 1D code was used for simulating the total cycle of target evolution under the action of absorbed laser radiation and for determining the thermonuclear gain that was achieved with a given target.

  1. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-06-01

    The International Fusion Research Council (IFRC), an advisory body to the International Atomic Energy Agency, reports on the current status of fusion; this report updates its 1978 status report. This report contains a General Overview and Executive Summary, and reports on all current approaches to fusion throughout the world; a series of technical reports is to be published elsewhere. This report is timely in that it not only shows progress which has occurred over the past, but interfaces with possible future devices, in particular the International Thermonuclear Experimental Reactor (ITER), whose conceptual design phase is nearing completion. 5 refs, 6 figs

  2. Inertial confinement fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Wood, L.L.

    1988-01-01

    Edward Teller has been a strong proponent of harnessing nuclear explosions for peaceful purposes. There are two approaches: Plowshare, which utilizes macro- explosions, and inertial confinement fusion, which utilizes microexplosions. The development of practical fusion power plants is a principal goal of the inertial program. It is remarkable that Teller's original thermonuclear problem, how to make super high yield nuclear explosions, and the opposite problem, how to make ultra low yield nuclear explosions, may both be solved by Teller's radiation implosion scheme. This paper reports on the essential physics of these two thermonuclear domains, which are separated by nine orders of magnitude in yield, provided by Teller's similarity theorem and its exceptions. Higher density makes possible thermonuclear burn of smaller masses of fuel. The leverage is high: the scale of the explosion diminishes with the square of the increase in density. The extraordinary compressibility of matter, first noticed by Teller during the Los Alamos atomic bomb program, provides an almost incredible opportunity to harness fusion. The energy density of thermonuclear fuels isentropically compressed to super high-- -densities---even to ten thousand times solid density---is small compared to the energy density at thermonuclear ignition temperatures. In small masses of fuel imploded to these super high matter densities, the energy required to achieve ignition may be greatly reduced by exploiting thermonuclear propagation from a relatively small hot spot

  3. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    The International Fusion Research Council has prepared this report on the current status of fusion, an update of its 1978 report, at the request of the Director General of the International Atomic Energy Agency. The report consists of an introductory note by the Director General, an Executive Summary and General Overview published in this document, and a series of technical reports. The background of fusion as an energy source is documented and compared with fission. The two approaches to thermonuclear fusion, magnetic confinement and inertial confinement, are discussed. The viability with respect to economic, environmental, and safety aspects is discussed. Fusion programs in the European Community, Japan, the USSR, the USA, as well as smaller programs in other countries are described. The status of fusion physics and technology is elucidated, and future directions and plans are indicated. 5 refs, 6 figs

  4. Controlled thermonuclear fusion. Present state and prospective

    International Nuclear Information System (INIS)

    Consoli, T.

    1976-01-01

    The interest of thermonuclear fusion for energy production is underlined. The present state of the research in this field is presented, emphasis being given to Tokamak configurations. The problems concerning confinement and additional heating in these devices are presented [fr

  5. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  6. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process

    Science.gov (United States)

    Belyaev, V. S.; Krainov, V. P.; Zagreev, B. V.; Matafonov, A. P.

    2015-07-01

    Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+11B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from 11B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+11B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+11B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+11B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

  7. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  8. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  9. Sonoluminescence, shock waves, and micro-thermonuclear fusion

    International Nuclear Information System (INIS)

    Moss, W.C.; Clarke, D.B.; White, J.W.; Young, D.A.

    1995-08-01

    We have performed numerical hydrodynamic simulations of the growth and collapse of a sonoluminescing bubble in a liquid. Our calculations show that spherically converging shock waves are generated during the collapse of the bubble. The combination of the shock waves and a realistic equation of state for the gas in the bubble provides an explanation for the measured picosecond optical pulse widths and indicates that the temperatures near the center of the bubble may exceed 3O eV. This leads naturally to speculation about obtaining micro-thermonuclear fusion in a bubble filled with deuterium (D 2 ) gas. Consequently, we performed numerical simulations of the collapse of a D 2 bubble in D 2 0. A pressure spike added to the periodic driving amplitude creates temperatures that may be sufficient to generate a very small, but measurable number of thermonuclear D-D fusion reactions in the bubble

  10. Fusion ignition via a magnetically-assisted fast ignition approach

    OpenAIRE

    Wang, W. -M.; Gibbon, P.; Sheng, Z. -M.; Li, Y. T.; Zhang, J.

    2016-01-01

    Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-pr...

  11. Gain curves and hydrodynamic modeling for shock ignition

    International Nuclear Information System (INIS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-01-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  12. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  13. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  14. Advance in physics of laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Afanasev, J.; Basov, N.; Gamalij, J.; Krokhin, O.; Rozanov, V.

    1977-01-01

    A survey is given of current advance in the physics of laser thermonuclear fusion (LTF). The LTF physical model is discussed with regard to the optimal laser-target systems not only for attaining the physical limit but also for future thermonuclear reactors. The basic physical principles of LTF are formulated which make use of the fact that in focusing laser radiation on the surface of a substance a high density may be attained of the energy flux (10 5 to 10 6 J) and thereby also a high velocity of energy release in the substance. A detailed description is given of the processes which take place in laser irradiation of a spherical target. The problem is discussed of hydrodynamic stability in the compression of matter in laser thermonuclear targets, the concept is explained of the physical threshold of a thermonuclear reaction in laser excitation as are the conditions for attaining this threshold. The quantitative criterion is examined of the attainment of the physical threshold of LTF for pulsed systems. (B.S.)

  15. Study on structural materials used in thermonuclear fusion technology

    International Nuclear Information System (INIS)

    Billa, R.; Amaral, D.

    1995-01-01

    The main problem related to the construction of a thermonuclear fusion reactor is the absence of suitable materials for the process, concerning to temperature limits, heat flux and life time. The first wall is the most critical part of the structure, being submitted to radiation effects, ionic corrosion and coolant, besides thermal fatigue and tension produced by cyclical burning. The AISI 316(17-12SPH) stainless steel is used as structural material, which has a wide known database. This work proposes an alternative material study to be used in the future thermonuclear fusion reactors. As a option a study on the utilization of Cr-Mn(Fe-17 Mn-10 Cr-0,1 C) steels and their alloy variations is presented

  16. Definition of Ignition in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.

    2017-10-01

    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Ignition experiment in a single-turn-coil tokamak

    International Nuclear Information System (INIS)

    Carrera, R.; Driga, M.; Gully, J.H.

    1989-01-01

    A novel concept for a fusion ignition experiment, IGNITEX proposed along the lines of previous ideas for a compact thermonuclear device is analyzed. A single-turn-coil tokamak is analyzed. A single-turn-coil tokamak supplied by homopolar generators can ohmically heat a DT plasma to ignition conditions and maintain a thermally stable ignited phase for about ten energy confinement times. The IGNITEX experiment can provide a simple and relatively inexpensive way to produce and control ignited plasmas for scientific study

  18. Inertial fusion program in Japan and ignition experiment facility by laser

    International Nuclear Information System (INIS)

    Nakai, S.

    1989-01-01

    The recent progress in laser fusion research is remarkable with respect to obtaining the high density and high temperature plasma which produces thermonuclear neutrons of 10 13 per shot (pellet gain of 0.2%) and to the understanding of implosion physics. Data bases for laser fusion have been accumulated and technologies for advanced experiments have been developed, both of which enable us to make the reserarch step toward the fusion ignition experiment and the achievement of the breakeven condition, which is estimated to be possible with a 100 kJ blue laser. The demonstration of high gain pellets requires laser energy in the range MJ in blue light. The design studies of the MJ laser are continue in the framework of the solid state laser at ILE. The design studies on the commercial reactor of ICF have proceeded and several conceptual designs have been proposed. These designs utilize a liquid metal first wall and blanket which enable long life for commercial use. As a consequence, the ICF reactor has technically a high feasibility for commercial application. (orig.)

  19. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    Science.gov (United States)

    Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration

    2018-04-01

    Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

  20. Italy, EURATOM and Early Research on Controlled Thermonuclear Fusion (1957-1962)

    International Nuclear Information System (INIS)

    Curli, Barbara

    2017-01-01

    This chapter traces the early origins of European collaboration in controlled thermonuclear fusion research, within the larger picture of Cold War nuclear policy in the late 1950s-early 1960s, and as a consequence of the signing of the EURATOM treaty in 1957. It then presents some preliminary findings on the Association contract which was signed in 1960 between EURATOM and Italy, in order to carry out research in controlled thermonuclear fusion at the then newly created 'Laboratori nazionali di Frascati', near Rome, within the framework of the Comitato Nazionale Energia Nucleare (CNEN), the Italian civilian nuclear energy agency.

  1. Brazilian programme for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Reusch, M.F.; Nascimento, I.C.; Pantuso-Sudano, J.

    1992-01-01

    A proposal for a National Programme of Plasma Physics and Controlled Thermonuclear Fusion in Brazil is presented, aimimg the dissemination of the researchers thought in plasma physics for the national authorities and the scientific community. (E.O.)

  2. Laser thermonuclear fusion with force confinement of hot plasma

    International Nuclear Information System (INIS)

    Korobkin, V.V.; Romanovsky, M.Y.

    1994-01-01

    The possibility of the utilization of laser radiation for plasma heating up to thermonuclear temperatures with its simultaneous confinement by ponderomotive force is investigated. The plasma is located inside a powerful laser beam with a tubelike section or inside a cavity of duct section, formed by several intersecting beams focused by cylindrical lenses. The impact of various physical processes upon plasma confinement is studied and the criteria of plasma confinement and maintaining of plasma temperature are derived. Plasma and laser beam stability is considered. Estimates of laser radiation energy necessary for thermonuclear fusion are presented

  3. Magnetic Reconnection Driven by Thermonuclear Burning

    Science.gov (United States)

    Gatto, R.; Coppi, B.

    2017-10-01

    Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.

  4. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  5. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  6. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    2004-01-01

    This 26th report by the Swiss Federal Office for Education and Science presents a review of work done in Swiss institutes in 2003 as part of international research into thermonuclear fusion. A broad outline of the project and of its significance within the wider field of thermonuclear fusion research is given. This is followed by a review of the significant events in the world of fusion research, with emphasis placed on ITER and on the EURATOM fusion programme. A further chapter summarises events in Switzerland in 2003 and the report closes with a list of contacts for more information. Three annexes provide information on the current situation in fusion research, as well as scientific and technical highlights of the work performed in 2003 at the Plasma Physics Research Centre CRPP at the Federal Institute of Technology EPFL in Lausanne, Switzerland. Annex 3 reports on results obtained at the Physics Institute of the University of Basle. The annexes are for the benefit of the technically and scientifically versed reader, and brief summaries of them are given in the main body of the report

  7. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  8. Direct conversion of nuclear energy into radiation: New direction in thermonuclear laser fusion

    International Nuclear Information System (INIS)

    Babaev, Yu.N.; Vedenov, A.A.; Filyukov, A.A.

    1995-01-01

    In investigations dealing with thermonuclear fusion, a radical new direction appeared some time ago, namely the direct conversion of nuclear and thermonuclear energy into radiation energy. This paper reviews early work on this topic in Russia and the United States and discusses some recent new directions

  9. Status of Indirect Drive ICF Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.

    2016-01-01

    In the quest to demonstrate Inertial Confinement Fusion (ICF) ignition of deuterium-tritium (DT) filled capsules and propagating thermonuclear burn with net energy gain (fusion energy/laser energy >1), recent experiments on the National Ignition Facility (NIF) have shown progress towards increasing capsule hot spot temperature (T ion >5 keV) and fusion neutron yield (~10 16 ), while achieving ~2x yield amplification by alpha particle deposition. At the same time a performance cliff was reached, resulting in lower fusion yields than expected as the implosion velocity was increased. Ongoing studies of the hohlraum and capsule physics are attempting to disseminate possible causes for this performance ceiling.

  10. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    Science.gov (United States)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  11. Surface effects in controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1975-08-01

    During the operation of large size plasma facilities and future controlled thermonuclear fusion reactors the surfaces of such major components as container walls, beam limiters, diverter walls and beam-dump walls of the injector region will be exposed to particle and photon bombardment from primary plasma radiations and from secondary radiations. Such radiations can cause, for example, physical and chemical sputtering, blistering, particle- and photon-impact induced desorption, secondary electron and x-ray emission, backscattering, nuclear reactions, photo-decomposition of surface compounds, photocatalysis, and vaporization. Such effects in turn can (a) seriously damage and erode the bombarded surface and (b) release major quantities of impurities which will contaminate the plasma. The effects of some of the major surface phenomena on the operation of plasma facilities and future fusion reactors are discussed

  12. Fabrication of an alumina torus for thermonuclear fusion containment

    International Nuclear Information System (INIS)

    Hauth, W.E.; Blake, R.D.; Dickinson, J.M.; Rutz, H.L.; Stoddard, S.D.

    1978-05-01

    A 235-cm-diam torus has been fabricated for plasma containment during thermonuclear fusion experiments. This 30-cm-diam torus consists of sixty 99.5%-alumina segments, 80% of which are assembled by forming vacuum-tight ceramic-to-ceramic seals. Selection of sealing materials and techniques are discussed

  13. Thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Delpech, J.-F.; Fabre, Edouard.

    1978-01-01

    This paper is intended to describe the principle of inetia containment by laser and the research effort undertaken for this purpose. After having enumerated the principal thermonuclear reactions useful for fusion, the authors derive the rhoR criterion that characterizes inertia containment, as well as the Lawson criterion in the case of magnetic containment. The main physics problems involved in inertia containment by laser are enunciated and the article ends with a review of means resorted to in France and abroad for studying this problem. This review also reports C.N.R.S. bustling in this field, within the scope of competence of G.I.L.M. (Groupement de Recherches Coordonnees sur l'Interaction Laser-Matiere = Group for coordinated investigation of matter-laser interaction) established in Paris at the Ecole Polytechnique [fr

  14. Energy balance of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Hashmi, M.; Staudenmaier, G.

    2000-01-01

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor-an energy producing device-seems to be beyond the realms of realization. (orig.)

  15. Measurement of the fast electron distribution in laser-plasma experiments in the context of the 'fast ignition' approach to inertial confinement fusion

    International Nuclear Information System (INIS)

    Batani, Dimitri; Morace, Alessio

    2010-01-01

    The recent 'fast ignition approach' to ICF relies on the presence of fast electrons to provide the 'external' ignition spark triggering the nuclear fusion reaction in the compressed core of a thermonuclear target. Such fast electron beam is produced by the interaction of a short-pulse high-intensity laser with the target itself. In this context, it becomes essential to characterize the density of fast electrons and their average energy (i.e. the 'laser to fast electron' energy conversion efficiency) but also the finer details of the velocity and angular distribution. In this work we will discuss several techniques used to determine the fast electron distribution function.

  16. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  17. Blue energy - The story of thermonuclear fusion energy

    International Nuclear Information System (INIS)

    Laval, G.

    2007-01-01

    The author has written a story of thermonuclear fusion as a future source of energy. This story began about 50 years ago and its last milestone has been the decision of building the ITER machine. This decision has been taken by an international collaboration including a large part of the humanity which shows how great are the expectations put on fusion and that fusion deserves confidence now. For long years fusion energy has been the subject of large controversy due to the questioning about the overcoming of huge theoretical and technological difficulties. Different machines have been built to assess new theoretical developments and to prepare the next step. The physics of hot plasmas has been understood little by little at the pace of the discovery of new instabilities taking place in fusion plasmas. The 2 unique today options: the tokamak-type machine and the laser-driven inertial confinement machine took the lead relatively quickly. (A.C.)

  18. Energy confinement time and tokamak ignition - a theoretical viewpoint

    International Nuclear Information System (INIS)

    Sigmar, D.J.; Hsu, C.T.

    1989-01-01

    A rigorous approach developed earlier to obtain the global energy confinement time from theory based local thermal transport coefficients is applied to investigate the approach to thermonuclear fusion in the tokamak. Theory leads naturally to a generalized 'offset' form for the global energy confinement time. The limitations of the theoretical paradigm presented here are discussed and specific ignition contour results for a large 5 Tesla and 12 Tesla ignition experiment are given. (orig.) [de

  19. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  20. Application of controlled thermonuclear reactor fusion energy for food production

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1975-06-01

    Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

  1. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  2. Generalized Lawson Criteria for Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, Robert E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  3. Sensitivity of ICF ignition conditions to non-Maxwellian DT fusion reactivity

    International Nuclear Information System (INIS)

    Garbett, W. J.

    2013-01-01

    The hotspot ignition conditions in ICF are determined by considering the power balance between fusion energy deposition and energy loss terms. Uncertainty in any of these terms has potential to modify the ignition conditions, changing the optimum ignition capsule design. This paper considers the impact of changes to the DT fusion reaction rate due to non-thermal ion energy distributions. The DT fusion reactivity has been evaluated for a class of non-Maxwellian distributions representing a perturbation to the tail of a thermal distribution. The resulting reactivity has been used to determine hotspot ignition conditions as a function of the characteristic parameter of the modified distribution. (authors)

  4. Recent progress in ignition fusion research on the National Ignition Facility

    International Nuclear Information System (INIS)

    Leeper, Ramon J.

    2011-01-01

    This paper will review the ignition fusion research program that is currently being carried out on the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory. This work is being conducted under the auspices of the National Ignition Campaign (NIC) that is a broad collaboration of national laboratories and universities that together have developed a detailed research plan whose goal is ignition in the laboratory. The paper will begin with a description of the NIF facility and associated experimental facilities. The paper will then focus on the ignition target and hohlraum designs that will be tested in the first ignition attempts on NIF. The next topic to be introduced will be a description of the diagnostic suite that has been developed for the initial ignition experiments on NIF. The paper will then describe the experimental results that were obtained in experiments conducted during the fall of 2009 on NIF. Finally, the paper will end with a description of the detailed experimental plans that have been developed for the first ignition campaign that will begin later this year. (author)

  5. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  6. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    Science.gov (United States)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  7. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    DEFF Research Database (Denmark)

    Nocente, M.; Källne, J.; Salewski, Mirko

    2015-01-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instrume......First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution...... instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical...... results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the reaction and the temperature of protons accelerated by radio-frequency heating.The results presented in this paper significantly improve the accuracy of diagnostic...

  8. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  9. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  10. [Fusion energy research

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  11. Reaching to a featured formula to deduce the energy of the heaviest particles producing from the controlled thermonuclear fusion reactions

    Science.gov (United States)

    Majeed, Raad H.; Oudah, Osamah N.

    2018-05-01

    Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.

  12. Fusion the energy of the universe

    CERN Document Server

    McCracken, Garry

    2012-01-01

    Fusion: The Energy of the Universe, 2e is an essential reference providing basic principles of fusion energy from its history to the issues and realities progressing from the present day energy crisis. The book provides detailed developments and applications for researchers entering the field of fusion energy research. This second edition includes the latest results from the National Ignition Facility at the Lawrence Radiation Laboratory at Livermore, CA, and the progress on the International Thermonuclear Experimental Reactor (ITER) tokamak programme at Caderache, France.

  13. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  14. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  15. First wall thermomechanical stress analysis in a fusion ignition experiment

    International Nuclear Information System (INIS)

    Rodin, G.; Carrera, R.; Howell, J.; Hwang, Y.L.; Montalvo, E.; Ordonez, C.; Dong, J.Q.

    1990-01-01

    The fusion ignition experiment IGNITEX + has been proposed as a low cost means of producing and controlling fusion ignited plasmas for scientific study. A single-turn-coil tokamak plasmas for scientific study. A single-turn-coil tokamak cryogenically precooled at liquid nitrogen temperature is used to produce 20 T fields and 12 MA plasma currents so that high-density ohmic ignition is possible. The high-field, high-density operation should maintain the plasma relatively free of wall impurities. In order to minimize plasma cooling, a low-Z first wall is considered for IGNITEX. The IGNITEX design philosophy emphasizes simplicity and low cost. A limiterless, smooth first will without files and plates is proposed. A low-Z material is applied by plasma jet techniques over a resistive vacuum vessel. This design is thought to be adequate for a magnetic fusion ignition experiment. Maintenance and operation of the first wall system is significantly simplified when compared to conventional designs

  16. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2003-01-01

    This final report for the Swiss Federal Office of Education and Science presents a review of activities carried out in 2002 within the framework of the International Experimental Thermonuclear Reactor (ITER) project that involves contributions from Canada, Japan, the Russian Federation and the European Union. Further agreements on the development of a fusion reactor with other countries, including Switzerland, the USA and China, are mentioned. The first chapter describes the current state of research on electricity production using nuclear fusion and discusses feasibility, safety, environmental, fuel supply and economic aspects. A second chapter reviews global efforts in the fusion area, including ITER and EURATOM projects and the activities running under the European Fusion Development Agreement EFDA and the JET Implementing Agreement. Finally, a third chapter deals with fusion research activities in Switzerland and the contributions made to international research by Swiss universities and institutes

  17. Controlled thermonuclear fusion and the latest progress on China's HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Li Jiangang; Yang Yu

    2003-01-01

    After 50 years of research on controlled thermonuclear fusion, a new stage will be reached in 2003, when a site for the International Thermonuclear Experimental Reactor project will be chosen to start the construction. Scientists hope that this project could herald a new era in which the energy problem will be solved completely. The great progress made on the HT-7 superconducting tokamak in China has provided positive and powerful support for fusion research. The HT-7 is one of the only two superconducting tokamaks in the world that can carry out minute-scale high temperature plasma research, and has achieved a duration of 63.95s for the hot plasma discharge. This is a major step towards real steady-state operation of the tokamak configuration. We present an overview of the latest progress on the tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences

  18. Shock ignition of high gain inertial fusion capsules

    International Nuclear Information System (INIS)

    Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.

    2010-01-01

    Complete text of publication follows. Inertial Confinement Fusion relies on the compression of small amounts of an equimolar mix of Deuterium and Tritium (DT) up to volumic masses of several hundreds of g/cm 3 . Such high densities are obtained by means of the implosion of a spherical shell made of cryogenic DT fuel. In the conventional scheme a hot spot is formed in the central part of the pellet at the end of the implosion. If the pressure of this hot spot is large enough (several hundreds of Gbars), thermonuclear heating occurs with a characteristic time shorter than the hydrodynamic confinement time and the target self ignites. Since the central hot spot pressure results from the conversion of the shell kinetic energy into thermal energy, the threshold for the ignition of a given mass of DT is a direct function of the implosion velocity. Typical implosion velocities for central self ignition are of the order of 400 km/s. Such high velocities imply both a strong acceleration of the shell and the use of large aspect ration shells in order to optimize the hydrodynamic efficiency of the implosion, at least in direct drive. These two features strongly enhance the risk of shell beak up at time of acceleration under the Rayleigh-Taylor instability. Furthermore the formation of the hot spot may itself the unstable, this reducing its effective mass. High compression may be achieved at much lower velocities, thus reducing the energy budget and enhancing the implosion safety, but the corresponding fuel assembly requires an additional heating in order to reach ignition. This heating may be obtained from a 70-100 kJ laser pulse, delivered in 10-15 ps (Fast Ignition). An alternative idea is to boost up the central pressure of a target imploded at a sub-ignition velocity by means of a convergent strong shock launched at the end of the compression phase. This Shock Ignition (SI) concept has been suggested in 1983 by Scherbakov et al. More recently, R. Betti et al. developed

  19. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  20. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  1. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  2. High-energy heavy-ion beams as igniters for commercial-scale intertial-fusion power plants

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    Commercial-scale inertial-fusion power can be generated by producing a steady succession of thermonuclear microexplosions of small pellet targets whose ignition requires supplying a few magajoules in a few nanoseconds, a goal well beyond the present single-shot capabilities of high-power pulsed laser and electron-beam systems which also lack the needed repetition-rate capability of order one per second. However, existing high-energy accelerator technology with straightforward engineering extrapolations, applied to pulsed beams of heavy ions in low charge states, can meet all requirements. The relevant accelerator capabilities are discussed; three widely differing types of accelerators show promise. Needed developmental work is mostly on lower-energy components and can be conducted at relatively low cost. Some of the work started at several accelerator laboratories on this new approach within the past year are described, and possible goals of an early demonstration construction project are indicated

  3. Review of studies for thermonuclear ignition with 1.8 MJ laser (LMJ): theory and experiment

    International Nuclear Information System (INIS)

    Holstein, P.A.; Bastian, J.; Bowen, C.; Casanova, M.; Chaland, F.; Cherfils, C.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Larroche, O.; Lours, L.; Malinie, G.; Masse, L.; Monteil, M.C.; Morice, O.; Paillard, D.; Poggi, F.; Saillard, Y.; Seytor, P.; Teychenne, D.; Vandenboomgaerde, M.; Wagon, F.; Bonnefille, M.; Hedde, T.; Lefebvre, E.; Riazuelo, G.; Babonneau, D.; Primout, M.; Casner, A.; Depierreux, S.; Girard, F.; Huser, G.; Jadaud, J.P.; Juraszek, D.; Miquel, J.L.; Naudy, M.; Philippe, F.; Rousseaux, C.; Videau, L.

    2008-01-01

    The purpose of the laser Megajoule (LMJ) is the ignition of thermonuclear fusion reactions in a microscopic capsule of cryogenic DT whose implosion is obtained by a laser pulse in the range of 10 -20 ns, delivering a power of 400 - 500 TW. In this report we have tried to gather in one document the main part of the work made from 1995 to 2005 by the teams of Cea/DAM to design the LMJ targets. This report deals with the targets adapted to the laser energy of 1.8 MJ corresponding to 60 laser beams (called quadruplets because of their 4 beamlets), so primarily, with the target called A1040. The targets studied more recently adapted to lower laser energy are too new to appear in it. It concerns all the topics of the physics of target LMJ: laser-plasma interaction, radiative budget of the hohlraum, implosion interaction, hydrodynamic instabilities and robustness of the target to the technological uncertainties. The approach made for the robustness study is original and makes it possible to specify the features of the laser and the targets. This review scans all the aspects of the target design done with numerical simulations of bi-dimensional radiative hydrodynamics but it points out also the main results of the experiments made with the lasers Phebus, Nova and Omega for 20 years. This review also addresses to scientist not specialists in the problems of inertial confinement fusion. It is organized by topics of physics and the experiments appear at the end of each chapter. It does not concern the aspects of target fabrication nor the problems of diagnostic. (authors)

  4. Status of the US inertial fusion program and the National Ignition Facility

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1997-01-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) copyright 1997 American Institute of Physics

  5. Magneized target fusion: An overview of the concept

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1994-01-01

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion

  6. Fast ignition: Physics progress in the US fusion energy program and prospects for achieving ignition

    International Nuclear Information System (INIS)

    Key, M.; Andersen, C.; Cowan, T.

    2003-01-01

    Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term road map for FI is defined. (author)

  7. Ignition analysis for burn control and diagnostic developments in ITER

    International Nuclear Information System (INIS)

    Mitarai, O.; Muraoka, K.

