WorldWideScience

Sample records for thermogravimetric analyses tga

  1. Pyrolysis kinetics investigation of Malaysian based biomass with non-isothermal thermogravimetric analysis (TGA)

    International Nuclear Information System (INIS)

    Seyed Shahabeddin Nehzati; Dayang Radiah Awang Biak; Wan Azlina Wan Abdul Karim Ghani; Mohd Amran Mohd Salleh

    2010-01-01

    Full text: Biomass is currently being used as a sustainable energy source. Otherwise the scarceness of fossil fuel sources and the demand for environmental responsibility force the industries to use biomass as an alternate source of energy. Pyrolysis is the first step of biomass conversion and well understanding of this process can develop the biomass conversion such as gasification, liquefaction, carbonization and combustion .TGA studies of Malaysian based biomass have been carried out. TGA studies provide important insight on the thermochemical behavior of specific solid waste. The results of non-isothermal thermogravimetric analysis of palm kernel shell, coconut shell and bagasse, carried out at heating rates of 10 degree Celsius/ min, 20 degree Celsius/ min and 50 degree Celsius/ min, to ramp the temperature from 30 to 1000 were analysed. The TGA studies were carried out in an inert atmosphere of nitrogen. Arrhenius parameters were estimated by 3 different models namely Kissinger model, three-pseudo component and DEAM model the estimated values and the models were compared. The results show that the three-pseudo component model has a good agreement with the experimental results, indicating that ligno celluloses components in the mixture behave in the same way as they do separately. Also it is seen that the decomposition process shifts to higher temperatures at higher heating rates as a result of the competing effects of heat and mass transfer to the material. (Author)

  2. Morphological Changes of Limestone Sorbent Particles during Carbonation/Calcination Looping Cycles in a Thermogravimetric Analyzer (TGA) and Reactivation with Steam

    KAUST Repository

    Wu, Y.; Blamey, J.; Anthony, E. J.; Fennell, P. S.

    2010-01-01

    Carbonation and calcination looping cycles were carried out on four limestones in a thermogravimetric analyzer (TGA). The CO2 carrying capacity of a limestone particle decays very quickly in the first 10 cycles, reducing to about 20% of its original

  3. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review.

    Science.gov (United States)

    Bach, Quang-Vu; Chen, Wei-Hsin

    2017-12-01

    Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    Science.gov (United States)

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  5. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process

    International Nuclear Information System (INIS)

    Leal, Glauco F.; Ramos, Luiz A.; Barrett, Dean H.; Curvelo, Antonio Aprígio S.; Rodella, Cristiane B.

    2015-01-01

    Graphical abstract: - Highlights: • A new method to determine the catalytic conversion of cellulose using TGA has been developed. • TGA is able to differentiate between carbon from cellulose and carbon from the catalyst. • Building an analytical curve from TGA results enables the accurate determination of cellulose conversion. - Abstract: The ability to determine the quantity of solid reactant that has been transformed after a catalytic reaction is fundamental in accurately defining the conversion of the catalyst. This quantity is also central when investigating the recyclability of a solid catalyst as well as process control in an industrial catalytic application. However, when using carbon-supported catalysts for the conversion of cellulose this value is difficult to obtain using only a gravimetric method. The difficulty lies in weighing errors caused by loss of the solid mixture (catalyst and non-converted cellulose) after the reaction and/or moisture adsorption by the substrate. These errors are then propagated into the conversion calculation giving erroneous results. Thus, a quantitative method using thermogravimetric analysis (TGA) has been developed to determine the quantity of cellulose after a catalytic reaction by using a tungsten carbide catalyst supported on activated carbon. Stepped separation of TGA curves was used for quantitative analysis where three thermal events were identified: moisture loss, cellulose decomposition and CO/CO 2 formation. An analytical curve was derived and applied to quantify the residual cellulose after catalytic reactions which were performed at various temperatures and reaction times. The catalytic conversion was calculated and compared to the standard gravimetric method. Results showed that catalytic cellulose conversion can be determined using TGA and exhibits lower uncertainty (±2%) when compared to gravimetric determination (±5%). Therefore, it is a simple and relatively inexpensive method to determine catalytic

  6. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Thermogravimetric assessment of thermal degradation in asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Barneto, Agustín García, E-mail: agustin.garcia@diq.uhu.es [Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Huelva (Spain); Carmona, José Ariza [Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Huelva (Spain); Garrido, María José Franco [CEPSA, RDI Centre, Madrid (Spain)

    2016-03-20

    Graphical abstract: - Highlights: • Asphaltenes content of visbreaking streams in oil refinery can be measured by using TGA. • Deconvoluting TGA curves allows the thermal-based composition of asphaltenes to be elucidated. • Asphaltenes cracking involves acceleratory stages compatible with autocatalytic kinetic. • Activation energy during asphaltenes pyrolysis increased with increasing temperature. • Activation energy remained almost constant at 200–225 kJ/mol during oxidative cracking. - Abstract: Monitoring asphaltenes is very important with a view to optimizing visbreaking units in oil refineries. Current analyses based on selective dissolution in different solvents are slow, so new, more expeditious methods for measuring asphaltenes are required to facilitate fuel-oil production. In this work, we studied the thermal degradation of asphaltenes as the potential basis for a thermogravimetric method for their monitoring in visbreaking streams. The thermal degradation of asphaltenes occurs largely from 400 to 500 °C; the process is quite smooth in an inert environment but involves several fast mass loss events in the air. Kinetic parameters for characterizing the process were determined by using two model-free methods and the modified Prout–Tompkins kinetic equation to examine asphaltene thermolysis. Both types of methods showed the activation energy to increase during pyrolysis but to remain almost constant during cracking in the presence of oxygen or even diminish during char oxidation. Deconvoluting the thermogravimetric profiles revealed that asphaltene thermolysis in the air cannot be accurately described in terms of an nth order kinetic model because it involves some acceleratory phases. Also, thermogravimetric analyses of visbreaking streams revealed that char production in them is proportional to their asphaltene content. This relationship enables the thermogravimetric measurement of asphaltenes.

  8. Thermogravimetric assessment of thermal degradation in asphaltenes

    International Nuclear Information System (INIS)

    Barneto, Agustín García; Carmona, José Ariza; Garrido, María José Franco

    2016-01-01

    Graphical abstract: - Highlights: • Asphaltenes content of visbreaking streams in oil refinery can be measured by using TGA. • Deconvoluting TGA curves allows the thermal-based composition of asphaltenes to be elucidated. • Asphaltenes cracking involves acceleratory stages compatible with autocatalytic kinetic. • Activation energy during asphaltenes pyrolysis increased with increasing temperature. • Activation energy remained almost constant at 200–225 kJ/mol during oxidative cracking. - Abstract: Monitoring asphaltenes is very important with a view to optimizing visbreaking units in oil refineries. Current analyses based on selective dissolution in different solvents are slow, so new, more expeditious methods for measuring asphaltenes are required to facilitate fuel-oil production. In this work, we studied the thermal degradation of asphaltenes as the potential basis for a thermogravimetric method for their monitoring in visbreaking streams. The thermal degradation of asphaltenes occurs largely from 400 to 500 °C; the process is quite smooth in an inert environment but involves several fast mass loss events in the air. Kinetic parameters for characterizing the process were determined by using two model-free methods and the modified Prout–Tompkins kinetic equation to examine asphaltene thermolysis. Both types of methods showed the activation energy to increase during pyrolysis but to remain almost constant during cracking in the presence of oxygen or even diminish during char oxidation. Deconvoluting the thermogravimetric profiles revealed that asphaltene thermolysis in the air cannot be accurately described in terms of an nth order kinetic model because it involves some acceleratory phases. Also, thermogravimetric analyses of visbreaking streams revealed that char production in them is proportional to their asphaltene content. This relationship enables the thermogravimetric measurement of asphaltenes.

  9. Thermogravimetric and differential thermal analysis of potassium bicarbonate contaminated cellulose

    Science.gov (United States)

    A. Broido

    1966-01-01

    When samples undergo a complicated set of simultaneous and sequential reactions, as cellulose does on heating, results of thermogravimetric and differential thermal analyses are difficult to interpret. Nevertheless, careful comparison of pure and contaminated samples, pyrolyzed under identical conditions, can yield useful information. In these experiments TGA and DTA...

  10. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state {alpha}-cyclodextrin-based inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuxiang; Wang, Jinpeng; Bashari, Mohanad; Hu, Xiuting [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Feng, Tao [School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418 (China); Xu, Xueming [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Jin, Zhengyu, E-mail: jinlab2008@yahoo.com [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Tian, Yaoqi, E-mail: yqtian@jiangnan.edu.cn [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We develop a TGA method for the measurement of the stoichiometric ratio. Black-Right-Pointing-Pointer A series of formulas are deduced to calculate the stoichiometric ratio. Black-Right-Pointing-Pointer Four {alpha}-CD-based inclusion complexes were successfully prepared. Black-Right-Pointing-Pointer The developed method is applicable. - Abstract: An approach mainly based on thermogravimetric analysis (TGA) was developed to evaluate the stoichiometric ratio (SR, guest to host) of the guest-{alpha}-cyclodextrin (Guest-{alpha}-CD) inclusion complexes (4-cresol-{alpha}-CD, benzyl alcohol-{alpha}-CD, ferrocene-{alpha}-CD and decanoic acid-{alpha}-CD). The present data obtained from Fourier transform-infrared (FT-IR) spectroscopy showed that all the {alpha}-CD-based inclusion complexes were successfully prepared in a solid-state form. The stoichiometric ratios of {alpha}-CD to the relative guests (4-cresol, benzyl alcohol, ferrocene and decanoic acid) determined by the developed method were 1:1, 1:2, 2:1 and 1:2, respectively. These SR data were well demonstrated by the previously reported X-ray diffraction (XRD) method and the NMR confirmatory experiments, except the SR of decanoic acid with a larger size and longer chain was not consistent. It is, therefore, suggested that the TGA-based method is applicable to follow the stoichiometric ratio of the polycrystalline {alpha}-CD-based inclusion complexes with smaller and shorter chain guests.

  11. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state α-cyclodextrin-based inclusion complexes

    International Nuclear Information System (INIS)

    Bai, Yuxiang; Wang, Jinpeng; Bashari, Mohanad; Hu, Xiuting; Feng, Tao; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2012-01-01

    Highlights: ► We develop a TGA method for the measurement of the stoichiometric ratio. ► A series of formulas are deduced to calculate the stoichiometric ratio. ► Four α-CD-based inclusion complexes were successfully prepared. ► The developed method is applicable. - Abstract: An approach mainly based on thermogravimetric analysis (TGA) was developed to evaluate the stoichiometric ratio (SR, guest to host) of the guest–α-cyclodextrin (Guest-α-CD) inclusion complexes (4-cresol-α-CD, benzyl alcohol-α-CD, ferrocene-α-CD and decanoic acid-α-CD). The present data obtained from Fourier transform-infrared (FT-IR) spectroscopy showed that all the α-CD-based inclusion complexes were successfully prepared in a solid-state form. The stoichiometric ratios of α-CD to the relative guests (4-cresol, benzyl alcohol, ferrocene and decanoic acid) determined by the developed method were 1:1, 1:2, 2:1 and 1:2, respectively. These SR data were well demonstrated by the previously reported X-ray diffraction (XRD) method and the NMR confirmatory experiments, except the SR of decanoic acid with a larger size and longer chain was not consistent. It is, therefore, suggested that the TGA-based method is applicable to follow the stoichiometric ratio of the polycrystalline α-CD-based inclusion complexes with smaller and shorter chain guests.

  12. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times

    Directory of Open Access Journals (Sweden)

    Johanna Gaitán-Álvarez

    2018-03-01

    Full Text Available We evaluated the thermogravimetric and devolatilization rates of hemicellulose and cellulose, and the calorimetric behavior of the torrefied biomass, of five tropical woody species (Cupressus lusitanica, Dipteryx panamensis, Gmelina arborea, Tectona grandis and Vochysia ferruginea, at three temperatures (TT and three torrefaction times (tT using a thermogravimetric analyzer. Through a multivariate analysis of principal components (MAPC, the most appropriate torrefaction conditions for the different types of woody biomass were identified. The thermogravimetric analysis-derivative thermogravimetry (TGA-DTG analysis showed that a higher percentage of the hemicellulose component of the biomass degrades, followed by cellulose, so that the hemicellulose energy of activation (Ea was less than that of cellulose. With an increase in TT and tT, the Ea for hemicellulose decreased but increased for cellulose. The calorimetric analyses showed that hemicellulose is the least stable component in the torrefied biomass under severe torrefaction conditions, and cellulose is more thermally stable in torrefied biomass. From the MAPC results, the best torrefaction conditions for calorimetric analyses were at 200 and 225 °C after 8, 10, and 12 min, for light and middle torrefaction, respectively, for the five woody species.

  13. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  14. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  15. Thermogravimetric Analysis (TGA) Profile of Modified Sba-15 at Different Amount of Alkoxy silane Group

    International Nuclear Information System (INIS)

    Norhasyimi Rahmat; Nur Fathilah Mohd Yusof; Ezani Hafiza

    2014-01-01

    This study focused on meso porous silica SBA-15 modified with alkoxy silane functional group; phenyltriethoxysilane (PTES) and vinyltriethoxysilane (VTES) using direct synthesis and post-grafting methods. By direct synthesis method, SBA-15 template by triblock copolymer (P123) and functionalized with alkoxy silane groups at different amount of loadings were co-condensed with tetraethyl orthosilicate (TEOS) under acidic conditions. As for post-grafting method, different loadings of alkoxy silane groups were added after co-condensation of TEOS with P123 template. Both synthesis methods used calcination process to remove surfactant template at 550 degree Celsius for 5 hours. The derivatized SBA-15 was characterized by thermogravimetric analysis to evaluate the profile at different loadings of alkoxy silane groups with different synthesis method. At temperature range of 300-800 degree Celsius, post-grafting method displayed the highest weight loss of phenyl and vinyl groups. However, there was no significant difference of weight loss for different amount of organo silane groups. In this study, TGA has shown to be significant characterization means to determine the effects of different method used in synthesizing modified SBA-15. It was shown that different loading of phenyl and vinyl groups did not affect the efficiency of surfactant removal. (author)

  16. Thermal degradation of Shredded Oil Palm Empty Fruit Bunches (SOPEFB) embedded with Cobalt catalyst by Thermogravimetric Analysis (TGA)

    Science.gov (United States)

    Alias, R.; Hamid, N. H.; Jaapar, J.; Musa, M.; Alwi, H.; Halim, K. H. Ku

    2018-03-01

    Thermal behavior and decomposition kinetics of shredded oil palm empty fruit bunches (SOPEFB) were investigated in this study by using thermogravimetric analysis (TGA). The SOPEFB were analyzed under conditions of temperature 30 °C to 900 °C with nitrogen gas flow at 50 ml/min. The SOPEFB were embedded with cobalt (II) nitrate solution with concentration 5%, 10%, 15% and 20%. The TG/DTG curves shows the degradation behavior of SOPEFB following with char production for each heating rate and each concentration of cobalt catalyst. Thermal degradation occurred in three phases, water drying phase, decomposition of hemicellulose and cellulose phase, and lignin decomposition phase. The kinetic equation with relevant parameters described the activation energy required for thermal degradation at the temperature regions of 200 °C to 350 °C. Activation energy (E) for different heating rate with SOPEFB embedded with different concentration of cobalt catalyst showing that the lowest E required was at SOPEFB with 20% concentration of cobalt catalyst..

  17. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Science.gov (United States)

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  18. Purity Evaluation of Single-Walled Carbon Nanotubes Using Thermogravimetric Analysis

    International Nuclear Information System (INIS)

    Goak, Jeung Choon; Kim, Tae Yang; Jung, Jongwan; Seo, Young-Soo; Lee, Naesung; Sok, Junghyun

    2013-01-01

    This study evaluated the purity of single-walled carbon nanotubes (SWCNTs) in the arc-synthesized SWCNT samples by using thermogravimetric analysis (TGA). The as-produced SWCNT samples were heat-treated in air for 20 h at 275-475°C and characterized by scanning and transmission electron microscopes and TGA to establish oxidation temperature ranges of SWCNTs and carbonaceous impurities comprising the samples. Based on these oxidation temperature ranges, derivative thermogravimetric curves were deconvoluted, and differentiated peaks were assigned to SWCNTs and carbonaceous impurities. The compositions and the SWCNT purities of the samples were obtained simply by calculating the areal ratios under the deconvoluted curves. TGA studies on purity evaluation and thermal stabilities of SWCNTs and carbonaceous impurities are likely to provide us with a simple route of thermal oxidation purification to acquire high-purity SWCNT samples.

  19. A simple, sensitive graphical method of treating thermogravimetric analysis data

    Science.gov (United States)

    Abraham Broido

    1969-01-01

    Thermogravimetric Analysis (TGA) is finding increasing utility in investigations of the pyrolysis and combustion behavior of materuals. Although a theoretical treatment of the TGA behavior of an idealized reaction is relatively straight-forward, major complications can be introduced when the reactions are complex, e.g., in the pyrolysis of cellulose, and when...

  20. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    OpenAIRE

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using mill...

  1. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  2. Thermogravimetric analysis of forest understory grasses

    Science.gov (United States)

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  3. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    Science.gov (United States)

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  4. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  5. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani; Han, Yunqing; Brignoli, Omar; Telalovic, Selvedin; Elbaz, Ayman M.; Im, Hong G.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due

  6. A novel quantification method of pantaprazole sodium monohydrate in sesquihydrate by thermogravimetric analyzer.

    Science.gov (United States)

    Reddy, V Ranga; Rajmohan, M Anantha; Shilpa, R Laxmi; Raut, Dilip M; Naveenkumar, Kolla; Suryanarayana, M V; Mathad, Vijayavitthal T

    2007-04-11

    To demonstrate the applicability of thermogravimetric analyzer as a tool for the quantification of pantaprazole sodium monohydrate in sesquihydrate, studies have been conducted. Thermal analysis (DSC, TGA) crystallographic (PXRD) and spectroscopic techniques (FT-IR) were used for the characterization of the polymorphs. Thermogravimetric analysis (TGA) analysis was explored by high-resolution dynamic (Hi-Res-dynamic) and high-resolution modulated (Hi-Res-modulated) test procedures to quantify the hydrate polymorphic mixtures. The two polymorphic forms exhibited significant differences and good resolution in the second derivative thermogram generated by Hi-Res-modulated test procedure. Thus, the TGA with Hi-Res-modulated test procedure was considered for the quantification of monohydrate in sesquihydrate. The calibration plot was constructed from the known mixtures of two polymorphs by plotting the peak area of the second derivative thermogram against the weight percent of monohydrate. Using this novel approach, 1 wt% limit of detection (LOD) was achieved. The polymorphic purity results, obtained by TGA in Hi-Res-modulated test procedure were found to be in good agreement with the results predicted by FT-IR and was comparable with the actual values of the known polymorphic mixtures. The Hi-Res-modulated TGA technique is very simple and easy to perform the analysis.

  7. Morphological Changes of Limestone Sorbent Particles during Carbonation/Calcination Looping Cycles in a Thermogravimetric Analyzer (TGA) and Reactivation with Steam

    KAUST Repository

    Wu, Y.

    2010-04-15

    Carbonation and calcination looping cycles were carried out on four limestones in a thermogravimetric analyzer (TGA). The CO2 carrying capacity of a limestone particle decays very quickly in the first 10 cycles, reducing to about 20% of its original uptake capacity after 10 cycles for the four limestones studied in this work, and it decreases further to 6-12% after 50 cycles. A new steam reactivation method was applied on the spent sorbent to recover the loss of reactivity. The steam reactivation of multi-cycled samples was conducted at atmospheric pressure. Steam reactivation for 5 min at 130 °C of particles that had undergone 10 cycles resulted in an immediate increase (by 45-60% points) in carrying capacity. The morphological changes of limestone particles during the cycling and steam reactivation were studied using both an optical microscope and scanning electron microscopy (SEM). The diameters of limestone particles shrank by about 2-7% after 10 carbonation/calcination cycles, and the particle diameters swelled significantly (12-22% increase) after steam reactivation. These size changes are important for studies of attrition and mathematical modeling of carbonation. © 2010 American Chemical Society.

  8. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis.

    Science.gov (United States)

    Mansfield, Elisabeth; Tyner, Katherine M; Poling, Christopher M; Blacklock, Jenifer L

    2014-02-04

    The use of nanoparticles in some applications (i.e., nanomedical, nanofiltration, or nanoelectronic) requires small samples with well-known purities and composition. In addition, when nanoparticles are introduced into complex environments (e.g., biological fluids), the particles may become coated with matter, such as proteins or lipid layers. Many of today's analytical techniques are not able to address small-scale samples of nanoparticles to determine purity and the presence of surface coatings. Through the use of an elevated-temperature quartz crystal microbalance (QCM) method we call microscale thermogravimetric analysis, or μ-TGA, the nanoparticle purity, as well as the presence of any surface coatings of nanomaterials, can be measured. Microscale thermogravimetric analysis is used to determine the presence and amount of surface-bound ligand coverage on gold nanoparticles and confirm the presence of a poly(ethylene glycol) coating on SiO2 nanoparticles. Results are compared to traditional analytical techniques to demonstrate reproducibility and validity of μ-TGA for determining the presence of nanoparticle surface coatings. Carbon nanotube samples are also analyzed and compared to conventional TGA. The results demonstrate μ-TGA is a valid method for quantitative determination of the coatings on nanoparticles, and in some cases, can provide purity and compositional data of the nanoparticles themselves.

  9. Isothermal thermogravimetric data acquisition analysis system

    Science.gov (United States)

    Cooper, Kenneth, Jr.

    1991-01-01

    The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.

  10. Mathematical tool from corn stover TGA to determine its composition.

    Science.gov (United States)

    Freda, Cesare; Zimbardi, Francesco; Nanna, Francesco; Viola, Egidio

    2012-08-01

    Corn stover was treated by steam explosion process at four different temperatures. A fraction of the four exploded matters was extracted by water. The eight samples (four from steam explosion and four from water extraction of exploded matters) were analysed by wet chemical way to quantify the amount of cellulose, hemicellulose and lignin. Thermogravimetric analysis in air atmosphere was executed on the eight samples. A mathematical tool was developed, using TGA data, to determine the composition of corn stover in terms of cellulose, hemicellulose and lignin. It uses the biomass degradation temperature as multiple linear function of the cellulose, hemicellulose and lignin content of the biomass with interactive terms. The mathematical tool predicted cellulose, hemicellulose and lignin contents with average absolute errors of 1.69, 5.59 and 0.74 %, respectively, compared to the wet chemical method.