    1997-01-01

    The temporal evolutions of the operating point during the ignition access and ignited operation phases are analysed on the basis of zero dimensional (0-D) equations in order to clarify the requirements for safe control of ignited operation and for the development of diagnostic systems in ITER. A stable and safe method of reaching the ignited operating point is identified as the 'higher temperature access' method, being compatible with the H mode power threshold constraints. It is found that the ignition boundary can be experimentally determined by a 'thermonuclear oscillation' of the operating point without knowing the power balance equation. On the other hand, the ignition boundary determined by the power balance equation has a larger error bar depending on the accuracy of the diagnostic system. The plasma waveform response to sudden changes in the various plasma parameters during ignited operation is also calculated, and fusion power regulation is demonstrated by feedback control of the fuelling and auxiliary heating power. (author)

  8. Inertial confinement fusion target insertion concepts for the National Ignition Facility

    International Nuclear Information System (INIS)

    Laughon, G.J.; Schultz, K.R.

    1996-01-01

    The National Ignition Facility (NIF) will be used to demonstrate fusion ignition in a laboratory environment in order to support development of inertial fusion as a potential fusion energy source for civilian use. However, target insertion must first be addressed before inertial fusion can become a practical energy source. Since target insertion systems currently utilized are not suitable for multiple shots in quick succession, insertion concepts involving free-falling and artificially accelerated targets are developed and evaluated against a set of predetermined guidelines. It is shown that a system involving a fast retraction positioner would be suitable. 5 refs., 4 figs

  9. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Megajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i ≥ 0.5 GeV u -1 ) heavy ions, has been proposed

  10. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    Science.gov (United States)

    Basko, M. M.

    2005-10-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Mégajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (Ei>~ 0.5 GeV u-1) heavy ions, has been proposed.

  11. Synthetic report 2012. Research programme on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2013-01-01

    Since 1961, Switzerland participates in the research on thermonuclear fusion thanks to the creation of the Research Centre in Plasma Physics. In 1979 it entered into partnership with the European programme on fusion through its adhesion to EURATOM. The thermonuclear fusion is an interesting energy source because the basic fuel is practically inexhaustible and its use does not release any significant CO 2 quantity and very little radioactive residues. But its working up faces enormous physical and technological difficulties. The International Thermonuclear Reactor (ITER), presently in construction, has to demonstrate the technological feasibility of the controlled fusion. Il will be followed by DEMO, foreseen for 2040-2050, which must guarantee the economical rentability. At CRPP the research projects are partitioned onto several sites: at the Swiss Federal Institute of Technology (EPFL) in Lausanne, they concern the physics of the magnetic confinement with the Variable Geometry Tokamak (TCV), the development of theoretical models and the numerical simulation, the plasma heating and the generation of hyper frequency waves; the Paul Scherrer Institute (PSI) studies the superconductivity and the materials; the interactions between the plasma and the Tokamak walls are studied at the Basel University for the structures of ITER. Thanks to its large flexibility, TCV allows the creation and the control of plasmas of very different forms. The injection system of millimetric waves allows orienting the injected power according to specific profiles. By using the asymmetry of the flow in the toroidal sense, the plasma rotation could be measured with a much better accuracy than before. In TCV, by playing on the form of the plasma, it was possible to strongly reduce the energy quantity which is expelled by the Edge Localized Modes (ELM) onto the wall of the vacuum chamber. The ‘snowflake’ configuration created in TCV allows distributing the ELM energy onto several impact

  12. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  13. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  14. Design aspects of low activation fusion ignition experiments

    International Nuclear Information System (INIS)

    Cheng, E.T.; Creedon, R.L.; Hopkins, G.R.; Trester, P.W.; Wong, C.P.C.; Schultz, K.R.

    1986-01-01

    Preliminary design studies have been done exploring (1) materials selection, (2) shutdown biological dose rates, (3) mechanical design and (4) thermal design of a fusion ignition experiment made of low activation materials. From the results of these preliminary design studies it appears that an ignition experiment could be built of low activation materials, and that this design would allow hands-on access for maintenance

  15. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  16. Integration of element technology and system supporting thermonuclear fusion

    International Nuclear Information System (INIS)

    2003-01-01

    A special committee for integrated system technology survey on thermonuclear fusion (TNF) was begun on June, 1999, under an aim to generally summarize whole of shapes on technology to realize TNF reactor to summarize present state of every technologies and their positioning in whole of their TNF technology. On a base of survey of these recent informations, this report is comprehensively summarized for an integrated system technology on TNF. It has outlines on magnetic field enclosing method, outlines on inertia enclosing method, element technology supporting TNF, new power generation techniques, and ripple effects on TNF technology. (G.K.)

  17. First fusion neutrons from a thermonuclear weapon device

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    An account of the first observation of thermonuclear neutrons from a hydrogen weapon, the George shot, is presented. A personal narrative by the researchers J. Allred and L. Rosen includes such topics as the formation of the experimental team, description of the experimental technique, testing the experimental apparatus, testing the effects of a blast, a description of the test area, and the observation of neutrons from fusion. Excerpts are presented from several chapters of the Scientific Director's report on the atomic weapons tests of 1951. Also included is a brief description of the basic design of the hydrogen bomb, a recounting of subsequent developments, and short scientific biographies of the researchers. 21 figures, 2 tables

  18. Studies on the robustness of shock-ignited laser fusion targets

    International Nuclear Information System (INIS)

    Atzeni, S; Schiavi, A; Marocchino, A

    2011-01-01

    Several aspects of the sensitivity of a shock-ignited inertial fusion target to variation of parameters and errors or imperfections are studied by means of one-dimensional and two-dimensional numerical simulations. The study refers to a simple all-DT target, initially proposed for fast ignition (Atzeni et al 2007 Phys. Plasmas 7 052702) and subsequently shown to be also suitable for shock ignition (Ribeyre et al 2009 Plasma Phys. Control. Fusion 51 015013). It is shown that the growth of both Richtmyer-Meshkov and Rayleigh-Taylor instability (RTI) at the ablation front is reduced by laser pulses with an adiabat-shaping picket. An operating window for the parameters of the ignition laser spike is described; the threshold power depends on beam focusing and synchronization with the compression pulse. The time window for spike launch widens with beam power, while the minimum spike energy is independent of spike power. A large parametric scan indicates good tolerance (at the level of a few percent) to target mass and laser power errors. 2D simulations indicate that the strong igniting shock wave plays an important role in reducing deceleration-phase RTI growth. Instead, the high hot-spot convergence ratio (ratio of initial target radius to hot-spot radius at ignition) makes ignition highly sensitive to target mispositioning.

  19. Progress towards ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  20. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  1. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  2. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  3. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    International Nuclear Information System (INIS)

    Perkins, L.J.; Betti, R.; Schurtz, G.P.; Craxton, R.S.; Dunne, A.M.; LaFortune, K.N.; Schmitt, A.J.; McKenty, P.W.; Bailey, D.S.; Lambert, M.A.; Ribeyre, X.; Theobald, W.R.; Strozzi, D.J.; Harding, D.R.; Casner, A.; Atzemi, S.; Erbert, G.V.; Andersen, K.S.; Murakami, M.; Comley, A.J.; Cook, R.C.; Stephens, R.B.

    2010-01-01

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term (∼3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of ∼60 may be achievable on NIF at laser drive energies around ∼0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R and D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  4. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  5. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  6. Merging White Dwarfs and Thermonuclear Supernovae

    OpenAIRE

    van Kerkwijk, Marten H.

    2012-01-01

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead resul...

  7. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  8. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  9. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  10. Inertial Confinement Fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Most important recent advances in inertial confinement fusion (ICF) are highlighted. With the construction of the NIF and LMJ facilities, and a number of improvements in the target design, the conventional indirect-drive approach is making a steady progress towards demonstration of ignition and high gain. The development of the polar direct-drive concept made also the prospects for direct-drive ignition on the NIF extremely favorable. A substantial progress has been reported from the Institute of Laser Engineering in Osaka on exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at a lowest possible cost. In heavy ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i > or ∼ 0.5 GeV/u) heavy ions, has been proposed. (author)

  11. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Anne C. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to

  12. Laser induced photonuclear and fusion-reactions

    International Nuclear Information System (INIS)

    LoDato, V.A.

    1977-01-01

    The energy release from the fusion-fission pellets is demonstrated. It is shown that the coupling of the fusion-fission process is extremely efficient provided one can obtain the proper compression heating. The pellet of an outer core of (Li6D-Li6T) with an inner core of U238 is shown to be an efficient and practical fuel and can be ignited by the present generation of lasers to produce thermonuclear burn. The demonstration of the efficiency for photonuclear and photofission pellets is shown. However no suitable gamma ray source exists at present to initiate these processes. (orig.) [de

  13. The National Ignition Facility and the Promise of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Moses, E.I.

    2010-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm 3 -sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm 3 , and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  14. The National Ignition Facility and the Promise of Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  15. Physics of laser-plasma interaction for shock ignition of fusion reactions

    International Nuclear Information System (INIS)

    Tikhonchuk, V T; Colaïtis, A; Vallet, A; Llor Aisa, E; Duchateau, G; Nicolaï, Ph; Ribeyre, X

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions. (paper)

  16. Fusion research in the European Community

    International Nuclear Information System (INIS)

    Wolf, G.H.

    1988-01-01

    Centering around the European joint project Joint European Torus (JET), in the framework of which hot fusion plasmas are already brought close to thermonuclear ignition, the individual research centres in Europe have taken over different special tasks. In Germany research concentrates above all on the development of super-conductive magnets, the stage of plasma-physical fundamentals or the investigation of the interaction between the plasma boundary layer and the material of the vessel wall. On this basis the development stage following JET, the Next European Torus (NET), is planned, with its main aim being the production and maintenance of a thermonuclear burning plasma, i.e. a plasma which maintains its active state from the gain of energy of its own fusion reactions. In the framework of a contractually agreed cooperation between the European Community, Japan, the USSR and the USA, the establishment of an international study group (with seat in Garching) was decided upon, which is to develop the concept of an 'International Thermonuclear Experimental Reactor (ITER)' jointly supported by these countries. The results of the studies presented show that the differences in the design data of ITER and NET are negligible. (orig./DG) [de

  17. On the possibility of D-3He fusion based on fast - ignition inertial confinement scheme

    International Nuclear Information System (INIS)

    Nakao, Y.; Hegi, K.; Ohmura, T.; Katsube, M.; Kudo, K.; Johzaki, T.; Ohta, M.

    2007-01-01

    Although nuclear fusion reactors adopting D 3 He fuel could provide many advantages, such as low neutron generation and efficient conversion of output fusion energy, the achievement of ignition is a difficult problem. It is therefore of particular importance to find some methods or schemes that relax the ignition requirements. In inertial confinement scheme, the use of pure D 3 He fuel is impractical because of the excessive requirement on driver energy. A small amount of DT fuel as 'igniter' is hence indispensable [1]. Our previous burn simulation [1] for DT/D 3 He fuels compressed to 5000 times the liquid density showed that substantial fuel gains (∼500) are obtained from fuels having parameters ρ R D T = 3 g/cm 2 , ρ R t otal 14 g/cm 2 and a central spark temperature of 5 keV. The driver energy needed to achieve these gains is estimated to be ∼30 MJ when the coupling efficiency is 10%; in this case the target gain is ∼50. Subsequent implosion simulation [2], however, showed that after void closure the central DT fuel is ignited while the bulk of the main D 3 He fuel is still imploding with high velocities. This pre-ignition of DT fuel leads to a low compression of the main fuel and prevents the DT/D 3 He fuel from obtaining required gain. These difficulties associated with the pre-ignition of DT fuel could be resolved or mitigated if other ignition schemes such as fast-ignition [3] and/or impact-ignition [4] are adopted, because in these schemes compression and ignition phases are separated. Furthermore, the reduction of driver energy can be expected. In the present study, we examine the possibility of D 3 He fusion in the fast-ignition scheme. Simulations until now have been made for a DT/D 3 He fuel compressed to 5000 times the liquid density by using FIBMET (2D fusion ignition and burning code) [5] and a newly developed neutron diffusion code. DT igniter was assumed to be placed at a corner of the compressed fuel. The ρ R values and temperature of

  18. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  19. Generation of thermonuclear fusion neutrons by means of a pure explosion. Part 2. Experimental results

    International Nuclear Information System (INIS)

    Derentowicz, H.; Kaliski, S.; Wolski, J.; Ziolkowski, Z.

    1977-01-01

    This paper presents the experimental results of the generation of a thermonuclear fusion neutrons by means of explosion. The experimental set is based on a quasi-spherical experiment in which a polyethylene layer is shot into a conic region hollowed out in a golden target and filled with deuterium gas. The speeding-up system is based on shooting the conic liner onto the surface of the Cu cone in which the Mach wave is generated and propagates along the cone axis leading to an implosion velocity of the polyethylene layer of the order of (4 - 5).10 6 cm/s. This affords a 10 3 -multiple compression of the D 2 gas (p 0 approximately 1.2 atm) and a neutron emission of the order of 3.10 7 from a mass of about 10 -7 g. This result is in full agreement with theoretical estimates. This is the first published and documented experiment in which a neutron stream of thermonuclear fusion was obtained by means of a pure explosion. (author)

  20. Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments

    International Nuclear Information System (INIS)

    Atzeni, S

    2009-01-01

    A brief overview of the inertial fusion principles and schemes is presented. The bases for the laser driven ignition experiments programmed for the near future at the National Ignition Facility are outlined. These experiments adopt indirect-drive and aim at central ignition. The principles of alternate approaches, based on direct-drive and different routes to ignition (fast ignition and shock ignition) are also discussed. Gain curves are compared and discussed.

  1. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    Science.gov (United States)

    Lindl, J. D.; Hammel, B. A.; Logan, B. Grant; Meyerhofer, David D.; Payne, S. A.; Sethian, John D.

    2003-12-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5 10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  2. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    International Nuclear Information System (INIS)

    Lindl, J D; Hammel, B A; Logan, B Grant; Meyerhofer, David D; Payne, S A; Sethian, John D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts and the pursuit of integrated programmes to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction, the national ignition facility (NIF) in the United States and the laser megajoule (LMJ) in France, and both projects are progressing towards an initial experimental capability. The laser integration line prototype beamline for LMJ and the first four beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in target science and target fabrication in preparation for indirect-drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch-driven indirect-drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad-based programme to develop lasers and ion beams for inertial fusion energy (IFE) is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and diode pumped solid

  3. [International Thermonuclear Experimental Reactor support

    International Nuclear Information System (INIS)

    Dean, S.O.

    1990-01-01

    This report summarizes the activities under LLNL Purchase Order B089367, the purpose of which is to ''support the University/Lawrence Livermore National Laboratory Magnetic Fusion Program by evaluating the status of research relative to other national and international programs and assist in long-range plans and development strategies for magnetic fusion in general and for ITER in particular.'' Two specific subtasks are included: ''to review the LLNL Magnet Technology Development Program in the context of the International Thermonuclear Experimental Reactor Design Study'' and to ''assist LLNL to organize and prepare materials for an International Thermonuclear Experimental Reactor Design Study information meeting.''

  4. Studies in the evolution of hydrodynamic instabilities and their role in inertial confinement fusion

    International Nuclear Information System (INIS)

    Shvarts, D.; Oron, D.; Sadot, O.

    2001-01-01

    Hydrodynamic instabilities, such as the Rayleigh-Taylor and Richtmyer-Meshkov instabilities, have a central role when trying to achieve net thermonuclear fusion energy via the method of Inertial Confinement Fusion. We shall review recent theoretical, numerical and experimental work that describes the evolution of two- and three-dimensional perturbations. Finally, the effects of these perturbation on the ignition conditions, using new self-similar solutions for perturbed burn wave propagation will be discussed. (author)

  5. Thermonuclear fusion: from fundamental research to energy production? Science and technology report No. 26

    International Nuclear Information System (INIS)

    Laval, Guy; Blanzat, Bernard; Aspect, Alain; Aymar, Robert; Bielak, Bogdan; Decroisette, Michel; Martin, Georges; Andre, Michel; Schirmann, Daniel; Garbet, Xavier; Jacquinot, Jean; Laviron, Clement; Migus, Arnold; Moreau, Rene; Pironneau, Olivier; Quere, Yves; Vallee, Alain; Dercourt, Jean; Bayer, Charles; Juraszek, Denis; Deutsch, Claude; Le Garrec, Bruno; Hennequin, Pascale; Peysson, Yves; Rax, Jean-Marcel; Pesme, Denis; Bauche, Jacques; Monier-Garbet, Pascale; Stamm, Roland; Zerah, Gilles; Ghendrih, Philippe; Layet, Roland; Grosman, Andre; Alamo, Ana; Giancarli, Luciano; Poitevin, Yves; Rigal, Emmanuel; Chieze, Jean-Pierre

    2007-01-01

    This work has been commissioned by the French ministry of Education, Sciences and Research, its aim is to provide a reliable account of the state of development of thermonuclear fusion. This report makes a point on the scientific knowledge accumulated on the topic and highlights the research programs that are necessary to overcome the technological difficulties and draws the necessary steps before an industrial application to electricity production. This report is divided into 10 chapters: 1) tokamak technology and ITER, 2) inertial fusion, 3) magnetized hot plasmas, 4) laser-plasma interaction and peta-watt lasers, 5) atomic physics and fusion, 6) computer simulation, 7) plasma-wall interaction, 8) materials for fusion reactors, 9) safety analysis, and 10) inertial fusion and astrophysics. This report has been written by a large panel of experts gathered by the French Academy of Sciences. The comments on the issue by the 3 French organizations: Cea, Cnrs and SFP (French Society of Physics) follow the last chapter

  6. Evaluation of laser-driven ion energies for fusion fast-ignition research

    Science.gov (United States)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  7. Organization of the ITER [International Thermonuclear Experimental Reactor] Project - Sharing of information and procurements

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1990-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is expected to fully confirm the scientific feasibility and to address the technological feasibility of fusion power. Consequently, the machine must be designed for controlled ignition and extended burn of deuterium-tritium plasma. It must also demonstrate and perform integrated testing of components required to utilize fusion power for practical purposes. Cooperation among four countries/organizations (United States, Soviet Union, Japan, and EURATOM) to build a single experimental reactor will reduce the cost for each country and provide an international pool of scientific and engineering resources. This paper describes ITER organization for conceptual design activity, schedule for conceptual design activities, ITER operating parameters, conceptual project schedule and cost, future plans, basic principles and problems related to task sharing, and basic principles in handling of intellectual property

  8. Proposal for a decision of the Council concerning the planning of a research- and education-program (1982-1986) on the field of thermonuclear fusion

    International Nuclear Information System (INIS)

    The thermonuclear fusion is in an early development state and has however in principle possible advantages which could be especially valuable for Europe. The primary fusion fuels (D, Li) are plentiful existent, wide spread and cheap (1 g natural Lithium could generate 15 MHW); both fuels and the end product of the reactions - Helium - are stable. From the nuclear-technological point of view a thermonuclear reactor could be built with high safety; the doubling time for breeding of new fuels in principle could be very short. These potential advantages however are balanced by certain disadvantages, e.g. high costs for the construction of a thermonuclear reactor etc. The research program, other possibilities and the costs are outlined. (orig./HT) [de

  9. Heavy ion inertial fusion - an overview

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-09-01

    Energetic heavy ions represent an alternative to laser light and light ions as ''drivers'' for supplying energy for inertial confinement fusion. To induce ignition of targets containing thermonuclear fuel, an energy of several megajoules has to be focused on to a target with radius a few millimetres in a time of some tens of nanoseconds. Serious study of the use of heavy ion drivers for producing useful power in this way has been underway for seven years, though funding has been at a low level. In this paper the requirements for targets, accelerator, and reactor vessel for containing the thermonuclear explosion are surveyed, and some of the problems to be solved before the construction of a power station can realistically be contemplated are discussed. (author)

  10. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2004-01-01

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic

  11. Fast-shock ignition: a new approach to inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2013-03-01

    Full Text Available  A new concept for inertial confinement fusion called fast-shock ignition (FSI is introduced as a credible scheme in order to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy for the fuel ignition. The main procedure in FSI concept is compressing the fuel up to stagnation. Then, two high intensity short pulse laser spikes with energy and power lower than those required for shock ignition (SI and fast ignition (FI with a proper delay time are launched at the fuel which increases the central hot-spot temperature and completes the ignition of the precompressed fuel. The introduced semi-analytical model indicates that with fast-shock ignition, the total required energy for compressing and igniting the fuel can be slightly reduced in comparison to pure shock ignition. Furthermore, for fuel mass greater than , the target energy gain increases up to 15 percent and the contribution of fast ignitor under the proper conditions could be decreased about 20 percent compared with pure fast ignition. The FSI scheme is beneficial from technological considerations for the construction of short pulse high power laser drivers. The general advantages of fast-shock ignition over pure shock ignition in terms of figure of merit can be more than 1.3.

  12. Thermonuclear research development

    International Nuclear Information System (INIS)

    Velikhov, E.

    1977-01-01

    Tokamak 10, the world's largest thermonuclear facility was commissioned in 1975. Soviet scientists thus achieved enormous success in producing high-temperature plasma and constructing a thermonuclear fusion source. The problems which remain to be solved include finding a method of regenerating the deuterium-tritium fuel mixture and a method of purifying the reacting high-temperature plasma of heavy elements. The project is designed for a more powerful facility, namely the Tokamak 20 whose toroidal chamber will accommodate a current of 5 to 6 MA and whose plasma volume will be 400 m 3 . (Oy)

  13. Thermonuclear research development

    Energy Technology Data Exchange (ETDEWEB)

    Velikhov, E

    1977-04-01

    Tokamak 10, the world's largest thermonuclear facility was commissioned in 1975. Soviet scientists thus achieved enormous success in producing high-temperature plasma and constructing a thermonuclear fusion source. The problems which remain to be solved include finding a method of regenerating the deuterium-tritium fuel mixture and a method of purifying the reacting high-temperature plasma of heavy elements. The project is designed for a more powerful facility, namely the Tokamak 20 whose toroidal chamber will accommodate a current of 5 to 6 MA and whose plasma volume will be 400 m/sup 3/.

  14. Control method for thermonuclear plasma

    International Nuclear Information System (INIS)

    Azuma, Kingo; Oda, Yasushi.

    1997-01-01

    CT (Compact Troid) is a doughnut-like shaped plasmas having a toroidal current and a poloidal current at the inside and forming a poloidal magnetic fluxes and toroidal magnetic flux. The structure of the CT is collapsed at a time of stationary state, accordingly, when it is injected to thermonuclear plasmas, particles can be supplied locally, and the state of the plasmas to be supplied can be changed by changing the direction of the injection. If a CT which is reverse to the poloidal magnetic fields is injected, plasmas with excessive ions can be supplied locally thereby enabling to form magnetic field in the thermonuclear plasmas. If the magnetic fields are formed in the vicinity of the surface of the thermonuclear plasmas, fast ions which have come over the magnetic field structure can be returned to the central portion of the plasmas. Then, confining performance of thermonuclear plasmas can be greatly improved, the efficiency for fuel supply can be increased, and energy required for ignition can be suppressed. (N.H.)

  15. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  16. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Antiproton fast ignition for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  18. Analytical criterion for shock ignition of fusion reaction in hot spot

    International Nuclear Information System (INIS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Bel, E. L.

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations. (authors)

  19. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  20. A generalized scaling law for the ignition energy of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Herrmann, M.C.

    2001-01-01

    The minimum energy needed to ignite an inertial confinement fusion capsule is of considerable interest in the optimization of an inertial fusion driver. Recent computational work investigating this minimum energy has found that it depends on the capsule implosion history, in particular, on the capsule drive pressure. This dependence is examined using a series of LASNEX simulations to find ignited capsules which have different values of the implosion velocity, fuel adiabat and drive pressure. It is found that the main effect of varying the drive pressure is to alter the stagnation of the capsule, changing its stagnation adiabat, which, in turn, affects the energy required for ignition. To account for this effect a generalized scaling law has been devised for the ignition energy, E ign ∝α if 1.88±0.05 υ -5.89±0.12 P -0.77±0.03 . This generalized scaling law agrees with the results of previous work in the appropriate limits. (author)

  1. Inertial fusion science in Europe

    International Nuclear Information System (INIS)

    Bigot, B.

    2006-01-01

    Europe has built significant laser facilities to study inertial confinement fusion since the beginning of this science. The goal is to understand the processes of ignition and propagation of thermonuclear combustion. Three routes toward fusion are pursued, each of which has advantages and difficulties. The conventional routes are using a central hot spot created by the same compression and heating laser beams, either with indirect or direct drive. A more recent route, 'fast ignition', has been actively studied since the 90's, increasing the need for very high energy lasers to create the hot spot; some European lasers of this kind are already functioning, others are under construction or planned. Among European facilities, Laser Mega Joule (LMJ), which is under construction, will be the most powerful tool at the end of the decade, along with NIF in the Usa, to study and obtain fusion. LMJ is designed not only to obtain fusion but also to carry out experiments on all laser-plasma physics themes thanks to its flexibility. This facility, mainly dedicated to defence programmes, will be accessible to the academic research community. On all these facilities, numerous results are and will be obtained in the fields of High Energy Density Physics and Ultra High Intensity. (author)

  2. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a ≥ 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of ∼50 separated in time by ∼0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments

  3. Thermonuclear land of plenty

    Science.gov (United States)

    Gasior, P.

    2014-11-01

    Since the process of energy production in the stars has been identified as the thermonuclear fusion, this mechanism has been proclaimed as a future, extremely modern, reliable and safe for sustaining energetic needs of the humankind. However, the idea itself was rather straightforward and the first attempts to harness thermonuclear reactions have been taken yet in 40s of the twentieth century, it quickly appeared that physical and technical problems of domesticating exotic high temperature medium known as plasma are far from being trivial. Though technical developments as lasers, superconductors or advanced semiconductor electronics and computers gave significant contribution for the development of the thermonuclear fusion reactors, for a very long time their efficient performance was out of reach of technology. Years of the scientific progress brought the conclusions that for the development of the thermonuclear power plants an enormous interdisciplinary effort is needed in many fields of science covering not only plasma physics but also material research, superconductors, lasers, advanced diagnostic systems (e.g. spectroscopy, interferometry, scattering techniques, etc.) with huge amounts of data to be processed, cryogenics, measurement-control systems, automatics, robotics, nanotechnology, etc. Due to the sophistication of the problems with plasma control and plasma material interactions only such a combination of the research effort can give a positive output which can assure the energy needs of our civilization. In this paper the problems of thermonuclear technology are briefly outlined and it is shown why this domain can be a broad field for the experts dealing with electronics, optoelectronics, programming and numerical simulations, who at first glance can have nothing common with the plasma or nuclear physics.

  4. Proposal for a decision of the EC Council concerning the planning of a research- and education-program (1982-1986) on the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The thermonuclear fusion is in a early development state and has, however, in principle possible advantages which could be especially valuable for Europe: the primary fusion fuels (D, Li) are plentiful existent, wide spread and cheap (1 g natural Lithium could generate 15 MWh); both fuels and the end product of the reactions - Helium - are stable. From the nuclear-technological point of view a thermonuclear reactor could be built with high safety; the doubling time for breeding of new fuels in principle could be very short. These potential advantages, however, are balanced by certain disadvantages, e.g. high costs for the construction of a thermonuclear reactor etc. The research program, other possibilities and the costs are outlined. (orig./HT) [de

  5. New trends in fusion research

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  6. Merging white dwarfs and thermonuclear supernovae.