  11. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  12. Spectroscopic and thermogravimetric study of nickel sulfaquinoxaline complex

    International Nuclear Information System (INIS)

    Tailor, Sanjay M.; Patel, Urmila H.

    2016-01-01

    The ability of sulfaquinoxaline (4-Amino-N-2-quinoxalinylbenzenesulfonamide) to form metal complexes are investigated. The nickel complex of sulfaquinoxaline is prepared by reflux method and characterized by CHN analysis and IR spectra. The results of IR spectral data suggest that the binding of nickel atom to the sulfonamidic nitrogen are in good agreement. The thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential thermogravimetric (DTG) analysis of nickel sulfaquinoxaline are carried out from ambient temperature to 750°C in inert nitrogen atmosphere. The activation energy, enthalpy, entropy and Gibbs free energy of nickel sulfaquinoxaline complex is determined from the thermal curves using Broido method. The results are reported in this paper.

  13. Reactivity studies of rice husk combustion using TGA

    International Nuclear Information System (INIS)

    Ismail, A.F.; Shamsuddin, A.H.; Mahdi, F.M.A.

    2000-01-01

    The reactivity of rice husks combustion is systematically studied the thermogravimetric analyzer (TGA). The kinetic parameters are determined from the Arrhenius plots based on the data of weight loss over temperature at different combustion heating rates. The results of proximate analysis (the moisture, volatile matters, fixed carbon, and ash contents) are also presented in this paper. The effects of process conditions on the self-ignition phenomenon of rice husk combustion are quantified. Finally, these results and compared with results for coal combustion. This research is part of the work to determine the optimal process conditions of rice husk combustion for energy production. (Author)

  14. Kinetics of Pyrolysis and Gasification Using Thermogravimetric and Thermovolumetric Analyses

    Directory of Open Access Journals (Sweden)

    Czerski Grzegorz

    2016-03-01

    Full Text Available The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents.

  15. A preliminary high-pressure thermogravimetric study of combustion reactivity of a Collie coal char

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yii Leng; Zhang, Zhezi; Zhu, Mingming; Zhang, Dongke [Western Australia Univ., Crawley, WA (Australia). Centre for Energy (M473); Luan, Chao [Western Australia Univ., Crawley, WA (Australia). Centre for Energy (M473); Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering; You, Changfu [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering

    2013-07-01

    The effect of pressure(up to 20 bar)on the reactivity of a char(150-160 {mu}m) produced from Western Australian Collie coal has been studied using a high-pressure thermogravimetric analyser (HP TGA). The pressure demonstrated a positive effect in enhancing char combustion reactivities.Kinetic parameters have been determined from the experimental data.The apparent reaction order was found to be approximately 0.7 and the apparent activation energies were 91.0 kJ/mol at atmospheric pressure and 1.5 kJ/mol at an elevated pressure(10 bar),indicating a shift in the control regimes of the reaction at elevated pressures.The lumped effect of the sample size, bulk diffusion,interparticle and intraparticle diffusion at the elevated pressures played an important role in reducing the mass transfer during the HP-TGA experimentation.Thus the activation energy calculated at elevated pressures may not represent the intrinsic activation energy of the char particles but the apparent values of the bulk of the samples.

  16. Thermogravimetric and x-ray diffraction analyses of Luna-24 regolith samples

    International Nuclear Information System (INIS)

    Deshpande, V.V.; Dharwadkar, S.R.; Jakkal, V.S.

    1979-01-01

    Two samples of Luna-24 were analysed by X-ray diffraction and thermogravimetric (TG) techniques. The sample 24123.12 shows a weight loss of nearly 0.85 percent between 23O-440deg C and followed by 1.16 percent weight gain from 500 to 800deg C. The sample 23190.13 showed only a weight gain of about 1.5 percent from 5O0deg C to 900deg C. X-ray diffraction analyses show the presence of olivine, plagioclase, pigeonite, enstatite, and native iron in both the virgin samples. The heated samples, however, show that only the native iron got oxidized to iron oxide. The other constituents remain unaltered. (auth.)

  17. Strategy for thermo-gravimetric analysis of K East fuel samples

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1997-01-01

    A strategy was developed for the Thermo-Gravimetric Analysis (TGA) testing of K East fuel samples for oxidation rate determinations. Tests will first establish if there are any differences for dry air oxidation between the K West and K East fuel. These tests will be followed by moist inert gas oxidation rate measurements. The final series of tests will consider pure water vapor i.e., steam

  18. A Thermogravimetric Study of the Behaviour of Biomass Blends During Combustion

    Directory of Open Access Journals (Sweden)

    Ivo Jiříček

    2012-01-01

    Full Text Available The ignition and combustion behavior of biomass and biomass blends under typical heating conditions were investigated. Thermogravimetric analyses were performed on stalk and woody biomass, alone and blended with various additive weight ratios. The combustion process was enhanced by adding oxygen to the primary air. This led to shorter devolatilization/pyrolysis and char burnout stages, which both took place at lower temperatures than in air alone. The results of the ignition study of stalk biomass show a decrease in ignition temperature as the particle size decreases. This indicates homogeneous ignition, where the volatiles burn in the gas phase, preventing oxygen from reaching the particle surface.The behavior of biomass fuels in the burning process was analyzed, and the effects of heat production and additive type were investigated. Mixing with additives is a method for modifying biofuel and obtaining a more continuous heat release process. Differential scanning calorimetric-thermogravimetric (DSC-TGA analysis revealed that when the additive is added to biomass, the volatilization rate is modified, the heat release is affected, and the combustion residue is reduced at the same final combustion temperature.

  19. Thermogravimetric studies on electron beam initiated grafting of triallyl cyanurate onto polyethylene

    International Nuclear Information System (INIS)

    Chaki, T.K.; Bhowmik, A.K.; Mukunda, P.G.; Majali, A.B.; Tikku, V.K.

    1993-01-01

    Low density polyethylene (LDPE) containing different levels of triallyl cyanurate (TAC) have been prepared in a Brabender Plasticorder at 120 degC. The moulded samples in the form of rectangular compression sheet were irradiated under electron beam accelerator with different irradiation doses. Thermogravimetric and derivative thermogravimetric analyses of the irradiated samples grafted with TAC have been carried out in order to explore the decomposition behaviour and kinetics of decomposition under nitrogen atmosphere. Initial decomposition temperature (Ti), temperature at which 50% weight loss takes place (T50), final decomposition temperature (Tf) and the kinetic parameters evaluated from TGA traces of samples at different radiation doses (constant TAC level) and at different levels of TAC (constant radiation dose) have been reported. The effect of radiation dose and TAC level on the grafting of TAC onto polyethylene have been explained on the basis of degradation characteristics of irradiated samples. Kinetic studies show that the degradation of the irradiated samples follow first order reaction kinetics. Activation energies of degradation have been determined using McCarty and Green's method. Activation energy of the irradiated samples increases with the increasing radiation dose and also with increasing level of TAC. (author). 3 tabs

  20. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    Science.gov (United States)

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature

    International Nuclear Information System (INIS)

    Ávila, Ivonete; Crnkovic, Paula M.; Luna, Carlos M.R.; Milioli, Fernando E.

    2017-01-01

    Highlights: • Coal ignition tests were conducted in a fluidized bed and thermogravimetric conditions. • The use of two different ignition criteria showed a similar coal ignition temperature. • Coal ignition temperature was obtained by the changes of gas concentrations in FBC. • Ignition temperatures were associated with the activation energy of coal combustion. - Abstract: Ignition experiments with two bituminous coals were carried out in an atmospheric bubbling fluidized bed combustor (FBC) and a thermogravimetric analyzer (TGA). In the FBC tests, the rapid increase in O_2, CO_2, and SO_2 concentrations is an indication of the coal ignition. In the TGA technique, the ignition temperature was determined by the evaluation of the TGA curves in both combustion and pyrolysis processes. Model-Free Kinetics was applied and the coal ignition temperatures were associated with changes in the activation energy values during the combustion process. The results show the coal with the lowest activation energy also showed the lowest ignition temperature, highest values of volatile content and a higher heating value. The application of two different ignition criteria (TGA and FBC) resulted in similar ignition temperatures. The FBC curves indicated the high volatile coal ignites in the freeboard, i.e. during the feeding in the reactor, whereas the low volatile coal ignites in the bed. Finally, the physicochemical characteristics of the investigated coal types were correlated with their reactivities for the prediction of the ignition temperatures behaviors under different operating conditions as those in FBC.

  2. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition.

    Science.gov (United States)

    Chen, Dengyu; Zheng, Yan; Zhu, Xifeng

    2012-03-01

    The current study presents a thermogravimetric method to determine the effective moisture diffusivity and drying kinetics of biomass. Drying experiments on poplar sawdust were performed at four temperatures (60, 70, 80, and 90°C) by a thermogravimetric analyzer (TGA). The major assumption in experimentally determining effective diffusivity by Fick's diffusion equation is that drying is mass transfer limited and temperature remains isothermal during drying. The results indicated that TGA could well achieve these determining conditions. The drying process of sawdust mostly took place in the falling rate period. Midilli-Kucuk model showed the best fit for all experimental data. The effective diffusivity values changed from 9.38 × 10(-10)m(2)/s to 1.38 × 10(-9)m(2)/s within the given temperature range, and the activation energy was calculated to be 12.3 kJ/mol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Catalytic thermal decomposition of polyethylene determined by thermogravimetric treatment

    International Nuclear Information System (INIS)

    Nisar, J.; Khan, M.S.; Khan, M.A.

    2014-01-01

    In this study low density polyethylene (LDPE) has been studied by thermogravimetric analysis (TGA) using commercially available oxides as catalysts. TGA experiments were used to evaluate the activity of different catalysts on low density polyethylene (LDPE) degradation and to study the effect in terms of type and amount of catalyst used. All the catalysts used improved the pyrolysis of LDPE. The reaction rates were found to increase with increase in amount of catalyst. Among the catalysts used, alumina acidic active catalyst performed better at all four fractions. Moreover, alumina acidic active reduced weight loss temperature better than others tested catalysts. The effect of alumina neutral catalyst on the pyrolysis of LDPE is less pronounced due to its small surface area and pore size. The effect of these catalysts showed that surface area, number of acidic sites and pore size were found as the key factors for the energy efficient degradation of polymers. (author)

  4. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior

    International Nuclear Information System (INIS)

    Rizzo, Andrea Maria; Prussi, Matteo; Bettucci, Lorenzo; Libelli, Ilaria Marsili; Chiaramonti, David

    2013-01-01

    Highlights: ► Proximate and ultimate analysis of two microalgae (Nannochloropsis and Chlorella spp.). ► TGA of Chlorella spp. and Nannochloropsis investigated at 15 °C/min up to 800 °C. ► 1.2 kg of Chlorella pyrolyzed in a novel batch, intermediate pyrolysis pilot reactor at 450 °C. ► Bio-oil from Chlorella oil analysed and compared to pine chips fast pyrolysis oil. ► Bio-oil from Chlorella exhibited superior properties compared to lignocellulosic pyrolysis oil as intermediate energy carrier. -- Abstract: Microalgae are photosynthetic microorganisms living in marine or freshwater environment. In this study, samples of Chlorella spp. and Nannochloropsis from two different origins were analysed to settle a preliminary characterization of these microorganisms as intermediate energy carriers and their properties compared to a conventional lignocellulosic feedstock (pine chips). Both microalgae samples were characterized in terms of elemental composition (CHONS and P) and thermogravimetric behavior. This was investigated through non-isothermal thermogravimetric analysis in nitrogen atmosphere at heating rate of 15 °C min −1 and temperature up to 800 °C. Solid residues produced at 300 °C and 800 °C from TGA were also analysed to determine the ultimate composition of chars. Activation energy, reaction order and pre-exponential factor were calculated for the single step conversion mechanism of 1 g of Chlorella spp. and compared to literature data on Chlorella protothecoides and Spirulina platensis. Calculated kinetic parameters, given as intervals of several determinations, resulted to be: pre-exponential factor (A) 1.47–1.62E6 min −1 , activation energy (E) 7.13–7.92E4 J mol −1 , reaction order (n) 1.69–2.41. 1.2 kg of Chlorella spp. was then processed in a newly designed batch pyrolysis pilot reactor, capable of converting up to 1.5 kg h −1 of material, and pyrolysis liquid collected, analysed and compared with a sample of fast pyrolysis

  5. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  6. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates.

    Science.gov (United States)

    Shahbazi, Shayan; Stratz, S Adam; Auxier, John D; Hanson, Daniel E; Marsh, Matthew L; Hall, Howard L

    2017-01-01

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  7. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution

    DEFF Research Database (Denmark)

    Shi, Zhenguo; Geiker, Mette Rica; Lothenbach, Barbara

    2017-01-01

    Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles...

  8. Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls

    International Nuclear Information System (INIS)

    Pinkerton, F.E.; Wicke, B.G.; Olk, C.H.; Tibbetts, G.G.; Meisner, G.P.; Meyer, M.S.; Herbst, J.F.

    2000-01-01

    We have used a thermogravimetric analyzer (TGA) to measure the hydrogen absorption capacity of a variety of carbon-based storage materials, including Li- and K-intercalated graphite and Li-doped multi-wall nanotubes. The TGA uses weight gain/loss as a function of time and temperature to monitor hydrogen absorption/desorption in flowing hydrogen gas. Creating and maintaining a contaminant-free atmosphere is critical to the accurate TGA measurement of hydrogen absorption in carbon-based materials; even low concentrations of impurity gases such as O 2 or H 2 O are sufficient to masquerade as hydrogen absorption. We will discuss examples of this effect relevant to recent reports of hydrogen storage appearing in the literature. The precautions required are non-trivial. In our TGA, for instance, about 16% of the original atmosphere remains after a two-hour purge; at least 15 hours is required to fully purge the apparatus. Furthermore, we cover the TGA with a protective atmosphere enclosure during sample loading to minimize the introduction of impurity gases. With these precautions it is possible to unambiguously measure hydrogen storage. For example, we have determined the hydrogen absorption capacity of our K-intercalated graphite samples to be 1.3 wt% total hydrogen absorption above 50 o C, of which 0.2 wt% can be reproducibly recovered with temperature cycling. With due care, TGA measurements provide complementary information to that obtained from standard pressure techniques for measuring hydrogen sorption, which rely on measuring the loss of gas pressure in a known volume. Taken together, TGA and pressure measurements provide a powerful combination for determining verifiable hydrogen storage capacity. (author)

  9. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. THERMOGRAVIMETRIC INVESTIGATIONS OF VAGINAL SUPPOSITORY WITH THYME OIL

    Directory of Open Access Journals (Sweden)

    N. V. Melnikova

    2015-04-01

    Full Text Available One of the main stages in new medicines creation is the development of their making technology. Technological process of suppository making includes ratherlongthermal treatment during preparation and homogenization of suppository base, active substancesaddition. These factors create danger of chemical and physical transformation of active substances and excipients in suppository up to their destruction and change of pharmacological and physical-chemical properties. Use of thermogravimetric analysis in pharmaceutical technology allows to studythepossibility of chemical interaction in dosage forms over the wide temperature range. The aim of this work is study of thermal treatmenteffects of suppository base with thyme oil over the temperature range of suppository manufacturing. Methods and results. As an object of thermogravimetric study vaginal suppository with thyme oil 0,2 g, suppository-placebo containing propylenglycol, polyethylene glycol 400, proxanol 268, twin 80 and the active ingredient of «Царствоароматов», Ukraine, production were used. Thermogravimetric analysis was carried out on the derivatograph«Shimadzu DTG-60», Japan, with the platinum and platinum-rhodiumthermopair with samples heating in aluminiumcrucibles from 25 to 200ºС. As standard α-Al2O3was used.Heating rate was 10ºСper min.Mass of the samples was 23,45– 39,63 mg. Obtained data were registered by the derivatograph as curves T, DTA, TGA. The T curve on the derivatogramm shows the temperature change and the TGA curve demonstrates the sample mass change during investigation. The DTA curve reflects differentiation of thermal effects and contains information about endothermic and exothermal maximum and is used for qualitative valuation of derivatogramm. According to results of thermogravimetric investigation the thyme oil is thermostable substance which is gradually evaporating during heating. So, at the beginning of study the test sample mass was 23

  11. Thermal analysis of thermo-gravimetric measurements of spent nuclear fuel oxidation rates

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1997-01-01

    A detailed thermal analysis was completed of the sample temperatures in the Thermo-Gravimetric Analysis (TGA) system used to measure irradiated N Reactor fuel oxidation rates. Sample temperatures during the oxidation process did not show the increase which was postulated as a result of the exothermic reactions. The analysis shows the axial conduction of heat in the sample holder effectively removes the added heat and only a very small, i.e., <10 C, increase in temperature is calculated. A room temperature evaporation test with water showed the sample thermocouple sensitivity to be more than adequate to account for a temperature change of approximately 5 C. Therefore, measured temperatures in the TGA are within approximately 10 C of the actual sample temperatures and no adjustments to reported data to account for the heat input from the oxidation process are necessary

  12. Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for ß-thalassemia screening.

    Science.gov (United States)

    Risoluti, Roberta; Materazzi, Stefano; Sorrentino, Francesco; Maffei, Laura; Caprari, Patrizia

    2016-10-01

    β-Thalassemia is a hemoglobin genetic disorder characterized by the absence or reduced β-globin chain synthesis, one of the constituents of the adult hemoglobin tetramer. In this study the possibility of using thermogravimetric analysis (TGA) followed by chemometrics as a new approach for β-thalassemia detection is proposed. Blood samples from patients with β-thalassemia were analyzed by the TG7 thermobalance and the resulting curves were compared to those typical of healthy individuals. Principal Component Analysis (PCA) was used to evaluate the correlation between the hematological parameters and the thermogravimetric results. The thermogravimetric profiles of blood samples from β-thalassemia patients were clearly distinct from those of healthy individuals as result of the different quantities of water content and corpuscular fraction. The hematological overview showed significant decreases in the values of red blood cell indices and an increase in red cell distribution width value in thalassemia subjects when compared with those of healthy subjects. The implementation of a predictive model based on Partial Least Square Discriminant Analysis (PLS-DA) for β-thalassemia diagnosis, was performed and validated. This model permitted the discrimination of anemic patients and healthy individuals and was able to detect thalassemia in clinically heterogeneous patients as in the presence of δβ-thalassemia and β-thalassemia combined with Hb Lepore. TGA and Chemometrics are capable of predicting ß-thalassemia syndromes using only a few microliters of blood without any pretreatment and with an hour of analysis time. A fast, rapid and cost-effective diagnostic tool for the β-thalassemia screening is proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis.

    Science.gov (United States)

    Sebby, K B; Mansfield, E

    2015-04-01

    The widespread integration of nanoparticle technologies into biomedicine will depend on the ability to repeatedly create particles with well-defined properties and predictable behaviors. For this to happen, fast, reliable, inexpensive, and widely available techniques to characterize nanomaterials are needed. Characterization of the surface molecules is particularly important since the surface, including the surface molecule density, plays a dominant role in determining how nanoparticles interact with their surroundings. Here, 10 and 30 nm gold nanoparticle NIST Standard Reference Materials were functionalized with fluorescently labeled polyethylene glycol (PEG) with either thiolate or lipoic acid anchoring groups to evaluate analytical techniques for determining surface coverage. The coating of the nanoparticles was confirmed with dynamic light scattering, microscale thermogravimetric analysis (μ-TGA), and ultraviolet-visible (UV-vis) spectroscopy. A UV-vis method for determining gold nanoparticle concentrations that takes into account spectral broadening upon functionalization was developed. The amount of bound PEG was quantified with μ-TGA, a technique analogous to thermogravimetric analysis that uses quartz crystal microbalances, and fluorescence spectroscopy of displaced ligands. It is shown that μ-TGA is a convenient technique for the quantification of ligands bound to inorganic particles while sacrificing a minimal amount of sample, and the treatment of the functionalized nanoparticle dispersions with dithiothreitol may be insufficient to achieve complete displacement of the surface ligands for quantification by fluorescence measurements. The μ-TGA and fluorescence results were used to determine ligand footprint sizes-average areas occupied by each ligand on the particles' surface. The lipoic acid bound ligands had footprint sizes of 0.21 and 0.25 nm(2) on 10 and 30 nm particles, respectively while the thiolate ligands had footprint sizes of 0.085 and 0

  14. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    Directory of Open Access Journals (Sweden)

    Weiqing Zhang

    2015-01-01

    Full Text Available Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and IG+GR/IAll but lower values of ID/I(G+GR, IDL/I(G+GR, IS+SL/I(G+GR, and I(GL+GL'/I(G+GR. The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, IG+GR/IAll, and IS+SL/I(G+GR. Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements.

  15. Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR

    Directory of Open Access Journals (Sweden)

    Bimal Acharya

    2015-11-01

    Full Text Available Torrefaction is a thermochemical conversion technique to improve the fuel properties of lignocellulosic biomass by treating at temperature 200 ℃-300 ℃ in the minimum oxygen environment for a reasonable residence time. In this study, thermal decomposition and thermal activities of miscanthus and wheat straw during the torrefaction at 200 ℃, 275 ℃, and 300 ℃ in a nitrogen environment for 45 minutes of residence time are analyzed in a simultaneous thermogravimetric analyzer (micro TGA with a differential scanning calorimetry (DSC, and a macro-TGA. The output of the micro TGA is fed into the Fourier transform infrared spectrometry (FTIR and qualitative analysis of the gaseous product is carried out. The composition of different gas products during the torrefaction of biomass are compared critically and kinetics were analyzed. It is found that the weight loss due to degradation of initial biomass in second stage (torrefaction process is a much faster conversion process than the weight loss process in the first stage (drying process. The weight loss of biomass increases with increase in the residence time and torrefaction treatment temperatures. The yield after torrefaction is a solid bio-coal product. The torrefied product were less reactive and has nearly 25% better heating value than the raw biomass. Between the two feedstocks studied, torrefied miscanthus proved to be a more stable fuel than the torrefied wheat straw. The major gaseous components observed during torrefaction are water, carbon dioxide, carbon monoxide, 1,2-Dibromethylene.