    Science.gov (United States)

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  7. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    International Nuclear Information System (INIS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.

    2015-01-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10 12 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm 3 . In these experiments, up to 5 × 10 10 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm 2 , this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10 10 . An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source

  8. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F

    2007-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and

  9. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.

    2008-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system together with a 10-m diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of eight beams each using laser hardware that is modularized into more than 6000 line replaceable units such as optical assemblies, laser amplifiers, and multi-function sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-MJ capability of infrared light. During the next 2 years, the control system will be expanded in preparation for project completion in 2009 to include automation of target area systems including final optics

  10. Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball

    Science.gov (United States)

    Gus'kov, S. Yu.; Zmitrenko, N. V.

    2012-11-01

    Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.

  11. Inertial confinement fusion with light ion beams

    International Nuclear Information System (INIS)

    VanDevender, J.P.; Cook, D.L.

    1986-01-01

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well

  12. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2002-01-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic

  13. Nuclear microexplosion futurology

    International Nuclear Information System (INIS)

    Winterberg, F.

    1978-01-01

    Unlike magnetic confinement fusion which is restricted to the DT thermonuclear reaction, inertial confinement fusion should also be feasible with the DD and perhaps the HB 11 thermonuclear reaction. The ignition energies for the DD and HB 11 reactions though, are much larger than for the DT reaction. Four approaches to ignite the DD and HB 11 reactions are proposed and which are: 1. magnetically insulated multi-stage pulse power driven GeV particle accelerators; 2. bunching of space charge neutralized MeV ion beams; 3. staged microexplosion targets; and 4. autocatalytic thermonuclear detonation waves. The ignition of the HB 11 thermonuclear reaction would make subrelavistic (approximately1/10 velocity of light) interstellar space flight a distant but definite possibility. (orig.) [de

  14. Ignition Regime for Fusion in a Degenerate Plasma

    International Nuclear Information System (INIS)

    Son, S.; Fisch, N.J.

    2005-01-01

    We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung

  15. Relativistic self focussing of laser beams at fast ignitor inertial fusion with volume ignition

    International Nuclear Information System (INIS)

    Osman, F.; Castillo, R.; Hora, H.

    1999-01-01

    The alternative to the magnetic confinement fusion is inertial fusion energy mostly using lasers as drivers for compression and heating of pellets with deuterium and tritium fuel. Following the present technology of lasers with pulses of some megajoules energy and nanosecond duration, a power station for very low cost energy production (and without the problems of well erosion of magnetic confinement) could be available within 15 to 20 years. For the pellet compression, the scheme of spark ignition was mostly applied but its numerous problems with asymmetries and instabilities may be overcome by the alternative scheme of high gain volume ignition. This is a well established option of inertial fusion energy with lasers where a large range of possible later improvements is implied with respect to laser technology or higher plasma compression leading to energy production of perhaps five times below the present lowest level cost from fission reactors. A further improvement may be possible by the recent development of lasers with picosecond pulse duration using the fast igniter scheme which may reach even higher fusion gains with laser pulse energies of some 100 kilojoules

  16. Study of the shock ignition scheme in inertial confinement fusion

    International Nuclear Information System (INIS)

    Lafon, M.

    2011-01-01

    The Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (∼500 ps, ∼300 TW) on the pre-assembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been inferred and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested. (author) [fr

  17. Radiative processes in a laser-fusion plasma

    International Nuclear Information System (INIS)

    Campbell, P.M.; Kubis, J.J.; Mitrovich, D.

    1976-01-01

    Plasmas compressed and heated by an intense laser pulse offer promise for the ignition of propagating thermonuclear burn and, ultimately, for use in fusion reactors. It is evident theoretically that the emission and absorption of x-rays by the plasma has a significant effect on the dynamics of the laser compression process. In order to achieve densities high enough for efficient thermonuclear burn, the fusion pellet must be compressed along a low adiabat. This will not be possible if the compressed region of the pellet is significantly preheated by x-rays originating in the hot outer regions. A satisfactory model of compression hydrodynamics must, therefore, include a comprehensive treatment of radiation transport based on a non-LTE model of the plasma. The model must be valid for Fermi-Dirac statistics, since high compression along a low adiabat will, in general, produce degenerate electron distributions. This report is concerned with the plasma model and the corresponding radiation emission and absorption coefficients, including nonthermal processes which occur in the laser deposition region

  18. 1988 failure rate screening data for fusion reliability and risk analysis

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Piet, S.J.

    1988-01-01

    This document contains failure rate screening data for application to fusion components. The screening values are generally fission or aerospace industry failure rate estimates that can be extrapolated for use by fusion system designers, reliability engineers and risk analysts. Failure rate estimates for tritium-bearing systems, liquid metal-cooled systems, gas-cooled systems, water-cooled systems and containment systems are given. Preliminary system availability estimates and selected initiating event frequency estimates are presented. This first edition document is valuable to design and safety analysis for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor. 20 refs., 28 tabs

  19. The international thermonuclear reactor project

    International Nuclear Information System (INIS)

    James, T.R.

    1993-01-01

    The International Thermonuclear Experimental Reactor Project is a 6-year collaborative effort involving the U.S., Europe, Japan, and the Russian Federation to produce a detailed engineering design for the next-step fusion device

  20. The US ICF Ignition Program and the Inertial Fusion Program

    International Nuclear Information System (INIS)

    Lindl, J D; Hammel, B A; Logan, B G; Meyerhofer, D D; Payne, S A; Stehian, J D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets

  1. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  2. Research programme on controlled thermonuclear fusion. Synthesis report 2011

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2012-01-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET), which started operation again in 2011. The International Thermonuclear Experimental Reactor (ITER) is the last step before DEMO, a prototype fusion reactor able to deliver electricity and demonstrate the economic viability of fusion energy. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL went on with its participation to the scientific and technological programme of EURATOM. Researches are carried out essentially on 2 sites: (i) at EPFL, where topics dealt with include the physics of magnetic confinement studied using the Variable Configuration Tokamak (TCV), the basic experiment TORPEX, theory and numerical modelling, and the technology of plasma heating and current generation by hyper-frequency waves; (ii) at the Paul Scherrer Institute (PSI), where activities are devoted to superconductivity and structure materials. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. In the TCV it could be demonstrated for the first time that the injection of Electronic Cyclotronic Heating (ECH) waves is able to double the frequency of so-called 'Edge Localized Modes' (ELM), reducing by a factor of 2 the energy expelled by each ELM. In particular, it was possible to considerably reduce the statistical dispersion of the repetition frequency of ELM, and to avoid the appearance of gigantic ELM that are particularly harmful for reactor operation. The effect of plasma internal relaxation

  3. A1.5 Fusion Performance

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P

    2011-03-31

    Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x

  4. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10{sup 13} and ∼0.3 g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  5. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    International Nuclear Information System (INIS)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D.; Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C.; McCrory, R. L.

    2014-01-01

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10 13 and ∼0.3 g/cm 2 , respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA

  6. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  7. Fast ignition schemes for inertial confinement fusion

    International Nuclear Information System (INIS)

    Deutsch, C.

    2003-01-01

    The controlled production of a local hot spot in super-compressed deuterium + tritium fuel is examined in details. Relativistic electron beams (REB) in the MeV and proton beams in the few tens MeV energy range produced by PW-lasers are respectively considered. A strong emphasis is given to the propagation issues due to large density gradients in the outer core of compressed fuel. A specific attention is also paid to the final and complete particle stopping resulting in hot spot generation as well as to the interplay of collective vs. particle stopping at the entrance channel on the low density side in plasma target. Moreover, REB production and fast acceleration mechanisms are also given their due attention. Proton fast ignition looks promising as well as the wedged (cone angle) approach circumventing most of transport uncertainties between critical layer and hot spot. Global engineering perspectives for fast ignition scenario (FIS) driven inertial confinement fusion are also detailed. (author)

  8. Divertor, thermonuclear device and method of neutralizing high temperature plasma

    International Nuclear Information System (INIS)

    Ikegami, Hideo.

    1995-01-01

    The thermonuclear device comprises a thermonuclear reactor for taking place fusion reactions to emit fusion plasmas, and a divertor made of a hydrogen occluding material, and the divertor is disposed at a position being in contact with the fusion plasmas after nuclear fusion reaction. The divertor is heated by fusion plasmas after nuclear fusion reaction, and hydrogen is released from the hydrogen occluding material as a constituent material. A gas blanket is formed by the released hydrogen to cool and neutralize the supplied high temperature nuclear fusion plasmas. This prevents the high temperature plasmas from hitting against the divertor, elimination of the divertor by melting and evaporation, and solve a problem of processing a divertor activated by neutrons. In addition, it is possible to utilize hydrogen isotopes of fuels effectively and remove unnecessary helium. Inflow of impurities from out of the system can also be prevented. (N.H.)

  9. Joint development effort Thermonuclear Fusion. Programme budgeting 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The joint KfK and IPP project for the development of thermonuclear fusion device is established as the centerpiece of Federal German efforts in this field. It is meant to enhance the German contribution to the European programme and thus foster the chances of a joint European large-scale experiment to be started in the Federal Republic of Germany. IPP's tasks in the project are to study the physical principles and aspects, whereas KfK is responsible for the technological aspects. Work at IPP is focused on divertor experiments with the ASDEX series in order to go deeper into the problems that could not be solved by the JET experiments, namely those of the plasma boundary and control of impurities. Stellarator experiments are made in order to study the potentials of this toroidal confinement concept for steady-state operation. The IPP which always has been working in the plasma physics field devotes all activities to the joint effort. KfK has established a special project group for this purpose, PKF. The budgeting programme presented therefore covers the IPP entire working schedule, and that of PKF of the KfK. (orig./GG) [de

  10. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  11. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-01-01

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals

  12. Research programme on controlled thermonuclear fusion - Synthesis report 2010

    International Nuclear Information System (INIS)

    Vaucher, C.; Tran, M. Q.; Villard, L.; Marot, L.

    2011-01-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET). The International Thermonuclear Experimental Reactor (ITER) is being built; the first plasma is expected in 2019. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL participates to EURATOM scientific and technological projects in magnetic confinement physics, through an experimental contribution (the Variable Configuration Tokamak, TCV) and theoretical studies. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. A configuration of type 'snowflakes' could be created, reducing the power deposition at the edge of the plasma. Theoretical studies on turbulence have improved the plasma stability in the TCV. For the first time in the world, TCV could reach a stable plasma, the plasma current being generated using the so-called 'bootstrap' phenomenon. Besides turbulence, studies were focused on heat and particle transport in tokamaks, on an analysis of the equilibrium and magneto-hydrodynamic stability of tokamaks and stellarators, on the application of radiofrequency waves and on the optimization of new confinement configurations. Experiments in the JET facility confirmed the numerical results of theoretical simulations. The TORPEX facility, which is simpler than TCV, allows high space-temporal resolution measurements for the study of turbulences and plasma threads ('blobs'). At the Paul Scherrer Institute (PSI), research topics include superconductivity and materials. The Fusion

  13. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    This is a report concerning the participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion. The report lists all the personnel enroled in research activities, both theoretical and experimental. The research subjects are the following: relativistic electron beams; plasma produced by laser; plasma theory; quiescent plasma; plasma centrifugal; ionic propulsion. (A.C.A.S.) [pt

  15. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the TH Amphitheatre New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to su...

  16. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  17. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    Science.gov (United States)

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed.

  18. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    International Nuclear Information System (INIS)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R.

    2006-01-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs

  19. Safety considerations in next step fusion design and beyond

    International Nuclear Information System (INIS)

    Holland, D.F.

    1990-01-01

    Recent U.S. and international design studies provide insights into the potential safety and environmental advantages of fusion as well as the development needed to realize this potential. We in the Fusion Safety Program at EG ampersand G Idaho have analyzed the Compact Ignition Tokamak (CIT), the International Thermonuclear Engineering Reactor (ITER), and the Advanced Reactor Innovative Engineering Study (ARIES). I have reviewed these three designs to determine issues related to meeting the safety and the environmental goals that guide fusion development in the U.S. The paper lists safety and environmental issues that are generic to fusion and approaches to favorably resolve each issue. The technical developments that have the highest potential of contributing to improving the safety and environmental attractiveness of fusion are identified and discussed. These developments are in the areas of low-activation materials, plasma- facing components, and plasma physics relating to off-normal plasma events and tritium burn-up. 8 refs., 7 tabs

  20. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  1. Thermonuclear fusion in the UK: towards a new abundant and durable energy source; La fusion nucleaire au Royaume-Uni: vers une nouvelle source d'energie abondante et durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The ITER treaty (International thermonuclear experimental reactor) was signed in Paris on November 21, 2006, by the European Union, China, the USA, Japan and Russia. This treaty is devoted to the construction and exploitation of the biggest thermonuclear facility ever, capable to generate 500 MW during a reaction of 10 minutes. ITER is a priori the last experimental step before the construction of a fusion power plant for power generation at the industrial scale. The goal of ITER is to obtain a quasi-unexhaustible and less polluting energy source by the mid-21. century. The British research work has largely contributed to the development of this technology through a large number of projects that have preceded ITER but also through its present day involvement in the creation of the future reactor of Cadarache. This document presents: the UK fusion program, the projects carried out at the Culham science centre (Compass-D, Joint European Torus (JET), Small Tight Aspect Ratio Tokamak (START), Mega-Ampere Spherical Tokamak (MAST), EASY-2005 (European activation system)), the British involvement in ITER project and the transfer of technologies, and the nuclear fusion research in British universities (PPRG Imperial College London, CFSA Warwick university, Dalton nuclear institute (DNI), department of physics York university). (J.S.)

  2. Annual report of the Summit Members' Working Group on Controlled Thermonuclear Fusion (Fusin Working Group (FWG))

    International Nuclear Information System (INIS)

    1987-04-01

    The Summit Members' Working Group on Controlled Thermonuclear Fusion [Fusion Working Group (FWG)] was established in 1983 in response to the Declaration of the Heads of State and Government at the Versailles Economic Summit meeting of 1982, and in response to the subsequent report of the Working Group in Technology, Growth and Employment (TGE) as endorsed at the Williamsburg Summit meeting, 1983. This document contains the complete written record of each of the three FWG meetings which include the minutes, lists of attendees, agendas, statements, and summary conclusions as well as the full reports of the Technical Working Party. In addition, there is a pertinent exchange of correspondence between FWG members on the role of the Technical Working Party and a requested background paper on the modalities associated with a possible future ETR project

  3. Fusion plasma physics during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10 8 K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks

  4. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  5. Introduction to the National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E I

    2004-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear bum, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10 8 K and 10 11 bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF

  6. Thermonuclear fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B

    1977-01-01

    The present state and future possibilities of controlled-nuclear-fusion research are reviewed, including basic concepts and problems, as well as various approaches based on magnetic- and nonmagnetic-confinement schemes. Considerable progress has so far been made in both plasma physics and fusion-reactor technology, and a closer relationship has been established between theory and experiments. Still, none of the present approaches will, for certain, lead to the final solution of a full-scale reactor. Intensified work along broad lines, with emphasis also on basic research and new ideas, is necessary for future success.

  7. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  8. Semi-analytical calculation of fuel parameters for shock ignition fusion

    Directory of Open Access Journals (Sweden)

    S A Ghasemi

    2017-02-01

    Full Text Available In this paper, semi-analytical relations of total energy, fuel gain and hot-spot radius in a non-isobaric model have been derived and compared with Schmitt (2010 numerical calculations for shock ignition scenario. in nuclear fusion. Results indicate that the approximations used by Rosen (1983 and Schmitt (2010 for the calculation of burn up fraction have not enough accuracy compared with numerical simulation. Meanwhile, it is shown that the obtained formulas of non-isobaric model cannot determine the model parameters of total energy, fuel gain and hot-spot radius uniquely. Therefore, employing more appropriate approximations, an improved semianalytical relations for non-isobaric model has been presented, which  are in a better agreement with numerical calculations of shock ignition by Schmitt (2010.

  9. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1993-01-01

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow (∼ 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos' concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable

  10. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  11. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Y; Goto, T; Okano, K; Asaoka, Y; Hiwatari, R; Someya, Y

    2008-01-01

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G∼100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ∼ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive

  12. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y [High Temperature Plasma Center, University of Tokyo, Chiba (Japan); Goto, T; Okano, K [Graduate School of Frontier Sciences, University of Tokyo, Chiba (Japan); Asaoka, Y; Hiwatari, R [Central Research Institute for Electric Power Industry, Komae, Tokyo (Japan); Someya, Y [Graduate School of Engineering, Musashi Institute of Technology, Tokyo (Japan)], E-mail: ogawa@ppl.k.u-tokyo.ac.jp

    2008-05-15

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G{approx}100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 {approx} 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.

  13. Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber

    Science.gov (United States)

    Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.

    2008-05-01

    The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.

  14. Elements of a method to scale ignition reactor Tokamak

    International Nuclear Information System (INIS)

    Cotsaftis, M.

    1984-08-01

    Due to unavoidable uncertainties from present scaling laws when projected to thermonuclear regime, a method is proposed to minimize these uncertainties in order to figure out the main parameters of ignited tokamak. The method mainly consists in searching, if any, a domain in adapted parameters space which allows Ignition, but is the least sensitive to possible change in scaling laws. In other words, Ignition domain is researched which is the intersection of all possible Ignition domains corresponding to all possible scaling laws produced by all possible transports

  15. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  16. Controlled thermonuclear reactions and Tora Supra program

    International Nuclear Information System (INIS)

    1988-01-01

    The research programs for the nuclear energy production by means of thermonuclear fusion are shown. TORA SUPRA, Joint European Torus, Next European Torus and those developed at the Atomic Energy Center are described. The controlled fusion necessary conditions, the energy and confinement balance, and the research of a better tokamak configuration are discussed. A description of TORA SUPRA, the ways of achieving the project and the expected delays are shown. The Controlled Fusion Research Department functions, concerning these programs, are described. The importance of international cooperation and the perspectives about the use of controlled fusion are underlined [fr

  17. The problems associated with the monitoring of complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    Czech Academy of Sciences Publication Activity Database

    Bilski, P.; Blomgren, J.; d´Errico, F.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Fuchs, A.; Golnik, N.; Lacoste, V.; Leuschner, A.; Sandri, S.; Silari, M.; Spurný, František; Wiegel, B.; Wright, P.

    2007-01-01

    Roč. 126, 1-4 (2007), s. 491-496 ISSN 0144-8420 R&D Projects: GA MŠk 1P05OC032 Grant - others:ES(XE) Contract no FI6R-012684 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation fields * european high-energy accelerators * thermonuclear fusion facilities Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.528, year: 2007

  18. Annual report of the Summit Members' Working Group on Controlled Thermonuclear Fusion (Fusin Working Group (FWG))

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1987-04-01

    The Summit Members' Working Group on Controlled Thermonuclear Fusion (Fusion Working Group (FWG)) was established in 1983 in response to the Declaration of the Heads of State and Government at the Versailles Economic Summit meeting of 1982, and in response to the subsequent report of the Working Group in Technology, Growth and Employment (TGE) as endorsed at the Williamsburg Summit meeting, 1983. This document contains the complete written record of each of the three FWG meetings which include the minutes, lists of attendees, agendas, statements, and summary conclusions as well as the full reports of the Technical Working Party. In addition, there is a pertinent exchange of correspondence between FWG members on the role of the Technical Working Party and a requested background paper on the modalities associated with a possible future ETR project.

  19. 1D thermonuclear model for x-ray transients

    International Nuclear Information System (INIS)

    Wallace, R.K.

    1982-01-01

    The thermonuclear evolution of a 1.41 M solar mass neutron star, with a radius of 14.3 km, accreting various mixtures of hydrogen, helium, and heavy elements at rates of 10 -11 to 10 -10 M solar mass/yr is examined, in conjunction with S.E. Woosley and T.A. Weaver, using a one-dimensional numerical model. We have ignored any effects due to general relativity or magnetic fields. Two cases shall be discussed. In both models, the accretion rate is such that the hydrogen shell burns to helium in steady state, with the hydrogen burning stabilized by the β-limited CNO cycle. A thick helium shell is produced, which is eventually ignited under extremely degenerate conditions, producing a thermonuclear runaway

  20. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  1. Investigation of fusion gain in fast ignition with conical targets

    Directory of Open Access Journals (Sweden)

    MJ Tabatabaei

    2011-03-01

    Full Text Available Fast ignition is a new scheme for inertial confinement fusion (ICF. In this scheme, at first the interaction of ultraintense laser beam with the hohlraum wall surrounding a capsule containing deuterium-tritium (D-T fuel causes implosion and compression of fuel to high density and then laser produced protons penetrate in the compressed fuel and deposit their energy in it as the ignition hot spot is created. In this paper, following the energy gain of spherical target and considering relationship of the burn fraction to burn duration, we have obtained the energy gain of conical targets characterized by the angle β, and found a hemispherical capsule (β=π/2 has a gain as high as 96% of that of the whole spherical capsule. The results obtained in this study are qualitatively consistent with Atzeni et al.'s studies of simulations.

  2. Laser fusion reactor design in a fast ignition with a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Yichi; Goto, Takuya; Ninomiya, Daisuke; Hiwatari, Ryoji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2007-01-01

    One of the critical issues in laser fusion reactor design is high pulse heat load on the first wall by the X-rays and the fast/debris ions from fusion burn. There are mainly two concepts for the first wall of laser fusion reactor, a dry wall and a liquid metal wall. We should notice that the fast ignition method can achieve sufficiently high pellet gain with smaller (about 1/10 of the conventional central ignition method) input energy. To take advantage of this property, the design of a laser fusion reactor with a small size dry wall chamber may become possible. Since a small fusion pulse leads to a small electric power, high repetition of laser irradiation is required to keep sufficient electric power. Then we tried to design a laser fusion reactor with a dry wall chamber and a high repetition laser. This is a new challenging path to realize a laser fusion plant. Based on the point model of the core plasma, we have estimated that fusion energy in one pulse can be reduced to be 40 MJ with a pellet gain around G>100. To evaluate the validity of this simple estimation and to optimize the pellet design and the pulse shaping for the fast ignition scenario, we have introduced 1-D hydrodynamic simulation code ILESTA-1D and carried out implosion simulations. Since the code is one-dimensional, the detailed physics process of fast heating cannot be reproduced. Thus the fast heating is reflected in the code as the additional artificial heating source in the energy equation. It is modeled as a homogeneous heating of electrons in core region at the time just before when the maximum compression is achieved. At present we obtained the pellet gain G∝100 with the same input energy as the above estimation by a simple point model (350kJ for implosion, 50kJ for heating and assuming 20% coupling of heating laser). A dry wall is exposed to several threats due to the cyclic load by the high energy X-ray and charged particles: surface melting, physical and chemical sputtering

  3. Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses

    Czech Academy of Sciences Publication Activity Database

    Hora, H.; Korn, Georg; Giuffrida, Lorenzo; Margarone, Daniele; Picciotto, A.; Krása, Josef; Jungwirth, Karel; Ullschmied, Jiří; Lalousis, P.; Eliezer, S.; Miley, G. H.; Moustaizis, S.; Mourou, G.

    2015-01-01

    Roč. 33, č. 4 (2015), s. 607-619 ISSN 0263-0346 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : fusion energy without radiation problem * boron fusion by lasers * non-linear force-driven block ignition Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  4. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  5. Fusion plasma physics during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10{sup 8} K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks.

  6. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Directory of Open Access Journals (Sweden)

    Labaune Christine

    2013-11-01

    Full Text Available Laser-driven Inertial Confinement Fusion (ICF relies on the use of high-energy laser beams to compress and ignite a thermonuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources–combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-term program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  7. The Ignition Target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-01-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10 8 K), pressures (10-GBar) and matter densities (> 100 g/cm 3 ). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art

  8. Research programme on controlled thermonuclear fusion - Synthesis report 2008

    International Nuclear Information System (INIS)

    Werthmueller, A.

    2009-06-01

    Switzerland is associated to the International Thermonuclear Experimental Reactor (ITER) project carried out in the framework of the European Atomic Energy Community (EURATOM). The current stage includes on-site civil engineering works. The Variable Configuration Tokamak (TCV) of the 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL will remain an important recognized research facility until the start of the ITER operation foreseen in 2018. At the European level, the whole fusion research is coordinated and partly financed by the Joint Undertaking Fusion for Energy (JU F4E). The large flexibility of the TCV design and operation modus allow the creation and control of plasmas of various shapes, what is a very useful option to verify the results of numerical simulations. Besides, the hyper-frequency power density injected into the plasma is the highest ever recorded in the world. Research topics studied with the TCV include the stationary regimes in the tokamaks; a plasma current of more than 70 kA could be maintained, what represents an improvement by a factor of 3 to 4 of the confinement quality. For the first time in the world a configuration of the 'snowflake' type could be created and the power density on the wall of the vacuum chamber could be reduced accordingly. Numerical models allowed the analysis of turbulence and heat transport, of the magneto-hydrodynamic stability of the tokamaks and stellarators as well as the optimization of the magnetic confinement. Results concerning the so-called 'saw teeth' instability were experimentally confirmed on the Joint European Torus (JET). Theoretical researches were carried out on the fluctuations, turbulence and transport phenomena in the magnetized toric plasmas. At the Paul Scherrer Institute (PSI) the effect of the fast neutrons emitted by the fusion reactions on the walls of the fusion reactors was investigated. Irradiation simulations were carried out by means of the Swiss Spallation Neutron Source

  9. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  10. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  11. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  12. Towards a new generation of control and data acquisition systems for thermonuclear fusion research

    International Nuclear Information System (INIS)

    Van Haren, P.C.

    1993-01-01

    Because of the complexity of thermonuclear fusion test reactors, control systems are indispensable. The physical properties of the reactor medium, i.e. the plasma, are still not well understood. Therefore, many diagnostic techniques are applied to investigate the plasma and to discover its properties. As a consequence, data acquisition systems play an important role in thermonuclear fusion research. This thesis reports on three projects that were carried out in the field of control and data acquisition. The target experiment is the Rijnhuizen Tokamak Project (RTP), a medium-sized experiment dedicated to studies of transport in the reactor medium. One of the projects is aimed at the development of a new Plasma Position and Current Control feedback System (PPCCS). This system evaluates signals of a large (about 20) number of sensors, computes the actual state of the plasma from these signals and generates command signals for the power supplies that govern the plasma position. The most ambitious project described in this thesis is the development of a data acquisition system, called TRAMP (Transient Recorders and Amoeba Multi Processor), that aims to be a testbed for smart data acquisition strategies. TRAMP attempts to acquire and store temporarily all possible data at a high sampling frequency from a single RTP pulse, and accommodates for a resampling in software prior to transferring the data to a mass storage facility. The software resampling frequency can be tuned by analysis of the acquired data and, in that way, only interesting data will be stored. In the course of the development of both the above-mentioned systems it turned out that the existing database format applied for managing experimental data provided many hurdles in the realization of efficient solutions. Consequently, a new database format was developed together with software to deal with it. This new database, called DOM4 (Data Organization and Management), is now applied at all data acquisition

  13. Low Convergence path to Fusion I: Ignition physics and high margin design

    Science.gov (United States)

    Molvig, Kim; Schmitt, M. J.; McCall, G. H.; Betti, R.; Foula, D. H.; Campbell, E. M.