  16. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2016-01-01

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  17. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-24

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  18. Study of solid chemical evolution in torrefaction of different biomasses through solid-state "1"3C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis)

    International Nuclear Information System (INIS)

    Rodriguez Alonso, Elvira; Dupont, Capucine; Heux, Laurent; Da Silva Perez, Denilson; Commandre, Jean-Michel; Gourdon, Christophe

    2016-01-01

    The objective of this work is to compare mass loss and chemical evolution of the solid phase, versus time, during dynamic torrefaction of different types of biomass. For this purpose, two experiments, ThermoGravimetric Analysis and solid-state "1"3C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance, were run on four representative biomasses. Overall mass loss and chemical evolution of the solid phase were followed, respectively, as a function of temperature and time. Thanks to this coupled information, it was shown that the knowledge of both solid mass loss and chemical evolution is necessary to characterize torrefaction severity. Moreover, biomasses containing higher proportions of xylan lost mass faster than those containing lower proportions. Lignin showed a protecting role towards cellulose, which would lead to a faster degradation of non-woody biomasses in comparison with woody biomasses. Three parameters would have an influence on solid chemical evolution during torrefaction: xylan content in hemicellulose, lignin content in biomass, and cellulose crystallinity. - Highlights: • Torrefaction of four biomasses was studied with TGA and solid-state NMR. • Both solid mass loss and chemical evolution characterize torrefaction severity. • Biomasses containing a higher proportion of xylan lose mass faster. • Lignin shows a stronger protecting role in degradation of woody biomasses. • Xylan, lignin and crystalline cellulose values influence solid chemical evolution.

  19. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks.

    Science.gov (United States)

    Zhang, Weiqing; Jiang, Shuguang; Hardacre, Christopher; Goodrich, Peter; Wang, Kai; Shao, Hao; Wu, Zhengyan

    2015-01-01

    Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA) measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite) and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of I GR/I All and I (G + GR)/I All but lower values of I D/I (G+GR), I DL/I (G+GR), I (S + SL)/I (G+GR), and I (GL+GL')/I (G+GR). The oxidation properties of the coal samples were characterized by the reactivity indexes T ig, T 20%, and T max from TGA data which were found to correlate well with the band area ratios of I GR/I All, I (G + GR)/I All, and I (S + SL)/I (G+GR). Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements.

  20. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    Science.gov (United States)

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  2. Thermogravimetric analysis of atomized ferromagnetic composites with multiwalled carbon nanotubes: an unusual behavior of nickel in nanospace.

    Science.gov (United States)

    Chen, Xu; Gupta, S; Santhanam, K S V

    2014-03-01

    A spin polarization of atomized ferromagnetic atoms like cobalt or nickel in nano space results in the modification of the electron configuration in the ferromagnetic atom that changes its oxidative property. We have prepared cobalt and nickel composites with multiwalled carbon nanotubes using atomized cobalt and nickel particles, for investigating their thermal oxidative behavior by thermogravimetric analysis (TGA). The composites showed the absence of a thermal oxidation in the temperature range of ambient to the break down temperature of multiwalled carbon nanotubes at 800 degrees C. At this temperature while Co composite forms cobalt oxide, the Ni composite becomes volatile that results in the divergent behavior of the two ferromagnetic compounds with a weight gain observed in TGA for Co and a loss for Ni. The mechanisms operating in the two cases are discussed in this work.

  3. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  4. Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilla, Jose S., E-mail: jstorre@quim.ucm.es [Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Garcia, Julian; Garcia, Silvia; Rodriguez, Francisco [Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2011-03-04

    The combination of lag-k autocorrelation coefficients (LCCs) and thermogravimetric analyzer (TGA) equipment is defined here as a tool to detect and quantify adulterations of extra virgin olive oil (EVOO) with refined olive (ROO), refined olive pomace (ROPO), sunflower (SO) or corn (CO) oils, when the adulterating agents concentration are less than 14%. The LCC is calculated from TGA scans of adulterated EVOO samples. Then, the standardized skewness of this coefficient has been applied to classify pure and adulterated samples of EVOO. In addition, this chaotic parameter has also been used to quantify the concentration of adulterant agents, by using successful linear correlation of LCCs and ROO, ROPO, SO or CO in 462 EVOO adulterated samples. In the case of detection, more than 82% of adulterated samples have been correctly classified. In the case of quantification of adulterant concentration, by an external validation process, the LCC/TGA approach estimates the adulterant agents concentration with a mean correlation coefficient (estimated versus real adulterant agent concentration) greater than 0.90 and a mean square error less than 4.9%.

  5. Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils

    International Nuclear Information System (INIS)

    Torrecilla, Jose S.; Garcia, Julian; Garcia, Silvia; Rodriguez, Francisco

    2011-01-01

    The combination of lag-k autocorrelation coefficients (LCCs) and thermogravimetric analyzer (TGA) equipment is defined here as a tool to detect and quantify adulterations of extra virgin olive oil (EVOO) with refined olive (ROO), refined olive pomace (ROPO), sunflower (SO) or corn (CO) oils, when the adulterating agents concentration are less than 14%. The LCC is calculated from TGA scans of adulterated EVOO samples. Then, the standardized skewness of this coefficient has been applied to classify pure and adulterated samples of EVOO. In addition, this chaotic parameter has also been used to quantify the concentration of adulterant agents, by using successful linear correlation of LCCs and ROO, ROPO, SO or CO in 462 EVOO adulterated samples. In the case of detection, more than 82% of adulterated samples have been correctly classified. In the case of quantification of adulterant concentration, by an external validation process, the LCC/TGA approach estimates the adulterant agents concentration with a mean correlation coefficient (estimated versus real adulterant agent concentration) greater than 0.90 and a mean square error less than 4.9%.

  6. Interactions of coal gangue and pine sawdust during combustion of their blends studied using differential thermogravimetric analysis.

    Science.gov (United States)

    Zhang, Yuanyuan; Zhang, Zhezi; Zhu, Mingming; Cheng, Fangqin; Zhang, Dongke

    2016-08-01

    The interactions between coal gangue and pine sawdust during the combustion process were studied using thermogravimetric analysis. The effect of the blending ratio, oxygen concentration and heating rate on the weight loss (TG) and differential thermogravimetric (TGA) profiles was examined. The TG and DTG curves of the blends were not additives of those of the individual materials, suggesting that interactions between coal gangue and pine sawdust had occurred during the combustion, especially in the temperature range of 400-600°C. Kinetic analysis confirmed that the combustion of coal gangue, pine sawdust and their blends was chemical reaction controlled. Further analysis revealed that the interactions between coal gangue and pine sawdust were primarily due to thermal effects rather than structural changes, with the thermal inertia of coal gangue dominating over the behaviour of the blends. The interactions decreased with decreasing the coal gangue ratio in the blend, oxygen concentration and heating rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Thermogravimetric study of a Phase Change Slurry: Effect of variable conditions

    International Nuclear Information System (INIS)

    Giro-Paloma, J.; Valle-Zermeño, R. del; Fernández, A.I.; Chimenos, J.M.; Formosa, J.

    2016-01-01

    Highlights: • Dry or wet PCS present differences in their thermal behavior. • The optimum conditions of dry PCS were determined by TGA. • Type of atmosphere and heating rate were the variables under consideration. • T peak can be accurately determined at 1 °C·min −1 in N 2. • Fusion/latent heat can be best determined at 10 °C·min −1 . - Abstract: Microcapsules containing Phase Change Materials (MPCM) are widely used for passive systems in energy storage. When MPCM are mixed with a carrier fluid, Phase Change Slurries (PCS) are used for heat transfer fluids in active systems or heat transport systems. The thermal behavior of PCS can be measured as dry or wet basis, resulting in important differences in weight losses. This study explores the optimum conditions for analyzing the thermal behavior of dried PCS by thermogravimetric analysis (TGA) varying the parameter conditions for obtaining peak temperature and heat flow (latent heat). The factors that were taken into account were the atmosphere of study (air and nitrogen) and the heating rate (0.5, 1, 5, and 10 °C·min −1 ). The best conditions to determine peak temperature are at 1 °C·min −1 and in N 2 atmosphere, whereas the decomposition fusion/latent heat of the sample is improved at higher heating velocities towards 10 °C·min −1 .

  9. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method

    International Nuclear Information System (INIS)

    Ren, Shan; Zhang, Jianliang

    2013-01-01

    Highlights: • Co-combustion kinetic analysis of solid fuels was made by iso-conversional method. • Thermodynamic and kinetic parameters of combustion for blends were determined. • WP can improve the combustion characteristic of high ash anthracite. • Reasonable utilization the energy of WP is important for industrial production. - Abstract: Combustion mechanisms and kinetics of plastics-coal blends with 0, 10, 20, 40 and 100% waste plastics (WP) are studied separately by thermogravimetric analysis (TGA) from ambient temperature to 900 °C in air atmosphere. These blends are combusted at different heating rates. The results indicate that, with the increase of waste plastics content, the combustion processes of blends could be divided into one stage, two stages, three stages and one stage. Meanwhile, the ignition and final temperatures of them both decrease. The maximum weight loss rate of WP is much higher than that of other samples. The iso-conversional method is used for the kinetic analysis of the non-isothermal thermogravimetric data and results indicate that, when the waste plastics content varied from 0% to 40%, the values of activation energy increase from 113.3 kJ mol −1 to 156.0 kJ mol −1 , and the value of activation energy for pure WP is 278.8 kJ mol −1

  10. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.

    Science.gov (United States)

    Zhou, Hui; Long, YanQiu; Meng, AiHong; Li, QingHai; Zhang, YanGuo

    2015-04-01

    The interactions of nine typical municipal solid waste (MSW) fractions during pyrolysis were investigated using the thermogravimetric analyzer (TGA). To compare the mixture results with the calculation results of superposition of single fractions quantitatively, TG overlap ratio was introduced. There were strong interactions between orange peel and rice (overlap ratio 0.9736), and rice and poplar wood (overlap ratio 0.9774). The interactions of mixture experiments postponed the peak and lowered the peak value. Intense interactions between PVC and rice, poplar wood, tissue paper, wool, terylene, and rubber powder during co-pyrolysis were observed, and the pyrolysis at low temperature was usually promoted. The residue yield was increased when PVC was blended with rice, poplar wood, tissue paper, or rubber powder; while the residue yield was decreased when PVC was blended with wool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microstructural Characterization of Water-Rich Boehmite (AlO(OH)): TEM Correlation of Apparently Divergent XRD and TGA Results

    International Nuclear Information System (INIS)

    Allard, L.F.; Anovitz, L.M.; Benezeth, P.; Coffey, D.W.; Palmer, D.A.; Porter, W.D.; Wesolowski, D.J.

    1999-01-01

    An understanding of the solid-phase thermodynamics and aqueous speciation of aluminum is critical to our ability to understand and predict processes in a wide variety of geologic and industrial settings. Boehmite (AIO(OH)) is an important phase in the system Al 2 O 3 -H 2 O that has been the subject of a number of structural and thermodynamic studies since its initial synthesis [l] and discovery in nature [2]. Unfortunately, it has long been recognized that thermogravimetric analysis (TGA) of both synthetic and natural boehmite samples (that appear well crystallized by powder XRD methods) yields significant excess water - typically losing 16-16.5 wt. % on heating as compared with a nominal expected weight loss of 15.0 wt. % [3,4]. The boehmite used in our experiments was synthesized hydrothermally from acid-washed gibbsite (Al(OH) 3 ) at 200C. Powder XRD and SEM examination showed no evidence of the presence a contaminant phase. The TGA patterns do not suggest that this is due to adsorbed water, so a structural source is likely. We therefore undertook to examine this material by TEM to clarify this phenomenon

  12. Thermogravimetric study of vinpocetine suppository

    Directory of Open Access Journals (Sweden)

    N. А. Nаgоrnaya

    2014-02-01

    Full Text Available Introduction. Development of technology is the one of the main stage in creation of new medications. Technological process of suppository manufacturing includes sufficiently long thermoprocessing during suppository base making, addition of the active substances and homogenisation. This makes risk of chemical and physical transformations of active substances and excipients in suppository which can be destroyed and changed pharmacologicaly. Use of thermogravimetric analyses in pharmaceutical technology allows to study possibility of chemical interactions of components in the wide range of temperature. The aim of this work was to study thermoprocessing effects on suppository base with vinpocetine in temperature range of technological process of suppository manufacturing. Object. Vinpocetine rectal suppository (with 0,5% of surface-active substances, active substance (vinpocetine and excipients (twin 80, cacao oil were used as the objects of thermogravimetric investigation. Thermogravimetric analyses was carried out on the derivatograph «Shimadzu DTG-60» (Japan with the platinum-rhodium thermocouple by heating from 25°C to 200°C in the aluminium crucible. α-Al2O3 was used as standard. Heating speed was 10ºС in minute. Model mass was 14,23 – 34,4 mg. Conclusions. It was established that cacao oil is thermolabile substance with melting temperature 41,32 ºС. Surface-active substance twin 80 displays thermostability from 30 tо 100ºС. Vinpocetine derivatogramme confirmed its thermostability in temperature range from 30 tо 154 ºС. Derivatogramme of vinpocetine rectal suppository 0,01 and suppository base displayed the absence of critical temperature lower 100ºС. Insignificant mass loss (0,21% shows that fact. Investigation of composition over 100ºС wasn’t carried out because these temperatures aren’t used in technological process of suppository manufacturing. Presence of thermal effects on derivatogramme of vinpocetine rectal

  13. Al-Mn CVD-FBR coating on P92 steel as protection against steam oxidation at 650 °C: TGA-MS study

    Science.gov (United States)

    Castañeda, S. I.; Pérez, F. J.

    2018-02-01

    The initial stages oxidation of the P92 ferritic/martensitic steel with and without Al-Mn coating at 650 °C in Ar+40%H2O for 240 h were investigated by mass spectrometry (MS) and thermogravimetric analysis (TGA). TGA-MS measurements were conducted in a closed steam loop. An Al-Mn coating was deposited on P92 steel at 580 °C for 2 h by chemical vapour deposition in a fluidized bed reactor (CVD-FBR). The coating as-deposited was treated in the same reactor at 700 °C in Ar for 2h, in order to produce aluminide phases that form the protective alumina layer (Al2O3) during oxidation. MS measurements at 650 °C of the Al-Mn/P92 sample for 200 h indicated the presence of (Al-Mn-Cr-Fe-O) volatile species of small intensity. Uncoated P92 steel oxidized under the same steam oxidation conditions emitted greater intensities of volatile species of Cr, Fe and Mo in comparison with intensities from coated steel. TGA measurements verified that the mass gained by the coated sample was up to 300 times lower than for uncoated P92 steel. The morphology, composition and structure of samples by Scanning Electron Microscopy SEM, Backscattered Electron (BSE) detection, X-ray Energy Dispersive Spectrometry (EDAX) and X-ray Diffraction (XRD) are described.

  14. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.

    Science.gov (United States)

    Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar

    2015-06-01

    Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.

  15. Pyrolysis of biofuels of the future: Sewage sludge and microalgae – Thermogravimetric analysis and modelling of the pyrolysis under different temperature conditions

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Morato-Godino, Andrés; García-Hernando, Nestor; Riedel, Uwe

    2017-01-01

    Highlights: • Pyrolysis of microalgae and sewage sludge is studied by thermogravimetric analysis. • Accurate values of the kinetic parameters of the pyrolysis reaction are reported. • Pyrolysis is modeled for parabolic and exponential temperature increases. • Estimations of the model are compared with experimental measurements in TGA. • Excellent agreement is reached between the model estimations and the experiments. - Abstract: The pyrolysis process of both microalgae and sewage sludge was investigated separately, by means of non-isothermal thermogravimetric analysis. The Distributed Activation Energy Model (DAEM) was employed to obtain the pyrolysis kinetic parameters of the samples, i.e. the activation energy E_a and the pre-exponential factor k_0. Nine different pyrolysis tests at different constant heating rates were conducted for each sample in a thermogravimetric analyzer (TGA) to obtain accurate values of the pyrolysis kinetic parameters when applying DAEM. The accurate values of the activation energy and the pre-exponential factor that characterize the pyrolysis reaction of Chlorella vulgaris and sewage sludge were reported, together with their associated uncertainties. The activation energy and pre-exponential factor for the C. vulgaris vary between 150–250 kJ/mol and 10"1"0–10"1"5 s"−"1 respectively, whereas values ranging from 200 to 400 kJ/mol were obtained for the sewage sludge activation energy, and from 10"1"5 to 10"2"5 s"−"1 for its pre-exponential factor. These values of E_a and k_0 were employed to estimate the evolution of the reacted fraction with temperature during the pyrolysis of the samples under exponential and parabolic temperature increases, more typical for the pyrolysis reaction of fuel particles in industrial reactors. The estimations of the relation between the reacted fraction and the temperature for exponential and parabolic temperature increases were found to be in good agreement with the experimental values

  16. Carbon conversion predictor for fluidized bed gasification of biomass fuels - from TGA measurements to char gasification particle model

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J.T. [University of Jyvaeskylae, Department of Chemistry, Renewable Energy Programme, POB 35, Jyvaeskylae (Finland); Moilanen, A. [VTT Technical Research Centre of Finland, POB 1000, Espoo (Finland); Martini, N. de; Hupa, M. [Abo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Turku (Finland)

    2012-09-15

    When a solid fuel particle is injected into a hot fluidized bed, the reactivity of fuel char in gasification reactions (between char carbon and steam and CO{sub 2}) plays a significant role for reaching a good carbon conversion. In this paper, the gasification reactivity data of some solid waste recovered fuels (SRF) obtained from thermogravimetric analysis (TGA) experiments is presented. Gas mixtures (H{sub 2}O, H{sub 2}, CO{sub 2}, CO), were used in the experiments to find the inhibitive effects of CO and H{sub 2}. Average char gasification reactivity values are determined from the TGA results. Kinetic parameters for char carbon gasification reactivity correlations are determined from this data. The Uniform Conversion model is used to account for the change of gasification reaction rate as function of carbon conversion. Some discrepancies, due to complicated ash-carbon interactions, are subjects of further research. In the carbon conversion predictor, laboratory measured reactivity numbers are converted into carbon conversion numbers in a real-scale fluidized bed gasifier. The predictor is a relatively simple and transparent tool for the comparison of the gasification reactivity of different fuels in fluidized bed gasification. The residence times for solid fuels in fluidized bed gasifiers are simulated. Simulations against some pilot-scale results show reasonable agreement. (orig.)

  17. A comprehensive physicochemical, thermal, and spectroscopic characterization of zinc (II) chloride using X-ray diffraction, particle size distribution, differential scanning calorimetry, thermogravimetric analysis/differential thermogravimetric analysis, ultraviolet-visible, and Fourier transform-infrared spectroscopy.

    Science.gov (United States)

    Trivedi, Mahendra Kumar; Sethi, Kalyan Kumar; Panda, Parthasarathi; Jana, Snehasis

    2017-01-01

    Zinc chloride is an important inorganic compound used as a source of zinc and has other numerous industrial applications. Unfortunately, it lacks reliable and accurate physicochemical, thermal, and spectral characterization information altogether. Hence, the authors tried to explore in-depth characterization of zinc chloride using the modern analytical technique. The analysis of zinc chloride was performed using powder X-ray diffraction (PXRD), particle size distribution, differential scanning calorimetry (DSC), thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTG), ultraviolet-visible spectroscopy (UV-vis), and Fourier transform-infrared (FT-IR) analytical techniques. The PXRD patterns showed well-defined, narrow, sharp, and the significant peaks. The crystallite size was found in the range of 14.70-55.40 nm and showed average crystallite size of 41.34 nm. The average particle size was found to be of 1.123 ( d 10 ), 3.025 ( d 50 ), and 6.712 ( d 90 ) μm and average surface area of 2.71 m 2 /g. The span and relative span values were 5.849 μm and 1.93, respectively. The DSC thermogram showed a small endothermic inflation at 308.10°C with the latent heat (ΔH) of fusion 28.52 J/g. An exothermic reaction was observed at 449.32°C with the ΔH of decomposition 66.10 J/g. The TGA revealed two steps of the thermal degradation and lost 8.207 and 89.72% of weight in the first and second step of degradation, respectively. Similarly, the DTG analysis disclosed T max at 508.21°C. The UV-vis spectrum showed absorbance maxima at 197.60 nm (λ max ), and FT-IR spectrum showed a peak at 511/cm might be due to the Zn-Cl stretching. These in-depth, comprehensive data would be very much useful in all stages of nutraceuticals/pharmaceuticals formulation research and development and other industrial applications.

  18. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    Directory of Open Access Journals (Sweden)

    Nora Gutsche

    Full Text Available The Arabidopsis TGA transcription factor (TF PERIANTHIA (PAN regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG, which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly

  19. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    Science.gov (United States)

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.

    Science.gov (United States)

    Wu, Kejing; Liu, Ji; Wu, Yulong; Chen, Yu; Li, Qinghai; Xiao, Xin; Yang, Mingde

    2014-07-01

    The differences in pyrolysis process of three species of aquatic biomass (microalgae, macroalgae and duckweed) were investigated by thermogravimetric analysis (TGA). Three stages were observed during the pyrolysis process and the main decomposition stage could be divided further into three zones. The pyrolysis characteristics of various biomasses were different at each zone, which could be attributed to the differences in their components. A stepwise procedure based on iso-conversional and master-plots methods was used for the kinetic and mechanism analysis of the main decomposition stage. The calculation results based on the kinetic model was in good agreement with the experimental data of weight loss, and each biomass had an increasing activation energy of 118.35-156.13 kJ/mol, 171.85-186.46 kJ/mol and 258.51-268.71 kJ/mol in zone 1, 2 and 3, respectively. This study compares the pyrolysis behavior of various aquatic biomasses and provides basis for further applications of the biomass thermochemical conversion. Copyright © 2014. Published by Elsevier Ltd.

  1. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl) Furan (G-0) Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins.

    Science.gov (United States)

    Ruz, Vivian; González, Mirtha Mayra; Winant, Danny; Rodríguez, Zenaida; Van den Mooter, Guy

    2015-08-19

    In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl) furan (G-0) in the temperature range of 35 to 60 °C (below the melting point of the drug) was studied using thermogravimetric analysis (TGA). The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR) and thin layer chromatography (TLC). The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins.

  2. Pyrolysis of olive residue/low density polyethylene mixture:Part I Thermogravimetric kinetics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper demonstrates the thermal pyrolysis of olive residue, low density polyethylene (LDPE) and olive residue/LDPE mixture in an inert atmosphere of N2 using thermogravimetric analysis (TGA). Measurements were carried out in the temperature range 300K~973K at heating rates of 2K/min, 10K/min, 20K/min and 50K/min. Based on the results obtained, three temperature regimes were selected for studying the non-isothermal kinetics of olive residue/LDPE mixture. The first two were dominated by the olive residue pyrolysis, while the third was linked to the LDPE pyrolysis, which occurred at much higher temperatures. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperatures of each component in the mixture were higher than those the individual components;thus an increase in thermal stability was expected. The kinetic parameters associated with thermal degradation were determined using Friedman isoconversional method.

  3. Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis.