    2016-10-01

    A new class of inertial fusion capsules is presented that combines multi-shell targets with laser direct drive at low intensity (280 TW/cm2) to achieve robust ignition. These Revolver targets consist of three concentric metal shells, enclosing a volume of 10s of µg of liquid deuterium-tritium fuel. The inner shell pusher, nominally of gold, is compressed to over 2000 g/cc, effectively trapping the radiation and enabling ignition at low temperature (2.5 keV) and relatively low implosion velocity (20 cm/micro-sec) at a fuel convergence of 9. Ignition is designed to occur well ``upstream'' from stagnation, with implosion velocity at 90% of maximum, so that any deceleration phase mix will occur only after ignition. Mix, in all its non-predictable manifestations, will effect net yield in a Revolver target - but not the achievement of ignition and robust burn. Simplicity of the physics is the dominant principle. There is no high gain requirement. These basic physics elements can be combined into a simple analytic model that generates a complete target design specification given the fuel mass and the kinetic energy needed in the middle (drive) shell (of order 80 kJ). This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  14. Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

    International Nuclear Information System (INIS)

    Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M; Town, R J; Patel, P K

    2008-01-01

    The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with ∼ 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010

  15. Important problems of future thermonuclear reactors*

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D and tritium (T. There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI. There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO.

  16. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both

  17. Engineering design of a fusion test reactor (FTR) and fusion engineering research facility (FERF) based on a toroidal theta pinch

    International Nuclear Information System (INIS)

    Abdou, M.; Burke, R.J.; Dauzvardis, P.V.; Foss, M.; Gerstl, S.A.W.; Maroni, V.A.; Pierce, A.W.; Turner, A.F.; Krakowski, R.A.; Linford, R.K.; Oliphant, T.A.; Ribe, F.L.; Thomassen, K.I.

    1975-01-01

    This paper describes two advanced toroidal theta-pinch devices which are being proposed for future construction. The Fusion Test Reactor (FTR) is being designed to produce thermonuclear energy (at 20 MeV/neutron) equal to the maximum plasma energy (Q=1) and to demonstrate α-particle heating. The Fusion Engineering and Research Facility (FERF) is being designed to test materials in a fusion environment where the average 14-MeV neutron flux from the plasma is greater than or of the order of 5.10 13 n/cm 2 .s over large surface areas. These devices employ the staged theta-pinch principle where the heating is accomplished by rapid (about 0.1 μs) implosion and expansion followed by a slow compression of the plasma. The rapid implosion injects as much heat as possible at as large a plasma radious as possible so that the plasma remains stable even after further compression. The final compression to ignition requires the transfer of a large amount of magnetic energy which implies a long transfer time (about 1 ms) for realistic voltages in the driving circuit. Throughout the heating and burn cycle the plasma must remain in equilibrium and stable to the dominant MHD-modes. A sufficiently large plasma radius guarantees stability against the m = 1 modes. These equilibrium and stability conditions and the requirements on thermonuclear burn determine the design parameters for either machine. The design parameters must also be consistent with economic limitations and technological feasibility of components. In addition to these requirements, the FERF must provide a steady and reliable source of fusion neutrons. (author)

  18. PITR: Princeton Ignition Test Reactor

    International Nuclear Information System (INIS)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection

  19. Ignition in the next step tokamak

    International Nuclear Information System (INIS)

    Johner, J.

    1990-07-01

    A 1/2-D model for thermal equilibrium of a thermonuclear plasma with transport described by an empirical global energy confinement time is described. Ignition in NET and ITER is studied for a number of energy confinement time scaling expressions. Ignited operation of these machines at the design value of the neutron wall load is shown to satisfy both beta and density constraints. The value of the confinement time enhancement factor required for such operation is found to be lower for the more recently proposed scaling expressions than it is for the oldest ones. With such new scalings, ignition could be obtained in H-mode in NET and ITER even with relatively flat density profiles

  20. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    He, X. T., E-mail: xthe@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240 (China); Institute of Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Li, J. W.; Wang, L. F.; Liu, J.; Lan, K.; Ye, W. H. [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240 (China); Fan, Z. F.; Wu, J. F. [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China)

    2016-08-15

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiation ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.

  1. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, UMR 5107,351 Cours de la Libération, 33400 Talence (France)

    2016-07-15

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200–300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  2. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  3. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

    International Nuclear Information System (INIS)

    Mehlhorn, T A; Bailey, J E; Bennett, G; Chandler, G A; Cooper, G; Cuneo, M E; Golovkin, I; Hanson, D L; Leeper, R J; MacFarlane, J J; Mancini, R C; Matzen, M K; Nash, T J; Olson, C L; Porter, J L; Ruiz, C L; Schroen, D G; Slutz, S A; Varnum, W; Vesey, R A

    2003-01-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a ∼220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6±1.3) x 10 10 . Argon spectra confirm a hot fuel with T e ∼ 1 keV and n e ∼ (1-2) x 10 23 cm -3 . Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a ∼70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P 2 radiation asymmetries to ±2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL

  4. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

    International Nuclear Information System (INIS)

    Bailey, James E.; Chandler, Gordon Andrew; Vesey, Roger Alan; Hanson, David Lester; Olson, Craig Lee; Nash, Thomas J.; Matzen, Maurice Keith; Ruiz, Carlos L.; Porter, John Larry Jr.; Cuneo, Michael Edward; Varnum, William S.; Bennett, Guy R.; Cooper, Gary Wayne; Schroen, Diana Grace; Slutz, Stephen A.; MacFarlane, Joseph John; Leeper, Ramon Joe; Golovkin, I.E.; Mehlhorn, Thomas Alan; Mancini, Roberto Claudio

    2003-01-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a ∼220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 ± 1.3) x 10 10 . Argon spectra confirm a hot fuel with Te ∼ 1 keV and n e ∼ (1-2) x 10 23 cm -3 . Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a ∼70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P 2 radiation asymmetries to ±2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

  5. Review of the National Ignition Campaign 2009-2012

    International Nuclear Information System (INIS)

    Lindl, John; Landen, Otto; Edwards, John; Moses, Ed

    2014-01-01

    The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked

  6. Analysis and evaluation of the hydrogen risk in a thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Chaudron, V.; Arnould, F.; Latge, C.; Laurent, A.

    2001-01-01

    After a recall of the principle of controlled thermonuclear fusion, the ITER reactor project is briefly described. The integrity of the reactor must be preserved in the case of a potential explosion of the hydrogen generated inside the reactor, in order to avoid any dispersion radioactive, chemical or toxic materials in the environment. The fundamental principles of safety developed to fulfill these objectives, in particular the defense-in-depth concept, are presented. The main potential source of hydrogen production is the oxidation of beryllium, which is used as protection material in the first wall of the torus, and the accidental presence of water, as reported in several scenarios. The confinement strategy is then described with the qualification of the role of the different barriers. Finally, the hydrogen explosion risk is analyzed and evaluated with respect to the sources, to the reference envelope scenarios and to the location of hydrogen inside the ITER reactor. It appears, at the engineering stage, that the vacuum toric vessel, the discharge reservoir and the exchanger compartments are the most worrying parts. (J.S.)

  7. Zone-plate coded imaging of thermonuclear burn

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1978-01-01

    The first high-resolution, direct images of the region of thermonuclear burn in laser fusion experiments have been produced using a novel, two-step imaging technique called zone-plate coded imaging. This technique is extremely versatile and well suited for the microscopy of laser fusion targets. It has a tomographic capability, which provides three-dimensional images of the source distribution. It is equally useful for imaging x-ray and particle emissions. Since this technique is much more sensitive than competing imaging techniques, it permits us to investigate low-intensity sources

  8. DEMONSTRATION OF THE ITER IGNITION FIGURE OF MERIT AT q95>4 IN STATIONARY PLASMAS IN DIII-D

    International Nuclear Information System (INIS)

    WADE, M.R.; LUCE, T.C.; POLITZER, P.A.; FERRON, J.R.; HYATT, A.W.; SCOVILLE, J.T.; La HAYE, R.J.; KINSEY, J.E.; LASNIER, C.J.; MURAKAMI, M.; PETY, C.C.

    2002-01-01

    In order to maximize the probability of achieving ignition, the present International Thermonuclear Experimental Reactor (ITER) [1] design (as well as many of its predecessors) is based on operation at high plasma current. This constraint poses many significant engineering challenges, primarily related to the possibility of a sudden termination of the plasma current. Currents induced in the vessel and associated systems in such an event can lead to large forces, and runaway electrons may cause damage to the interior of the vacuum vessel. Present design methods (including those used for ITER) assume that the probability of experiencing such a major disruption increases with plasma current at fixed magnetic field and size. Because fusion performance is assumed to scale in a similar manner, reactor designs tend to seek a compromise between increased fusion performance and reduced susceptibility to disruptions, generally resulting in a design with q 95 ∼ 3.0. Discharges recently developed in the DIII-D tokamak offer a way to obtain equivalent fusion performance with more margin against disruption consequences, having obtained an ignition figure of merit comparable to the ITER baseline scenario with q 95 = 4.5. These discharges have been shown to be stationary on the thermal, resistive, and wall time scales and involve feedback control only of global quantities rather than profiles

  9. The international thermonuclear reactor (ITER)

    International Nuclear Information System (INIS)

    Fowler, T.K.; Henning, C.D.

    1987-01-01

    Four governmental groups, representing Europe, Japan, USSR and U.S. met in March 1987 to consider a new international design of a magnetic fusion device for the 1990's. An interim group was appointed. The author gives a brief synopsis of what might be thought of as a draft charter. The starting point is the objective of the ITER device, which is summarized as demonstrating both scientific and technical feasibility of fusion. The paper presents an update on the current thinking and technical aspects for the International Thermonuclear Experimental Reactor (ITER). This covers not only what is happening in the U.S. but also some reports of preliminary thinking of the last technical work that occurred in Vienna

  10. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    Science.gov (United States)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is

  11. Fusion Ignition Research Experiment System Integration

    International Nuclear Information System (INIS)

    Brown, T.

    1999-01-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components

  12. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  13. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    Science.gov (United States)

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  14. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  15. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  16. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  17. Diagnostics for the laser fusion program: plasma physics on the scale of microns and picoseconds

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1978-01-01

    Laser induced fusion is the forerunner of a class of inertial confinement schemes in which hydrogen isotopes are heated to thermonuclear conditions in a very short period. The process is characterized by such short time scales that fuel confinement is achieved through its' own finite mass and expansion velocity, approaching 1 μm/psec for ignition temperatures of order 10 keV (10 8 0 K). With current laser powers limited to several terrawatts one readily estimates, on the basis of energy conservation, target mass, and expansion velocity, that target size and laser pulse duration are on the order of 100 μm and 100 psec, respectively. Within these constraints, targets have been heated and confined to the point where thermonuclear conditions have been achieved. This paper describes a sampling of diagnostic techniques with requisite resolution (microns and picoseconds) to accurately describe the dynamics of a laser driven compression. As discussed in each case cited, these in turn provide insight to and quantitative measure of, the physical processes dominating the implosion. The success of the inertial confinement fusion program is strongly dependent on the continued development of such diagnostics and the understanding they provide

  18. Thermonuclear Runaway model

    International Nuclear Information System (INIS)

    Sparks, W.M.; Kutter, G.S.; Starrfield, S.; Truran, J.W.

    1989-01-01

    The nova outburst requires an energy source that is energetic enough to eject material and is able to recur. The Thermonuclear Runaway (TNR) model, coupled with the binary nature of nova systems satisfies these conditions. The white dwarf/red dwarf binary nature of novae was first recognized as a necessary conditions by Kraft. The small separation characteristic of novae systems allows the cool, red secondary to overflow is Roche lobe. In the absence of strong, funneling magnetic fields, the angular momentum of this material prevents it from falling directly onto the primary, and it first forms a disk around the white dwarf. This material is eventually accreted from the disk onto the white dwarf. As the thickness of this hydrogen-rich layer increases, the degenerate matter at the base reaches a temperature that is high enough to initiate thermonuclear fusion of hydrogen. Thermonuclear energy release increases the temperature which in turn increases the energy generation rate. Because the material is degenerate, the pressure does not increase with temperature, which normally allows a star to adjust itself to a steady nuclear burning rate. Thus the temperature and nuclear energy generation increase and a TNR results. When the temperature reaches the Fermi temperature, degeneracy is lifted and the rapid pressure increase causes material expansion. The hydrogen-rich material either is ejected or consumed by nuclear burning, and the white dwarf returns to its pre-outburst state. The external source of hydrogen fuel from the secondary allows the while process to repeat. 43 refs., 8 figs

  19. Synthetic report 2012. Research programme on controlled thermonuclear fusion; Rapport de synthèse 2012. Programme de recherche Fusion thermonucléaire contrôlée

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secrétariat à l’éducation et à la recherche (SER), Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology EPFL, Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2013-07-01

    Since 1961, Switzerland participates in the research on thermonuclear fusion thanks to the creation of the Research Centre in Plasma Physics. In 1979 it entered into partnership with the European programme on fusion through its adhesion to EURATOM. The thermonuclear fusion is an interesting energy source because the basic fuel is practically inexhaustible and its use does not release any significant CO{sub 2} quantity and very little radioactive residues. But its working up faces enormous physical and technological difficulties. The International Thermonuclear Reactor (ITER), presently in construction, has to demonstrate the technological feasibility of the controlled fusion. Il will be followed by DEMO, foreseen for 2040-2050, which must guarantee the economical rentability. At CRPP the research projects are partitioned onto several sites: at the Swiss Federal Institute of Technology (EPFL) in Lausanne, they concern the physics of the magnetic confinement with the Variable Geometry Tokamak (TCV), the development of theoretical models and the numerical simulation, the plasma heating and the generation of hyper frequency waves; the Paul Scherrer Institute (PSI) studies the superconductivity and the materials; the interactions between the plasma and the Tokamak walls are studied at the Basel University for the structures of ITER. Thanks to its large flexibility, TCV allows the creation and the control of plasmas of very different forms. The injection system of millimetric waves allows orienting the injected power according to specific profiles. By using the asymmetry of the flow in the toroidal sense, the plasma rotation could be measured with a much better accuracy than before. In TCV, by playing on the form of the plasma, it was possible to strongly reduce the energy quantity which is expelled by the Edge Localized Modes (ELM) onto the wall of the vacuum chamber. The ‘snowflake’ configuration created in TCV allows distributing the ELM energy onto several impact

  20. Research programme on controlled thermonuclear fusion. Synthesis report 2011; Programme de recherche Fusion thermonucleaire controlee. Rapport de synthese 2011

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secretariat d' Etat a l' education et a la recherche, Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2012-07-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET), which started operation again in 2011. The International Thermonuclear Experimental Reactor (ITER) is the last step before DEMO, a prototype fusion reactor able to deliver electricity and demonstrate the economic viability of fusion energy. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL went on with its participation to the scientific and technological programme of EURATOM. Researches are carried out essentially on 2 sites: (i) at EPFL, where topics dealt with include the physics of magnetic confinement studied using the Variable Configuration Tokamak (TCV), the basic experiment TORPEX, theory and numerical modelling, and the technology of plasma heating and current generation by hyper-frequency waves; (ii) at the Paul Scherrer Institute (PSI), where activities are devoted to superconductivity and structure materials. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. In the TCV it could be demonstrated for the first time that the injection of Electronic Cyclotronic Heating (ECH) waves is able to double the frequency of so-called 'Edge Localized Modes' (ELM), reducing by a factor of 2 the energy expelled by each ELM. In particular, it was possible to considerably reduce the statistical dispersion of the repetition frequency of ELM, and to avoid the appearance of gigantic ELM that are particularly harmful for reactor operation. The effect of plasma

  1. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  2. Numerical simulation of direct-drive ICF ignition in spherical geometry

    International Nuclear Information System (INIS)

    Yu Xiaojin

    2006-01-01

    The basic condition required for achieving central ignition is producing a hot spot with 10 keV temperature and 0.3 g/cm 2 surface density. Growth of hydrodynamic instability during deceleration phase will destroy the symmetric-drive, reduce the volume of central hot spot and make a harmful effect on ignition. Based on the LARED-S code, considering the thermonuclear reaction and α-particle heating, a numerical study of direct-drive ICF in spherical geometry is made. One-dimensional results agree well with the NIF ignition target designs, and show that the α-particle heating plays an important role in marginal ignition. Two-dimensional results show that the growth of hydrodynamic instability during deceleration phase makes a harmful effect on ignition. (authors)

  3. D+D thermonuclear fusion reactions with polarized particles

    International Nuclear Information System (INIS)

    Kozma, P.

    1986-01-01

    Polarization measurements from the 2 H(d, n) 3 He and 2 H(d, p) 3 H thermonuclear reactions at deuteron energies below 1 MeV are anayzed. Results of analysis enable to discuss the existence of 4 He excited states in the vicinity of d+d threshold energy as well as to extrapolate total cross-sections σ tot (d+d) into the region of very low energies

  4. Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs

    International Nuclear Information System (INIS)

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2008-01-01

    Suggestive evidence has accumulated that intermediate mass black holes (IMBHs) exist in some globular clusters. Some stars will inevitably wander sufficiently close to the hole to suffer a tidal disruption. IMBHs can disrupt not only solar-type stars but also compact white dwarf stars. We investigate the fate of white dwarfs that approach the hole close enough to be disrupted and compressed to such an extent that explosive nuclear burning is triggered. Based on a precise modeling of the gas dynamics together with the nuclear reactions, it is argued that thermonuclear ignition is a natural outcome for white dwarfs of all masses passing well within the tidal radius. A good fraction of the star is accreted, yielding high luminosities that persist for up to a year. A peculiar, underluminous thermonuclear explosion accompanied by a soft X-ray transient signal would, if detected, be a compelling testimony for the presence of an IMBH

  5. Magnetic-gun igniter for controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Garwin, R.L.; Muller, R.A.; Richter, B.

    1979-01-01

    A conceptual design for the magnetic gun is given in order to show that the various parameters required turn out to be reasonable (in an engineering sense). An engineering design will necessarily turn out to be far more complex; the purpose of the following calculations is merely to show that the basic idea looks sufficiently good to warrant further work

  6. Ignition energy scaling of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Johner, J.

    1998-01-01

    Scaling of the ignition energy threshold Ε ig with the implosion velocity v im and isentrope parameter α of imploding spherical deuterium-tritium shells is investigated by performing one-dimensional hydrodynamic simulations of the implosion and hot spot formation dynamics. We find that the a and b exponents in the power-law approximation Ε ig ∝ α a v im -b depend crucially on the subset of initial configurations chosen to establish the scaling law. When we generate the initial states in the same way as in the Livermore study [W.K. Levedahl and J. D. Lindl, Nucl. Fusion 37 (1997) 165 ], we recover the same scaling, Ε ig ∝ α 1.7 v im -5.5 . If, however, the initial states are generated by rescaling the parent configuration according to the hydrodynamic similarity laws, we obtain a different scaling, Ε ig ∝ α 3 v im -9 , which is very close to the αv im -10 dependence predicted by the simple isobaric model for assembled fuel states. The latter is more favourable that the Livermore scaling when rescaling the fusion capsules to higher implosion velocities, but requires the peak drive pressure to be increased as P ∝ v im 5 . (authors)

  7. Ignition and burn in contaminated DT fuel at high densities

    International Nuclear Information System (INIS)

    Pasley, J.

    2010-01-01

    Complete text of publication follows. Radiation hydrodynamics simulations have been performed to quantify the effect of contamination upon the ignition threshold in DT at high densities. A detailed thermonuclear burn model, with multi-group multispecies ions, is incorporated alongside a multigroup diffusion approximation for thermal radiation transport. The code used is the research version of the HYADES 1D code. Acceptable levels of contamination are identified for a range of contaminant ion species. A range of different contaminant spatial distribution within the fuel are explored: i) in which the contamination is uniformly distributed throughout the fuel; ii) in which the impurity ions are confined to the hotspot, or iii) where contamination is restricted to a particular region of the hotspot (either centrally, near the surface, or at an intermediate location). Initially the fuel has a constant density with the hotspot located centrally. The overall radius of the fuel is chosen to be sufficiently large that it has no significant effect upon the success or failure of ignition. The evolution of the system is then simulated until ignition either establishes widespread thermonuclear burning, or a failure to ignite is observed. The critical ρr for ignition is found by iteration on the hotspot radius. We show that varying the spatial distribution of the contaminant within the ignition spot has little effect, so long as the total mass of contaminant is held the same. As expected, high-Z contamination is far more detrimental than that by low-Z ions. Discussion of the findings in the context of re-entrant cone-guided fast ignition is presented, in addition to a theoretical interpretation of the results.

  8. Effect of sawteeth on alpha power deposition and ignition in Tokamaks

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Yakovenko, Yu.V.

    1992-01-01

    The main features of the alpha particle heating, ignition and thermonuclear burn in a tokamak plasma with sawtooth oscillations are revealed. The sensitivity of results against the various model of sawteeth and characteristics of the safety factor q(r) is investigated. Analysis of ignition is best applicable to the case T ε r ,T ε being the alpha particle energy loss time, T r period of sawtooth oscillations

  9. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    International Nuclear Information System (INIS)

    Warshaw, S I

    2001-01-01

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity σv is calculated, where σ is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF

  10. Modelling of thermal and thermalhydraulic in a heat exchanger of a fusion thermonuclear reactor using 'GENEPI' computer code

    International Nuclear Information System (INIS)

    Langlais, Gilles

    1999-01-01

    The work presented in this report has been performed in the frame of fusion safety studies for thermonuclear reactors of ITER type (International Thermonuclear Experimental Reactor). It is particularly related to the thermal and two-phases thermalhydraulic studies of heat exchangers facing plasma. These components are submitted to unidirectional high heat flux between 1 to 10 MW/m 2 . The cooling fluid is then heat by an anisotropic heat flux. This non-uniform distribution induces the presence of different heat transfer on the cooling channel (single phase forced convection, subcooled nucleate boiling). The thermal and the thermalhydraulic three-dimensional study has been performed using experimental data and coupled computer calculations developed in the frame of this thesis work. The heat transfer between solid and fluid are modelled using correlations selected after the bibliography study. These heat exchange correlations as well as the CHF ones have been assessed by comparison to the available experimental data. This allowed to modify the single phase heat transfer correlation and to select two CHF correlations. (author) [fr

  11. Self-organized ignition of a tokamak plasma

    International Nuclear Information System (INIS)

    Schoepf, K.

    2007-01-01

    The continuous progress in the attainment of plasma parameters required for establishing nuclear fusion in magnetically confined plasmas as well as the prospect of feasible steady-state operation has instigated the interest in the physics of burning plasmas [1]. Aside from the required plasma current drive, fusion energy production with tokamaks demands particular attention to confinement and fuelling regimes in order to maintain the plasma density n and temperature T at favourable values matching with specific requirements such as the triple product nτ E T, where τ E represents the plasma energy confinement time. The identification of state and parameter space regions capable of ignited fusion plasma operation is evidently crucial if significant energy gains are to be realized over longer periods. Examining the time-evolving state of tokamak fusion plasma in a parameter space spanned by the densities of plasma constituents and their temperatures has led to the formation of an ignition criterion [2] fundamentally different from the commonly used static patterns. The incorporation of non-stationary particle and energy balances into the analysis here, the application of a 'soft' Troyon beta limit [3], the consideration of actual fusion power deposition [4,5] and its effect of reducing τ E are seen to significantly influence the fusion burn dynamics and to shape the ignition conditions. The presented investigation refers to a somewhat upgraded (to achieve ignition) ITER-like tokamak plasma and uses volume averages of locally varying quantities and processes. The resulting ignition criterion accounts for the dynamic evolution of a reacting plasma controlled by heating and fuel feeding. Interestingly, also self-organized ignition can be observed: a fusion plasma possessing a density and temperature above a distinct separatrix in the considered parameter phase space is seen to evolve - without external heating and hence practically by itself - towards an ignited

  12. Liquid Wall Options for Tritium-Lean Fast Ignition Inertial Fusion Energy Power Plants

    International Nuclear Information System (INIS)

    Reyes, S.; Schmitt, R.C.; Latkowski, J.F.; Durbin, S.G.' Sanz, J.

    2002-01-01

    In an inertial fusion energy (FE) thick-liquid chamber design such as HYLEE-II, a molten-salt is used to attenuate neutrons and protect the chamber structures from radiation damage. In the case of a fast ignition inertial fusion system, advanced targets have been proposed that may be self-sufficient in terms of tritium breeding (i.e., the amount of tritium bred in target exceeds the amount burned). This aspect allows for greater freedom when selecting a liquid for the protective blanket, given that lithium-bearing compounds are no longer required. The present work assesses the characteristics of many single, binary, and ternary molten-salts using the NIST Properties of Molten Salts Database. As an initial screening, salts were evaluated for their safety and environmental (S and E) characteristics, which included an assessment of waste disposal rating, contact dose, and radioactive afterheat. Salts that passed the S and E criteria were then evaluated for required pumping power. The pumping power was calculated using three components: velocity head losses, frictional losses, and lifting power. The results of the assessment are used to identify those molten-salts that are suitable for potential liquid-chamber fast-ignition IFE concepts, from both the S and E and pumping power perspective. Recommendations for further analysis are also made

  13. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  14. Maintenance features of the Compact Ignition Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Hager, E.R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs

  15. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  16. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  17. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  18. An analysis of the impact of the thermonuclear pilot project ITER on industry and research in Austria

    International Nuclear Information System (INIS)

    Hangel, G.

    2007-03-01

    An analysis of the influence of the thermonuclear pilot project ITER on Austrian research and industrial activities is presented in terms of the following subjects: fusion research history, ITER technique, security, nuclear fusion, ITER (reactor, project specifications for quotations), possibilities for Austrian companies and fusion research in Austria. (nevyjel)

  19. Research programme on controlled thermonuclear fusion - Synthesis report 2010; Programme de recherche Fusion thermonucleaire controlee. Rapport de synthese 2010

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, C. [Secretariat d' Etat a l' education et a la recherche, Berne (Switzerland); Tran, M. Q.; Villard, L. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Marot, L. [University of Basel, Basel (Switzerland)

    2011-07-01

    Since 1978, research on thermonuclear fusion in Switzerland is closely related to the research programme of the European Atomic Energy Community (EURATOM). The Swiss projects tackle aspects of plasma physics and fusion technology. Switzerland participates to the construction and operation of the Joint European Torus (JET). The International Thermonuclear Experimental Reactor (ITER) is being built; the first plasma is expected in 2019. The 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL participates to EURATOM scientific and technological projects in magnetic confinement physics, through an experimental contribution (the Variable Configuration Tokamak, TCV) and theoretical studies. Thanks to the large flexibility of the TCV design and operation modus, plasmas of different shapes can be created and controlled, what is a very useful option to verify numerical simulation results. Besides, the injection of millimetre waves allows directing the injected power according to specific profiles. A configuration of type 'snowflakes' could be created, reducing the power deposition at the edge of the plasma. Theoretical studies on turbulence have improved the plasma stability in the TCV. For the first time in the world, TCV could reach a stable plasma, the plasma current being generated using the so-called 'bootstrap' phenomenon. Besides turbulence, studies were focused on heat and particle transport in tokamaks, on an analysis of the equilibrium and magneto-hydrodynamic stability of tokamaks and stellarators, on the application of radiofrequency waves and on the optimization of new confinement configurations. Experiments in the JET facility confirmed the numerical results of theoretical simulations. The TORPEX facility, which is simpler than TCV, allows high space-temporal resolution measurements for the study of turbulences and plasma threads ('blobs'). At the Paul Scherrer Institute (PSI), research topics include

  20. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  1. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    Science.gov (United States)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  2. Comprehensive safety analysis code system for nuclear fusion reactors II: Thermal analysis during plasma disruptions for international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Honda, T.; Maki, K.; Okazaki, T.

    1994-01-01

    Thermal characteristics of a fusion reactor [International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity] during plasma disruptions have been analyzed by using a comprehensive safety analysis code for nuclear fusion reactors. The erosion depth due to disruptions for the armor of the first wall depends on the current quench time of disruptions occurring in normal operation. If it is possible to extend the time up to ∼50 ms, the erosion depth is considerably reduced. On the other hand, the erosion depth of the divertor is ∼570 μm for only one disruption, which is determined only by the thermal flux during the thermal quench. This means that the divertor plate should be exchanged after about nine disruptions. Counter-measures are necessary for the divertor to relieve disruption influences. As other scenarios of disruptions, beta-limit disruptions and vertical displacement events were also investigated quantitatively. 13 refs., 5 figs

  3. Laser Fusion: The First Ten Years 1962-1972

    International Nuclear Information System (INIS)

    Kidder, R.E.

    2006-01-01

    This account of the beginning of the program on laser fusion at Livermore in 1962, and its subsequent development during the decade ending in 1972, was originally prepared as a contribution to the January 1991 symposium 'Achievements in Physics' honoring Professor Keith Brueckner upon his retirement from the University of San Diego at La Jolla. It is a personal recollection of work at Livermore from my vantage point as its scientific leader, and of events elsewhere that I thought significant. This period was one of rapid growth in which the technology of high-power short-pulse lasers needed to drive the implosion of thermonuclear fuel to the temperature and density needed for ignition was developed, and in which the physics of the interaction of intense light with plasmas was explored both theoretically and experimentally

  4. Laser Fusion: The First Ten Years 1962-1972

    International Nuclear Information System (INIS)

    Kidder, R E

    2004-01-01

    This account of the beginning of the program on laser fusion at Livermore in 1962, and its subsequent development during the decade ending in 1972, was originally prepared as a contribution to the January 1991 symposium ''Achievements in Physics'' honoring Professor Keith Brueckner upon his retirement from the University of San Diego at La Jolla. It is a personal recollection of work at Livermore from my vantage point as its scientific leader, and of events elsewhere that I thought significant. This period was one of rapid growth in which the technology of high-power short-pulse lasers needed to drive the implosion of thermonuclear fuel to the temperature and density needed for ignition was developed, and in which the physics of the interaction of intense light with plasmas was explored both theoretically and experimentally

  5. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  6. XXXII Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2005-01-01

    Theses of the reports, presented at the XXXII International conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 14-18 February 2005) are published. The total number of reports is 322, including 16 summarizing ones. The other reports are distributed by the following sections: magnetic confinement of high-temperature plasma (88 reports), inertial thermonuclear fusion (65), physical processes in low-temperature plasma (99) and physical bases of the plasma and beam technologies (54) [ru

  7. Some safety considerations in laser-controlled thermonuclear reactors. Final report

    International Nuclear Information System (INIS)

    Botts, T.E.; Breton, D.; Chan, C.K.; Levy, S.I.; Sehnert, M.; Ullman, A.Z.

    1978-07-01

    A major objective of this study was to identify potential safety questions for laser controlled thermonuclear reactors. From the safety viewpoint, it does not appear that the actual laser controlled thermonuclear reactor conceptual designs present hazards very different than those of magnetically confined fusion reactors. Some aspects seem beneficial, such as small lithium inventories, and the absence of cryogenic devices, while other aspects are new, for example the explosion of pressure vessels and laser hazards themselves. Major aspects considered in this report include: (a) general safety considerations, (b) tritium inventories, (c) system behavior during loss of flow accidents, and (d) safety considerations of laser related penetrations

  8. Plasma transport in a compact ignition tokamak

    International Nuclear Information System (INIS)

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the 3 He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved

  9. Evaluation of innovative means of hydrogen risk mitigation in thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Maruejouls, C.

    2003-01-01

    One of the main accidents in ITER-type thermonuclear fusion reactors is the loss of coolant leading to hydrogen production. Within the framework of the studies on the ITER fusion reactor, a mitigation strategy for this risk must be devised by focusing on a system, which can be placed near the hydrogen source. The uncertainty as to the air content during such a scenario forbids the use of classic methods based on the hydrogen/oxygen reaction such as passive catalytic recombiners. Former studies have proposed a process based on the reduction of metallic oxides and more particularly that of the manganese dioxide enhanced by silver oxide mixture. The reaction studied is H 2 + MnO 2 → MnO + H 2 O (reaction enhanced by Ag 2 O). The purpose is to study the kinetic. The method used consists in comparing the experimental results obtained on the pilot facility CIGNE with those provided by a model. The experimental results were obtained from tests made on a pilot facility with a solid/gas reaction in a fixed bed. These underlined the importance of favoring the solid/gas contact surface. The modeling used in the MITRHY simulation program, coupled to an optimizer helped determine the kinetic parameters and the data on the material and temperature transfers. The kinetic is of first order rate for hydrogen with an activation energy of 29428 J/mol and a kinetic coefficient of 142 m.s -1 . Integrated in the MITRHY program, the kinetic parameters were used to simulate the hydrogen elimination in the accident conditions on the ITER experimental reactor. This study achieved a pre-design basis of the device (bed of about 30 cm with grains of a diameter of less than 5 mm) to be implemented. It also underlined the need to favor the specific surface to improved process efficiency. (author)

  10. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    Science.gov (United States)

    Vitela, Javier E.; Martinell, Julio J.

    1998-02-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN.

  11. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    International Nuclear Information System (INIS)

    Vitela, J.E.; Martinell, J.J.

    1998-01-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN. (author)

  12. The restructured fusion program and the role of alternative fusion concepts

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    This testimony to the subcommittee on Energy and the Environment of the U.S. House of Representatives's Committee on Science pushes for about 25% of the fusion budget to go to alternative fusion concepts. These concepts are: low density magnetic confinement, inertial confinement fusion, high density magnetic confinement, and non- thermonuclear and miscellaneous programs. Various aspects of each of these concepts are outlined

  13. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  14. Potential off-normal events and associated radiological source terms for the compact ignition tokamak: Fusion Safety Program

    International Nuclear Information System (INIS)

    Holland, D.F.; Lyon, R.E.

    1987-10-01

    The Compact Ignition Tokamak (CIT), the latest step in the United States program to develop the commercial application of fusion power, is designed as the first fusion device to achieve ignition conditions. It is to be constructed near Princeton, New Jersey on the site of the existing Tokamak Fusion Test Reactor (TFTR). To address the environmental impact and public safety concerns, a preliminary analysis was performed of potential off-normal radiological releases. Operational occurrences, natural phenomena, accidents with external origins, and accidents external to the PPPL site were considered as potential sources for off-normal events. Based on an initial screening, events were selected for preliminary analysis. Included in these events were tritium releases from the tritium delivery and recovery system, tritium releases from the torus, releases of activated nitrogen from the test cell or cryostat, seismic events, and shipping accidents. In each case, the design considerations related to the event were reviewed and the release scenarios discussed. Because of the complexity of some of the proposed safety systems, in some cases event trees were used to describe the accident scenarios. For each scenario, the probability was estimated as well as the release magnitude, isotope, chemical form, and release mode. 10 refs., 17 figs., 5 tabs

  15. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  16. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  17. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  18. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L.P.

    1998-01-01

    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminary compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (mega joule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility

  19. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    Science.gov (United States)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  20. Ignition tuning for the National Ignition Campaign

    Directory of Open Access Journals (Sweden)

    Landen O.

    2013-11-01

    Full Text Available The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix.

  1. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  2. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Science.gov (United States)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  3. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L P

    1998-01-01

    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminarily compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (megajoule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility. (from the history of physics)

  4. Thermonuclear reaction listing

    International Nuclear Information System (INIS)

    Fukai, Yuzo

    1993-01-01

    The following 10 elements, including T, are well known as nuclear fusion fuels: p, D, T, 3 He, 4 He, 6 Li, 7 Li, 9 Be, 10 B, 11 B, ( 12 C, 13 C), where 12 C and 13 C are considered only in the calculation of Q value. Accordingly the number of the thermonuclear reactions is 55, and 78, if including carbon elements. The reactions have some branches. For the branches having two and three reaction products, the reaction products, Q value and threshold energy are calculated by using a computer. We have investigated those of the branches having more than three products from the papers of Ajzenberg-Selove and so on. And also, by the same papers, we check whether the above mentioned branch has been observed or not. The results are as follows: (I) the number of reactions which have Q 0 branches only with γ ray production, and Q 0 and neutron production is 36(17), and (IV) that of reactions whose branch with Q > 0 does not produce neutrons is 9(3). The value in the parentheses shows the number of the case of the carbon elements. For 55 thermonuclear reactions induced by lighter nuclides than 11 B, the reaction products, the values of Q and threshold energy, and the papers with reaction cross section data are presented in the tables. (author)

  5. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  6. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility

    International Nuclear Information System (INIS)

    Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L.

    2014-01-01

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments

  7. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  8. Direct-drive–ignition designs with mid-Z ablators

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  9. Fusion - 2050 perspective (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  10. Star power

    International Nuclear Information System (INIS)

    Courtland, Rachel

    2014-01-01

    For some, nuclear fusion is an impossible dream, but there are signs it is turning the corner. The historical development of fusion is discussed, from atomic scientists Oliphant and Rutherford in the 1930s, to the International Thermonuclear Experimental Reactor (ITER) in France and the National Ignition Facility (NIF) in California.

  11. Review of studies for thermonuclear ignition with 1.8 MJ laser (LMJ): theory and experiment; Synthese des etudes pour l'allumage thermonucleaire avec 1,8MJ d'energie laser (LMJ): theorie et experience

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, P.A.; Bastian, J.; Bowen, C.; Casanova, M.; Chaland, F.; Cherfils, C.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Larroche, O.; Lours, L.; Malinie, G.; Masse, L.; Monteil, M.C.; Morice, O.; Paillard, D.; Poggi, F.; Saillard, Y.; Seytor, P.; Teychenne, D.; Vandenboomgaerde, M.; Wagon, F.; Bonnefille, M.; Hedde, T.; Lefebvre, E.; Riazuelo, G.; Babonneau, D.; Primout, M.; Casner, A.; Depierreux, S.; Girard, F.; Huser, G.; Jadaud, J.P.; Juraszek, D.; Miquel, J.L.; Naudy, M.; Philippe, F.; Rousseaux, C.; Videau, L

    2008-07-01

    The purpose of the laser Megajoule (LMJ) is the ignition of thermonuclear fusion reactions in a microscopic capsule of cryogenic DT whose implosion is obtained by a laser pulse in the range of 10{sup -20} ns, delivering a power of 400 - 500 TW. In this report we have tried to gather in one document the main part of the work made from 1995 to 2005 by the teams of Cea/DAM to design the LMJ targets. This report deals with the targets adapted to the laser energy of 1.8 MJ corresponding to 60 laser beams (called quadruplets because of their 4 beamlets), so primarily, with the target called A1040. The targets studied more recently adapted to lower laser energy are too new to appear in it. It concerns all the topics of the physics of target LMJ: laser-plasma interaction, radiative budget of the hohlraum, implosion interaction, hydrodynamic instabilities and robustness of the target to the technological uncertainties. The approach made for the robustness study is original and makes it possible to specify the features of the laser and the targets. This review scans all the aspects of the target design done with numerical simulations of bi-dimensional radiative hydrodynamics but it points out also the main results of the experiments made with the lasers Phebus, Nova and Omega for 20 years. This review also addresses to scientist not specialists in the problems of inertial confinement fusion. It is organized by topics of physics and the experiments appear at the end of each chapter. It does not concern the aspects of target fabrication nor the problems of diagnostic. (authors)

  12. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C.

    2010-01-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO 2 -emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm -2 , meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm -2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat

  13. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2010-07-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO{sub 2}-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm{sup -2}, meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm{sup -2} for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs

  14. 1981 Annual Status Report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The work perfomed on 1981 concerns four projects, namely: - The project 1: ''Reactor Studies''. During 1981 this activity was made in support to the European participation to the INTOR (INternational TOkamak Reactor) studies. This represents a collaborative effort among Europe, Japan; USA and USSR, under the auspices of IAEA, to design a major fusion experiment beyond the upcoming generation of large tokamaks. - The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. - The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. - The Project 4: ''Cyclotron Operation and Experiments'' has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  15. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  16. Implications of fusion results for a reactor: a proposed next step device-JIT

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1989-01-01

    Simulations with a critical-temperature model have been made of proposed future devices (NET, ITER, JIT, etc.). These show that only machines with a current capability of ∼ 30MA have a sufficient ignition domain to cope with more realistic operating conditions (i.e. taking into account sawteeth effects, impurity dilution and semi-continuous operation). The importance of dilution and Bremsstrahlung radiation are clearly demonstrated; a mean temperature > 7keV is required for ignition. This prevents higher field, lower current devices from reaching ignition. Transient operations with monster sawteeth or H-mode allow such devices (>30MA) to reach ignition at lower density without additional heating. To investigate the problems of a controlled burning plasma for days in semi-continuous operation, the plasma of the next-step tokamak should be similar in size and performance to an energy producing reactor. The scientific and technical aims of such a machine should be to study burning plasma, test wall technology, provide a test-bed for breeding blankets and most importantly to demonstrate the potential and viability of fusion as an energy source. The main design characteristics of a Thermonuclear Furnace-JIT-dedicated to these objectives are presented. Watercooled copper magnets are used to benefit from proven technology. A single-null divertor configuration ensures helium exhaust and possibly benefits from an H-mode to reach the ignition domain. The X-point position relative to the dump plates would be swept to limit wall loading

  17. The National Ignition Facility and Industry

    Science.gov (United States)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  18. The National Ignition Facility and industry

    International Nuclear Information System (INIS)

    Harri, J.G.; Lowdermilk, W.H.; Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.S.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of national construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project

  19. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    International Nuclear Information System (INIS)

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of ∼17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, ∼200 g/cm 3 and ∼20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases ∼350 MJ of energy in optimized power plant scenarios

  20. Thermonuclear pulsors engineering

    International Nuclear Information System (INIS)

    Ramos, Ruben F.

    2001-01-01

    The neutronic radiation has several applications, such as activation analysis of different substances, neutron radiography, molecular structures study, cancer therapy, humidity detection and materials surface treatment, among others. The main obstacle for these applications is the generation of neutronic beams. Nuclear reactors, isotopic sources and particle accelerators are neutron generators commonly used. They share the disadvantages of being non-portable, and quite expensive. This work is mainly focused on the development of neutron generators suitable to the applications mentioned before, in which traditional generators are non-applicable. The main characteristics should be transportability and to be non-contaminating, which would allow in-situ tests. Plasma focus generators, which produce neutron pulses by thermonuclear fusion reactions, satisfy these requirements and are economically convenient. This last feature would assure competitively in the neutron sources market. (author)

  1. What is the Plasma Focus Thermonuclear Pulsors Technology?

    International Nuclear Information System (INIS)

    Ramos, R.; Gonzalez, J.; Moreno, C.; Clausse, A.

    2003-01-01

    In this paper we describe a type of neutron generators, called Plasma Focus, which is suitable to several applications, where traditional generators are non-applicable.The main characteristics are its transportability and to be non-contaminating, which would allow in-situ tests.The Plasma Focus, produces neutron pulses by thermonuclear fusion reactions, satisfy these requirements and it is comparatively non expensive.This last feature would assure competitivity in the neutron sources market

  2. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  3. Recent progress on the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule

  4. Inertial fusion experiments and theory

    International Nuclear Information System (INIS)

    Mima, Kunioki; Tikhonchuk, V.; Perlado, M.

    2011-01-01

    Inertial fusion research is approaching a critical milestone, namely the demonstration of ignition and burn. The world's largest high-power laser, the National Ignition Facility (NIF), is under operation at the Lawrence Livermore National Laboratory (LLNL), in the USA. Another ignition machine, Laser Mega Joule (LMJ), is under construction at the CEA/CESTA research centre in France. In relation to the National Ignition Campaign (NIC) at LLNL, worldwide studies on inertial fusion applications to energy production are growing. Advanced ignition schemes such as fast ignition, shock ignition and impact ignition, and the inertial fusion energy (IFE) technology are under development. In particular, the Fast Ignition Realization Experiment (FIREX) at the Institute of Laser Engineering (ILE), Osaka University, and the OMEGA-EP project at the Laboratory for Laser Energetics (LLE), University Rochester, and the HiPER project in the European Union (EU) for fast ignition and shock ignition are progressing. The IFE technology research and development are advanced in the frameworks of the HiPER project in EU and the LIFE project in the USA. Laser technology developments in the USA, EU, Japan and Korea were major highlights in the IAEA FEC 2010. In this paper, the status and prospects of IFE science and technology are described.

  5. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Richard Burnite [General Atomics; Foord, Mark N. [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics; Beg, Farhat N. [University of California, San Diego; Schumacher, Douglass W. [The Ohio State University

    2013-10-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded

  6. Ignition of an overheated, underdense, fusioning tokamak plasma

    International Nuclear Information System (INIS)

    Singer, C.E.; Jassby, D.L.; Hovey, J.

    1979-08-01

    Methods of igniting an overheated but underdense D-T plasma core with a cold plasma blanket are investigated using a simple two-zone model with a variety of transport scaling laws, and also using a one-dimensional transport code. The power consumption of neutral-beam injectors required to produce ignition can be reduced significantly if the underdense core plasma is heated to temperatures much higher than the final equilibrium ignition values, followed by fueling from a cold plasma blanket. It is also found that the allowed impurity concentration in the initial hot core can be greater than normally permitted for ignition provided that the blanket is free from impurities

  7. Robustness studies of ignition targets for the National Ignition Facility in two dimensions

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-01-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300 eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed

  8. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bel’kov, S. A.; Bondarenko, S. V. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Vergunova, G. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Garanin, S. G. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Gus’kov, S. Yu.; Demchenko, N. N.; Doskoch, I. Ya. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Kuchugov, P. A., E-mail: pkuchugov@gmail.com; Rozanov, V. B.; Stepanov, R. V.; Yakhin, R. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codes RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.

  9. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  10. Experimental measurements of the 15O(alpha,gamma)19Ne reaction rate and the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Fisker, J; Tan, W; Goerres, J; Wiescher, M; Cooper, R

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction 15 O(α, γ) 19 Ne that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the 15 O(α, γ) 19 Ne reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations

  11. Overview of the European Fusion Programme

    International Nuclear Information System (INIS)

    Maisonnier, C.; Toschi, R.

    1989-01-01

    An overview of the European Fusion Programme is given and its near-term and long-term strategies are outlined. With the long-term energy problem worldwide as background, the role of thermonuclear fusion research is discussed in the context of energy sources having the potential to supply a substantial fraction of the electrical energy needs in the future. The European Fusion Programme, which is designed to lead in due course to the joint construction of prototypes with a view to their industrial production and marketing, is implemented by a sliding programme concept, i.e. through five-year programmes which overlap for about two years. The main objectives of the proposed 1987-1991 programme are outlined, with emphasis on the role of the Next Step (a Next European Torus or an International Thermonuclear Experimental Reactor), of the JET Joint Undertaking, of the Associated Laboratories, and of the European industry; and on the importance of international cooperation which has been established by bilateral framework agreements on fusion, by several multilateral implementing agreements in the frame of the IEA (OECD), and by the quadripartite cooperation of EURATOM, Japan, USA and USSR in the conceptual design of an International Thermonuclear Experimental Reactor under the auspices of the IAEA. (orig.)

  12. Controlled thermonuclear fusion power apparatus and method

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    This invention provides a modular fusion reactor system containing several fusion power cores, each of relatively small size and low cost. Energy from the cores is absorbed in the core structure and within a surrounding blanket, and the cores themselves may be individually removed from the blanket and replaced as they deteriorate from high radiation flux damage

  13. Introduction to controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Assis, A.S. de; Rapozo, C.C.

    1988-07-01

    During many centuries the origin of the enormous power output of the sun remained as a mistery. However, in this century, the physicists have discovered that stars get their energy from the fusion of light nuclei (such as deuterons and tritons), and the Einstein's equation, AE = (Am)c 2 , was the way to explain this physical process. (author)

  14. Research and application of pulsed-power technology

    International Nuclear Information System (INIS)

    Yonas, G.

    1980-01-01

    Pulsed-power technology relating to that branch which was stimulated by military applications in the 1960's is addressed. A history of the development and characteristics of some devices producing intense electron and ion beams which resulted in Sandia's particle beam fusion program is presented. These include Hermes II, Aurora, Hydra, and Proto II. Research on inertial confinement fusion ignition is described, and the most critical issue in ICF today still is the demonstration of ignition and efficient burnup of a small amount of thermonuclear fuel. Progress on the Sandia particle beam fusion accelerator (PBFA I and II) is reported, but already plans are underway to further upgrade the device and if these modifications are carried out in 1983, fusion ignition concepts may be tested by 1985. Fusion could possibly provide an inexhaustible supply of energy in the next century

  15. Development of a Cost-Effective Design for the Fusion Ignition Research Experiment

    International Nuclear Information System (INIS)

    Philip J. Heitzenroeder

    1999-01-01

    The Fusion Ignition Research Experiment (FIRE) is one of the components of a US Next Step Options (NSO) study which is considering what major experiments might be undertaken in a restructured US Fusion Sciences Program. FIRE is designed for a plasma current of ∼6.5 MA, a burn time of at least 10 s, and a Q in the range of 5 to 10. FIRE has a major radius of 2.0 m, a minor radius of 0.525 m, and a field on axis of 10T. All of the coils are inertially cooled by liquid nitrogen. FIRE will operate primarily in a double null configuration with an x-point triangularity of 0.8 and an x-point elongation of 2.2. In addition to these technical requirements, a major goal for the FIRE project is for a total project cost of approximately $1B (in FY 99 dollars). This paper describes the process and rationale for the engineering design chosen for FIRE, taking into account both the performance and cost goals

  16. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  17. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  18. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  19. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    Science.gov (United States)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  20. The development of laser fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-11-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from `implosion physics` to `ignition and high gain`, namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called `Fast Ignition`. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  1. The development of laser fusion research

    International Nuclear Information System (INIS)

    Mima, Kunioki

    1998-01-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from 'implosion physics' to 'ignition and high gain', namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called 'Fast Ignition'. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  2. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  3. On the path to fusion energy. Teller lecture 2005

    International Nuclear Information System (INIS)

    Tabak, M.

    2007-01-01

    There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls et al. leads reaction chambers compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability and implosion symmetry required to achieve these high fuel densities will be discussed. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described. (author)

  4. LLE 2005 annual report, October 2004-September 2005

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-01-01

    Progress in laser fusion this past year falls into five broad categories: (1) direct-drive results from OMEGA; (2) progress in the development of the cryogenic target system and experiments with cryogenic targets; (3) results for polar direct drive (the application of nonspherically disposed laser beams for direct-drive spherically symmetrically driven systems), which is of great interest for the National Ignition Facility (NIF); (4) fast ignition, which uses short-pulse (<100-ps), high-intensity (~1015-W) laser beams to ignite a compressed thermonuclear fusion capsule; and (5) high-energy-density physics results that use inertial fusion facilities to produce matter in extreme states that are central to understanding and modeling nuclear weapons phenomena important to the National Stockpile Stewardship Program.

  5. Tokamak nonmaxwellian plasma dynamics in thermonuclear regime

    International Nuclear Information System (INIS)

    Cotsaftis, M.

    1987-01-01

    To reach ignition in a Tokamak plasma, large additional power P aux has to be injected in the device on top of the Joule heating P OH =VI r , V the plasma loop voltage, I r the resistive port of plasma current. Typi-cally JH ∼ 1 KeV, whereas ignition would requi- re IG ∼ 7-10 KeV. To gain this factor 7, one at least should inject additional power P aux ∼ 7P OH , supposing that nothing, especially the heat transport, is modified. This is by far not the case, with the so-called energy lifetime degradation, largely observed in oil experiments (but less dramatic with divertors), where energy lifetime tau E behaves like P tot -b with b∼1/2. In large machines where ignition temperature is the target to be imperiously reached, this implies to inject a very large power, typically P aux ∼ 50 to 100 MW, depending on size and parameters and on actual transport. So it is of importance with such figures, or even larger ones owing to uncertain ties, to optimize at best injected power by increasing its efficiency, both with respect to possible transport laws, and to physical phenomena governing heat flow in the system from the sources. This leads to the concept of scenarios, as time sequences of power input, where physical properties of the plasma system are used to build up ion temperature so that ignition is reached with minimum P tot = P OH + P aux and with fixed Q = Q o > 1. Elements for this study are given. The method is outlined. The resulting system of equations describing the evolution of a thermonuclear plasma is given

  6. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  7. The national ignition facility: path to ignition in the laboratory

    International Nuclear Information System (INIS)

    Moses, E.I.; Bonanno, R.E.; Haynam, C.A.; Kauffman, R.L.; MacGowan, B.J.; Patterson Jr, R.W.; Sawicki, R.H.; Van Wonterghem, B.M.

    2007-01-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at Lawrence Livermore National Laboratory. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition of deuterium-tritium plasmas in ICF (Inertial Confinement Fusion) targets and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. The NIF facility will consist of 2 laser bays, 4 capacitor areas, 2 laser switchyards, the target area and the building core. The laser is configured in 4 clusters of 48 beams, 2 in each laser bay. Four of the NIF beams have been already commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF has demonstrated on a single-beam basis that it will meet its performance goals and has demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed 4 important experiments for ICF and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. (authors)

  8. Repairing method and device for thermonuclear device

    International Nuclear Information System (INIS)

    Sakurai, Akiko; Masumoto, Hiroshi; Tachikawa, Nobuo.