    Science.gov (United States)

    Bañón, E; Marcilla, A; García, A N; Martínez, P; León, M

    2016-02-01

    The thermal decomposition of chrome tanned leather before and after a soaking treatment with NaOH was studied using thermogravimetric analysis (TGA). The effect of the solution concentration (0.2M and 0.5M) and the soaking time (5min and 15min) was evaluated. TGA experiments at four heating rates (5, 10, 15 and 20°Cmin(-1)) were run in a nitrogen atmosphere for every treatment condition. A kinetic model was developed considering the effect of the three variables studied, i.e.: the NaOH solution concentration, the soaking time and the heating rate. The proposed model for chrome tanned leather pyrolysis involves a set of four reactions, i.e.: three independent nth order reactions, yielding the corresponding products and one of them undergoing a successive cero order reaction. The model was successfully applied simultaneously to all the experimental data obtained. The evaluation of the kinetic parameters obtained (activation energy, pre-exponential factor and reaction order) allowed a better understanding of the effect of the alkali treatment on these wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  5. Thermogravimetric studies of New Zealand coals

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B.B.; Rodgers, K.A.; Benfell, K.E.; Shaw, K.J. [University of Auckland, Auckland (New Zealand). Dept. of Geology

    1997-12-31

    The thermal behaviour of New Zealand coals may be reliably characterised by a series of tightly constrained thermogravimetric (TG) procedures of high repeatability developed in the Department of Geology at The University of Auckland. Proximate, combustion and char reactivity analyses can be routinely obtained for run-of-mine samples. Volatile matter determination by TG produces an acceptable reproducible result compared with the ISO method, whereas further refinement of the technique is necessary to achieve the same level of precision for ash content of New Zealand low rank coals. Combining combustion and char reactivity analyses enables the performance of a coal to be assessed under differing operating conditions, and offers the opportunity to elucidate competing effects of major element geochemistry of the coal. 12 refs., 4 figs., 2 tabs.

  6. Final report for tank 241-AP-108, grab samples 8AP-96-1, 8AP-96-2 and 8AP-96-FB

    International Nuclear Information System (INIS)

    Esch, R.A.

    1996-01-01

    This document is the final report deliverable for the tank 241-AP-108 grab samples. The samples were subsampled and analyzed in accordance with the TSAP. Included in this report are the results for the Waste Compatibility analyses, with the exception of DSC and thermogravimetric analysis (TGA) results which were presented in the 45 Day report (Part 2 of this document). The raw data for all analyses, with the exception of DSC and TGA, are also included in this report

  7. Air oxidation of Zr65Cu17.5Ni10Al7.5 in its amorphous and supercooled liquid states, studied by thermogravimetric analysis

    International Nuclear Information System (INIS)

    Dhawan, A.; Sharma, S.K.; Raetzke, K.; Faupel, F.

    2003-01-01

    The oxidation behaviour of the bulk amorphous alloy Zr 65 Cu 17.5 Ni 10 Al 7.5 was studied in air at various temperatures in the temperature range 591-732 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy obeys the parabolic rate law showing two different linear regions (in the plots of mass gain versus square root of oxidation time) which are attributed to the amorphous and the supercooled liquid states of the alloy. The value of the activation energy Q for the amorphous state as calculated from the temperature dependence of the rate constants is found to be 1.80±0.1 eV and the corresponding value obtained for the supercooled liquid state is 1.20±0.1 eV. It is suggested that the rate controlling process during oxidation of the amorphous state is the back-diffusion of Ni, and possibly Cu also, while the oxidation in the supercooled liquid state is dominated by the inward diffusion of oxygen. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2017-08-24

    Heavy fuel oil (HFO) obtained from crude oil distillation is a widely used fuel in marine engines and power generation technologies. In the present study, the pyrolysis and combustion of a Saudi Arabian HFO in nitrogen and in air, respectively, were investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due to the thermal degradation of HFO at temperatures up to 1000°C and at various heating rates of 5, 10 and 20°C/min, in air and N2 atmospheres. FTIR analysis was then performed to study the composition of the evolved gases. The TG/DTG curves during HFO combustion show the presence of three distinct stages: the low temperature oxidation (LTO); fuel decomposition (FD); and high temperature oxidation (HTO) stages. The TG/DTG curves obtained during HFO pyrolysis show the presence of two devolatilization stages similar to that seen in the LTO stage of HFO combustion. Apart from this, the TG/DTG curves obtained during HFO combustion and pyrolysis differ significantly. Kinetic analysis was also performed using the distributed activation energy model, and the kinetic parameter (E) was determined for the different stages of HFO combustion and pyrolysis processes, yielding a good agreement with the measured TG profiles. FTIR analysis showed the signal of CO2 as approximately 50 times more compared to the other pollutant gases under combustion conditions. Under pyrolytic conditions, the signal intensity of alkane functional groups was the highest followed by alkenes. The TGA-FTIR results provide new insights into the overall HFO combustion processes, which can be used to improve combustor designs and control emissions.

  9. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    Science.gov (United States)

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transposition of the Greater Arteries (TGA)

    Science.gov (United States)

    ... Disease Barrett’s Esophagus Chest Wall Tumors Mediastinal Tumors Achalasia and Esophageal Motility Disorders Pleural Diseases Mesothelioma Heart ... after birth. Diagnosis and Treatment Options Diagnosis and Treatment Options TGA usually is diagnosed based on the ...

  11. Correlation of resistance and thermogravimetric measurements of the Er/sub 1/Ba/sub 2/Cu/sub 3/O/sub 9-δ/ superconductor to sample preparation techniques

    International Nuclear Information System (INIS)

    Lee, S.I.; Golben, J.P.; Song, Y.; Chen, X.D.; McMichael, R.D.; Gaines, J.R.

    1987-01-01

    The resistance dependence and thermogravimetric analysis (TGA) of Er/sub 1/Ba/sub 2/Cu/sub 3/O/sub 9-δ/ has been measured in the temperature range 27 C to 920 CV. The heat treatments and oxygen flow rates simulated actual sintering and annealing processes used in sample preparation. Evidence of a phase transition in Er/sub 1/Ba/sub 2/Cu/sub 3/O/sub 9-δ/ near 680 C is discussed, as well as the implications of the maximum oxygen uptake near 400 C. The impact of sample preparation procedures on sample features is also discussed

  12. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. IN SITU AND POST REACTION COBALT-INCORPORATION INTO ...

    African Journals Online (AJOL)

    a

    confirmed by Raman spectroscopy and UV-vis diffuse reflectance .... Pyris 1 TGA Thermogravimetric analyser using nitrogen or air as the purge gas at a heating rate ... The laser spot size on the sample was ~1.5 microns in diameter, and the ...

  14. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Li Maofu

    2016-01-01

    Full Text Available Flowering time is usually regulated by many environmental factors and endogenous signals. TGA family members are bZIP transcription factors that bind to the octopine synthase element, which has been closely linked to defense/stress responses. Most TGA factors interact with non-expressor of PR1 (NPR1 and plant defense responses are strengthened by this interaction. TGA1and TGA4factors bind to NPR1 only in salicylic acid (SA-induced leaves, suggesting that TGA4 has another function during plant development. Here, we isolated a bZIP transcription factor gene, TGA4, from Capsella rubella. TGA4transcripts were detected in most tissues, with high expression in leaves, low expression in stems and flowering buds, and undetectable in siliques. CruTGA4was over expressed in Arabidopsis thaliana wild typeCol-0 plants. Flowering time and total leaf number in the transgenic plants showed that overexpression of CruTGA4could delay flowering in A. thaliana. Our findings suggest that TGA4 may act as flowering regulator that controls plant flowering.

  15. The oxygen potential of near- and non-stoichiometric urania-25 mol% plutonia solid solutions: a comparison of thermogravimetric and galavanic cell measurements

    International Nuclear Information System (INIS)

    Woodley, R.E.; Adamson, M.G.

    1979-01-01

    To resolve discrepancies between the existing low temperature ΔGsub(0 2 )(mean) data for solid solution mixed (U, Pu)-oxide nuclear fuel material, additional measurements have been performed on Usub(0.75)Pusub(0.25) employing a combined thermogravimetric (TGA) and solid-electrolyte galvanic cell technique. These measurements, which were performed at temperatures between 800 and 1000 0 C, and for O:M ratios in the range 1.940 to 2.028, are reasonably self-consistent and show good agreement with the results of previous TGA measurements. However, they do not corroborate the earlier EMF cell measurements of Markin and McIver. (1967). Possible explanations for errors in these earlier EMF cell results are examined. The new results indicate that the ΔGsub(O 2 )(mean) of stoichiometric mixed oxide at typical outer surface fuel temperature is close to -100 kcal/mol 0 2 (-419 kJ/mol O 2 ). Attempts have been made to fit the new ΔGsub(O 2 )(mean) data to two equations derived from recent defect models, and it is shown that neither equation accurately represents the experimental psub(O 2 ) - x data over more than a short range of x. (Auth.)

  16. Thermogravimetric, Calorimetric, and Structural Studies of the Co3 O4 /CoO Oxidation/Reduction Reaction

    Science.gov (United States)

    Unruh, Karl; Cichocki, Ronald; Kelly, Brian; Poirier, Gerald

    2015-03-01

    To better assess the potential of cobalt oxide for thermal energy storage (TES), the Co3O4/CoO oxidation/reduction reaction has been studied by thermogravimetric (TGA), calorimetric (DSC), and x-ray diffraction (XRD) measurements in N2 and atmospheric air environments. TGA measurements showed an abrupt mass loss of about 6.6% in both N2 and air, consistent with the stoichiometric reduction of Co3O4 to CoO and structural measurements. The onset temperature of the reduction of Co3O4 in air was only weakly dependent on the sample heating rate and occurred at about 910 °C. The onset temperature for the oxidation of CoO varied between about 850 and 875 °C for cooling rates between 1 and 20 °C/min, but complete re-conversion to Co3O4 could only be achieved at the slowest cooling rates. Due to the dependence of the rate constant on the oxygen partial pressure, the oxidation of Co3O4 in a N2 environment occurred at temperatures between about 775 and 825 °C for heating rates between 1 and 20 °C/min and no subsequent re-oxidation of the reduced Co3O4 was observed on cooling to room temperature. In conjunction with a measured transition heat of about 600 J/g of Co3O4, these measurements indicate that cobalt oxide is a viable TES material.

  17. Investigation of the effects of phase transformations in micro and nano aluminum powders on kinetics of oxidation using thermogravimetric analysis.

    Science.gov (United States)

    Saceleanu, Florin; Atashin, Sanam; Wen, John Z

    2017-07-26

    Aluminum micro and nanoparticles are key ingredients in the synthesis of nano energetic materials. Hence it is important to characterize the kinetics and the rate controlling process of their oxidation. The literature shows that the mass diffusion and phase transformation within the aluminum oxide shell are important. However, the description of physical processes regarding simultaneous oxidation and phase transformation is lacking. In this paper, the controlled thermogravimetric (TGA) oxidation of 40-60 nm and 1 µm Al powders is investigated at constant heating rates and under isothermal conditions, respectively, upon varying the partial pressure of oxygen. It is found that the core-shell model of homogenous oxidation is applicable to explain the TGA results when the shell does not undergo phase transformation, which predicts the apparent activation energy in good agreement with the literature data. On the other hand, the simultaneous oxidation and phase transformation is able to be addressed using the JMAK model which reveals key parameters of the rate controlling processes. Mass diffusion is indeed rate determining during the oxidation of Al micro and nanopowders while the kinetics of the reaction is fast. Unlike the micron powders, the particle size distribution has a significant effect on the shape of the oxidation curves of the nanopowders.

  18. Revised final report for tank 241-AN-101, grab samples 1AN-95-1 through 1AN-95-7. Revision 1

    International Nuclear Information System (INIS)

    Esch, R.A.

    1996-01-01

    Six supernate grab samples and one field blank were taken from tank 241-AN-101. This report documents analyses performed in support of the Safety Screening program: differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), density by specific gravity (Sp.G.), and total alpha activity (AT)

  19. Thermogravimetric and Magnetic Studies of the Oxidation and Reduction Reaction of SmCoO3 to Nanostructured Sm2O3 and Co

    Science.gov (United States)

    Kelly, Brian; Cichocki, Ronald; Poirier, Gerald; Unruh, Karl

    The SmCoO3 to nanostructured Sm2O3 and Co oxidation and reduction reaction has been studied by thermogravimetric analysis (TGA) measurements in forming gas (FG) and inert N2 atmospheres, x-ray diffraction (XRD) and vibrating sample magnetometry (VSM). The TGA measurements showed two clearly resolvable reduction processes when heating in FG, from the initial SmCoO3 phase through an intermediate nanostructured mixture of Sm2O3 and CoO when heated to 330°C for several minutes, and then the conversion of CoO to metallic Co when heated above 500°C. These phases were confirmed by XRD and VSM. Similar measurements in N2 yielded little mass change below 900°C and coupled reduction processes at higher temperatures. Isoconversional measurements of the CoO to Co reduction reaction in FG yielded activation energies above 2eV/atom in the nanostructured system. This value is several times larger than those reported in the literature or obtained by similar measurements of bulk mixtures of Sm2O3 and CoO, suggesting the nanostructuring was the source of the large increase in activation energy.

  20. 45-day safety screen results and final report for tank 241-C-202, auger samples 95-Aug-026 and 95-Aug-027

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1995-01-01

    Two auger samples from tank 241-C-202 (C-202) were received at the 222-S Laboratories and underwent safety screening analysis, consisting of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity. Two samples were submitted for energetics determination by DSC. Within the triplicate analyses of each sample, one of the results for energetics exceeded the notification limit. The sample and duplicate analyses for both augers exceeded the notification limit for TGA. As required by the Tank Characterization Plan, the appropriate notifications were made within 24 hours of official confirmation that the limits were violated

  1. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kuipers, J.A.M.; van Swaaij, W.P.M.

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/¿-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  2. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst.

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/y-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  3. Graft copolymerization and characterization of styrene with chitosan ...

    African Journals Online (AJOL)

    Fourier transform infrared spectroscopy (FTIR) results showed the presence of polystyrene peaks, indicating the success of the grafting procedure. Thermogravimetric analyses (TGA) revealed that the thermal stability of the prepared copolymer is higher than that of chitosan alone. Mw and Mn of the isolated polystyrene from ...

  4. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  5. Tobacco Transcription Factor NtWRKY12 Interacts With TGA2.2 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Marcel evan Verk

    2011-07-01

    Full Text Available The promoter of the salicylic acid-inducible PR-1a gene of Nicotiana tabacum contains binding sites for transcription factor NtWRKY12 (WK-box at position -564 and TGA factors (as-1-like element at position -592. Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1, tga256 and tga2356 mutant plants revealed that NtWRKY12 alone was able to induce a PR-1a::β-glucuronidase (GUS reporter gene to high levels, independent of co-expressed tobacco NtNPR1, TGA2.1, TGA2.2 or endogenous Arabidopsis NPR1, TGA2/3/5/6. By in vitro pull-down assays with GST and Strep fusion proteins and by Fluorescence Resonance Energy Transfer assays with protein-CFP and protein-YFP fusions in transfected protoplasts, it was shown that NtWRKY12 and TGA2.2 could interact in vitro and in vivo. Interaction of NtWRKY12 with TGA1a or TGA2.1 was not detectable by these techniques. A possible mechanism for the role of NtWRKY12 and TGA2.2 in PR-1a gene expression is discussed.

  6. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis.

    Science.gov (United States)

    Fang, Shiwen; Yu, Zhaosheng; Lin, Yan; Lin, Yousheng; Fan, Yunlong; Liao, Yanfen; Ma, Xiaoqian

    2016-06-01

    By using thermogravimetric analysis (TGA), the effects of different additives (MgO, Al2O3 and ZnO) on the pyrolysis characteristics and activation energy of municipal solid waste (MSW), paper sludge (PS) and their blends in N2 atmosphere had been investigated in this study. The experiments resulted that these additives were effective in reducing the initial temperature and activation energy. However, not all the additives were beneficial to reduce the residue mass and enhance the index D. For the different ratios of MSW and PS, the same additive even had the different influences. The catalytic effects of additives were not obvious and the pyrolysis became difficult with the increase of the proportion of PS. Based on all the contrast of the pyrolysis characteristics, MgO was the best additive and 70M30P was the best ratio, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thermal Behaviour of Five Different Date Palm Residues of Algeria by Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Siham AMIROU

    2013-06-01

    Full Text Available Renewable energy has become moreimportant globally especially with the current fuel andeconomic crisis. Date palm biomasses are highlypotential materials for energy resources. The factthat they are renewable and abundantly availableare amongst the attractive reasons of employingthem as the major source for renewable energy. Thepurpose of this research was to investigate thethermal behavior of date palm biomass in order toevaluate their usefulness for energy production. Inmicroparticular scale, the thermogravimetric analysis(TGA is one of the techniques used to determinethe thermal properties of five different date palmresidues that were studied: (date palm rachis (DPR,date palm trunk (DPT, leaf base (Petiole (LB,fruitstalk prunings (FP and liff (LP. The TGAtechnique consists to record the lost weight duringthe increase in temperature from 20°C until 600°Cwith a 10°C/min heating rate. The thermogramspresented a departure phase of free water (fromroom temperature to 110°C before the degradationprocess of the lignocellulosic constituents. The ligninand hemicellulose play an important role on thedegradation of lignocellulosic materials at thetemperature under 250°C. The degradation ofcellulose begins at 250°C and overlaps to that oflignin until 450°C.

  8. Measurement of serum TGA, TPOAb levels with ECLEIA in patients with Hashimoto thyroiditis

    International Nuclear Information System (INIS)

    Yu Yuanjun; Chen Qiao; Quan Cheng; Tang Jinxian

    2007-01-01

    Objective: To determine the serum autoantibodies contents during different clinical stages in patients with Hashimoto thyroiditis. Methods: Serum TGA and TPOAb were detected with chemiluminescence enzyme immunoassay (ECLEIA) and RIA simultaneously in 125 patients with Hashimoto thyroiditis. Results: HT with hyperthyroidism (12 cases) TGA: ECLEIA, (621 + 245 ) IU/ml, positive rate: 83.3%, RIA:66.7%, TPOAb: ECLEIA (452 ± 203) IU/ml, positive rates: 100%, RIA:75.0%, HT with hypothyroidism (50 cases): TGA: ECLEIA ( 1152 + 420) IU/ml. Positive Rates: 94.0%, RIA: 88.0%, TPOAb: (482 + 302) IU/ml. Positive Rates: 96.0%, RIA:90.9%; HT with normal thyroid function (63 cases): TGA: ECLEIA (230 ± 186) IU/ml. Positive Rates: 58.7%, RIA:38.1%, TPOAb:(302 ± 201)IU/ml. Positive Rates: 92.1%, RIA: 63.5%. Conclusion: Measurement of TGA and TPOAb with ECLEIA is much more sensitive than that with the conventional RIA. (authors)

  9. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    Science.gov (United States)

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    Science.gov (United States)

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Thermogravimetric research of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kleperis, J; Grinberga, L; Ergle, M; Chikvaidze, G; Klavins, J

    2007-01-01

    During thermogravimetric research of metal hydrides we noticed mass growth of samples above 200 deg. C even in an argon atmosphere. Further heating is leading to the growth of weight up to 2-7 weight% till 500 0 C. Second run of the same sample without taking out of DTA instrument gave only small mass changes, indicating that noticed mass increase during first run is permanent. Microscope and elemental analyses were made to determine the reason of mass growth. XRD inspection revealed the formation of new phase with bunsenite NiO structure with deformed cubic structure. The new phase is no more active to hydrogen sorption/desorption. Our results demonstrated that the usage of hydrogen storage alloys AB 5 must be taken with care - it is important not to exceed some critical temperature were irreversible structural, compositional and morphological changes will occur

  12. Clinical significance of combined determination of serum TGA, TMA and TRAb in patients with hyperthyroidism

    International Nuclear Information System (INIS)

    Li Xin; Qu Wanying; Yao Zhiming; Zhao Hongshan; Xue Cuiying

    2003-01-01

    Objective: To explore the interrelationship among the three thyroid antibodies and their role in clinical diagnosis of thyroid auto-immune diseases by combined determination of serum TGA, TMA and TRAb in 84 patients with Hyperthyroidism. Methods; Based upon the serum concentrations of TGA and TMA, the 84 patients were divided into three groups; TGA, TMA negative group (TGA, TMA 6.84 u/L) in 60 of the 84 patients with hyperthyroidism (71.5%). For the separate groups, TRAb concentrations were positive in 42.9% of the patients of the TGA, TMA negative group, 75.0% of the TGA, TMA positive group and 85.7% of the strongly positive group. TRAb concentrations were significantly higher in patients of the strongly positive group than those in patients of the positive and negative group, but were not much different between patients of the positive and negative group. Conclusion: Positive rate of the serum TRAb increased along with the increase of positive rate of TGA and TMA. In this series of 84 thyrotoxic patients, TGA and TMA concentrations were strongly positive in 41.7% of them. It was possible that some of those strongly positive patients were of the Hashimoto type instead of Graves type

  13. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.

    Science.gov (United States)

    Buratti, C; Barbanera, M; Bartocci, P; Fantozzi, F

    2015-06-01

    The influence of the addition of cellulosic ethanol residue (CER) on the combustion of Indonesian sub-bituminous coal was analyzed by non isothermal thermo-gravimetric analysis (TGA). The effect of blends ratio (5%, 10%, 15% and 20%), interaction mechanism, and heating rate (5°C/min, 10°C/min, 15°C/min, 20°C/min) on the combustion process was studied. The results show that the increase of the blending ratio allows to achieve the increase of the combustibility index from 7.49E-08 to 5.26E-07 at the blending ratio of 20%. Two types of non-isothermal kinetic analysis methods (Ozawa-Flynn-Wall and Vyazovkin) were also applied. Results indicate that the activation energy of the blends decreases with increasing the conversion rate. In particular, the blending ratio of 20% confirms to have the better combustion performance, with the average value of the activation energy equal to 41.10 kJ/mol obtained by Ozawa-Flynn-Wall model and 31.17 kJ/mol obtained by Vyazovkin model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Electrodynamic thermogravimetric analyzer

    International Nuclear Information System (INIS)

    Spjut, R.E.; Bar-Ziv, E.; Sarofim, A.F.; Longwell, J.P.

    1986-01-01

    The design and operation of a new device for studying single-aerosol-particle kinetics at elevated temperatures, the electrodynamic thermogravimetric analyzer (EDTGA), was examined theoretically and experimentally. The completed device consists of an electrodynamic balance modified to permit particle heating by a CO 2 laser, temperature measurement by a three-color infrared-pyrometry system, and continuous weighing by a position-control system. In this paper, the position-control, particle-weight-measurement, heating, and temperature-measurement systems are described and their limitations examined

  15. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    Science.gov (United States)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  16. Thermogravimetric investigations of vanadium complexes

    International Nuclear Information System (INIS)

    Bechmann, W.; Uhlemann, E.; Ludwig, W.