    1995-01-01

    The present invention provides a method of and a device for repairing a first wall and a divertor disposed in a vacuum vessel of a thermonuclear device. Namely, an armour tile of the divertor secured, by a brazing material, in a vacuum vessel of the thermonuclear device in which high temperature plasmas of deuterium and tritium are confined to cause fusion reaction is induction-heated or heated by microwaves to melt the brazing material. Only the armour tile is thus exchanged by its attachment/detachment. This device comprises, in the vacuum vessel, an armour tile attaching/detaching manipulator and a repairing manipulator comprising a heating manipulator having induction heating coils at the top end thereof. Induction heating coils are connected to an AC power source. According to the present invention, the armour tile is exchanged without taking the divertor out of the vacuum vessel. Therefore, cutting of a divertor cooling tube for taking the divertor out of the vacuum vessel and re-welding of the divertor for attaching it to the vacuum vessel again are no more necessary. (I.S.)

  9. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    Science.gov (United States)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.

    2018-01-01

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  10. New fusion method offers hope of new energy source

    CERN Multimedia

    Chang, K

    2002-01-01

    Scientists from Sandia National Laboratories have reported that they have acheived thermonuclear fusion using the Z accelerator. It is the first observation of fusion using a pulsed power source (1 page).

  11. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  12. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2003 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada - fusao. Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2004-07-01

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic.

  13. Transport simulation of ITER [International Thermonuclear Engineering Reactor] startup

    International Nuclear Information System (INIS)

    Attenberger, S.E.; Houlberg, W.A.

    1989-01-01

    The present International Thermonuclear Engineering Reactor (ITER) reference configurations are the ''Technology Phase,'' in which the plasma current is maintained noninductively at a subignition density, and the ''Physics Phase,'' which is ignited but requires inductive maintenance of the current. The WHIST 1.5-D transport code is used to evaluate the volt-second requirements of both configurations. A slow current ramp (60-80's) is required for fixed-radius startup in ITER to avoid hollow current density profiles. To reach the operating point requires about 203 V·s for the Technology Phase (18 MA) and about 270 V·s for the Physics Phase (22 MA). The resistive losses can be reduced with expanding-radius startup. 5 refs., 4 figs

  14. International fusion research council

    International Nuclear Information System (INIS)

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  15. Realitivistic heavy ions for fusion applications

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1975-01-01

    This is a brief description of what a thermonuclear power generating station might look like in 6 to 10 years from now. The plant consists of four major systems which differ from conventional stations. One is the thermonuclear reaction vessel, designed to absorb the neutron energy released upon ignition of a pellet of fusile material. The second major system is the pellet compressor system. The third consists of the fuel system, i.e., the pellets themselves. The fourth system, the igniting system, will make up the bulk of this paper, because it is primarily this system which involves accelerator technology. The essential ingredient in this design lies in the fact that no substantial extrapolations of existing technology is necessary to build these components. The component systems can all be designed and built today. Nuclear reactors took more than twenty years to get from a demonstration of feasibility to an economically viable source of energy. It is obviously premature, at this stage in the development, to anticipate all of the problems. Nevertheless, systems are reviewed bearing costs in mind. (U.S.)

  16. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  17. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  18. Enhanced Model for Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Rodney J. [Research Applications Corporation, Los Alamos, NM (United States)

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  19. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  20. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  1. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  2. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  3. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  4. Thermonuclear fusion plasma produced by lasers

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yokoyama, M.; Nakai, S.; Sasaki, T.; Yoshida, K.; Matoba, M.; Yamabe, C.; Tschudi, T.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.; Nishikawa, K.

    1975-01-01

    Recently, much attention has been focused on laser fusion schemes using high-density plasmas produced by implosion. Scientific-feasibility laser-fusion experiments are now in time. But the physics of interaction between laser and plasma, the high-compression technique and the development of high-power lasers are still important problems to be solved if laser fusion is to make some progress. In the field of laser-plasma coupling, experiments were carried out in which hydrogen and deuterium sticks were bombarded by laser beams; in these experiments, a glass-laser system, LETKKO-I, with an energy of 50 J in a nanosecond pulse, and a double-discharge TEA CO 2 laser system with an energy of 100 J in a 100-ns pulse were used. A decrease in reflectivity occurred at a laser intensity one order of magnitude higher than the parametric-instability threshold. Self-phase modulation of scattered light due to modulational instability was found. A Brillouin-backscattering isotope effect due to the hydrogen and deuterium plasma has also been observed in the red-side part of the SHG-light. Preliminary compression experiments have been carried out using a glass-laser system LETKKO-II, with an energy of 250-1000 J in a ns-pulse. A hologram has been used to study shock waves in the plasma due to the SHG-light converted from the main laser beam. Development of high-power lasers has been promoted, such as disc-glass lasers, E-beam CO 2 lasers and excimer lasers. (author)

  5. Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules

    Science.gov (United States)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve

    2017-10-01

    Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  6. Ratcheting problems for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Majumdar, S.

    1991-01-01

    Because of the presence of high cyclic thermal stress, pressure-induced primary stress, and disruption-induced high cyclic primary stress, ratcheting of the first wall poses a serious challenge to the designers of ITER (International Thermonuclear Experimental Reactor). Existing design tools such as the Bree diagram in the ASME Boiler and Pressure Vessels Code, are not directly applicable to ITER, because of important differences in geometry and loading modes. Available alternative models for ratcheting are discussed and new Bree diagrams, that are more relevant for fusion reactor applications, are proposed. 9 refs., 17 figs

  7. Nova Upgrade program: ignition and beyond

    International Nuclear Information System (INIS)

    Storm, E.; Campbell, E.M.; Hogan, W.J.; Lindl, J.D.

    1993-01-01

    The Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program is addressing the critical physics and technology issues directed toward demonstrating and exploiting ignition and propagating burn to high gain with ICF targets for both defense and civilian applications. Nova is the primary U.S. facility employed in the study of the X-ray-driven (indirect drive) approach to ICF. Nova's principal objective is to demonstrate that laser-driven hohlraums can achieve the conditions of driver-target coupling efficiency, driver irradiation symmetry, driver pulseshaping, target preheat, and hydrodynamic stability required by hot-spot ignition and fuel compression to realize a fusion gain. (author)

  8. Experimental results on advanced inertial fusion schemes obtained within the HiPER project

    International Nuclear Information System (INIS)

    Batani, Dimitri; Santos, Jorge J.; Schurtz, Guy; Hulin, Sebastien; Ribeyre, Xavier; Nicolai, Philippe; Vauzour, Benjamin; Dorchies, Fabien; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Honrubia, Javier; Antonelli, Luca; Morace, Alessio; Volpe, Luca; Nazarov, Wiger; Pasley, John; Richetta, Maria; Lancaster, Kate; Spindloe, Christopher; Tolley, Martin; Neely, David; Kozlova, Michaela; Nejdl, Jaroslav; Rus, Bedrich; Wolowski, Jerzy; Badziak, Jan

    2012-01-01

    This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. (authors)

  9. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-driven Convection

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Heger, A., E-mail: laurens.keek@nasa.gov [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Victoria, 3800 (Australia)

    2017-06-20

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  10. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.

    Science.gov (United States)

    Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W

    2018-02-02

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700  μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14}  W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14}  W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  11. Ion beam heating for fast ignition

    International Nuclear Information System (INIS)

    Gus'kov, S.Yu.; Limpouch, J.; Klimo, O.

    2010-01-01

    Complete text of publication follows. The characteristics features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses and charges under fast ignition conditions are determined. The motion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined to initiate different regimes of fast ignition of thermonuclear fuel precompressed to a density of 300-500 g/cm 3 - the edge regime, in which the ignition region is formed at the outer boundary of the fuel, and the internal regime, in which the ignition region is formed in central parts of the fuel. The conclusion on the requirements for fast ignition by light and heavy ion beams is presented. It is shown that the edge heating with negative temperature gradient is described by a self-similar solution. Such a temperature distribution is the reason of the fact that the ignited beam energy at the edge heating is larger than the minimal ignition energy by factor 1.65. The temperature Bragg peak may be produced by ion beam heating in the reactor scale targets with pR-parameter larger than 3-4 g/cm 2 . In particular, for central ignition of the targets with pR-parameters in the range of 4-8 g/cm 2 the ion beam energy should be, respectively, from 5 to 7 times larger than the minimal ignition energy. The work by S.Ye. Gus'kov, D.V. Il'in, and V.E. Sherman was supported by the Ministry of Education and Science of the Russian Federation under the program 'Development of the Scientific Potential of High Education for 2009-2010' (project no. 2.1.1/1505) and the Russian Foundation for Basic Research (project no. 08-02-01394 a ). The work by J. Limpouch and O. Klimo was supported by the Czech Ministry of Education (project no. LC528, MSM6840770022).

  12. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  13. Nano-scale bubble thermonuclear fusion in acoustically cavitated deuterated liquid

    International Nuclear Information System (INIS)

    Robert I Nigmatulin; Richard T Lahey Jr; Rusi Taleyarkhan

    2005-01-01

    Full text of publication follows: It has been experimentally shown (Taleyarkhan, West, Cho, Lahey, Nigmatulin, Block, 2002, 2004) that neutron emission and tritium formation may occur in deuterated acetone (D-acetone C 3 DO 6 ) under acoustic cavitation conditions. Intensity of the fast neutron (2.45 MeV) emission and tritium nucleus production is ∼ 4 x 10 5 s -1 . This suggests ultrahigh compression of matter produced inside bubbles during their collapse. In the paper a systematic theoretical analysis of the vapor bubble growth and subsequent implosion in intense acoustic fields in D-acetone is presented. The goal is to describe and explain the experimental observations of thermonuclear fusion for collapsing cavitation bubble in D-acetone. The dynamics of bubbles formed during maximum rarefaction in the liquid is numerically studied on the basis of the developed models of a single bubble and bubble clusters. It is supposed that during their growth the bubbles coagulate and form a few bigger bubbles, which then collapse under the action of additional pressure pulses produced in the liquid through the intensification of acoustic waves within the cluster. A shock wave is shown to be formed inside the bubble during the latter's rapid contraction. Focusing of this shock wave in the bubble center initiates dissociation and ionization, violent increases in density (10 4 kg m 3 ), pressure (10 10 -10 11 bar) and temperature (2 x 10 8 K), high enough to produce nuclear fusion reactions. The bubble looks like micro-hydrogen bomb. The diameter of the neutron emission zone is about 100 nm. The highest neutron emission is recorded at about 10-20 nm from the bubble center. It is found out that the intensity of bubble implosion and the number of neutron emitted increase with variations in nucleation phase, positive half-wave amplitude, liquid temperature and also with the involvement of coagulation mechanisms within the cluster during the bubble simultaneous growth. The number

  14. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  15. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  16. EDITORIAL: Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010) Special issue: overview reports from the Fusion Energy Conference (FEC) (Daejeon, South Korea, 2010)

    Science.gov (United States)

    Thomas, Paul

    2011-09-01

    The group of 27 papers published in this special issue of Nuclear Fusion aims to monitor the worldwide progress made in the period 2008-2010 in the field of thermonuclear fusion. Of these papers, 22 are based on overview reports presented at the 23rd Fusion Energy Conference (FEC 2010) and five are summary reports. The conference was hosted by the Republic of Korea and organized by the IAEA in cooperation with the National Fusion Research Institute and the Daejeon Metropolitan City. It took place in Daejeon on 11-16 October 2010. The overviews presented at the conference have been rewritten and extended for the purpose of this special issue and submitted to the standard double-referee peer-review of Nuclear Fusion. The articles are placed in the following sequence: Conference summaries of the sessions devoted to: Tokamak and stellarator experiments, experimental divertor physics and plasma wall interaction experiments, stability experiments and waves and fast particles; ITER activities, fusion technology, safety and economics; Magnetic confinement theory and modelling; Inertial confinement fusion; Innovative confinement concepts, operational scenarios and confinement. Overview articles, presented in programme order, are as follows: Tokamaks Overview of KSTAR initial experiments; Recent progress in RF heating and long-pulse experiments on EAST; Overview of JET results; DIII-D contributions toward the scientific basis for sustained burning plasmas; Overview of JT-60U results toward the resolution of key physics and engineering issues in ITER and JT-60SA; Overview of physics results from NSTX; Overview of ASDEX Upgrade results; Overview of physics results from MAST; Contribution of Tore Supra in preparation of ITER; Overview of FTU results; Overview of experimental results on the HL-2A tokamak; Progress and scientific results in the TCV tokamak; Overview of the JT-60SA project; Recent results of the T-10 tokamak; The reconstruction and research progress of the TEXT

  17. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  18. Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mima, K

    2012-09-15

    In 1917, Albert Einstein suggested the theory of stimulated emission of light that led to the development of the laser. The first laser, based on Einstein's theory, was demonstrated by the Maiman experiment in 1960. In association with the invention and developments of the laser, N.G. Basov, A. Prokorov and C.H. Towns received the Nobel prize for physics in 1963. On the other hand, it had been recognized that nuclear fusion energy is the energy source of our universe. It is the origin of the energy in our sun and in the stars. Right after the laser oscillation experiment, it was suggested by J. Nuckolls, E. Teller and S. Colgate in the USA and A. Sakharov in the USSR that nuclear fusion induced by lasers be used to solve the energy problem. Following the suggestion, the pioneering works for heating plasmas to a thermonuclear temperature with a laser were published by N. Basov, O.N. Krohin, J.M. Dawson, C.R. Kastler, H. Hora, F. Flux and S. Eliezer. The new concept of fusion ignition and burn by laser 'implosion' was proposed by J. Nuckolls, which extended the spherically imploding shock concept discovered by G. Guderley to the laser fusion concept. Since then, laser fusion research has started all over the world. For example, many inertial fusion energy (IFE) facilities have been constructed for investigating implosion physics: Lasers: GEKKO I, GEKKO II, GEKKO IV, GEKKO MII and GEKKO xII at ILE, Osaka University, Japan; JANUS, CYCLOPS, ARUGUS, SHIVA and NOVA at Lawrence Livermore National Laboratory (LLNL), USA; OMEGA at the Laboratory for Laser Energetics (LLE), University of Rochester, USA; PHEBUS at Limeil, Paris, France; the ASTERIx iodine laser at the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, Germany; MPI, GLECO at the Laboratoire d'Utilisation des Lasers Intenses (LULI), ecole Polytecnique, France; HELIOS at Los Alamos National Laboratory, USA; Shengan II at the Shanghai Institute of Optics and Fine Mechanics, China; VULCAN at the Rutherford

  19. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  20. The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2013-01-01

    An accelerated skin layer may be used to ignite solid state fuels. Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as lasers, compression, shock waves, and sparks. The other category is created within the plasma fusion as reheating of an alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state. The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x = 0 for solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X-ray. (physics of gases, plasmas, and electric discharges)

  1. Commercial application of laser fusion

    International Nuclear Information System (INIS)

    Booth, L.A.

    1976-01-01

    The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described

  2. Bouillabaisse sushi fusion power

    CERN Multimedia

    2004-01-01

    "If avant-garde cuisine is any guide, Japanese-French fusion does not work all that well. And the interminable discussions over the International Thermonuclear Experimental Reactor (ITER) suggest that what is true of cooking is true of physics" (1 page)

  3. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  4. A Survey of Studies on Ignition and Burn of Inertially Confined Fuels

    Science.gov (United States)

    Atzeni, Stefano

    2016-10-01

    A survey of studies on ignition and burn of inertial fusion fuels is presented. Potentials and issues of different approaches to ignition (central ignition, fast ignition, volume ignition) are addressed by means of simple models and numerical simulations. Both equimolar DT and T-lean mixtures are considered. Crucial issues concerning hot spot formation (implosion symmetry for central ignition; igniting pulse parameters for fast ignition) are briefly discussed. Recent results concerning the scaling of the ignition energy with the implosion velocity and constrained gain curves are also summarized.

  5. The Physics of Inertial Fusion

    International Nuclear Information System (INIS)

    Lebedev, S

    2004-01-01

    The growing effort in inertial confinement fusion (ICF) research, with the upcoming new MJ class laser facilities, NIF in USA and LMJ in France, and the upgraded MJ z-pinch ZR facility in the USA, makes the appearance of this book by Atzeni and Meyer-ter-Vehn very timely. This book is an excellent introduction for graduate or masters level students and for researchers just entering the field. It is written in a very pedagogical way with great attention to the basic understanding of the physical processes involved. The book should also be very useful to researchers already working in the field as a reference containing many key formulas from different relevant branches of physics; experimentalists will especially appreciate the presence of 'ready-to-use' numerical formulas written in convenient practical units. The book starts with a discussion of thermonuclear reactions and conditions required to achieve high gain in ICF targets, emphasizing the importance of high compression of the D-T fuel, and compares the magnetic confinement fusion and inertial confinement fusion approaches. The next few chapters discuss in detail the basic concepts of ICF: the hydrodynamics of a spherically imploding capsule, ignition and energy gain. This is followed by a thorough discussion of the physics of thermal waves, ablative drive and hydrodynamic instabilities, with primary focus on the Rayleigh--Taylor instability. The book also contains very useful chapters discussing the properties of hot dense matter (ionization balance, equation of state and opacity) and the interaction of laser and energetic ion beams with plasma. The book is based on and reflects the research interests of the authors and, more generally, the European activity in this area. This could explain why, in my opinion, some topics are covered in less detail than they deserve, e.g. the chapter on hohlraum physics is too brief. On the other hand, the appearance in the book of an interesting chapter on the concept of

  6. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann, C.W.; Lerche, R.A.; Letts, S.A.; Lindl, J.D.; Lowdermilk, W.H.; Mauger, G.J.; Montgomery, D.S.; Munro, D.H.; Murray, J.R.; Phillion, D.W.; Powell, H.T.; Remington, B.R.; Ress, D.B.; Speck, D.R.; Suter, L.J.; Tietbohl, G.L.; Thiessen, A.R.; Trebes, J.E.; Trenholme, J.B.; Turner, R.E.; Upadhye, R.S.; Wallace, R.J.; Wiedwald, J.D.; Woodworth, J.G.; Young, P.M.; Ze, F.

    1990-01-01

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  7. American research programs on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    At a time when the site of the European JET project has been decided, this study proposes to highlight the American effort in this field over the last five years. The Federal Civil Research and Development budget assigned to Energy has been multiplied by 6.3 and inside this budget the portion allocated to fusion has been multiplied by a factor of 6, in value. Two avenues have been explored; magnetic confinement and inertial confinement but one reaction only has been considered, namely D + T fusion. In magnetic confinement, the first operational reactor is being contemplated for around the year 2012. Three technologies have been explored in inertial confinement: by laser beams, electron beams and ion beams [fr

  8. Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Riconda, C.

    2015-01-01

    Roč. 3, Feb (2015), e6 ISSN 2095-4719 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : inertial confinement fusion * shock ignition * laser- plasma interaction * parametric instabilities Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  10. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  11. Department of Thermonuclear Research annual report 1993

    International Nuclear Information System (INIS)

    Sadowski, M.; Pawlowicz, W.

    1994-01-01

    Department of Thermonuclear Research Annual Report 1993 presents a short review of theoretical, experimental and technological studies performed within the framework of the research program - Plasma Physics. Theoretical studies of a tokamak edge plasma, inner shell ionization by positrons, heat transfer in thin foils, and numerical simulation of HV pulse generators, are summarized. Experimental studies of X-rays and charged particles (including fusion protons) emitted from Plasma-Focus facilities, as well as measurements of plasma-ion streams generated by IONOTRON devices, are described shortly. Also presented are technological studies on data acquisition systems and material engineering, in particular the modification of solid surfaces with the plasma-ion streams. (author)

  12. Department of Thermonuclear Research annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M; Pawlowicz, W [eds.; Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Department of Thermonuclear Research Annual Report 1993 presents a short review of theoretical, experimental and technological studies performed within the framework of the research program - Plasma Physics. Theoretical studies of a tokamak edge plasma, inner shell ionization by positrons, heat transfer in thin foils, and numerical simulation of HV pulse generators, are summarized. Experimental studies of X-rays and charged particles (including fusion protons) emitted from Plasma-Focus facilities, as well as measurements of plasma-ion streams generated by IONOTRON devices, are described shortly. Also presented are technological studies on data acquisition systems and material engineering, in particular the modification of solid surfaces with the plasma-ion streams. (author).

  13. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  14. Estimating spillover benefits of large R and D projects: Application of real options modelling approach to the case of thermonuclear fusion R and D programme

    International Nuclear Information System (INIS)

    Bednyagin, Denis; Gnansounou, Edgard

    2012-01-01

    This paper is focused on the analysis of spillover benefits of the ongoing R and D programme on thermonuclear fusion technology. The spillover effects are understood here as positive externalities of publicly funded R and D, demonstration and deployment (RDDD) activities that may be revealed at the companies' level in the form of newly created knowledge stock; development of innovative products/processes with broader market applications; strengthening of R and D, manufacturing and marketing capabilities; etc. An integrated compound real options model is proposed that allows to estimate the strategic net social present value of fusion RDDD programme taking into account the different types of spillover benefits along with the hidden real options value arising due to uncertainty and managerial flexibility. It was found that the value of spillover effects, modelled as “expansion option”, could represent a significant proportion of the overall socio-economic value of fusion RDDD programme (nearly 20%). This paper clearly demonstrates that, besides a high-level mission to assure sustainable energy supply, fusion RDDD programme may yield substantial net socio-economic benefits that may be at least two times higher compared to the expected RD and D costs, and hence the pursuit of even more ambitious programme is economically justified. - Highlights: ► Evaluate the strategic net social present value of fusion RDDD programme. ► Consider different types of spillover effects. ► Economic value of spillovers is estimated with a compound real options model. ► Spillover benefits could represent up to 20% of the value of fusion RDDD programme.

  15. Ignition and burn propagation with suprathermal electron auxiliary heating

    International Nuclear Information System (INIS)

    Han Shensheng; Wu Yanqing

    2000-01-01

    The rapid development in ultrahigh-intensity lasers has allowed the exploration of applying an auxiliary heating technique in inertial confinement fusion (ICF) research. It is hoped that, compared with the 'standard fast ignition' scheme, raising the temperature of a hot-spot over the ignition threshold based on the shock-heated temperature will greatly reduce the required output energy of an ignition ultrahigh-intensity pulse. One of the key issues in ICF auxiliary heating is: how can we transport the exogenous energy efficiently into the hot-spot of compressed DT fuel? A scheme is proposed with three phases. First, a partial-spherical-shell capsule, such as double-conical target, is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration with a hot-spot of temperature lower than the ignition threshold. Second, a hole is bored through the shell outside the hot-spot by suprathermal electron explosion boring. Finally, the fuel is ignited by suprathermal electrons produced in the high-intensity ignition laser-plasma interactions. Calculations with a simple hybrid model show that the new scheme can possibly lead to ignition and burn propagation with a total drive energy of a few tens of kilojoules and an output energy as low as hundreds of joules for a single ignition ultrahigh-intensity pulse. (author)

  16. Fast-ignition heavy-ion fusion target by jet impact

    International Nuclear Information System (INIS)

    Velarde, P.; Ogando, F.; Eliezer, S.; Martinez-Val, J.M.

    2005-01-01

    A new target design for HIF, based on the fast-ignition principles, is proposed. Unlike the previous designs proposed so far, in this case just one energy source is needed to drive the whole process to ignition. The ultra-fast deposition of energy onto the compressed core is produced in this case by hypervelocity jets generated during the process. The collision of jets converts their kinetic energy into thermal energy of the nuclear fuel, which is expected to produce ignition under proper design. The process is studied in this paper, describing its most relevant features like jet production and later collision

  17. Ignition condition and gain prediction for perturbed inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Kishony, Roy; Shvarts, Dov

    2001-01-01

    The effect of perturbations on hot spot ignition is studied using full two-dimensional (2D) numerical simulations of the National Ignition Facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] direct drive Laboratory for Laser Energetics target design and newly derived 2D self-similar solutions for a perturbed burn wave propagation. It is shown that the required implosion velocity needed for ignition increases with the perturbation mode number and final amplitude, reaching an asymptotic value for high enough perturbation mode numbers, when the entire mixing zone no longer contributes to the ignition of the hot spot. Using the new self-similar solutions, ignition conditions for various perturbation mode numbers and amplitudes are obtained. These ignition conditions, which correspond to areal densities higher than needed for ignition in the symmetric case, are translated to a required increase in the implosion velocity needed for ignition, using the 1D Levendahl-Lindl scaling, in good agreement with the full 2D numerical simulation results. Finally, using the above results, a model for predicting the gain of a perturbed targets as a function of the perturbation spectra (single-mode and multi-mode) is presented, in good agreement with full numerical simulations

  18. Advanced synfuel production with fusion

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.

    1979-01-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  19. Progress in the indirect-drive National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O L; Benedetti, R; Bleuel, D; Bradley, D K; Caggiano, J A; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D; Collins, G W; Dewald, E L; Dixit, S N; Doeppner, T; Eggert, J; Farley, D; Glenn, S M; Boehly, T R; Edgell, D; Glebov, V; Frenje, J A

    2012-01-01

    We have carried out precision optimization of inertial confinement fusion ignition scale implosions. We have achieved hohlraum temperatures in excess of the 300 eV ignition goal with hot-spot symmetry and shock timing near ignition specs. Using slower rise pulses to peak power and extended pulses resulted in lower hot-spot adiabat and higher main fuel areal density at about 80% of the ignition goal. Yields are within a factor of 5–6 of that required to initiate alpha dominated burn. It is likely we will require thicker shells (+15–20%) to reach ignition velocity without mixing of ablator material into the hot spot. (paper)

  20. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  1. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  2. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kline J.L.

    2013-11-01

    Full Text Available Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  3. Ignition tuning for the National Ignition Campaign

    OpenAIRE

    Landen O.; Edwards J.; Haan S.W.; Lindl J.D.; Boehly T.R.; Bradley D.K.; Callahan D.A.; Celliers P.M.; Dewald E.L.; Dixit S.; Doeppner T.; Eggert J.; Farley D.; Frenje J.A.; Glenn S.

    2013-01-01

    The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and caps...

  4. Tritium containment of controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Tsukumo, Kiyohiko; Suzuki, Tatsushi

    1979-01-01

    It is well known that tritium is used as the fuel for nuclear fusion reactors. The neutrons produced by the nuclear fusion reaction of deuterium and tritium react with lithium in blankets, and tritium is produced. The blankets reproduce the tritium consumed in the D-T reaction. Tritium circulates through the main cooling system and the fuel supply and evacuation system, and is accumulated. Tritium is a radioactive substance emitting β-ray with 12.6 year half-life, and harmful to human bodies. It is an isotope of hydrogen, and apt to diffuse and leak. Especially at high temperature, it permeates through materials, therefore it is important to evaluate the release of tritium into environment, to treat leaked tritium to reduce its release, and to select the method of containing tritium. The permeability of tritium and its solubility in structural materials are discussed. The typical blanket-cooling systems of nuclear fusion reactors are shown, and the tungsten coating of steam generator tubes and tritium recovery system are adopted for reducing tritium leak. In case of the Tokamak type reactor of JAERI, the tritium recovery system is installed, in which the tritium gas produced in blankets is converted to tritium steam with a Pd-Pt catalytic oxidation tower, and it is dehydrated and eliminated with a molecular sieve tower, then purified and recovered. (Kako, I.)