    1987-01-01

    Extensive studies on oxovanadium(IV) and (V) complexes with bidentate chelating ligands include thermogravimetric investigations. TG, DTG, and DTA data provide additional facts to redox behaviour and stability of the complexes. These data also allow a critical appreciation of the given melting temperatures. (author)

  17. Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Chen, Zhihua; Zhu, Quanjie; Wang, Xun; Xiao, Bo; Liu, Shiming

    2015-01-01

    Highlights: • The first study on pyrolysis characteristics and kinetic of Eucalyptus residues. • Pyrolysis process can be divided into three stages using differential DTG method. • A new modified discrete DAEM showed better than Gaussian DAEM for kinetic studies. • Variations of activation energy reveal the mechanism change during pyrolysis process. - Abstract: The pyrolysis behaviors and kinetics of Eucalyptus leaves (EL), Eucalyptus bark (EB) and Eucalyptus sawdust (ESD) were investigated by using thermogravimetric analysis (TGA) technique. Three stages for EL, EB and ESD pyrolysis have been divided using differential derivative thermogravimetric (DDTG) method and the second stage is the main pyrolysis process with approximately 86.93% (EL), 88.96% (EB) and 97.84% (ESD) weight loss percentages. Kinetic parameters of Gaussian distributed activation energy model (DAEM) for EL, EB and ESD pyrolysis are: distributed centers (E_0) of 141.15 kJ/mol (EL), 149.21 kJ/mol (EB), 175.79 kJ/mol (ESD), standard deviations (σ) of 18.35 kJ/mol (EL), 18.37 kJ/mol (EB), 14.41 kJ/mol (ESD) and pre-exponential factors (A) of 1.15E+10 s"−"1 (EL), 4.34E+10 s"−"1 (EB), 7.44E+12 s"−"1 (ESD). A new modified discrete DAEM was performed and showed excellent fits to experimental data than Gaussian DAEM. According to the modified discrete DAEM, the activation energies are in ranges of 122.67–308.64 kJ/mol, 118.72–410.80 kJ/mol and 108.39–192.93 kJ/mol for EL, EB and ESD pyrolysis, respectively. The pre-exponential factors of discrete DAEM have wide ranges of 4.84E+13–6.12E+22 s"−"1 (EL), 1.91E+12–4.51E+25 s"−"1 (EB) and 63.43–4.36E+11 s"−"1 (ESD). The variation of activation energy versus conversion reveals the mechanism change during pyrolysis process. The kinetic data would be of immense benefit to model, design and develop suitable thermo-chemical systems for the application of Eucalyptus residues.

  18. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  20. Design and control of the oxygen partial pressure of UO2 in TGA using the humidification system

    International Nuclear Information System (INIS)

    Lee, S.; Knight, T.W.; Roberts, E.

    2015-01-01

    Highlights: • We focus on measurement of oxygen partial pressure and change of O/M ratio under specific conditions produced by the humidification system. • This shows that the humidification system is stable, accurate, and reliable enough to be used for experiments of the oxygen partial pressure measurement for the oxide fuels. • The humidification system has benefits of easy control and flexibility for producing various oxygen partial pressures with fixed hydrogen gas flow rate. - Abstract: The oxygen to uranium (O/U) ratio of UO 2±x is determined by the oxygen content of the sample and is affected by oxygen partial pressure (pO 2 ) of the surrounding gas. Oxygen partial pressure is controllable by several methods. A common method to produce different oxygen partial pressures is the use of equilibria of different reaction gases. There are two common methods: H 2 O/H 2 reaction and CO 2 /CO reaction. In this work, H 2 O/H 2 reaction using a humidifier was employed and investigated to ensure that this humidification system for oxygen partial pressure is stable and accurate for use in Thermogravimetric Analyzer (TGA) experiments with UO 2 . This approach has the further advantage of flexibility to make a wide range of oxygen partial pressure with fixed hydrogen gas flow rate only by varying temperature of water in the humidifier. The whole system for experiments was constructed and includes the humidification system, TGA, oxygen analyzer, and gas flow controller. Uranium dioxide (UO 2 ) samples were used for experiments and oxygen partial pressure was measured at the equilibrium state of stoichiometric UO 2.0 . Oxygen partial pressures produced by humidification (wet gas) system were compared to the approach using mixed dry gases (without humidification system) to demonstrate that the humidification system provides for more stable and accurate oxygen partial pressure control. This work provides the design, method, and analysis of a humidification system for

  1. Investment casting using multi-jet modelling patterns: the thermogravimetric analysis of visijet® SR200 UV curable acrylate plastic

    International Nuclear Information System (INIS)

    Hafsa, M N; Ibrahim, M; Sharif, S

    2013-01-01

    Rapid Prototyping (RP) technology is actively studied to be implemented in Investment Casting (IC) process. Nowadays RP techniques are studied for their feasibility as IC master patterns, in terms of pattern collapsibility and drainage during burnout. The purpose of the study is to determine the characteristic of Visijet® SR200 acrylate material during burnout process. Traditional IC patterns made from wax have properties that limit their application in precision casting, especially for parts with thin geometries that readily break or deform when handled or dipped in the refractory slurry. Furthermore, it is not economical when producing a small number of parts. Non wax patterns fabricated for IC process, revealed ceramic shell cracking due to excessive thermal expansions, incomplete collapsibility of pattern during burnout, residual ash and poor surface finish. Thermogravimetric analysis (TGA) was used to measured the weight loss of acrylate material as the temperature was increased. TGA measured the change of material's mass as it is heated. It represents the decomposition temperature after being subjected to varying temperatures, as well as the amount of residual ash. In this experiment, the temperature range was from 20°C to 700°C with 5°C increment. Experiment results show the values of material's optimum reaction temperature and decomposing temperature of Visijet® SR200 acrylate. The percentages of remaining materials were also monitored throughout the process to obtain the amount of residual ash. All of the temperature values obtained is a resemblance for the actual burnout process and can be used as references

  2. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis

    International Nuclear Information System (INIS)

    3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" >Rios Quiroga, Luis Carlos; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Balestieri, José 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Antonio Perrella; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Ávila, Ivonete

    2017-01-01

    Highlights: • Kinetic parameters of thermal decomposition events were obtained. • Thermal analysis was used as a tool for understanding combustion processes. • Blends would be classified using thermogravimetric analysis technics. • Synergistic effect of ethanol mixed with gasoline was studied and defined. • Relative error and activation energy values were used to analyze the synergy. - Abstract: The use of ethanol as a fuel or as an additive blended with gasoline is very important for most countries, which aim to reduce the heavy dependence on fossil fuels and mitigate greenhouse gases emission. An increased use of ethanol-gasoline blends has placed great relevance on acquiring knowledge about their physical and chemical properties. Thus, knowledge of such properties favors a better understanding of the effect of the percentage of ethanol/gasoline blends on engine performance. Thence, the present study has established a correlation between activation energy and synergetic effects, obtained by a thermal analysis, and ethanol content in gasoline for different blends in order to use this technique as a tool to classify these blends in the process in order to obtain useful energy in spark ignition engines. For such a purpose, a kinetic study has been conducted through a simultaneous thermal analysis system – TGA (thermogravimetry analysis) and DTA (differential thermal analysis) by following the methodology of non-isothermal tests. Thermogravimetric tests were performed and fuel activation energies for gasoline, ethanol, and percentages of 5, 10, 15, 20, 25, 30, 50, and 75% (%v) ethanol mixed with gasoline, which was achieved by the model free kinetics. The analysis results suggest that the theoretical curves characteristics of the thermal decomposition of ethanol-gasoline blends are rather different due to their ethanol content. Furthermore, it was observed significant interactions and synergistic effects, especially regarding those with low ethanol

  3. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    Science.gov (United States)

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  4. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.

    Science.gov (United States)

    Zhuo, Zhongxu; Liu, Jingyong; Sun, Shuiyu; Kuo, Jiahong; Sun, Jian; Chang, Ken-Lin; Fu, Jiewen

    2018-01-01

      The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.

  5. Effect of tian meng capsule treatment on serum TGA, TMA levels in patients with hashimoto's disease

    International Nuclear Information System (INIS)

    Huang Qingyi; Chen Jianfei

    2010-01-01

    Objective: To study the effect of tian meng capsule treatment on the serum levels of TGA, TMA in patients with chronic lymphocytic thyroiditis (CLTD or Hashimoto's disease). Methods: Serum TGA and TMA levels were determined with RIA both before and after treatment for 3 months in (1) 30 patients treated with conventional drugs (2) 30 patients treated with conventional drugs plus tian meng capsule (a traditional chinese medicine preparation No.2, tid) and (3) once in 30 controls. Results: Before treatment,the serum TGA and TMA levels in all the patients were significantly, higher than those in controls. After 3 months' treatment, serum TGA and TMA levels in all the patients dropped, but the levels in the patients treated with additional tian meng capsule were significantly lower than those in patients without tian meng capsule treatment. Moreover, 76.7% of the patients with tian meng capsule treatment had their serum TGA and TMA levels decreased over 30%, four patients even had the serum levels became normal. Conclusion: tian meng capsule treatment is very effective in lowering serum TGA and TMA levels in patients with Hashimoto's disease. (authors)

  6. Comparative study on the pyrolysis behaviour and kinetics of two macroalgae biomass (Gracilaria changii and Gelidium pusillum) by thermogravimetric analysis

    Science.gov (United States)

    Roslee, A. N.; Munajat, N. F.

    2017-10-01

    Macroalgae are often referred as seaweed and could be significant biomass resource for the production of numerous energy carriers including biofuels. In this study, the chemical composition of Gracilaria changii (G. changii) and Gelidium pusillum (G. pusillum) were determined through proximate and ultimate analysis and the thermal degradation behaviour of G. changii and G. pusillum were investigated via thermogravimetric analysis (TGA) in determining the important main composition to be considered as biomass fuels. It has found the pyrolysis of G. changii and G. pusillum consists of three stages and stage II is the main decomposition stage with major mass loss of around 52.16% and 44.42%, respectively. The TGA data were then used for determination of kinetic parameters of the pyrolysis process using three model-free methods: Kissinger, Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The apparent activation energy calculated by using Kissinger method for G. changii was lower than G. Pusillum, i.e.173.12 kJ/mol and 193.22 kJ/mol, respectively. The activation energies calculated from KAS and FWO methods were increased with increasing the pyrolysis conversion with average activation energies of 172.32 kJ/mol and 181.19 kJ/mol for G. changii while for G. pusillum (177.42 kJ/mol and 187.4 kJ/mol). G. pusillum has lower and wider distribution of activation energy and revealed that the pyrolysis process for G. changii was easier than G. pusillum. These data provide information for further application for designing and modelling in thermochemical conversion system of macroalgae biomass.

  7. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling.

    Science.gov (United States)

    Chen, Jiacong; Liu, Jingyong; He, Yao; Huang, Limao; Sun, Shuiyu; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Huang, Shaosong; Ning, Xunan

    2017-02-01

    Artificial neural network (ANN) modeling was applied to thermal data obtained by non-isothermal thermogravimetric analysis (TGA) from room temperature to 1000°C at three different heating rates in air to predict the TG curves of sewage sludge (SS) and coffee grounds (CG) mixtures. A good agreement between experimental and predicted data verified the accuracy of the ANN approach. The results of co-combustion showed that there were interactions between SS and CG, and the impacts were mostly positive. With the addition of CG, the mass loss rate and the reactivity of SS were increased while charring was reduced. Measured activation energies (E a ) determined by the Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) methods deviated by <5%. The average value of E a (166.8kJ/mol by KAS and 168.8kJ/mol by OFW, respectively) was the lowest when the fraction of CG in the mixture was 40%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Thermogravimetric analysis-mass spectrometry (TG-MS) of selected Chinese palygorskites-Implications for structural water

    International Nuclear Information System (INIS)

    Cheng, Hongfei; Yang, Jing; Frost, Ray L.

    2011-01-01

    Four Chinese palygorskites clay minerals have been analysed by thermogravimetric analysis-mass spectrometry and X-ray diffraction. The structural water of the palygorskite dehydrates in the temperature range of 30-625 o C, as shown in the thermogravimetric analysis and mass spectrometric curves. The mass spectrometric curves combined the differential thermogravimetric curves enable the detailed determination of the main dehydration steps. The results show that the dehydration occurs in four main steps: (a) elimination of interparticle water and partial zeolitic water at below 110 o C, (b) release of the rest part of zeolitic water from the structural layer of palygorskite at about 160 o C, (c) dehydration of one part of bound water at about 340 o C and (d) loss of the rest part of bound water at around 450 o C. The temperatures of dehydration of the palygorskite minerals are found to be influenced by the geological environment and the amount and kind of impurities. The evolved gases in the decomposition process are various because of the different amounts and kind of impurities. It is also found that decarbonization takes place at around 600 o C due to the decomposition of calcite and dolomite impurities in these minerals. It is evident by the mass spectrometric curve that the water is given out from the samples and carbon dioxide originates from the impurity calcite and dolomite.

  9. Pb-H2O Thermogravimetric Plants. The Rankine Cycle

    International Nuclear Information System (INIS)

    Arosio, S.; Carlevaro, R.

    2000-01-01

    An economic evaluation concerning Pb-H 2 O thermogravimetric systems with an electric power in the range 200-1.000 kW has been done. Moreover, plant and running costs for a thermogravimetric and a Rankine cycle, 1 MW power, have been compared. Basically due to the lead charge, the plant cost of the former is higher: nevertheless such amount can be recuperated in less than three years, being higher the running cost of the latter [it

  10. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.

    Science.gov (United States)

    Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H

    2014-08-08

    For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Thermogravimetric analysis and dissociation pressure of caesium trihalides

    International Nuclear Information System (INIS)

    Harris, G.S.; McKechnie, J.S.

    1982-01-01

    We have carried out a thermogravimetric study of caesium trihalides to obtain, from the procedural decomposition temperatures, an order of apparent thermal stability which could be compared with the order of thermodynamic stability obtained from vapour pressure measurements. Thermogravimetric analysis could also prove to be a useful method for rapid analysis of metal polyhalides. The thermograms indicated a one-step decomposition for each compound; the procedural decomposition temperatures and percentage weight losses obtained are given. Dissociation pressures were measured and values of equilibrium constant and enthalpy of dissociation were calculated. The results are given. The 'stability' order obtained is discussed. (U.K.)

  12. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  13. Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan; Zhang Xi; Yan Jinliang; Xiao Yan [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Lang Meidong, E-mail: mdlang@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2011-05-01

    This article describes the fabrication of hydroxyapatite (HAP) nanocomposites grafted with poly(methyl methacrylate) (PMMA). Surface-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was carried out from hydroxyapatite particles derivatized with ATRP initiators. The structure and properties of the nanocomposites were investigated by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), differential scanning calorimeter (DSC) measurements, and contact angle analyses. TGA was used to estimate the grafting density of ATRP initiators (0.49 initiator/nm{sup 2}) and the amount of grafted PMMA on the HAP surface. The contact angle analyses indicated that grafting PMMA onto the HAP surface dramatically increased the hydrophobicity of the surface. Moreover, the HAP nanocomposites showed excellent dispersibility in both aqueous solution and organic solvent.

  14. Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP

    International Nuclear Information System (INIS)

    Wang Yan; Zhang Xi; Yan Jinliang; Xiao Yan; Lang Meidong

    2011-01-01

    This article describes the fabrication of hydroxyapatite (HAP) nanocomposites grafted with poly(methyl methacrylate) (PMMA). Surface-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was carried out from hydroxyapatite particles derivatized with ATRP initiators. The structure and properties of the nanocomposites were investigated by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), differential scanning calorimeter (DSC) measurements, and contact angle analyses. TGA was used to estimate the grafting density of ATRP initiators (0.49 initiator/nm 2 ) and the amount of grafted PMMA on the HAP surface. The contact angle analyses indicated that grafting PMMA onto the HAP surface dramatically increased the hydrophobicity of the surface. Moreover, the HAP nanocomposites showed excellent dispersibility in both aqueous solution and organic solvent.

  15. Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres

    International Nuclear Information System (INIS)

    Yu Zhaosheng; Ma Xiaoqian; Liu Ao

    2009-01-01

    By thermogravimetric analysis (TGA) study, the influences of different catalysts on the ignition and combustion of rice and wheat straw in air- and oxygen-enriched atmospheres have been investigated in this paper. Straw combustion is divided into two stages. One is the emission and combustion of volatiles and the second is the combustion of fixed carbon. The existence of catalysts in the first step enhances the emission of volatiles from the straw. The action of catalysts in the second step of straw combustion may be as a carrier of oxygen to the fixed carbon. Two parameters have been used to compare the characteristics of ignition and combustion of straw under different catalysts and in various oxygen concentrations. One is the temperature when the conversion degree combustible (CDC) of straw is 5%, the other is the CDC when the temperature is 900 deg. C. By comparing the different values of the two parameters, the different influences of the catalysts and oxygen concentration on the ignition and combustion of straw have been studied, the action of these catalysts for straw ignition and combustion in air and oxygen-enriched atmosphere is effective except the oxygen-enriched catalytic combustion of wheat straw fixed carbon

  16. Thermogravimetric and kinetic study of methylolmelamine ...

    African Journals Online (AJOL)

    Some salient properties of cotton cellulose which requires it to be treated with additives to improve its versatility were examined taken into consideration, the molecular structure. Thermogravimetric analysis of the cotton fabric and the treated cotton fabric were carried out in an improvised muffled furnace. The result was in ...

  17. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets

    International Nuclear Information System (INIS)

    Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-01-01

    Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed

  18. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    Science.gov (United States)

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  19. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT).

    Science.gov (United States)

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.

  20. Thermogravimetric analysis of biowastes during combustion

    International Nuclear Information System (INIS)

    Otero, M.; Sanchez, M.E.; Gomez, X.; Moran, A.

    2010-01-01

    The combustion of sewage sludge (SS), animal manure (AM) and the organic fraction of municipal solid waste (OFMSW) was assessed and compared with that of a semianthracite coal (SC) and of a PET waste by thermogravimetric (TG) analysis. Differences were found in the TG curves obtained for the combustion of these materials accordingly to their respective proximate analysis. Non-isothermal thermogravimetric data were used to assess the kinetics of the combustion of these biowastes. The present paper reports on the application of the Vyazovkin model-free isoconversional method for the evaluation of the activation energy necessary for the combustion of these biowastes. The activation energy related to SS combustion (129.1 kJ/mol) was similar to that corresponding to AM (132.5 kJ/mol) while the OFMSW showed a higher value (159.3 kJ/mol). These values are quite higher than the one determined in the same way for the combustion of SC (49.2 kJ/mol) but lower than that for the combustion of a PET waste (165.6 kJ/mol).

  1. Thermogravimetric Analysis of Rice Husk and Coconut Pulp for Potential Bio fuel Production by Flash Pyrolysis

    International Nuclear Information System (INIS)

    Noorhaza Alias; Norazana Ibrahim; Mohd Kamaruddin Abdul Hamid

    2014-01-01

    The purpose of this paper is to study the characteristics and thermal degradation behavior of rice husk and coconut pulp for bio fuel production via flash pyrolysis technology. The elemental properties of the feedstock were characterized by an elemental analyzer while thermal properties were investigated using thermogravimetric analyzer (TGA). The pyrolysis processes were carried out at room temperature up to 700 degree Celsius in the presence of nitrogen gas flowing at 150 ml/ min. The investigated parameters are particle sizes and heating rates. The particle sizes varied in the range of dp 1 < 0.30 mm and 0.30= dp 2 <0.50 mm. The heating rates applied were 50 degree Celsius/ min and 80 degree Celsius/ min. It was shown smaller particle size produces 2.11-3.59 % less volatile product when pyrolyzed at 50 degree Celsius/ min compared to 80 degree Celsius/ min. Higher heating rates causes biomass degrades in a narrow temperature range by 25 degree Celsius. It also increases the maximum peak rate by 0.01 mg/ s for rice husk at dp 1 and 0.02 mg/ s at dp 2 . In case of coconut pulp, the change is not significant for dp 1 but for dp 2 a 0.02 mg/ s changes was recorded. (author)

  2. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    International Nuclear Information System (INIS)

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  3. Understanding of thermo-gravimetric analysis to calculate number of addends in multifunctional hemi-ortho ester derivatives of fullerenol

    International Nuclear Information System (INIS)

    Singh, Rachana; Goswami, Thakohari

    2011-01-01

    Test results for the applicability of existing thermo-gravimetric analysis (TGA) technique to ascertain average number of exohedral chemical attachment in a new class of fullerene dyads consisting of multiple hemi-ortho esters onto fullerenol is presented. Although the method is nicely applicable for higher fullerenol, but homogeneous phase products calculate lower number of addends, whereas, the hetero phase products indicate higher value. Lower value is attributed to either overlapping of thermal events or substituents effects and higher value is the contribution of tetra butyl ammonium hydroxide (TBAH) impurity used as phase transfer catalyst (PTC) in heterogeneous phase reactions. Presence of TBAH impurity is recognized through thermo-gravimetry mass spectrometry (TG-MS) measurement. Appropriate modification of test method to arrive at accurate and precise values of x (total mass contribution due to addends only) and y (total mass contribution due to fullerene plus char yield) are also reported. Successful use of two more different techniques, viz., electron-spray ionization mass spectrometry (ESI-MS) and X-ray photoelectron spectroscopy (XPS), supplement above results. Influences of fullerene and different substituents on thermal behavior of dyads are assessed.

  4. Thermal degradation and isothermal crystalline behavior of poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Shu Guang Bian; Min Xiao; Shuan Jin Wang; Yue Zhong Meng

    2009-01-01

    Poly(trimethylene terephthalate)(PTT)is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR)analysis,differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTT with intrinsicviscosity(IV)of 0.74 dL/g has a maximum crystallinity of about 55%at 190℃,as demonstrated by DSC and XRD measurements consistently.

  5. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.

    Science.gov (United States)

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S

    2009-12-01

    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  6. Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis

    Science.gov (United States)

    Xingyan Huang; Cornelis F. De Hoop; Jiulong Xie; Chung-Yun Hse; Jinqiu Qi; Yuzhu Chen; Feng Li

    2017-01-01

    The thermal decomposition characteristics of microwave liquefied rape straw residues with respect to liquefaction condition and pyrolysis conversion were investigated using a thermogravimetric (TG) analyzer at the heating rates of 5, 20, 50 °C min-1. The hemicellulose decomposition peak was absent at the derivative thermogravimetric analysis (DTG...

  7. Thermal degradation of ligno-cellulosic fuels. DSC and TGA studies

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, V.; Cancellieri, D.; Leoni, E. [SPE-CNRS UMR 6134, University of Corsica, Campus Grossetti, BP 52, 20250 Corti (France)

    2006-12-01

    The scope of this work was to show the utility of thermal analysis and calorimetric experiments to study the thermal oxidative degradation of Mediterranean scrubs. We investigated the thermal degradation of four species; DSC and TGA were used under air sweeping to record oxidative reactions in dynamic conditions. Heat released and mass loss are important data to be measured for wildland fires modelling purpose and fire hazard studies on ligno-cellulosic fuels. Around 638 and 778K, two dominating and overlapped exothermic peaks were recorded in DSC and individualized using a experimental and numerical separation. This stage allowed obtaining the enthalpy variation of each exothermic phenomenon. As an application, we propose to classify the fuels according to the heat released and the rate constant of each reaction. TGA experiments showed under air two successive mass loss around 638 and 778K. Both techniques are useful in order to measure ignitability, combustibility and sustainability of forest fuels. (author)

  8. Measurement of the oxidation of spent fuel between 140/degree/ and 225/degree/C by thermogravimetric analysis

    International Nuclear Information System (INIS)

    Woodley, R.E.; Einziger, R.E.; Buchanan, H.C.

    1988-09-01

    A series of PWR spent fuel samples from Turkey Point Unit 3 have been oxidized at temperatures between 140/degree/ and 225/degree/C in air atmospheres with dew points between 14.5/degree/ and /minus/70/degree/C, using a thermogravimetric analysis system (TGA). Tests lasted between 400 and 2100 hours. At the conclusion of a test, the atmosphere was sampled to determine the release of fission gas during testing, and the fuel samples were analyzed for microstructural changes. It appears that the mechanism for oxidation of spent fuel to U/sub 3/O/sub 7/ takes place in two steps that occur somewhat simultaneously. Oxygen migrates along the grain boundaries, which are oxidized and enlarged. The grains oxidize by the inward progression of a layer of U/sub 4/O/sub 9/ saturated with oxygen. A simplified model of the mechanism, which considers oxygen diffusion through the product layer as the rate-controlling step, yields an activation energy of 27 /plus minus/ 4 kcal/mol. Moisture, between dew points of /minus/70/degree/ to +14.5/degree/C, i.e., water vapor partial pressures varying over four orders of magnitude, had no significant effect on the oxidation rate. 34 refs., 12 figs., 6 tabs

  9. 45-Day safety screen results for Tank 241-C-101, auger sample 95-AUG-019

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1995-01-01

    One auger sample from Tank 241-C-101 was received by the 222-S Laboratory and underwent safety screening analyses--differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha analysis--in accordance with the tank characterization plan. Analytical results for the TGA on the crust sample (the uppermost portion of the auger sample) (sample number S95T000823) were less than the safety screening notification limit of 17 weight percent water. Verbal and written notifications were made on May 3, 1995. No exotherms were observed in the DSC analyses and the total alpha results were well below the safety screening notification limit. This report includes the primary safety screening results obtained from the analyses and copies of all DSC and TGA raw data scans as requested per the TCP. Although not included in this report, a photograph of the extruded sample was taken and is available. This report also includes bulk density measurements required by Characterization Plant Engineering. Additional analyses (pH, total organic carbon, and total inorganic carbon) are being performed on the drainable liquid at the request of Characterization Process Control; these analyses will be reported at a later date in a final report for this auger sample. Tank C-101 is not part of any of the four Watch Lists

  10. Relationship between the serum TGA, TMA positiveness and development of hypothyroidism after 131I therapy in patients with Graves' disease

    International Nuclear Information System (INIS)

    Zhao Hui; Xu Xiaohong; Yu Hui

    2007-01-01

    Objective: To study the likelihood of development of hypothyroidism after 131 I therapy in patients with Graves' disease as related to the serum positiveness of TGA and TMA before treatment. Methods: Altogether, 176 patients with Graves' disease were treated with 131 I and followed for 3 years of these patients, serum TGA and TMA were positive in 70 and were negative in 106. Results: In the 70 patients with positive TGA and TMA, development of hypothyroidism after 131 I treatment occurred in 22 subjects three years later (31.4%). However, only 4 of the 106 patients with negative TGA and TMA developed hypothyroidism 3 years after 131 I therapy (3.8%). Difference in the incidence of hypothyroidism was significant (P 131 I be administered to patients with Graves' disease and positive serum TGA, TMA. (authors)

  11. 我国某矿田硫化物和硫盐类矿物差热失重分析的研究

    Institute of Scientific and Technical Information of China (English)

    陈国玺

    1976-01-01

    DTA and TGA curves are presented for 117 samples of sulfide and sulfosalt minerals from a certain eassiterite-sulfide deposit. The differential thermal and thermogravimetric analyses were conducted under oxidation conditions and in inert atmospheres by use of China-made Model 4.1 Precise Differential Thermebalance. In conjunction with X-ray diffraction analysis, pyrrhotite and chaleopyrite of different crystal systems, silver-bearlng galena, jamesonite and boulangerite have been studied in more detail.

  12. Thermogravimetric studies on the silicothermic reduction of uranium tetrafluoride under nitrogen

    International Nuclear Information System (INIS)

    Venkataramani, R.; Bhatt, Y.J.; Krishnamurthy, N.; Garg, S.P.

    1986-01-01

    This paper presents details of the experimental procedure and results obtained by thermogravimetric studies on the preparation of uranium nitrides by silicothermic reduction of uranium tetrafluoride under a nitrogen atmosphere. The folowing sequential steps are involved during the reaction: 4UF 4 +Si->4UF 3 +SiF 4 (g), 2UF 3 +Si+N 2 ->2UNF+SiF 4 (g), 4UNF+Si+N 2 ->2U 2 N 3 +SiF 4 (g), the uranium sesquintride U 2 N 3 obtained in the above process then decomposed at 1370 K under a dynamic vacuum of less than 10 -2 Tor to yield uranium mononitride of purity better than 99.9%, according to reaction 2U 2 N 3 ->4UN+N 2 (g). The chemical composition of the intermediate products formed during the sequential steps of the process, assessed by thermogravimetric and differential thermogravimetric studies, were further confirmed by chemical and X-ray analysis

  13. Use of Thermoanalytic Methods in the Evaluation of Combusted Materials

    Directory of Open Access Journals (Sweden)

    František Krepelka

    2006-12-01

    Full Text Available The paper describes possibilities of using thermoanalytic methods for the evaluation and comparison of materials designed for a direct combustion. Differential thermal analysis (DTA and thermogravimetric analysis (TGA were both used in the evaluation. The paper includes a description of methods of data processing from analyses for the purposes of comparison of used materials regarding their heating values. The following materials were analysed in the experiments: wooden coal of objectional grain size, fly ash from heating plant exhaust funnels, dendromass waste: spruce sawdust, micro-briquettes of spruce sawdust and fly-ash combined.

  14. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity.

    Science.gov (United States)

    Soobhany, Nuhaa; Gunasee, Sanjana; Rago, Yogeshwari Pooja; Joyram, Hashita; Raghoo, Pravesh; Mohee, Romeela; Garg, Vinod Kumar

    2017-07-01

    This is the first-ever study of its kind for an extensive assessment and comparison of maturity indexes between compost and vermicompost that have been derived from Municipal Solid Waste (MSW). The spectroscopic (Fourier transform infrared spectroscopy: FT-IR), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and structural characterization (scanning electron microscope: SEM) were recorded. FT-IR spectra showed an increase in conversion of polysaccharides species and aliphatic methylene groups in vermicompost compared to compost as depicted from the variation of the intensity of the peaks. TG curves of final vermicompost showed a much lower mass loss when compared to compost, indicating higher stability in feedstock. SEM micrographs of the vermicompost reflected strong fragmentation of material than composts which revealed the extent of intra-structural degradation of MSW. These findings elucidate on a clear comparison between composts and vermicomposts in terms of maturity indexes for soil enhancement and in agriculture as organic fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Kinetic study and thermal decomposition behavior of viscoelastic memory foam

    International Nuclear Information System (INIS)

    Garrido, María A.; Font, Rafael; Conesa, Juan A.

    2016-01-01

    Highlights: • The thermal degradation has been studied under three different atmospheres. • Pyrolysis and combustion kinetic models have been proposed. • Evolved products under different atmospheres have been analyzed by TG-FTIR and TG-MS. - Abstract: A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N_2:O_2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO_2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

  16. Thermogravimetric investigations of cream with minoxidil

    Directory of Open Access Journals (Sweden)

    I. V. Gnitko

    2016-12-01

    Full Text Available Minoxidil is one of the most effective and modern medications, which is used in modern trichology for hair growth stimulation in case of androgenic and other forms of alopecia. Clinical effect of this substance is caused by the intensification of metabolic processes in the skin due to intensification of microcirculation. For local application domestic dermatology uses imported minoxidil medicines in form of alcohol-water lotions and aerosols. The use of semisolid dosage form with minoxidil for external administration will allow to increase its efficacy and will widen the arsenal of domestic pharmacotherapeutic agents for hair growth stimulation. Rational composition of minoxidil semisolid dosage form for external use with 2% of active substance has been developed at the Department of Medicinal Preparations Technology, Zaporozhye State Medical University as a result of complex physical-chemical, microbiological and biopharmaceutical investigations. The aim of this work is the study of thermal treatment effects of cream-mask with minoxidil for external use over the temperature range, which is used in technological process of this dosage form manufacturing. Materials and methods. Cream with 2% of minoxidil on the emulsion base and its excipients have been used as the object for the thermogravimetric investigations. Thermogravimetric analysis has been carried out on the derivatograph «Shimadzu DTG-60», Japan, with the platinum and platinum-rhodium thermopair with samples’ heating in aluminium crucibles from 25 to 200ºС. Results. According to thermogravimetric experimental data minoxidil is a thermal stable substance from 26 to 240ºС. During experimental process insignificant endothermic effect was determined at 191,72ºС. However the mass of the example to the end of experiment practically didn’t change (decrease on 0,32%. Thermal effects on the derivatogram of minoxidil emulsion cream match with thermal effects of the base components and

  17. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-hsien Hsieh

    2018-05-01

    Full Text Available Three thermal analytical techniques such as differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA using five heating rates, and DSC-Fourier Transform Infrared (DSC-FTIR microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame (APM hemihydrate in the solid state. The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate, in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines (DKP formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa (FWO model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy. Keywords: Aspartame (APM hemihydrate, DSC/TGA, DSC-FTIR, Dehydration, Activation energy, DKP formation

  18. Fluoride substitution in LiBH4; destabilization and decomposition

    DEFF Research Database (Denmark)

    Richter, Bo; Ravnsbaek, Dorthe B.; Sharma, Manish

    2017-01-01

    Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in ......Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA...

  19. Polymeric membranes obtained from S-PEEK for application in PEM fuel cells; Caracterizacao de membranas polimericas obtidas a partir dos S-PEEK para aplicacao em celulas combustiveis do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Ednardo G.; Fiuza, Raildo A.; Catao, Ronei S.; Jose, Nadia M.; Boaventura, Jaime S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica], e-mail: ednardobarreto@yahoo.com.br, e-mail: raildofiuza@gmail.com, e-mail: roneicatao@ig.com.br, e-mail: nadia@ufba.br, e-mail: bventura@ufba.br; Pepe, Yuri [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Fisica

    2007-07-01

    This work had the objective to develop and to characterize S-PEEK membranes (sulfonated poly ether ether ketone) through chemical and electrochemical analyses. Conductivity test in function of the frequency and tension had been carried through; as well as, the open circuit tension of a fuel cell using the S-PEEK as electrolyte. Additional tests included TGA (Thermogravimetric Analysis), water absorption test, DSC (Differential Scanning Calorimetry), as tools to characterize conducting, thermal and mechanical proprieties of polymeric membrane. (author)

  20. Synthesis and Thermal and Photo Behaviors of New Polyamide/Organocaly Nanocomposites Containing Para Phenylenediacrylic Moiety

    Science.gov (United States)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadat

    2011-06-01

    New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution process in N-methyl-2-pyrolidone. Amide chains were synthesized from 4,4'-diaminodiphenyl sulfone and p-phenylenediacrylic acid in N-methyl-2-pyrolidone. The resulting nanocomposite films containing 5-15 mass % of organoclay were characterized for FT-IR, scanning electronmicroscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.

  1. Evaluation of Need and Location for a Thermogravimetric Analyzer in the Plutonium Finishing Plant (PFP) Materials Stabilization

    International Nuclear Information System (INIS)

    WILLIS, H.T.

    2000-01-01

    This plan provides an analysis for locating a TGA to support PFP Thermal Stabilization processes. The scope of this document is to evaluate the need for, and location for, installation of a TGA system as a supplement to the SFE equipment for moisture measurement in pure oxides. A location assessment for the SFE equipment was previously performed (HNF 1999). Based on that assessment, co-location of the TGA system with the SFE system is the preferred option. This would enable thermally stabilized material to be analyzed for residual moisture by either the TGA system or SFE system or both This evaluation considers glovebox locations in the PFP 234-52 Building Analytical Laboratory or operating areas for the installation of the TGA system and it's supporting equipment. This evaluation considers using existing gloveboxes along with an alternative of adding a new glovebox to existing process lines. The location evaluation criteria focuses mainly on glovebox size, with qualitative consideration of relative cost and schedule impacts associated with system implementation, radiological control, and interaction with other laboratory operations and processes. In addition, the possible co-location of a TGA furnace system with the SFE system was considered

  2. Mutational analysis of the PITX2 coding region revealed no common cause for transposition of the great arteries (dTGA

    Directory of Open Access Journals (Sweden)

    Goldmuntz Elizabeth

    2005-05-01

    Full Text Available Abstract Background PITX2 is a bicoid-related homeodomain transcription factor that plays an important role in asymmetric cardiogenesis. Loss of function experiments in mice cause severe heart malformations, including transposition of the great arteries (TGA. TGA accounts for 5–7% of all congenital heart diseases affecting 0.2 per 1000 live births, thereby representing the most frequent cyanotic heart defect diagnosed in the neonatal period. Methods To address whether altered PITX2 function could also contribute to the formation of dTGA in humans, we screened 96 patients with dTGA by means of dHPLC and direct sequencing for mutations within the PITX2 gene. Results Several SNPs could be detected, but no stop or frame shift mutation. In particular, we found seven intronic and UTR variants, two silent mutations and two polymorphisms within the coding region. Conclusion As most sequence variants were also found in controls we conclude that mutations in PITX2 are not a common cause of dTGA.

  3. Effect of electron beam irradiation on the thermal properties of polycarbonate / polyester blend

    International Nuclear Information System (INIS)

    Zarie, K.A.

    2007-01-01

    The effect of electron beam irradiation on the thermal properties of Bayfol (polycarbonate/polyester blend) solid state nuclear track detector (SSNTD) was investigated. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) to obtain the activation energy of thermal decomposition for Bayfol detector. The thermogravimetric analysis (TGA) indicated that the Bayfol samples were decomposed in one main break down stage. Samples of 250 μm thickness sheets were exposed to electron beam irradiations in the dose range 20-600 KGy. The variation of melting temperatures with the electron dose was determined using differential thermal analysis (DTA). The results indicated that the electron irradiation in the dose range 200-600 KGy decreases the melting temperature of the Bayfol samples and this is most suitable for applications requiring the molding of this polymer at lower temperatures

  4. Comparison of TGA and EMF measurement of the oxygen potential of U075Pu025O/sub 2+-x/

    International Nuclear Information System (INIS)

    Woodley, R.E.

    1977-01-01

    To resolve uncertainies in various low temperature oxygen potential data for mixed-oxide nuclear fuels, additional measurements have been performed employing a combined thermogravimetric and galvanic cell technique. Oxygen potentials obtained in this manner exhibit good agreement with the results of prior thermogravimetric determinations

  5. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  6. Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Sahu, Ashok Kumar; Kumar, Sanjay; Krishnamurthy, Nagaiyar

    2015-01-01

    The kinetics of formation of lithium titanate from the solid state reaction of lithium carbonate and titanium oxide was studied using non-isothermal thermogravimetric technique. Thermogravimetric data for the reaction of lithium carbonate and titanium oxide was obtained at various heating rates. The methods such as Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose were used to estimate the kinetic parameters from the obtained thermogravimetric data. The average activation energy for the formation of lithium titanate by solid state route was found to be 243 kJ/mol K. The reaction mechanism was determined by the method given by Malek. It was found that the three dimensional diffusion model best describes the reaction kinetics. A kinetic equation describing the reaction is proposed and reaction mechanism is discussed

  7. Direct numerical simulation of the thermal dehydration reaction in a TGA experiment

    NARCIS (Netherlands)

    Lan, S.; Gaeini, M.; Zondag, H.A.; van Steenhoven, A.A.; Rindt, C.C.M.

    2018-01-01

    This work presents a detailed mathematical model of the coupled mass and heat transfer processes in salt hydrate grains in a TGA experiment. The purpose of developing this numerical model is to get a more fundamental understanding of the influence of parameters like particle size, nucleation rate

  8. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.

    Science.gov (United States)

    Figueira, Camila Emilia; Moreira, Paulo Firmino; Giudici, Reinaldo

    2015-12-01

    The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    Full Text Available Subject of Study.Research of vapor pressure of low volatile substances is a complicated problem due to both direct experimental implementation complexity and, most significantly, the issues faced correctness of the analysis and processing of experimental data. That is why it is usually required engaging the reference substances (with vapor pressures well studied. The latter drastically reduces the effectiveness of the experimental methods used and narrows their applicability. The paper deals with an approach to the evaporation process description (sublimation of low volatile substances based on molecular kinetic description in view of diffusive and convection processes. The proposed approach relies on experimental thermogravimetricfindingsina wide range of temperatures, flow rates ofthe purge gas and time. Method. A new approach is based on the calculation of the vapor pressure and uses the data about the speed of evaporation by thermogravimetric analysis depending on the temperature, the flow rate of the purge gas, and the evaporation time. The basis for calculation is the diffusion-kinetic description of the process of evaporation (mass loss of the substance from the exposed surface. The method is applicable to determine the thermodynamic characteristics for both the evaporation (the equilibrium liquid - vapor and sublimation (the equilibrium solid - vapor. We proposed the appropriate method of the experiment and analysis of its data in order to find the saturated vapor pressure of individual substances of low volatility. Main Results. The method has been tested on substances with insufficiently reliable and complete study of the thermodynamic characteristics but, despite this, are often used (because of the other data limitations as reference ones. The vaporization process (liquid-vapor has been studied for di-n-butyl phthalate C16H22O4 at 323,15–443,15 К, and sublimation for benzoic acid C7H6O2at 303,15–183,15 К. Both processes have

  10. Temperature dependence of the resonance frequency of thermogravimetric devices

    NARCIS (Netherlands)

    Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.

    2010-01-01

    This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to

  11. Thermogravimetric studies of vapour-aerosol interactions

    International Nuclear Information System (INIS)

    Henshaw, J.; Newland, M.S.; Wood, S.J.

    1991-01-01

    Thermogravimetric analysis has been used to study the interaction of iodine vapour with cadmium, silver and manganese monoxide substrates. These studies have demonstrated the importance of time-dependence data on reaction rates. Iodine did not react with manganese monoxide (as expected from thermodynamic considerations); however, extensive reaction did occur with silver and cadmium. Two rate limiting mechanisms were observed: mass transfer of iodine molecules from the gas phase (leading to linear reaction rates) and parabolic kinetics (ie inversely proportional to the extent of reaction) when the rate was limited by a diffusion process through the reaction product. (author)

  12. Thermal stability evaluation of palm oil as energy transport media

    International Nuclear Information System (INIS)

    Wan Nik, W.B.; Ani, F.N.; Masjuki, H.H.

    2005-01-01

    The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

  13. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  14. Evaluation of Systematic and Random Error in the Measurement of Equilibrium Solubility and Diffusion Coefficient for Liquids in Polymers

    National Research Council Canada - National Science Library

    Shuely, Wendel

    2001-01-01

    A standardized thermogravimetric analyzer (TGA) desorption method for measuring the equilibrium solubility and diffusion coefficient of toxic contaminants with polymers was further developed and evaluated...

  15. Kinetics of reaction dimer fatty acid C_36 with 1,9 diamino nonane and determination of thermodynamic constants by use of thermogravimetric analysis tga, and rheological constants for the resulted polyamide

    International Nuclear Information System (INIS)

    Mohammad, H.; Falah, Al; Hammoy, M.

    2014-01-01

    Study the kinetics degradation of poly (dimeric acid C_36 with 1.9 – diamino nonane) was carried out by thermal analysis (TGA), and thermodynamic and equilibrium constants have been defined, moreover, study the kinetics of reaction between 1.9 – diamino nonane and dimer fatty acid C_36 was carried out in molten state, the reaction was performed at 160°, the acid value, and percentage of carboxylic functions of the product were determined. The polyamidation reaction was found to be of overall second order until conversion of 97% at 160°, then the order of reaction changes. The degree of dispersion, number molecular weight, weight molecular weight ,and viscosity molecular weight have been calculated during different times.The relationships between degree of dispersion, number Average molecular weight, weight average molecular weight, and viscosity molecular weight with time is linear at160°. Spectroscopy studies were carried out by infra-red and ultraviolet spectroscopy (author).

  16. Computer calculations of activation energy for pyrolysis from thermogravimetric curves

    International Nuclear Information System (INIS)

    Hussain, R.

    1994-01-01

    A BASIC programme to determine energy of activation for the degradation of polymers has been described. The calculations are based on the results of thermogravimetric curves. This method is applicable for those polymers which produce volatile products upon thermal degradation. (author)

  17. Reactivity of chars prepared from the pyrolysis of a Victorian lignite under a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Mody, D.; Li, C.; Hayashi, J.; Chiba, T. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    A Loy Yang lignite sample was pyrolysed under a wide range of experimental conditions using a wire-mesh reactor, a fluidised-bed reactor, a drop-tube reformer and a thermogravimetric analyser (TGA). The reactivity of these char samples in CO{sub 2} and air was measured in the TGA as well as in the fluidised-bed reactor. A sample prepared by the physical impregnation of NaCl into the lignite was also used in order to investigate the effect of NaCl in the lignite on the reactivity of the resulting char. Our experimental results indicate that, due to the volatilisation of a substantial fraction of Na in the lignite substrate during pyrolysis, the true catalytic activity of the Na in the lignite substrate should be evaluated by measuring the sodium content in the char after pyrolysis. The char reactivity measured in situ in the fluidised-bed reactor was compared with that of the same char measured separately in the TGA after re-heating the char sample to the same temperature as that in the fluidised-bed. It was found that the re-heating of the char in the TGA reduced the char reactivity.