  5. Design and implementation of a financial planning and tracking system for the Nova Project

    International Nuclear Information System (INIS)

    Holcomb, F.

    1982-01-01

    The Nova project is a 185 million dollar DOE funded project to build an experimental facility to demonstrate the thermonuclear ignition of laser fusion targets. This paper describes the design and implementation considerations for the project's computerized performance measurement financial planning and tracking system and critiques its actual operation

  6. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    International Nuclear Information System (INIS)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng Zhengming; Zhang Jie; Osman, F.; Zhang Weiyan; Tuhe Xia

    2009-01-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B 11 with proton clusters imbedded. This then makes p-B 11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B 11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants

  7. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    Science.gov (United States)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng, Zheng-Ming; Zhang, Jie; Osman, F.; Zhang, Weiyan; tu He, Xia

    2009-03-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either "direct "or "in-direct x-ray driven" type target irradiation. Important new directions have opened for laser ICF in recent years following the development of "chirped" lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of "fast ignition (FI)" to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed "block ignition" (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter "clusters" of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p

  8. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  9. The study of inertial fusion energy problem via the equation of state

    International Nuclear Information System (INIS)

    Eliezer, S.; Val, J. M. M.; Murakami, M.

    2007-01-01

    It is known that many important physical phenomena can be obtained by analyzing the equation of state (EOS) of the stars. For example, one can use the virial theorem and an ideal EOS to analyze the stars in a gravitational field. In this case, it is concluded that the star is unstable if □ 4/3, where □ is the ratio of the heat capacities at constant pressure and constant value. Furthermore, while a stable star contracts its internal energy increases and it gets hotter. At the same time it radiates energy. For □= 5/3, half of the potential energy decrease is used to heat the star and the other half is irradiated. As can be deducted from this simple example, one can get a lot of insight into the study of the stars through the EOS. As is well known, a major breakthrough in inertial confinement fusion (ICF) occurred with the publication of J. Nuckolls et al. 'Laser compression of matter to super-high densities: Thermonuclear applications'. This important idea can be easily understood through EOS. Using for example the Thomas Fermi EOS for the deuterium-tritium nuclear fuel, it is concluded that it is energetically 'cheaper' to compress the fuel rather than to heat it. On the other hand, it is known that the nuclear reaction rate is proportional to the density square. Therefore, the fusion gain G (= output energy/input energy) is significantly larger by compressing the full target while heating only a small portion of it. These schemes are known as spark ignition and fast ignition. The purpose of the target and driver designs in ICF is to obtain an appropriate fuel areal density (□R) and temperature (T) in order to achieve nuclear ignition and high gain. For a variety of different ICF designs: (a) spark ignition, (b) volume ignition, (c) fast ignition with picosecond lasers or (d) impact fast ignition, one requires different domains of initial □R and T values. Therefore the input energy for every scheme is in a domain set by the EOS and the mass of the fuel

  10. National Ignition Facility design focuses on optics

    International Nuclear Information System (INIS)

    Hogan, W.J.; Atherton, L.J.; Paisner, J.A.

    1996-01-01

    Sometime in the year 2002, scientists at the National Ignition Facility (NIF) will focus 192 separate high-power ultraviolet laser beams onto a tiny capsule of deuterium and tritium, heating and compressing the material until it ignites and burns with a burst of fusion energy. The mission of NIF, which will contain the largest laser in the world, is to obtain fusion ignition and gain and to use inertial confinement fusion capabilities in nuclear weapons science experiments. The physics data provided by NIF experiments will help scientists ensure nuclear weapons reliability without the need for actual weapons tests; basic sciences such as astrophysics will also benefit. The facility faces stringent weapons-physics user requirements demanding peak pulse powers greater than 750 TW at 0.35 microm (only 500 TW is required for target ignition), pulse durations of 0.1 to 20 ns, beam steering on the order of several degrees, and target isolation from residual 1- and 0.5-microm radiation. Additional requirements include 50% fractional encircled beam energy in a 100-microm-diameter spot, with 95% encircled in a 200-microm spot. The weapons-effects community requires 1- and 0.5-microm light on target, beam steering to widely spaced targets, a target chamber accommodating oversized objects, well-shielded diagnostic areas, and elimination of stray light in the target chamber. The beamline design, amplifier configuration and requirements for optics are discussed here

  11. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  12. Fusion: from sacred cow to white elephant?

    International Nuclear Information System (INIS)

    Wooldridge, J.

    1994-01-01

    Controlled thermonuclear fusion has the potential to supply lots of relatively cheap power relatively cheaply. It is also renewable and has public support. Because of this potential, fusion has been able to attract huge research funds. The four main research programmes, in Europe, USA, Japan and Russia, include cooperation on the International Thermonuclear Experimental Reactor, ITER. The siting of this reactor will be decided in 1998 and it is due to start operation in 2010. It should lead to a demonstration reactor, DEMO, after which a prototype commercial reactor is envisaged for 2030-2050. But this is too far away to solve some of the immediate energy problems such as carbon dioxide emissions and global warming. So even if the technical problems are solved, fusion may not be the wonder energy source when it finally arrives; the trend is away from centralised, high cost, high output generation. Fusion research has taken interest and money away from other alternatives such as tidal energy, fuel cells and photovoltaic cells. Photovoltaics in particular look more feasible than fusion and could be in place far sooner, but lack the funding for research. (UK)

  13. Industrial opportunities on the International Thermonuclear Experimental Reactor (ITER) project

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1996-01-01

    Industry has been a long-term contributor to the magnetic fusion program, playing a variety of important roles over the years. Manufacturing firms, engineering-construction companies, and the electric utility industry should all be regarded as legitimate stakeholders in the fusion energy program. In a program focused primarily on energy production, industry's future roles should follow in a natural way, leading to the commercialization of the technology. In a program focused primarily on science and technology, industry's roles, in the near term, should be, in addition to operating existing research facilities, largely devoted to providing industrial support to the International Thermonuclear Experimental Reactor (ITER) Project. Industrial opportunities on the ITER Project will be guided by the amount of funding available to magnetic fusion generally, since ITER is funded as a component of that program. The ITER Project can conveniently be discussed in terms of its phases, namely, the present Engineering Design Activities (EDA) phase, and the future (as yet not approved) construction phase. 2 refs., 3 tabs

  14. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  15. Nuclear fusion - a strategic approach

    International Nuclear Information System (INIS)

    Colombo, U.

    1989-01-01

    Aspects of nuclear fusion research with particular reference to Europe are reviewed. The energy scenario with regard to nuclear fusion is considered including economic, political and scientific problems of energy policy in view of the long-term research effort required. Mention is also made of the need to phase out the use of fossil fuels for environmental reasons. Research into magnetic and inertial confinement fusion is considered. It is concluded that the development of thermonuclear reactors will eventually be brought to practical fruition. (UK)

  16. Implosion dynamics measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  17. Implosion dynamics measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.

    2012-01-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  18. Implosion dynamics measurements at the National Ignition Facility

    Science.gov (United States)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  19. Options for an ignited tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon β/sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed

  20. Non-dimensional scaling of impact fast ignition experiments

    International Nuclear Information System (INIS)

    Farley, D R; Shigemori, K; Murakami, M; Azechi, H

    2008-01-01

    Recent experiments at the Osaka University Institute for Laser Engineering (ILE) showed that 'Impact Fast Ignition' (IFI) could increase the neutron yield of inertial fusion targets by two orders of magnitude [1]. IFI utilizes the thermal and kinetic energy of a laser-accelerated disk to impact an imploded fusion target. ILE researchers estimate a disk velocity of 10 8 cm/sec is needed to ignite the fusion target [2]. To be able to study the IFI concept using lasers different from that at ILE, appropriate non-dimensionalization of the flow should be done. Analysis of the rocket equation gives parameters needed for producing similar IFI results with different lasers. This analysis shows that a variety of laboratory-scale commercial lasers could produce results useful to full-scale ILE experiments

  1. MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M.; Chakrabarty, D. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Altamirano, D. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam and Center for High-Energy Astrophysics, P.O. BOX 94249, 1090 GE Amsterdam (Netherlands); Cumming, A. [Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Keek, L. [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2012-04-01

    We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet contrary to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor {approx}3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.

  2. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2001 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada (fusao), do Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2002-07-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic.

  3. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  4. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    International Nuclear Information System (INIS)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J.; Hoover, D. E.; Nikroo, A.; Peterson, K. J.

    2014-01-01

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF

  5. Progress in laboratory high gain ICF [inertial confinement fusion]: Prospects for the future

    International Nuclear Information System (INIS)

    Storm, E.; Lindl, J.D.; Campbell, E.M.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10 14 W/cm 2 , an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm 3 and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs

  6. Shock ignition targets: gain and robustness vs ignition threshold factor

    Science.gov (United States)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  7. Fusion core start-up, ignition, and burn simulations of reversed-field pinch (RFP) reactors

    International Nuclear Information System (INIS)

    Chu, Y.Y.

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition, and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determined the minimum value of plasma current required to achieve ignition. In the simulations of the TITAN RFP reactor, the OH-driven super-conducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy currents are also presented and have very important in reactor design

  8. On Korean strategy and plan for fusion energy

    International Nuclear Information System (INIS)

    Kim, H.J.; Choi, W-J.; Park, C.; Kim, H.C.

    2012-01-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  9. On Korean strategy and plan for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J. [National Fusion Research Inst., Daejeon (Korea, Republic of); Choi, W-J. [Chungnam National Univ., Daejeon (Korea, Republic of); Park, C. [POSTECH, Pohang (Korea, Republic of); Kim, H.C. [National Fusion Research Inst., Daejeon (Korea, Republic of)

    2012-07-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  10. Physical studies of fast ignition in China

    International Nuclear Information System (INIS)

    He, X T; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le

    2015-01-01

    Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition. (paper)

  11. HEDP and new directions for fusion energy

    Science.gov (United States)

    Kirkpatrick, Ronald C.

    2010-06-01

    Magnetic-confinement fusion energy and inertia-confinement fusion energy (IFE) represent two extreme approaches to the quest for the application of thermonuclear fusion to electrical energy generation. Blind pursuit of these extreme approaches has long delayed the achievement of their common goal. We point out the possibility of an intermediate approach that promises cheaper, and consequently more rapid development of fusion energy. For example, magneto-inertial fusion appears to be possible over a broad range of parameter space. It is further argued that imposition of artificial constraints impedes the discovery of physics solutions for the fusion energy problem.

  12. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  13. First wall studies of a laser-fusion hybrid reactor design

    International Nuclear Information System (INIS)

    Hovingh, J.

    1976-09-01

    The design of a first wall for a 20 MW thermonuclear power laser fusion hybrid reactor is presented. The 20 mm thick graphite first wall is located 3.5 m from the DT microexplosion with a thermonuclear yield of 10 MJ. Estimates of the energy deposition, temperature, stresses, and material vaporized from the first wall due to the interaction of the x-rays, charged particle debris, and reflected laser light with the graphite are presented, along with a brief description of the analytical methods used for these estimations. Graphite is a viable first wall material for inertially-confined fusion reactors, with lifetimes of a year possible

  14. Review of the conceptual design of a Doublet fusion experimental power reactor

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-01-01

    The results of a two-year, conceptual design study of a fusion experimental power reactor (EPR) are presented. For this study, the primary objectives of the EPR are to obtain plasma ignition conditions and produce net electrical power. The design features a Doublet plasma configuration with a major radius of 4.5 m. The average plasma beta is 10 percent which yields a thermonuclear power level of 410 MW during a 105-sec burn period. With a duty factor of 0.84, the gross electrical output is 124 MW(e) while the net output is 37 MW(e). The design features a 25-cm-thick, helium-cooled, modular, stainless-steel blanket with a 1-cm-thick, silicon carbide first wall. Sufficient shielding is provided to permit contact maintenance outside the shield envelope within 24 hr after shutdown. An overall plant concept has been developed including a superheated steam cycle power conversion system. Preliminary cost estimates and construction schedules have also been developed. 3 refs

  15. The Ignition Physics Study Group

    International Nuclear Information System (INIS)

    Sheffield, J.

    1987-01-01

    In the US magnetic fusion program there have been relatively few standing committees of experts, with the mandate to review a particular sub-area on a continuing basis. Generally, ad hoc committees of experts have been assembled to advise on a particular issue. There has been a lack of broad, systematic and continuing review and analysis, combining the wisdom of experts in the field, in support of decision making. The Ignition Physics Study Group (IPSG) provides one forum for the systematic discussion of fusion science, complementing the other exchanges of information, and providing a most important continuity in this critical area. In a similar manner to the European program, this continuity of discussion and the focus provided by a national effort, Compact Ignition Tokamak (CIT), and international effort, Engineering Test Reactor (ETR), are helping to lower those barriers which previously were an impediment to rational debate

  16. Applications of induction linac technology to heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-07-01

    Evaluation of the application of heavy ion accelerators to ignite d-t pellets in a thermonuclear reactor is discussed. Accelerator design requirements considered include transport-limited current, beam injection conditions, and pulse bunching and focusing characteristics. The desirability of resonant and non-resonant accelerating structures is comparatively examined. The required power system switch tubes are discussed. It is concluded that heavy ion accelerators could offer a promising solution to the pellet-igniter problem. The advantages pointed out for this approach include electric efficiency greater than 10 percent, the possibility of high repetition rates (1 to 10 Hz), and a mature technological base

  17. Controlled thermonuclear fusion in TOKAMAK type reactors, the European example: Joint European Torus (JET)

    International Nuclear Information System (INIS)

    Paris, P.J.; Yassen, F.; Assis, A.S. de; Raposo, C.

    1988-07-01

    The development of controlled thermonuclear reaction in TOKAMAK type reactors, and the main projects in the world are presented. The main characteristics of the JET (Joint European Torus) program, the perspectives for energy production, and the international cooperation for viable use of the TOKAMAK are analysed. (M.C.K.) [pt

  18. The scientific status of fusion

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1989-01-01

    The development of fusion energy has been a large-scale scientific undertaking of broad interest. The magnetic plasma containment in tokamaks and the laser-drive ignition of microfusion capsules appear to be scientifically feasible sources of energy. These concepts are bounded by questions of required intensity in magnetid field and plasma currents or in drive energy and, for both concepts, by issues of plasma stability and energy transport. The basic concept and the current scientific issues are described for magnetic fusion and for the interesting, but likely infeasible, muon-catalyzed fusion concept. Inertial fusion is mentioned, qualitatively, to complete the context. For magnetic fusion, the required net energy production within the plasma may be accomplished soon, but the more useful goal of self-sustained plasma ignition requires a new device of somewhat uncertain (factor of 2) cost and size. (orig.)

  19. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  20. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  1. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  2. On impact fusion

    International Nuclear Information System (INIS)

    Winterberg, F.

    1997-01-01

    Impact fusion is a promising, but much less developed road towards inertial confinement fusion. It offers an excellent solution to the so-called stand-off problem for thermonuclear microexplosions but is confronted with the challenge to accelerate macroscopic particles to the needed high velocities of 10 2 -10 3 km/s. To reach these velocities, two ways have been studied in the past. The electric acceleration of a beam of microparticles, with the particles as small as large clusters, and the magnetic acceleration of gram-size ferromagnetic or superconducting projectiles. For the generation of an intense burst of soft X-rays used for the indirect drive, impact fusion may offer new promising possibilities

  3. Ohmic heating coil power supply using thyristor circuit breaker in a thermonuclear fusion device

    International Nuclear Information System (INIS)

    Tani, Keiji; Shimada, Ryuichi; Tamura, Sanae; Yabuno, Kohei; Koseki, Shoichiro.

    1982-01-01

    In a large scale Tokamak thermonuclear fusion device such as the critical plasma testing facility (JT60) presently under construction, mechanical breakers such as vacuum and air breakers are mostly used for interrupting DC heavy current which is supplied to the ohmic heating coils of inductive energy accumulation method. The practical use of the DC breakers employing thyristors has just been started because the history of thyristor development is short and thristors are still expensive, in spite of the advantages. In this paper, the circuit is investigated in which the excellent high speed controllability of thyristors is fully utilized, while the economy is taken into accout, and the experiment carried out with a unit model is described. It was found that a thyristor switch, which was constructed by connecting the high speed thyristors of peak off-state voltage rating 2,000 V and mean current rating 500 A in direct parallel, was able to interrupt 12.7 kA current in the power supply circuit of ohmic heating coils developed this time. In addition, the switch configuration was able to be greatly simplified. When the multistage raising of plasma current is required, the raise can be performed with a single thyristor breaker because it can make high speed control. Therefore, the capacity of the breaker can be doubly and drastically reduced. Also, if current unbalance might occur between thyristor switch units, it gives no problem since the time of reverse voltage after current interruption dispersed smaller as current increased. (Wakatsuki, Y.)

  4. Nuclear Physics Constraints on the Characteristics of Astrophysical Thermonuclear Flashes

    International Nuclear Information System (INIS)

    Truran, James W

    2012-01-01

    We review the nuclear physics that is associated with the outbursts of Type Ia (thermonuclear) supernova explosions and with the thermonuclear runaway events that define the outbursts of both classical novae and recurrent novae. We describe how distinguishing characteristics of these two classes of astrophysical explosion are strongly dependent both upon fuel ignition in degenerate matter and upon the rates of critical charged-particle reaction rates and weak interaction rates. In this centennial celebration of the important contributions of Rutherford and his collaborators to our understanding of the structure of the nucleus of an atom, it is quite interesting to note the evolution of the α-particle scattering experiments described in Rutherford's seminal paper (Rutherford 1911) to current studies of α-particle induced reactions and their defining roles in studies of stellar, nova, and supernova nucleosynthesis. We identify and discuss for example: (1) the manner in which (α, p) reactions in proximity to the Z = N line carry the major flows from 12 C and 16 O to 56 Ni in Type Ia supernovae; and (2) the critical role of the 15 O(α, γ) 19 Ne reaction in possibly effecting 'breakout' of the Hot CNO cycles at the highest temperatures achievable in Classical Novae. In this contribution, we first review the current status our understanding of Type Ia supernova events and then that of Classical Novae.

  5. International bulletin on atomic and molecular data for fusion. No. 20

    International Nuclear Information System (INIS)

    Katsonis, K.

    1982-09-01

    This bulletin deals with atomic and molecular data for fusion. A bibliography for the most recent data presented in the document is provided. The bulletin contains a list of references covering the year 1982 for all the publications on controlled thermonuclear fusion and plasma physics

  6. Diagnostics developments and applications for laser fusion experiments

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1977-01-01

    Some diagnostics techniques applied to current laser fusion target experiments are reviewed. Specifically, holographic interferometry of target plasmas, coded aperture imaging of thermonuclear alpha-particles and neutron energy spectrum measurements are discussed

  7. Development of fast ignition integrated interconnecting code (FI3) for fast ignition scheme

    International Nuclear Information System (INIS)

    Nagatomo, H.; Johzaki, T.; Mima, K.; Sunahara, A.; Nishihara, K.; Izawa, Y.; Sakagami, H.; Nakao, Y.; Yokota, T.; Taguchi, T.

    2005-01-01

    The numerical simulation plays an important role in estimating the feasibility and performance of the fast ignition. There are two key issues in numerical analysis for the fast ignition. One is the controlling the implosion dynamics to form a high density core plasma in non-spherical implosion, and the other is heating core plasma efficiency by the short pulse high intense laser. From initial laser irradiation to final fusion burning, all the physics are coupling strongly in any phase, and they must be solved consistently in computational simulation. However, in general, it is impossible to simulate laser plasma interaction and radiation hydrodynamics in a single computational code, without any numerical dissipation, special assumption or conditional treatment. Recently, we have developed 'Fast Ignition Integrated Interconnecting code' (FI 3 ) which consists of collective Particle-in-Cell code, Relativistic Fokker-Planck hydro code, and 2-dimensional radiation hydrodynamics code. And those codes are connecting with each other in data-flow bases. In this paper, we will present detail feature of the FI 3 code, and numerical results of whole process of fast ignition. (author)

  8. 1980 Annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1981-01-01

    According to the decisions taken by the Council of Ministers on the JRC multiannual programme (1980-83), the 1980 activity has been oriented toward four projects which cover a broad range of fields, namely: - the Project 1: 'Reactor Studies'. The main effort was oriented toward the NET/INTOR studies. JRC Ispra is acting as reference nucleus for NET preliminary design. For the moment being this work was made in support to the European participation to INTOR. In 1980 the conceptual design of a demonstration power reactor (FINTOR-D) was also achieved. - The Project 2: 'Blanket Technology' has the aim to investigate structural materials behaviour in fusion conditions. Items like tritium outgassing and permeation from structurals an materials compatibility were investigated. - The Projet 3: 'Material sorting and development'. Its aim is to assess mechanical properties and radiation damage of standard and advanced materials suited for reactor structures. - The Projet 4: 'Cyclotron construction and operation' has the task to install and exploit a cyclotron to simulate demages to materials in a fusion ambient

  9. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.

    Science.gov (United States)

    Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L

    2014-02-07

    This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300  eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063)  g/cm2, and the measured Tion was (4.2±0.16)  keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating.

  10. Direct-drive inertial confinement fusion: A review

    Energy Technology Data Exchange (ETDEWEB)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-11-15

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  11. Direct-drive inertial confinement fusion: A review

    International Nuclear Information System (INIS)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.

    2015-01-01

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline

  12. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  13. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-01-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  14. Progress towards a high-gain and robust target design for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, Enrique; Grant Logan, B. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2012-07-15

    Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an 'X.' X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of {approx}50 g/cm{sup 3} at peak compression, and fusion gains of {approx}50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities {approx}2 g/cm{sup 2} using two annular beams to implode the target to peak DT densities {approx}100 g/cm{sup 3}, followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in {approx}200 ps to start the burn propagation, obtaining gains of {approx}300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase

  15. Fusion energy from the Moon for the twenty-first century

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Cameron, E.N.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Schmitt, H.H.

    1992-01-01

    It is shown in this paper that the D-He-3 fusion fuel cycle is not only credible from a physics standpoint, but that its breakeven and ignition characteristics could be developed on roughly the same time schedule as the DT cycle. It was also shown that the extremely low fraction of power in neutrons, the lack of significant radioactivity in the reactants, and the potential for very high conversion efficiencies, can result in definite advantages for the D-He-3 cycle with respect to DT fusion and fission reactors in the twenty-first century. More specifically, the D-He-3 cycle can accomplish the following: (1) eliminate the need for deep geologic waste burial facilities and the wastes can qualify for Class A, near-surface land burial; (2) allow inherently safe reactors to be built that, under the worst conceivable accident, cannot cause a civilian fatality or result in a significant (greater than 100 mrem) exposure to a member of the public; (3) reduce the radiation damage levels to a point where no scheduled replacement of reactor structural components is required, i.e., full reactor lifetimes (approximately 30 FPY) can be credibly claimed; (4) increase the reliability and availability of fusion reactors compared to DT systems because of the greatly reduced radioactivity, the low neutron damage, and the elimination of T breeding; and (5) greatly reduce the capital costs of fusion power plants (compared to DT systems) by as much as 50 percent and present the potential for a significant reduction on the COE. The concepts presented in this paper tie together two of the most ambitious high-technology endeavors of the twentieth century: the development of controlled thermonuclear fusion for civilian power applications and the utilization of outer space for the benefit of mankind on Earth

  16. Resolving a central ICF issue for ignition: Implosion symmertry

    International Nuclear Information System (INIS)

    Cray, M.; Delamater, N.D.; Fernandez, J.C.

    1994-01-01

    The Los Alamos National Laboratory Inertial Confinement Fusion (ICF) Program focuses on resolving key target-physics issues and developing technology needed for the National Ignition Facility (NIF). This work is being performed in collaboration with Lawrence Livermore National Laboratory (LLNL). A major requirement for the indirect-drive NIF ignition target is to achieve the irradiation uniformity on the capsule surface needed for a symmetrical high-convergence implosion. Los Alamos employed an integrated modeling technique using the Lasnex radiation-hydrodynamics code to design two different targets that achieve ignition and moderate gain. Los Alamos is performing experiments on the Nova Laser at LLNL in order to validate our NIF ignition calculations

  17. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  18. Technology assessment of laser-fusion power production

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1976-01-01

    The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined

  19. Analytical criterion for shock ignition of fusion reaction in hot spot

    OpenAIRE

    Ribeyre X.; Tikhonchuk V.T.; Breil J.; Lafon M.; Vallet A.; Bel E. Le

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latt...

  20. Ultra-short laser pulses: review of the 3. physics talks, September 17-18, 1998

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with the operation of lasers with ultra-short pulses and with the laser beam-matter interaction. The applications in concern are: the acceleration of particles, the production of X-ray or photon sources, the micro-machining, the fast ignition in thermonuclear fusion, the production of thin films and the surgery of cornea. (J.S.)

  1. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  2. Confinement margins for ignition and driven operation in Iter Eda ID

    International Nuclear Information System (INIS)

    Johner, J.

    1995-09-01

    Preliminary calculations for ITER EDA ID have been performed using the 1/2D thermal equilibrium code HELIOS. It is found that: - The maximum ignition margin for ITER ID (29%) is 6% less than for ITER OD (35%) and 5% less than for ITER CDA (34%). - Decreasing the ration τ * He /τ E from the nominal value 10 to a value of 5 gives a 12% gain in the maximum ignition margin. Increasing the ration from 10 to 15 causes a 22% loss in the margin. Furthermore, ignited equilibria non longer exist for τ * He /τ E ≥ 17.6. - Operation in driven mode with 50 MW of external power increases the confinement capability by 13%. With 100 MW, the improvement is 24%. - Lowering the fusion power from 1500 to 1000 MW slightly improves the maximum ignition margin (+5%) and allows operation below the Greenwald density limit. - A 10% reduction of the toroidal magnetic field with a correlative diminution of the plasma current for constant safety factor operation, causes a dramatic reduction (-18%) of the maximum ignition margin. - A fraction of neon of 0.68% would completely suppress the ignition margin. Furthermore, ignited equilibria, with the nominal fusion power and τ * He /τ E , no longer exist when the neon fraction exceeds 0.75%. (Author). 2 refs., 10 figs

  3. Fast ignition studies at Osaka University

    International Nuclear Information System (INIS)

    Tanaka, K. A.