  18. Thermogravimetric evaluation of the suitability of precursors for MOCVD

    International Nuclear Information System (INIS)

    Kunte, G V; Shivashankar, S A; Umarji, A M

    2008-01-01

    A method based on the Langmuir equation for the estimation of vapour pressure and enthalpy of sublimation of subliming compounds is described. The variable temperature thermogravimetric/differential thermogravimetric (TG/DTG) curve of benzoic acid is used to arrive at the instrument parameters. Employing these parameters, the vapour pressure–temperature curves are derived for salicylic acid and camphor from their TG/DTG curves. The values match well with vapour pressure data in the literature, obtained by effusion methods. By employing the Clausius–Clapeyron equation, the enthalpy of sublimation could be calculated. Extending the method further, two precursors for metal-organic chemical vapour deposition (MOCVD) of titanium oxide bis-isopropyl bis tert-butyl 2-oxobutanoato titanium, Ti(O i Pr) 2 (tbob) 2 , and bis-oxo-bis-tertbutyl 2-oxobutanoato titanium, [TiO(tbob) 2 ] 2 , have been evaluated. The complex Ti(O i Pr) 2 (tbob) 2 is found to be a more suitable precursor. This approach can be helpful in quickly screening for the suitability of a compound as a CVD precursor

  19. Thermogravimetric study of γ-irradiated lanthanum oxalate

    International Nuclear Information System (INIS)

    Nayak, H.; Bhatta, D.

    2000-01-01

    Thermogravimetric study of La 2 (C 2 O 4 ) 3 , exposed to different doses (5.0 - 50.0 x 10 -2 MGy) of γ-rays has been carried out. Marginal effect is observed at lower doses which is prominent at higher dose (5.0 x 10 -1 MGy). The radiolytic damaged entities, generated by irradiation favours the reaction by creating new potential nucleation centres in the lattice. The solid product, La 2 O 3 formed by irradiation also acts as a heterogeneous catalyst and brings out changes in the reactivity of the solid. (author)

  20. Miniature quartz crystal-resonator-based thermogravimetric detector.

    Science.gov (United States)

    Sai, N; Tagawa, Y; Sohgawa, M; Abe, T

    2014-09-01

    In this work, a new design for a microheater combined with a quartz crystal microbalance (QCM) array for thermogravimetric analysis is presented. Each QCM consists of two electrodes to excite thickness-shear-mode vibrations and one microheater to increase the temperature on the crystal backside. In addition, all the electrode pads are patterned on the crystal backside, making the design of the QCM compact and user-friendly. Finally, the proposed QCM array was employed to separate ethanol from methanol. This was successfully achieved via thermal desorption spectra calculated by differentiating the frequency changes.

  1. Thermogravimetric analytical procedures for determining reactivities of chars from New Zealand coals

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, K.J.; Beamish, B.B.; Rodgers, K.A. [University of Auckland, Auckland (New Zealand). Dept. of Geology

    1997-10-22

    This paper describes how tightly constrained thermogravimetric experimental procedures (particle size {lt} 212 {mu}m, sample mass 15.5 mg, CO{sub 2} reactant gas, near isothermal conditions) allow the reactivity of chars from high volatile New Zealand coals to be determined to a repeatability of {+-}0.07 h{sup -1} at 900{degree}C and {+-}0.5 h{sup -1} at 1100{degree}C. The procedure also provides proximate analyses information and affords a quick ({lt} 90 min) comparison between different coal types as well as indicating likely operating conditions and problems associated with a particular coal or blend. A clear difference is evident between reactivities of differing New Zealand coal ranks. Between 900 and 1100{degree}C, bituminous coals increase thirtyfold in reactivity compared with fourfold for subbituminous, with the latter being three to five times greater in reactivity at higher temperature.

  2. Thermogravimetric control of intermediate compounds in uranium metallurgy

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.; Fernandez Cellini, R.

    1959-01-01

    The thermal decomposition of some intermediate compounds in the metallurgy of the uranium as uranium peroxide, ammonium uranate, uranium and ammonium penta-fluoride, uranium tetrafluoride and uranous oxide has been study by means of the Chevenard's thermo balance. Some data on pyrolysis of synthetic mixtures of intermediate compounds which may occasionally appear during the industrial process, are given. Thermogravimetric methods of control are suggested, usable in interesting products in the uranium metallurgy. (Author) 20 refs

  3. Thermogravimetric analysis in the characterization of colombian coals used in the production of coke

    International Nuclear Information System (INIS)

    Guerrero, Camilo; Salamanca, Monica E; Diaz, Jose de J

    2010-01-01

    Five types of coal from the states of Cundinamarca, Boyaca and Norte de Santander (Colombia) were characterized by proximate, ultimate, rheological, petrographic, calorific and thermogravimetric analysis. The parameters used, especially the ones which determine the rheological properties show that the studied coals and its blends could produce good quality coke. It was observed the inverse relationship between the volatile matter content and the mean vitrinite reflectance, relationship which is attributed to the increase of the aromaticity in the molecular structure of the coal as a consequence of the rank increase. The parameters derived from the thermogravimetric analysis, maximum velocity of de-volatilization and the temperature of maximum velocity of de-volatilization and the media reflectance of the vitrinite showed good correlations. Also was observed an interesting correlation between the velocity of de-volatilization and maximum fluidity. This shows that the thermogravimetric analysis can be a useful tool to characterize in a quick way coals used for metallurgical coke production.

  4. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  5. Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment

    DEFF Research Database (Denmark)

    Fessas, D.; Signorelli, M.; Schiraldi, A.

    2006-01-01

    Ancient, new and artificially aged parchments were investigated with both differential scanning calorimetry (DSC) and thermogravimetry (TGA). Criteria to define a quantitative ranking of the damage experienced by the bulk collagen of historical parchments were assessed. A damage-related correlation...

  6. Thermogravimetric analysis of reactor-neutrons-irradiated LEXAN polycarbonate film

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2000-01-01

    The effects of reactor-neutrons irradiation on the thermogravimetric (TG) analysis of LEXAN polycarbonate film in air were studied. Irradiation enhances the degradation rate and the effect increases further with increasing neutron fluence. The kinetics of the different steps of degradation were also evaluated from the TG curves. The activation energy values calculated for all the degradation stages decrease on irradiation. (author)

  7. Modeling of the pyrolysis of biomass under parabolic and exponential temperature increases using the Distributed Activation Energy Model

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor

    2016-01-01

    Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.

  8. 45-Day safety screen results for Tank 241-U-201, push mode, cores 70, 73 and 74

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    Three core samples, each having two segments, from Tank 241-U-201 (U-201) were received by the 222-S Laboratories. Safety screening analysis, such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and total alpha activity were conducted on Core 70, Segment 1 and 2 and on Core 73, Segment 1 and 2. Core 74, Segment 1 and 2 were taken to test rotary bit in push mode sampling. No analysis was requested on Core 74, Segment 1 and 2. Analytical results for the TGA analyses for Core 70, Segment 1, Upper half solid sample was less than the safety screening notification limit of 17 percent water. Notification was made on April 27, 1995. No exotherm was associated with this sample. Analytical results are presented in Tables 1 to 4, with the applicable notification limits shaded

  9. Synthesis and characterization of Sm0.5Ba0.5MnO3-δ as anode materials for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Abdalla, A. M.; Radenahmad, N.; Bakar, M. S. Abu; Petra, Pg M .I.; Azad, A. K.

    2016-01-01

    The material performance is a crucial issue in the current fuel cell technology, and for this reason we present this new series of Samarium family which can be used as electrode giving a high performance in a particular application. Sm 0 . 5 Ba 0 . 5 MnO 3-δ was prepared by solid state reaction method and characterized by using X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Rietveld analysis of XRD data shows that the material has an Orthorhombic crystal structure with cell parameter a = 3.883(1) Å b = 3.8742(5) Å c = 7. 762(4) Å, in the Pmmm space group. TGA analyses shows that the materials is going to decrease by 0.32%. The density of the materials was calculated from structural refinement and found to be 8.372 gm/cm 3 . (paper)

  10. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites

    KAUST Repository

    Amr, Issam Thaher; Al-Amer, Adnan M J; Selvin, Thomas P.; Al-Harthi, Mamdouh Ahmed; Girei, Salihu Adamu; Sougrat, Rachid; Atieh, Muataz Ali

    2011-01-01

    In this work, multiwall carbon nanotubes (CNT) were functionalized by acid treatment and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Polystyrene/CNT composites of both the untreated

  11. Effect of high-temperature heat treatment duration on the purity and ...

    Indian Academy of Sciences (India)

    Thermogravimetric analysis (TGA), X-ray diffraction, Raman spectroscopy, transmission electron microscopy ..... atoms break away from the ordered structure, the metal cat- alyst forms ... treatment of MWCNTs, even after all metal impurities are.

  12. Three new Ag(I) coordination architectures based on mixed ligands: Syntheses, structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yamin, E-mail: liyamin@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Xiao, Changyu; Li, Shu; Chen, Qi; Li, Beibei; Liao, Qian; Niu, Jingyang [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2013-04-15

    Three new silver (I) coordination complexes, [Ag{sub 2}(1,2-bdc)(phdat)]{sub n} (1), [Ag{sub 2}(NO{sub 2}-bdc)(phdat)]{sub n} (2), [Ag{sub 4}(nta){sub 3}(phdat)NO{sub 3}]{sub n} (3) (1,2-bdc=phthalic acid dianion, NO{sub 2}-bdc=5-nitro-1,3-benzenedicarboxylic acid dianion, nta=nicotinic acid anion, phdat=2,4-diamine-6-phenyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of silver nitrate and phdat with the homologous ligands 1,2-H{sub 2}bdc, NO{sub 2}-H{sub 2}bdc, and Hnta, respectively, and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses thermogravimetric analyses (TGA). The compound 1 exhibits a chiral 3D network with cbs/CrB self-dual topological net, which contains two kinds of single helical chains. For compound 2, the 3D network is comprised of two kinds of similar 2D sheets with the topological symbol of sql-type packed in AABBAA mode by Ag–N/O weakly contacts. And compound 3 has 2D double layer architecture, consisting of the 2D plane with hcb-type topological symbol connected by Ag–O weakly coordinations. The photoluminescent properties associated with the crystal structures of three compounds have also been measured. - Graphical abstract: Three new silver(I) coordination complexes 1–3 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses (TGA) and photoluminescent spectra. Highlights: ► The compound 1 exhibits a novel chiral 3D network with two kinds of single helical chains. ► 3D or 2D new Ag coordination complexes. ► The photoluminescent properties have been measured.

  13. A Combined Variable-Temperature Neutron Diffraction and Thermogravimetric Analysis Study on a Promising Oxygen Electrode, SrCo0.9Nb0.1O3-δ, for Reversible Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Tianrang; Wang, Jie; Chen, Yan; An, Ke; Ma, Dong; Vogt, Thomas; Huang, Kevin

    2017-10-11

    The present study investigates the temperature-structure-stoichiometry relationship of a promising oxygen electrode SrCo 0.9 Nb 0.1 O 3-δ over a temperature (T) range from room temperature (RT) to 900 °C. The techniques employed are variable-temperature neutron diffraction (VTND) and thermogravimetric analysis (TGA). At T < 75 °C, VTND reveals a tetragonal (P4/mmm) structure with a G-type magnetic ordering. Above 75 °C, the nucleus structure remains the same, while the magnetic ordering disappears. A phase transition from tetragonal (P4/mmm) to cubic (Pm3̅m) is observed at 412 °C, where the two Co sites and three O sites in the P4/mmm phase converge to one equivalent site, respectively. The phase transition temperature coincides with the peak temperature of oxygen uptake obtained by TGA. It is also observed that the Nb dopant has no preferred Co site to occupy. The oxygen vacancies are mostly located at the O3 site surrounding the Co2 site in the P4/mmm structure. The intermediate-spin state of Co 3+ at the Co2 site is responsible for the observed distortions of CoO 6 octahedra, i.e., elongation of Co2O 6 octahedra and shortening of Co1O 6 octahedra along the c-axis, which is a phenomenon known as Jahn-Teller distortion. At high temperatures, large thermal displacement factor for O 2- is observed with high concentration of oxygen vacancies, providing a structural environment favorable to high O 2- conductivity in Nb-doped SrCoO 3 -based oxygen electrode materials.

  14. Development of microbial resistant Carbopol nanocomposite hydrogels via a green process

    CSIR Research Space (South Africa)

    Varaprasad, K

    2014-01-01

    Full Text Available transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The pure and inorganic nanocomposite hydrogels developed were tested...

  15. Kenaf fiber-reinforced copolyester biocomposites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2011-12-01

    Full Text Available scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile properties, environmental scanning electron microscopy (ESEM), and biodegradability. The extent of silane initiated grafting was followed by gel content...

  16. Automation of a thermogravimetric equipment

    International Nuclear Information System (INIS)

    Mussio, L.; Castiglioni, J.; Diano, W.

    1987-01-01

    A low cost automation of some instruments by means of simple electronic circuits and a microcomputer Apple IIe. type is discussed. The electronic circuits described are: a) a position detector including phototransistors connected as differential amplifier; b) a current source that, using the error signal of the position detector, changes the current through the coil of an electromagnetic balance to restore its zero position; c) a proportional temperature controller, zero volt switching to drive a furnace to a desired temperature; d) an interface temperature regulator-microcomputer to control the temperature regulator by software; e) a multiplexer for an analog input of a commercial interface. Those circuits are applied in a thermogravimetric equipment used also for vapours adsorption. A program in block diagram form is included and is able to record change of mass, time, furnace temperature and to drive the temperature regulator in order to have the heating rates or the temperature plateaux needed for the experiment. (author) [pt

  17. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2014-10-25

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  18. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta

    2015-01-01

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  19. Thermogravimetric study of rare earth concentrates

    International Nuclear Information System (INIS)

    Delyagejd, V.V.; Anisimova, V.N.; Eremenko, Z.V.; Kutsev, V.S.

    1974-01-01

    Methods of thermogravimetric, chemical and phase analysis were used in measuring the concentration of rare-earth elements of different origins. At temperatures 400-800 deg C a gradual decomposition of fluorocarbonates takes place leading to the formation of derivatives of corresponding oxides and oxyfluorides. For concentrates containing siderite the process takes place at 550-600 deg C followed by oxidation of bivalent iron into trivalent state. Reaction of rare-earth elements with sodium carbonate and the increase in the concentration of the latter results in a narrowing down of the interval of temperatures at which decomposition takes place. Under these conditions an intense reaction and a fusion take place leading to the formation of eutectic at 500-600 deg C and further synthesis of sodium fluoride and oxyfluoride derivatives of calcium and rare-earth elements

  20. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transmission ... Investigation of electroluminescence properties of CdTe@CdS core-shell ... Analysis of Li-related defects in ZnO thin films influenced by annealing ambient.

  2. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthesis and Characterization of Hexahapto-Chromium Complexes of Single-Walled Carbon Nanotubes

    KAUST Repository

    Kalinina, Irina; Bekyarova, Elena; Sarkar, Santanu; Itkis, Mikhail E.; Niyogi, Sandip; Jha, Neetu; Wang, Qingxiao; Zhang, Xixiang; Al-Hadeethi, Yas Fadel; Haddon, Robert C.

    2016-01-01

    ), with in-depth characterization of the products using some of the techniques, such as thermogravimetric analysis (TGA), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS). Purified electric arc (EA)-produced SWNTs (P2-SWNT

  4. TbxBi1-xFeO3 nanoparticulate multiferroics fabricated by micro-emulsion technique: Structural elucidation and magnetic behavior evaluation

    KAUST Repository

    Anwar, Zobia; Azhar Khan, Muhammad; Mahmood, Azhar; Asghar, Muhammad Hammad; Shakir, Imran; Shahid, Muhammad; Bibi, Ismat; Farooq Warsi, Muhammad

    2014-01-01

    nanoparticles were then subjected to magnetic behavior evaluation for various technological applications. The thermogravimetric analysis (TGA) conducted in the range 25-1000 C predicted the temperature (~960 C) for phase formation. XRD estimated the crystallite

  5. Syntheses, structures and photoluminescent properties of Zn(Ⅱ)/Co(Ⅱ) coordination polymers based on flexible tetracarboxylate ligand of 5,5′-(butane-1,4-diyl)-bis(oxy)-di isophthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yan-Peng [Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Department of Chemistry and Chemical Engineering, Ordos College of Inner Mongolia University, Ordos 017000 (China); Department of Chemistry and Chemical Engineering, Ordos Applied Technology College, Ordos 017000 (China); Guo, Le [Department of Chemistry and Chemical Engineering, Ordos College of Inner Mongolia University, Ordos 017000 (China); Department of Chemistry and Chemical Engineering, Ordos Applied Technology College, Ordos 017000 (China); Dong, Wei; Jia, Min; Zhang, Jing-Xue; Sun, Zhong [Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Chang, Fei, E-mail: ndchfei@imu.edu.cn [Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China)

    2016-08-15

    Three new mixed-ligand metal-organic frameworks based on 5,5′-(butane-1,4- diyl)-bis(oxy)-diisophthalic acid and transitional metal cations with the help of two ancillary bridging N-donor pyridyl and imidazole linkers, [Zn(L){sub 0.5}(4,4′-bpy)]·2(H{sub 2}O) (1), [M(L){sub 0.5}(bib)]·4(H{sub 2}O) (M = Zn (2), Co (3)), (4,4′-bpy=4,4′–bipyridine, bib=1,4-bis (1H-imidazol-1-yl)-butane), have been synthesized under solvothermal conditions. Their structures and properties were determined by single-crystal and powder X-ray diffraction analyses, IR spectra, elemental analyses and thermogravimetric analyses (TGA). Compounds 1–3 display a 3D 3-fold interpenetrated frameworks linked by the L{sup 4−} ligands, ancillary N-donor linkers and the free water molecules in the crystal lattice. Topological analysis reveals that 1–3 are a (4,4)-connected bbf topology net with the (6{sup 4}·8{sup 2})(6{sup 6}) topology. The effects of the L{sup 4−} anions, the N-donor ligands, and the metal ions on the structures of the coordination polymers have been discussed. Furthermore, luminescence properties and thermogravimetric properties of these compounds were investigated. - Graphical abstract: Three new compounds of MOFs have been prepared and characterized. The luminescence properties and thermogravimetric properties of compounds were investigated. Display Omitted.

  6. Thermogravimetric and nuclear magnetic resonance study of hydrated Na-β''-alumina

    International Nuclear Information System (INIS)

    Donoso, P.; Panepucci, H.; Gobato, Y.G.; Oliveira, L.N.; Souza, D.P.F. de

    1990-01-01

    This paper reports thermogravimetric and proton spin-lattice relaxation times measurement of hydrated Na-β''-alumina, which yield information about the identification of the sites where the loosely bound water molecules are located in the polycrystalline sample. It examines also the influence of impurities on the motion of the protons. (autor) [pt

  7. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  8. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies are in progress to evaluate the stability of these materials.

  9. Study of the properties of the anthracene fraction by the thermogravimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Chernyak, P.E.; Ulanovskii, M.L.

    1980-01-01

    With the use of the TGA method, the effect of temperature, thermal exposure time, a179975d the medium on the relation of the rates and the intensity of the processes of distillation and synthesis during thermal treatment of the anthracene fraction were determined.

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The heterogeneous nanocatalyst was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), atomic absorption spectroscopy (AAS), vibrating sample magnetometer (VSM) and nitrogen adsorption–desorption isotherm ...

  11. A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds

    NARCIS (Netherlands)

    Sargazi, G.; Afzali, D.; Daldosso, N.; Kazemian, H.; Chauhan, N.P.S.; Sadeghian, Z.; Tajerian, T.; Ghafarinazari, A.; Mozafari, M.

    2015-01-01

    A nickel metal-organic framework (Ni-MOF) was successfully synthesized using ultrasound irradiation. Further to this, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry

  12. Heat treatment of concrete and its influence on the mechanical properties

    Directory of Open Access Journals (Sweden)

    Elkacemi Sana

    2014-04-01

    The objective of our work is to study by thermogravimetric and differential thermal analysis (TGA / DTA and the heated unheated concrete to follow the evolution of solid phases present in the latter when exposed to high temperatures.

  13. Thermal stability of novel polyurethane adhesives investigated by TGA

    Directory of Open Access Journals (Sweden)

    Mariusz Mamiński

    2014-05-01

    Full Text Available The objective of the work was an assessment of thermal stability of novel polyurethane wood adhesives by means of TGA. Hyperbranched polyglycerols of various structures were used as polyol components cured with polymeric methylenediphenyldiisocyanate (PMDI or polymeric hexamethylenediisocyanate (PHDI. Resultant adhesives were thermally degraded in temperature range 20 - 500ºC. Performance of polyurethane based on fully aliphatic polyglycerol was inferior to those based on polyglycerols bearing aromatic moieties. The differences in 50%-weight loss temperature achieving 27 - 39°C as well as residual weights at 480 ºC indicate the contribution of aromatic units presence within the macromonomer structure to increased thermal stability of polyurethane upon thermal degradation. Furthermore, temperature of 50% weight loss revealed that thermal stability of the developed hyperbranched polyglycerol-based adhesives was comparable to that of the commercial PUR adhesive.

  14. Curie temperature determination via thermogravimetric and continuous wavelet transformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hasier, John; Nash, Philip [Thermal Processing Technology Center, IIT, Chicago, IL (United States); Riolo, Maria Annichia [University of Michigan, Center for the Study of Complex Systems, Ann Arbor, MI (United States)

    2017-12-15

    A cost effective method for conversion of a vertical tube thermogravimetric analysis system into a magnetic balance capable of measuring Curie Temperatures is presented. Reference and preliminary experimental data generated using this system is analyzed via a general-purpose wavelet based Curie point edge detection technique allowing for enhanced speed, ease and repeatability of magnetic balance data analysis. The Curie temperatures for a number of Heusler compounds are reported. (orig.)