    2007-01-01

    After the invention of the chirped pulse amplification technique [1], the extreme conditions of matters have become available in laboratory spaces and can be studied with the use of ultra intense laser pulse (UILP) with a high energy. One such example is the fast ignition [2] where UILP is used to heat a highly compressed fusion fuel core within 1-10 pico-seconds before the core disassembles. It is predicted possible with use of 50-100 kJ lasers for both imploding the fuel and heating [2] to attain a large fusion gain. Fast ignition was shown to be a promising new scheme for laser fusion [3] with a PW (= 10 1 5 W) UILP and GEKKO XII laser systems at Osaka. Many new physics have been found with use of UILP in a relativistic parameter regime during the process of the fast ignition studies. UILP can penetrate into over-dense plasma for a couple hundred microns distance with a self-focusing and relativistic transparency effects. Hot electrons of 1-100 MeV can be easily created and are under studies for its spectral and emission angle controls. Strong magnetic fields of 10's of MGauss are created to guide these hot electrons along the target surface [4]. Based on these results, a new and largest UILP laser machine of 10 kJ energy at PW UILP peak power is under construction to test if we can achieve the sub-ignition fusion condition at Osaka University. The machine requires challenging optical technologies such as large size (0.9 m) gratings, tiling these gratings for UILP compression; segmenting four large UILP beams to obtain diffraction limited focal spot. We would like to over-view all of these activities. References [1]D. STRICKLAND and G. MOUROU, Opt. Commun., 56, 219 (1985) [2] S. ATZENI et al., Phys Plasmas, 6, 3316 (1999) [3] R. KODAMA, K.A. TANAKA et al., Nature, 418, 933 (2002) [4] A.L. LEI, K.A. TANAKA et al., Phys. Rev. Lett., 96, 255006(2006) ; H. HABARA, K.A. TANAKA et al., Phys. Rev. Lett., 97, 095004 (2006)

  4. Requirements for US regulatory approval of the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Petti, D.A.; Haire, J.C.

    1993-12-01

    The International Thermonuclear Experimental Reactor (ITER) is the first fusion machine that will have sufficient decay heat and activation product inventory to pose potential nuclear safety concerns. As a result, nuclear safety and environmental issues will be much more important in the approval process for the design, siting, construction, and operation of ITER in the United States than previous fusion devices, such as the Tokamak Fusion Test Reactor. The purpose of this report is (a) to provide an overview of the regulatory approval process for a Department of Energy (DOE) nuclear facility; (b) to present the dose limits used by DOE to protect workers, the public, and the environment from the risks of exposure to radiation and hazardous materials; (c) to discuss some key nuclear safety-related issues that must be addressed early in the Engineering Design Activities (EDA) to obtain regulatory approval; and (d) to provide general guidelines to the ITER Joint Central Team (JCT) concerning the development of a regulatory framework for the ITER project

  5. Twenty years of ''Nuclear Fusion''. Inertial confinement

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1980-01-01

    Inertial confinement (ICF) fusion research is directed towards demonstrating the feasibility of very rapidly heating and compressing small pellets of suitable fuel until conditions exist where thermonuclear fusion can occur and useful amounts of power can be produced. Major problems which have to be solved are the following: 1) pellet design based on driver-plasma coupling; 2) the technology of energy drivers; 3) feasibility of ICF reactor systems

  6. Capsule performance optimization in the National Ignition Campaigna)

    Science.gov (United States)

    Landen, O. L.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Kyrala, G. A.; Michel, P.; Milovich, J.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Robey, H. F.; Spears, B. K.; Thomas, C. A.; Weber, S. V.; Wilson, D. C.; Marinak, M. M.; Suter, L. J.; Hammel, B. A.; Meyerhofer, D. D.; Atherton, J.; Edwards, J.; Haan, S. W.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.

    2010-05-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  7. Capsule performance optimization in the National Ignition Campaign

    International Nuclear Information System (INIS)

    Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A.

    2010-01-01

    A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

  8. Equilibrium system analysis in a tokamak ignition experiment

    International Nuclear Information System (INIS)

    Carrera, R.; Weldon, W.F.; Woodson, H.H.

    1989-10-01

    The objective of the IGNITEX Project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. The original concept was proposed by both physics and engineering researchers along the following line of thought. Question: Is there any theoretically simple, compact and reliable way of achieving fusion ignition according to the results of the fusion research program for the last decades? Answer: Yes. An experiment to be carried out in an ohmically heated compact tokamak device with 20 T field on plasma axis. Question: Is there any practical way to carry out that experiment at low cost in the near term? Answer: Yes. Using a single-turn coil magnet system with homopolar power supplies

  9. Equilibrium system analysis in a tokamak ignition experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, R.; Weldon, W.F.; Woodson, H.H.

    1989-10-01

    The objective of the IGNITEX Project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. The original concept was proposed by both physics and engineering researchers along the following line of thought. Question: Is there any theoretically simple, compact and reliable way of achieving fusion ignition according to the results of the fusion research program for the last decades Answer: Yes. An experiment to be carried out in an ohmically heated compact tokamak device with 20 T field on plasma axis. Question: Is there any practical way to carry out that experiment at low cost in the near term Answer: Yes. Using a single-turn coil magnet system with homopolar power supplies.

  10. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the

  11. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  12. Inertial Confinement Fusion Annual Report 1997

    International Nuclear Information System (INIS)

    Correll, D

    1998-01-01

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also

  13. Filter-fluorescer diagnostic system for the National Ignition Facility

    International Nuclear Information System (INIS)

    McDonald, J.W.; Kauffman, R.L.; Celeste, J.R.; Rhodes, M.A.; Lee, F.D.; Suter, L.J.; Lee, A.P.; Foster, J.M.; Slark, G.

    2004-01-01

    An early filter-fluorescer diagnostic system is being fielded at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to measure the amount of hard x rays (20< hν<150 keV) generated in laser fusion experiments. From these measurements we hope to quantify the number of hot electrons produced in laser fusion experiments. The measurement of hot electron production is important for ignition experiments because these electrons can preheat the fuel capsule. Hot electrons can also be employed in experimentation by preheating hydrodynamic packages or by driving plasmas out of equilibrium. The experimental apparatus, data collection, analysis and calibration issues are discussed. Expected data signal levels are predicted and discussed

  14. Studies of electron and proton isochoric heating for fast ignition

    International Nuclear Information System (INIS)

    Mackinnon, A; Key, M; Akli, K; Beg, F; Clarke, R; Clarke, D; Chen, M; Chung, H; Chen, S; Freeman, R; Green, J; Gu, P; Gregori, G; Highbarger, K; Habara, H; Hatchett, S; Hey, D; Heathcote, R; Hill, J; King, J; Kodama, R; Koch, J; Lancaster, K; Langdon, B; Murphy, C; Norreys, P; Neely, D; Nakatsutsumi, M; Nakamura, H; Patel, N; Patel, P; Pasley, J; Snavley, R; Stephens, R; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Tanaka, K; Tempo, M; Toley, M; Town, R; Wilks, S; VanWoerkom, L; Weber, R; Yabuuchi, T; Zhang, B

    2006-01-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) proposal to use this technique to initiate burn in a fusion capsule. Experiments designed to investigate electron isochoric heating have measured heating in two limiting cases of interest to fast ignition, small planar foils and hollow cones. Data from Cu Kα fluorescence, crystal x-ray spectroscopy of Cu K shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid PIC modeling of the interaction. Isochoric heating by focused proton beams generated at the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have been studied with the same diagnostic methods plus imaging of proton induced Kα. Conversion efficiency to protons has also been measured and modeled. Conclusions from the proton and electron heating experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed

  15. Recycling, inventory and permeation of hydrogen isotopes and helium in the first wall of a thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Gervasini, G.; Reiter, F.

    1989-01-01

    The work was divided into three parts. The first part, which is theoretical, examines the behaviour of hydrogen in metals. After an introduction on the presence of hydrogen isotopes in fusion reactors, the main phenomena connected with hydrogen-metal interaction are summarised: solubility, diffusivity and trapping in material defects. The metal temperature is highlighted as the main parameter in the description of the phenomena. The second part of the work, also theoretical, concerns the interaction between helium and metals. We have tried as much as possible to show analogies and differences in the comparisons of the behaviour of hydrogen. The main types of damage caused by helium in metallic structures, which are the most important consequence of helium-metal interaction, were summarised. The characteristics of helium were treated in greater depth than those of hydrogen, because the latter are very well known. Also, there is a vast literature on the hydrogen-metal interaction. In the third and last part of the work a model was identified which allows the simulation of the evolution of a system formed from a metal in which hydrogen and helium isotopes have been introduced. A system of algebraic-differential equations was used to study the temporal evolution of the concentrations, the recycling, the inventory and the permeation of tritium and helium considering that these atoms diffuse in the metallic lattice and remain trapped in the vacancies created inside the metal by the bombardment of the neutrons from the fusion reactions. For the numerical simulation a series of data intended to represent the situation inside a thermonuclear reactor as precisely as possible were used for the numerical simulation. Analysis of the system was preceded by the analytical resolution of the steady state equations so that they could be compared with the simulation results

  16. Finite element modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications

    International Nuclear Information System (INIS)

    Mueller, P. F.

    2009-10-01

    The present report studies the brittle fracture in high-chromium reduced activation tempered martensitic steels foreseen as structural materials for thermonuclear fusion reactors. Developing the adequate materials that can withstand the severe irradiation conditions of the burning plasma in a fusion reactor is one of the major challenges to be solved in order to make profit from the great advantages of thermonuclear fusion as an energy source. High-chromium tempered martensitic steels such as F82H and the most advanced version Eurofer97 are among the main candidate materials for structural applications in future fusion power plants due to low irradiation-induced swelling, good mechanical and thermal properties, and reasonably fast radioactive decay. Drawback of this kind of steels is irradiation embrittlement, which is manifested by a ductile-to-brittle transition temperature shift to higher temperatures after irradiation. The laboratory specimen fracture data has to be transferred to real components in order to assess the performance of these steels in the different operating and transient conditions they could find during the operation life of a fusion reactor. The specimen geometry effects and specimen size effects on measured fracture toughness need to be properly understood, taken into account and predicted with an appropriate model. The microstructure of Eurofer97 and F82H has been characterized and compared by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy in order to identify microstructural features that could play a role in the measured fracture toughness. Both steels have similar but slightly different chemical composition and final heat treatments but the prior austenitic grain size measured in F82H is approximately 8 times larger than in Eurofer97. The alloying element tantalum is added to stabilize the austenite grain size. In Eurofer97 it forms carbides of an

  17. The role of improved fusion concepts

    International Nuclear Information System (INIS)

    Nelson, D.B.; Linford, R.K.; Liu, C.S.; Logan, B.G.; Rose, P.H.

    1985-01-01

    The U.S. Dept. of Energy discusses concept improvement in the tokamak and concept improvement in the mirror. Controlled Thermonuclear Research comments on what constitutes an attractive fusion reactor, and provides a table of achieved parameters of RFP, FRC and the spheromak experiments. GA Technologies Inc. remarks on the direction which industry must take in the fusion program. The Lawrence Livermore National Laboratory concentrates on commercial reactor studies. Spectra Technology focuses on problems dealing with fusion proponents making a convincing and clear economic argument for fusion based on a mils per kilowat basis, and the large costs of flagship experiments. The Oak Ridge National Laboratory remarks on the need for an economic energy source for fusion. A table of cost of electricity contours is shown

  18. The role of improved fusion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.B.; Linford, R.K.; Liu, C.S.; Logan, B.G.; Rose, P.H.

    1985-06-01

    The U.S. Dept. of Energy discusses concept improvement in the tokamak and concept improvement in the mirror. Controlled Thermonuclear Research comments on what constitutes an attractive fusion reactor, and provides a table of achieved parameters of RFP, FRC and the spheromak experiments. GA Technologies Inc. remarks on the direction which industry must take in the fusion program. The Lawrence Livermore National Laboratory concentrates on commercial reactor studies. Spectra Technology focuses on problems dealing with fusion proponents making a convincing and clear economic argument for fusion based on a mils per kilowat basis, and the large costs of flagship experiments. The Oak Ridge National Laboratory remarks on the need for an economic energy source for fusion. A table of cost of electricity contours is shown.

  19. Modeling and control simulation of an electromechanical mm-wave launching system for thermonuclear fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, Christos, E-mail: ctsiron@mail.ntua.gr [School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens (Greece); Department of Physics, Aristotle University of Thessaloniki, 54 136 Thessaloniki (Greece); Giannopoulos, Iordanis K.; Vasileiadou, Soultana; Kakogiannos, Ioannis D.; Kalligeropoulos, Dimitrios [Department of Automation, Technological Education Institute of Piraeus, 122 44 Piraeus (Greece)

    2016-11-15

    Highlights: • Open-loop modeling and control simulation of an electromechanical mm-wave launcher. • Simulations of the experiment without employing the real (hardware) system. • Launcher mirror dynamics correspond to a second-order weakly-nonlinear system. • Closed-loop control design in terms of cascade PIDs achieves required performance. - Abstract: Controlled thermonuclear fusion via magnetic confinement, still in experimental stage, has the potential to become a viable and environment-friendly solution to the energy problem, especially for the high-power needs of modern industry. In order to optimize the operation of devices based on the tokamak principle, automatic control systems are envisaged to fulfill the requirements for the magnetic equilibrium and plasma stability, with copper coils, neutral gas injectors and microwave sources used as actuators. In present-day experiments, the implemented control loops are simple and practical, however in future devices like ITER (presently under construction) more sophisticated control design will be required, based on realistic closed-loop simulations with efficient computational tools and real-time diagnosing. For magnetohydrodynamic instability control, the system should include physics/engineering models for the plasma dynamics, the wave actuation and the diagnostic sensors, as well as controllers based on classical or modern principles. In this work, we present a model for a specific design of a controlled electromechanical millimeter-wave launcher, which executes the major part of the wave actuation, and perform numerical simulations of its open-loop dynamics and closed-loop control for scenarios relevant to tearing mode stabilization in medium-sized tokamaks.

  20. Research program. Controlled thermonuclear fusion. Synthesis report 2013

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.

    2014-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. The progress realized in the framework of EURATOM has led to the design of the experimental reactor ITER which is being built at Cadarache (France). The future prototype reactor DEMO is foreseen in 2040-2050. In 2013, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. A new improved confinement regime, called IN-mode, was discovered on TCV. The theory and numerical simulation group interprets the experimental results and foresees those of futures machines. It requires very high performance computers. The Gyrotron group develops radiofrequency sources in the mm range for heating the TCV plasma as well as for ITER and the Wendelstein-7 stellarator. Concerning superconductivity, tests are conducted at PSI on toroidal cables of ITER. The development of conductors and coils for the DEMO reactor has been pursued. In the context of international

  1. Thermonuclear device

    International Nuclear Information System (INIS)

    Yagi, Yasuomi; Takahashi, Ken; Hashimoto, Hiroshi.

    1984-01-01

    Purpose: To improve the plasma confining performances by bringing the irregular magnetic fields nearly to zero and decreasing the absolute value of the irregular magnetic fields at every positions. Constitution: The winding direction of a plurality of coil elements, for instance, double pan cake coils of toroidal coils in a torus type or mirror type thermonuclear device are reversed to each other in their laminating direction, whereby the irregular magnetic fields due to the coil-stepped portions in each toroidal coils are brought nearly to zero. This enables to bring the average irregular magnetic fields as a whole in the thermonuclear device nearly to zero, as well as, decrease the absolute value of the irregular magnetic fields in each positions. Thus, the plasma confining performances can be improved. (Moriyama, K.)

  2. Laser induced sonofusion: A new road toward thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sadighi-Bonabi, Rasoul, E-mail: Sadighi@sharif.ir [Sharif University of Technology, P.O. Box 11365-91, Tehran (Iran, Islamic Republic of); Gheshlaghi, Maryam [Payame noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Laser and optics research school, Nuclear Science and Technology Research Institute (NSTRL), P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2016-03-15

    The Possibility of the laser assisted sonofusion is studied via single bubble sonoluminescence (SBSL) in Deuterated acetone (C{sub 3}D{sub 6}O) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and −28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 10{sup 6} K in hydro-chemical model and it is reached up to 1.9 × 10{sup 6} K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 10{sup 7} K can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.

  3. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  4. Inertial fusion energy development strategy

    International Nuclear Information System (INIS)

    Coutant, J.; Hogan, W.J.; Nakai, S.; Rozanov, V.B.; Velarde, G.

    1995-01-01

    The research and development strategy for inertial fusion energy (IFE) is delineated. The development strategy must indicate how commercial IFE power can be made available in the first part of the next century, by which is meant that a Demonstration Power Plant (DPP) will have shown that in commercial operation IFE power plants can satisfy the requirements of public and employee safety, acceptably low impact on the environment, technical performance, reliability, maintainability and economic competitiveness. The technical issues associated with the various required demonstrations for each of the subsystems of the power plant (target, driver, reaction chamber, and remainder of plant (ROP) where the tritium for future targets is extracted and thermal energy is converted into electricity) are listed. The many developments required to make IFE commercially available can be oriented towards a few major demonstrations. These demonstrations do not necessarily each need separate facilities. The goals of these demonstrations are: (i) ignition demonstration, to show ignition and thermonuclear burn in an ICF target and determine the minimum required driver conditions; (ii) high gain demonstration, to show adequate driver efficiency-gain product; (iii) engineering demonstrations, to show high pulse rate operations in an integrated system and to choose the best designs of the various reactor systems; (iv) commercial demonstrations, to prove safe, environmentally benign, reliable, economic, near-commercial operation. In this document the present status of major inertial confinement research activities is summarized including a table of the major operating or planned facilities. The aspects involved in each of the required demonstrations are discussed. Also, for each of the subsystems mentioned above the technical developments that are needed are discussed. The document ends with a discussion of the two existing detailed IFE development plans, by the United States and Japan. 9

  5. Vacuum vessel of thermonuclear device and manufacturing method thereof

    International Nuclear Information System (INIS)

    Kurita, Genichi; Nagashima, Keisuke; Uchida, Takaho; Shibui, Masanao; Ebisawa, Katsuyuki; Nakagawa, Satoshi.

    1997-01-01

    The present invention provides a vacuum vessel of a thermonuclear device using, as a material of a plasma vacuum vessel, a material to be less activated and having excellent strength as well as a manufacturing method thereof. Namely, the vacuum vessel is made of titanium or a titanium alloy. In addition, a liner layer comprising a manganese alloy, nickel alloy, nickel-chromium alloy or aluminum or aluminum alloy is formed. With such a constitution, the wall substrate made of titanium or a titanium alloy can be isolated by the liner from hydrogen or plasmas. As a result, occlusion of hydrogen to titanium or the titanium alloy can be prevented thereby enabling to prevent degradation of the material of the wall substrate of the vacuum vessel. In addition, since the liner layer has relatively high electric resistance, a torus circumferential resistance value required for plasma ignition can be ensured by using it together with the vessel wall made of titanium alloy. (I.S.)

  6. Synfuels production from fusion reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  7. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  8. Cold nuclear fusion. Germany 2012

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, Florian Ion

    2012-07-01

    Nuclear fusion is the process by which two or more atomic nuclei join together, or ''fuse'', to form a single heavier nucleus. During this process, matter is not conserved because some of the mass of the fusing nuclei is converted to energy which is released. The binding energy of the resulting nucleus is greater than the binding energy of each of the nuclei that fused to produce it. Fusion is the process that powers active stars. Creating the required conditions for fusion on Earth is very difficult, to the point that it has not been accomplished at any scale for protium, the common light isotope of hydrogen that undergoes natural fusion in stars. In nuclear weapons, some of the energy released by an atomic bomb (fission bomb) is used for compressing and heating a fusion fuel containing heavier isotopes of hydrogen, and also sometimes lithium, to the point of ''ignition''. At this point, the energy released in the fusion reactions is enough to briefly maintain the reaction. Fusion-based nuclear power experiments attempt to create similar conditions using far lesser means, although to date these experiments have failed to maintain conditions needed for ignition long enough for fusion to be a viable commercial power source.

  9. Introduction to the controlled nuclear fusion (magnetic containment systems)

    International Nuclear Information System (INIS)

    Cabrera, J.A.; Guasp, J.; Martin, R.

    1975-01-01

    The magnetic containment systems, their more important features, and their potentiality to became thermonuclear reactors is described. The work is based upon the first part of a set of lectures dedicated to Plasma and Fusion Physics. (author)

  10. Is there hope for fusion?

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs

  11. Controlled nuclear fusion, a challenging task with a big payoff

    International Nuclear Information System (INIS)

    Noterdaeme, Jean-Marie

    2003-01-01

    Controlled thermonuclear fusion carries the promise of providing the world with a new source of energy, the same energy that powers the stars. Research in this area has progressed steadily for several decades now, and is ready to move into a new phase. The probability is high that a new international experimental machine (ITER) which will prove the scientific and technological feasibility of fusion energy, will be built. This paper introduces nuclear fusion for people familiar with the fission process. It starts from the basic principles common to fusion and fission. It moves on to point out the differences, explains the reasons for those differences and the consequences. Controlled thermonuclear fusion can be obtained in several ways, which have led to different research lines. One line, on which this talk focuses, is by confining the reacting particles with magnetic fields. Another, which is the subject of a different talk, relies on the inertia of the particles to create the conditions necessary for fusion. The progress of the magnetic confinement research is shown, with examples of major hurdles, which have occurred and have been overcome. Recent results, which make us optimistic that the next machine can prove the feasibility of fusion energy, are highlighted. The talk also addresses the challenges that remain before us, and suggests that the promise of fusion energy opens up new perspectives and opportunities for the development and the use of fission energy. (author)

  12. Uncertainties associated with inertial-fusion ignition

    International Nuclear Information System (INIS)

    McCall, G.H.

    1981-01-01

    An estimate is made of a worst case driving energy which is derived from analytic and computer calculations. It will be shown that the uncertainty can be reduced by a factor of 10 to 100 if certain physical effects are understood. That is not to say that the energy requirement can necessarily be reduced below that of the worst case, but it is possible to reduce the uncertainty associated with ignition energy. With laser costs in the $0.5 to 1 billion per MJ range, it can be seen that such an exercise is worthwhile

  13. Research program. Controlled thermonuclear fusion. Synthesis report 2015

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Soom, P.

    2016-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. In 2015 its name was changed to Swiss Plasma Centre (SPC). The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world, in which an energy yield Q of 0.65 could be obtained. In 2015, the stellarator Wendelstein 7-X (W7X), the largest in the world, was set into operation. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject permanently electricity into the grid. In 2015, SPC participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity; at the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which

  14. International bulletin on atomic and molecular data for fusion. No. 22

    International Nuclear Information System (INIS)

    Katsonis, K.

    1983-05-01

    This bulletin deals with atomic and molecular data for fusion. Work in progress is briefly reported (charge exchange of slow ionized ions with neutral gases, cross section for electron impact ionization of Alt). The bulletin contains a list of references covering the years 1981, 1982 and 1983 for publications on controlled thermonuclear fusion and plasma physics

  15. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  16. High-power explosive magnetic energy sources for thermonuclear and physical applications (overview)

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, V K [All-Russian Scientific Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    High-power energy sources unavailable up to now are needed to carry out any one project on inertially confined controlled thermonuclear fusion (CTF). Considerable advances have been made in the area of explosive magnetic generators (EGG) as for their output characteristics (high power combined with high energy content). To develop the concept of magnetic cumulation proposed by A.D. Sakharov in 1951, two new approaches to increasing EMC fast operation by two orders (from tens of microseconds to tenths of microseconds) and increasing at the same time the current pulse amplitude by more than one order, were proposed at VNIIEF in the early sixties. The concept aimed at solving the CTF problem by target magnetic compression (MACO) under the effect of an fast-increasing field was proposed (1972) based on VNIIEF achievements, discussed (1976) at the USSR Academy of Sciences and published (1979). The key physical questions are analyzed, the problems to be solved are posed and the results achieved in the experiments with fast-operating high-power EMGs, fast-opening switches, transmitting lines and insulation systems are discussed here. The results obtained in experiments on liner acceleration as well as those on preliminary plasma magnetization and heating, carried out at the constructed EMGs, are discussed briefly. The conclusion is reached that the MACO system is the most suitable one to provide the ignition because the designing of high-power energy sources to be used in this system is practically complete and the concept itself does not need any intermediate transformations of one type of energy into another always accompanied by a decrease in total efficiency. (author). 4 tabs., 14 figs., 21 refs.

  17. 24. IAEA Fusion Energy Conference. Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The International Atomic Energy Agency (IAEA) fosters the exchange of scientific and technical results in nuclear fusion research through its series of Fusion Energy Conferences. The 24th IAEA Fusion Energy Conference (FEC 2012) aims to provide a forum for the discussion of key physics and technology issues as well as innovative concepts of direct relevance to fusion as a source of nuclear energy. With a number of next-step fusion devices currently being implemented - such as the International Thermonuclear Experimental Reactor (ITER) in Cadarache, France, and the National Ignition Facility (NIF) in Livermore, USA - and in view of the concomitant need to demonstrate the technological feasibility of fusion power plants as well as the economical viability of this method of energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of FEC 2012 is, therefore, intended to reflect the priorities of this new era in fusion energy research. The conference aims to be a platform for sharing the results of research and development efforts in both national and international fusion experiments that have been shaped by these new priorities, and thereby help in pinpointing worldwide advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference will also set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and will thus help in defining the way forward. With the participation of international organizations such as the ITER International Organization and EURATOM, as well as the collaboration of more than forty countries and several research institutes, including those working on smaller plasma devices, it is expected that this conference will, as in the past, serve to identify possibilities and means for a

  18. Imaging of High-Energy X-Ray Emission from Cryogenic Thermonuclear Fuel Implosions on the NIF

    International Nuclear Information System (INIS)

    Ma, T.

    2012-01-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide spectrally resolved time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered targets. Using bremsstrahlung assumptions, the measured absolute x-ray brightness allows for the inference of electron temperature, electron density, hot spot mass, mix mass, and pressure. Current inertial confinement fusion (ICF) experiments conducted on the National Ignition Facility (NIF) seek to indirectly drive a spherical implosion, compressing and igniting a deuterium-tritium fuel. This DT fuel capsule is cryogenically prepared as a solid ice layer surrounded by a low-Z ablator material. Ignition will occur when the hot spot approaches sufficient temperature (∼3-4 keV) and ρR (∼0.3 g/cm 2 ) such that alpha deposition can further heat the hot spot and generate a self-sustaining burn wave. During the implosion, the fuel mass becomes hot enough to emit large amounts of x-ray radiation, the spectra and spatial variation of which contains key information that can be used to evaluate the implosion performance. The Ross filter diagnostic employs differential filtering to provide spectrally resolved, time-integrated, absolute x-ray self-emission images of the imploded core of cryogenic layered targets.

  19. Research program. Controlled thermonuclear fusion. Synthesis report 2014

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Fiocco, D.

    2015-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world; its energy yield Q reached 0.65. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject electricity into the grid for long term. In 2014, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which are necessary to optimise the core geometry of future reactors. Moreover, the plasma heating by mm radio waves allows guiding the injected power according to specific

  20. A thermonuclear fusion power program for Israel

    International Nuclear Information System (INIS)

    Friedman, Bruce

    1985-01-01

    Although lacking in financial and physical resources, Israel has a large base of scientific and technological talent that can be organized for the purpose of producing commercial fusion power reactors, thus allowing Israel to attain energy independence and acquiring a monetary inflow through royalties and reactor export. The limited partnership would be suitable for financing a significant portion of the project. Economic feasibility can be estimated through the use of one or more of the approaches supplied by the calculus of variations, cardinal utility theory, catastrophe theory, and noncooperative game theory. (author)