  15. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature

    International Nuclear Information System (INIS)

    Jin, Fei; Al-Tabbaa, Abir

    2013-01-01

    Highlights: • The characteristics of reactive MgO vary significantly in terms of their impurity content and reactivity depending on their sources and calcination conditions. • The synthesis of magnesium silicate hydrate (MSH) is affected by the characteristics of the precursors, i.e., MgO and silica. • The reaction process in the MgO–SiO 2 –H 2 O system can be followed by TGA, and is essential to develop MSH-based materials. - Abstract: The synthesis of magnesium silicate hydrate (MSH), which has wide applications in both construction and environmental fields, has been studied for decades. However, it is known that the characteristics of magnesia (MgO) vary significantly depending on their calcination conditions, which is expected to affect their performance in the MgO–SiO 2 –H 2 O system. This paper investigated the effect of different MgO and silica sources on the formation of magnesium silicate hydrate (MSH) at room temperature. The hydration process was studied by mixing commercial reactive MgO and silica powders with water and curing for 1, 7 and 28 days. The hydration products were analysed with the help of X-ray diffraction (XRD) and thermogravimatric analysis (TGA). The results showed the continuous consumption of MgO and the existence of MSH and brucite and other minor phases such as magnesite and calcite. It is found that the Mg and Si sources have significant effect on the hydration process of MgO–SiO 2 –H 2 O system. The reaction degree is controlled by the availability of dissolved Mg and Si in the solution. The former is determined by the reactivity of MgO and the latter is related to the reactivity of the silica as well as the pH of the system

  16. Effect of ethylene glycol on the orientation and magnetic properties of barium ferrite thin films derived by chemical solution deposition

    KAUST Repository

    Meng, Siqin; Yue, Zhenxing; Li, Longtu

    2014-01-01

    Tb-doped BiFeO3 multiferroics nanoparticles fabricated via micro-emulsion route were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The fully characterized TbxBi1-xFeO3

  17. Thermal analysis of RFETS SS and C

    International Nuclear Information System (INIS)

    Korinko, P.S.

    2000-01-01

    In support of the gas generation test program (GGTP) for the 9975 shipping container, thermogravimetric analysis (TGA) was conducted. The objective of this activity was to determine the moisture content as an input to the gas generation model

  18. coordination polymers based on semi-rigid/flexible bis-pyridyl-bis

    Indian Academy of Sciences (India)

    Thermogravimetric analy- ses (TGA) were carried out with a Pyris Diamond TG- ... ter (Mo-Kαradiation, graphite monochromator, λ = 0.71073Å for 1 and 3, ..... potentials change gradually: the cathodic peak poten- tials shifted to negative ...

  19. Synthesis and biodegradation studies of optically active poly (amide–imide) s based on N, N′-(pyromellitoyl)-bis-l-amino acid

    DEFF Research Database (Denmark)

    Wu, Qiuxiang; Yang, Zhizhou; Yao, Jinshui

    2015-01-01

    (FTIR) and proton nuclear magnetic resonance spectroscopy, elemental analysis, inherent viscosity measurement, solubility tests, specific rotation, and thermogravimetric analysis (TGA). The biodegradation studies of the PAIs were performed in soil and in phosphate buffer solution. The surface morphology...

  20. Temperature-induced phase transformations of the "glaserite" type zirconosilicate Na3HZrSi2O8 center dot 0

    Czech Academy of Sciences Publication Activity Database

    Kostov-Kytin, V.; Nikolova, R.; Kerestedjian, T.; Bezdička, Petr

    2013-01-01

    Roč. 48, č. 6 (2013), s. 2029-2033 ISSN 0025-5408 Institutional support: RVO:61388980 Keywords : inorganic compounds * Thermogravimetric analysis (TGA) * X-ray diffraction * crystal structure Subject RIV: CA - Inorganic Chemistry Impact factor: 1.968, year: 2013

  1. Significance of changes of serum FT3, FT4, s-TSH, TGA, TPO-Ab levels in patients with non-Graves' hyperthyroidism and Graves' disease

    International Nuclear Information System (INIS)

    Zhang Lindi; Xu Changde; Xu Huogen; Wang Wei; Zhang Jie; Nie Shufen; Gu Zhenqi; Zeng Jihua

    2006-01-01

    Objective: To investigate the clinical significance of the changes of thyroid-related hormones (FT 3 , FT 4 , s-TSH, TGA, TPO-Ab) levels in patients with Graves' and non-Graves' hyperthyroidism. Methods: Serum FT 3 , FT 4 , TGA, TPO-Ab (with RIA) and s-TSH (with IRMA) were determined in 43 patients with non-Graves' hyperthyroidism, 29 patients with Graves' disease and 40 controls. Results: In both groups of hyperthyroid patients, the serum levels of FT 3 (15.01 ± 11.01 pg/ml in the non - Graves' group and 15.23 ± 9.57pg/ml in the Graves' group), FT 4 (38.30 ± 19.82, 38.87 ± 17.39pg/ml), TGA(33.89 ± 22. 43%, 49.72 ± 20.55% ) and TPO-Ab (1319.24 ± 1037.78, 2023.24 ± 621.00IU/ml) were significantly higher than those (FT 3 , 6.76 ± 2.01pg/ml, FT 4 16.16 ± 2.58pg/ml, TGA 6.76 ± 2.01%, TPO-Ab 0.01 ± 0.01IU/ml) in the controls (all P 3 , FT 4 and s-TSH levels in both groups were not significantly different from each other. Conclusion: In this study, serum TGA and TPO -Ab levels were lower in patients with non-Graves' hyperthyroidism than those in patients with Graves' disease. (authors)

  2. Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of PVC

    Institute of Scientific and Technical Information of China (English)

    SUN Qing-lei; SHI Xin-gang; LIN Yun-liang; ZHU He; WANG Xiao; CHENG Chuan-ge; LIU Jian-hua

    2007-01-01

    The pyrolysis characteristics of PVC were systematically investigated using a Netzschne TG thermo-balance coupled to a quadrupole mass spectrometer. The pyrolysis conditions were 0.1 MPa of Ar, a heating rate of 10 ℃/min and a final temperature of 1000 ℃. Both the thermogravimetric properties and the simultaneous evolution of gaseous products during pyrolysis were studied. The TG/DTG results showed that as the pyrolysis temperature increases the weight loss and weight loss rate of PVC increases. Near 412 ℃ the weight loss rate attained its peak value. At higher temperatures the rate of loss gradually decreases. The gases evolved during thermogravimetric analysis were analyzed by a mass spectrometer, monitoring the relative intensity of HCl, C6H6, light hydrocarbon and chlorine-containing gases. The evolution curves showed that HCl, C6H6, light hydrocarbon and chlorine-containing gases all peak at about 416 ℃. This is consistent with the fact that the weight loss curves also peak at about 412 ℃. The extensive HCl evolution is consistent with the high chlorine content of PVC. The formation of these gases can be explained by considering these reactions: dehydrochlorination, intramolecular cyclization and the addition of HCl to unsaturated hydrocarbons.

  3. Thermogravimetric analysis and thermal degradation behaviour of advanced PMR-X carbon fiber composites

    International Nuclear Information System (INIS)

    Rngie, M.

    2003-01-01

    Thermal degradation behavior of sized and unsized carbon fibers in polyimide matrix was investigated. Degradation of neat resin and unidirectional laminates were investigated by thermogravimetric analysis technique at temperatures between 470 d ig C -650 d ig C and up to 250 h rs. Isothermal ageing of the PMR-X composite samples under different test conditions (i. e. different temperatures and prolonged aging times), showed that oxidation and degradation occurs in stage three different rates. Thermogravimetric analysis showed that the cured PMR-X composite panels are more stable in an inert atmosphere (nitrogen atmosphere)than in air and the degradation of neat resin is much higher than the composite samples. However, the rate of degradation of the unsized untreated carbon fibers in nitrogen environment is much higher than that for the PMR-X composites containing sized fibers

  4. Devolatilization studies of oil palm biomass for torrefaction process optimization

    International Nuclear Information System (INIS)

    Daud, D; Rahman, A Abd; Shamsuddin, A H

    2013-01-01

    Torrefaction of palm biomass, namely Empty Fruit Bunch (EFB) and Palm Kernel Shell (PKS), was conducted using thermogravimetric analyser (TGA). The experiment was conducted in variation of temperatures of 200 °C, 260 °C and 300 °C at a constant residence time of 30 minutes. During the torrefaction process, the sample went through identifiable drying and devolatilization stages from the TGA mass loss. The percentage of volatile gases released was then derived for each condition referring to proximate analysis results for both biomass. It was observed an average of 96.64% and 87.53 % of the total moisture is released for EFB and PKS respectively. In all cases the volatiles released was observed to increase as the torrefaction temperature was increased with significant variation between EFB and PKS. At 300°C EFB lost almost half of its volatiles matter while PKS lost slightly over one third. Results obtained can be used to optimise condition of torrefaction according to different types of oil palm biomass.

  5. Synthesis, characterization and photo behavior of new poly(amide ...

    African Journals Online (AJOL)

    ... and the interaction between clay and polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements. KEY WORDS: Nanocomposite, Poly(amide-imide), Silicate particle, Polycondensation, Thermal behavior.

  6. Prediction of packaging seal life using thermoanalytical techniques

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1997-11-01

    In this study, Thermogravimetric Analysis (TGA) has been used to study silicone, Viton and Ethylene Propylene (EPDM) rubber. The studies have shown that TGA accurately predicts the relative order of thermo-oxidative stability of these three materials from the calculated activation energies. As expected, the greatest thermal stability was found in silicone rubber followed by Viton and EPDM rubber. The calculated lifetimes for these materials were in relatively close agreement with published values. The preliminary results also accurately reflect decreased thermal stability and lifetime for EPDM rubber exposed to radiation and chemicals. These results suggest TGA provides a rapid method to evaluate material stability

  7. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Synthesis and characterization of fluorophore attached silver nanoparticles ... by X-ray diffraction, differential thermal analysis, thermogravimetric analysis, Fourier ..... Infrared spectra, Raman laser, XRD, DSC/TGA and SEM investigations on the ..... composite materials based on polyaniline–polyethylene glycol–CdS system.

  8. Preparation of Polyaniline/Filter-paper Composite for Removal of Coomassie Brilliant Blue

    DEFF Research Database (Denmark)

    Liu, Wanwan; Li, Xiaoqiang; Li, Mengjuan

    2015-01-01

    Polyaniline/filter-paper (PANI/FP) composite was prepared by in-situ polymerization of polyaniline onto filter-paper and subsequently evaluated for the removal of Coomassie brilliant blue (CBB) from aqueous solution. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier...

  9. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl

  10. Synthesis and characterisation of doxorubicin-loaded functionalised ...

    African Journals Online (AJOL)

    The synthesised cobalt ferrite nanoparticles (CFNPs) were functionalised with xanthine gum (XG) and subsequently characterised by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and contact angle studies. Vibrating sample magnetometry (VSM) was used for magnetic measurements of ...

  11. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material

    International Nuclear Information System (INIS)

    Zhang Ping; Song Lei; Lu Hongdian; Wang Jian; Hu Yuan

    2010-01-01

    The influences of expanded graphite (EG) on the thermal properties of chlorinated paraffin (CP) and antimony trioxide (AT) on phase change material which bases on paraffin/high density polyethylene (HDPE) are studied. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermogravimetric analysis-Fourier transform infrared spectrometry (TGA-FTIR), microscale combustion calorimeter (MCC) and cone calorimeter (CONE) were used to evaluate the influence of EG on paraffin/HDPE/CP/AT system. The DSC results indicated that the latent heat value of PCM could be increased when the mass fraction of HDPE was decreased in the PCM, and EG could confine the molecular heat movement of paraffin. EG could improve the thermal stability and increase the char residue at high temperature for paraffin/HDPE/CP/AT hybrid. The volatilized products formed on thermal degradation of paraffin/HDPE/CP/AT with EG showed the release of CO 2 gas was hastened and increased, and the amount of combustible gases were decreased by TGA-FTIR analysis. The MCC and CONE results presented that the flame retardant efficiency of CP/AT could be improved by adding EG in paraffin/HDPE/CP/AT system.

  12. Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies

    Science.gov (United States)

    Ranjan, Subham; Devarapalli, Ramesh; Kundu, Sudeshna; Vangala, Venu R.; Ghosh, Animesh; Reddy, C. Malla

    2017-04-01

    Hydrochlorothiazide (HCT) is a diuretic BCS class IV drug with poor aqueous solubility and low permeability leading to poor oral absorption. The present work explores the cocrystallization technique to enhance the aqueous solubility of HCT. Three new cocrystals of HCT with water soluble coformers phenazine (PHEN), 4-dimethylaminopyridine (DMAP) and picolinamide (PICA) were prepared successfully by solution crystallization method and characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform -infraredspectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Structural characterization revealed that the cocrystals with PHEN, DMAP and PICA exists in P21/n, P21/c and P21/n space groups, respectively. The improved solubility of HCT-DMAP (4 fold) and HCT-PHEN (1.4 fold) cocrystals whereas decreased solubility of HCT-PICA (0.5 fold) as compared to the free drug were determined after 4 h in phosphate buffer, pH 7.4, at 25 °C by using shaking flask method. HCT-DMAP showed a significant increase in solubility than all previously reported cocrystals of HCT suggest the role of a coformer. The study demonstrates that the selection of coformer could have pronounced impact on the physicochemical properties of HCT and cocrystallization can be a promising approach to improve aqueous solubility of drugs.

  13. Rapidly assessing the activation conditions and porosity of metal-organic frameworks using thermogravimetric analysis.

    Science.gov (United States)

    McDonald, Thomas M; Bloch, Eric D; Long, Jeffrey R

    2015-03-25

    A methodology utilizing a thermogravimetric analyzer to monitor propane uptake following incremental increases of the temperature is demonstrated as a means of rapidly identifying porous materials and determining the optimum activation conditions of metal-organic frameworks.

  14. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors

    Science.gov (United States)

    Mbese, Johannes Z.; Ajibade, Peter A.

    2017-09-01

    Homonuclear tris-dithiocarbamato ruthenium(III) complexes, [Ru(S2CNR2)3] were prepared and characterized by spectroscopic techniques and thermogravimetric analyses. The thermogravimetric analyses (TGA) of the ruthenium complexes showed that the complexes decompose to ruthenium(III) sulfide nanoparticles. The ruthenium(III) complexes were dispersed in oleic acid and thermolysed in hexadecylamine to prepared oleic acid/hexadecylamine capped Ru2S3 nanoparticles. FTIR revealed that Ru2S3 nanoparticles are capped through the interaction of the -NH2 group of hexadecylamine HDA adsorbed on the surfaces of nanoparticles and it also showed that oleic acid (OA) is acting as both coordinating stabilizing surfactant and capping agent. EDS spectra revealed that the prepared nanoparticles are mainly composed of Ru and S, confirming the formation of Ru2S3 nanoparticles. Powder XRD confirms that the nanoparticles are in cubic phase. The inner morphology of nanoparticles obtained from transmission electron microscopy (TEM) showed nanoparticles with narrow particle size distributions characterized by an average diameter of 8.45 nm with a standard deviation of 1.6 nm. The optical band gap (Eg) determined from Tauc plot are in the range 3.44-4.18 eV.

  15. SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF BIS(CITRATEGERMANATES(IV (Hbipy2[Ge(HCit2]•2H2O AND [CuCl(bipy2]2[Ge(HCit2]•8H2O

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2016-12-01

    Full Text Available The crystalline compounds (Hbipy2[Ge(HCit2]·2H2O (1 and CuCl(bipy2]2[Ge(HCit2]·8H2O (2 (where H4Cit is citric acid, bipy is 2,2ʹ-bipyridine were obtained for the fi rst time and their structures were determined by the single-crystal X-ray diffraction method. Compounds were characterized by IR spectroscopy, thermogravimetric (TGA and elemental analyses. Both compounds are formed with complex bis(citrategermanate anion and protonated 2,2’-bipyridine or [Cu(bipy2Cl]+ as cations in compounds 1 and 2, respectively.

  16. Changes of serum FT3, FT4, sTSH, TRAb, TGA and TMA concentrations in Graves' patients treated with 131I and clinical significances

    International Nuclear Information System (INIS)

    Sun Wenwei; Wei Liqin; Zhao Jie; Ma Qingjie; Sun Hui

    2006-01-01

    Objective: To study the clinical significances of serum FT 3 , FT 4 , sTSH, TRAb, TGA and TMA concentration changes in Graves' patients before and after, 131 I treatment. Methods: The serum FT 3 , FT 4 , sTSH; TRAb, TGA and TMA concentrations before treatment, 3, 6, 12 and 18 months after therapy in 172 Graves' patients and 43 normal controls were obtained by time-resolved fluoroimmunoassay technique. Results: FT 3 and FT 4 concentrations showed an obvious decrease 3 months after treatment, while sTSH and TRAb had remarkable high values, as TGA and TMA demonstrated a trend to increase. FT 3 , FT 4 and sTSH concentrations were close to control group 6 months after treatment, TRAb had a decline trend. All the six indexes approached to normal 18 months after treatment. Conclusion: It is of great of significance for the Graves' patients to accept the developmental observation of serum FT 3 , FT 4 , and sTSH, TRAb, TGA and TMA concentrations before and after 131 I therapy, which provides a great of positive information for therapy guiding, observation and prognosis. (authors)

  17. Alkali and bleach treatment of the extracted cellulose from pineapple ...

    African Journals Online (AJOL)

    (FTIR) spectroscopy, Thermogravimetric analysis (TGA) and Differential thermal analysis (DTA). SEM micrographs revealed that alkali treatment removed the impurities in the pineapple leaf fibers and subsequent bleaching further purify the fibers leaving mostly cellulose only while hemicellulose and lignin are removed as ...

  18. A Determination of V205 Activity in Corrosive Molten Vanadate-Sulfate Phases

    National Research Council Canada - National Science Library

    Jones, Robert

    1994-01-01

    .... We have recently devised a thermogravimetric (TGA)/S03 equilibrium technique that could potentially be used to 'chart' the V2O5 activity in vanadate-sulfate melts over a wide range of Na/V ratios, SO3 partial pressures and temperatures...

  19. Bronsted acid site number evaluation using isopropylamine decomposition on Y-zeolite contaminated with vanadium in a simultaneous DSC-TGA analyzer

    International Nuclear Information System (INIS)

    Osorio Perez, Yonnathan; Forero, Liliam Alexandra Palomeque; Torres, Diana Vanessa Cristiano; Trujillo, Carlos Alexander

    2008-01-01

    Acid-site catalyzed decomposition of isopropylamine was followed in a simultaneous DSC-TGA analyzer. USY zeolite samples with and without vanadium were studied. Results show that acid sites number decreases linearly with vanadium concentration in zeolite indicating that vanadium neutralizes acid sites on catalyst and the metal is able to move on the surface of the solid. The neutralizing species probably contain only one vanadium atom. The reaction enthalpy plus desorption heat of the products show that vanadium preferentially neutralizes the strongest acid sites on the zeolite. The application of the simultaneous DSC-TGA technique to quantify Bronsted acid sites on solids by this reaction is novel

  20. Study on the relationship between the magnitude of increase of serum TMA, TGA contents and the size of goiter in patients with Graves' disease after treatment with 131I

    International Nuclear Information System (INIS)

    Zheng Fang; Tan Qingling

    2009-01-01

    Objective: To study the relationship between changes of serum TMA, TGA levels and the size of goiter in patients with Graves' disease treated with 131 I. Methods: Serum TGA, TMA levels were measured with CLIA in 327 patients with Graves' disease both before and six months after 131 I treatment. These 327 patients were of three groups: Goiter I degree n=97, II degree n=128, III degree n=102. Results: In patients with I degree goiter,the serum TGA and TMA levels were only insignificantly increased after the 131 I treatment with an early hypothroidism rate of 21.44%. In patients with II degree goiter, the serum TGA and TMA levels were significantly increased after treatment (P 131 I. (authors)

  1. Synthesis, thermogravimetric, spectroscopic and theoretical characterization of copper(II) complex with 4-chloro-2-nitrobenzenosulfonamide

    Science.gov (United States)

    Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.

    2011-05-01

    4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.

  2. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  3. Thermal properties and corrosion resistance of organoclay/epoxy resin film

    Science.gov (United States)

    Baiquni, M.; Soegijono, B.

    2018-03-01

    Hybrid materials organoclay/epoxy resin films were prepared by varying organoclay content in epoxy resin as a matrix. The film were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermal conductivity. TGA and FT-IR results confirmed that the melting temperature shifted to a lower point. The thermal conductivity and corrosion resistant generally increase with increasing organoclay content. The changes on these properties may due to cross link between organoclay and epoxy.

  4. The Synthesis of Novel Enclathration Compounds : Bis(9-amino-9 ...

    African Journals Online (AJOL)

    The stability of the clathrate complexes has been investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Competition experiments were carried out with the compounds that successfully hosted solvent molecules in order to determine their relative affinity for these solvents. One of the ...

  5. Synthesis and characterization of superabsorbent hydrogel based ...

    African Journals Online (AJOL)

    The hydrogels structure was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effect of grafting variables, that is, AA/AN weight ratio and concentration of MBA and APS, was systematically optimized to achieve a hydrogel with ...

  6. Physicochemical properties of nanoparticles titania from alcohol ...

    African Journals Online (AJOL)

    The synthesized TiO2 were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC), and surface area Brunauer–Emmett–Teller (BET) method. The photocatalytic activity of TiO2 nanoparticles was ...

  7. Nanocrystalline La1-xSrxCo1-yFe yO3 perovskites fabricated by the micro-emulsion route for high frequency response devices fabrications

    KAUST Repository

    Azhar Khan, Muhammad; Khan, Kamran; Mahmood, Azhar; Murtaza, Gulam; Akhtar, Majid Niaz; Ali, Irshad M.; Shahid, Muhammad; Shakir, Imran; Farooq Warsi, Muhammad

    2014-01-01

    Nanocrystalline La1-xSrxCo1-yFe yO3 (x=0.00-0.60) perovskites were fabricated by a cheap economic route (i.e. micro-emulsion method) and characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), fourier transform infrared (FTIR

  8. Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor

    International Nuclear Information System (INIS)

    Wang, Xuebin; Deng, Shuanghui; Tan, Houzhang; Adeosun, Adewale; Vujanović, Milan; Yang, Fuxin; Duić, Neven

    2016-01-01

    Highlights: • The synergetic effect of sewage sludge and wheat straw co-pyrolysis was studied. • The mass balance measurement of gas, tar, and char was performed. • The synergetic effect shows strongest under a certain biomass addition ratio around 60%. • The required heat of co-pyrolysis is significantly reduced. - Abstract: Much attention has been given to the valuable products from the pyrolysis of sewage sludge. In this study, the pyrolysis of sewage sludge, biomass (wheat straw) and their mixtures in different proportions were carried out in a thermogravimetric analyzer (TGA) and fixed-bed reactor. The effects of pyrolysis temperature and percentage of wheat straw in wheat straw–sewage sludge mixtures on product distributions in terms of gas, liquid and char and the gas composition were investigated. Results indicate that there is a significantly synergetic effect during the co-pyrolysis processes of sewage sludge and wheat straw, accelerating the pyrolysis reactions. The synergetic effect resulted in an increase in gas and liquid yields but a decrease in char yield. The gas composition and the synergetic effect degree are strongly affected by the wheat straw proportions, and the strongest synergetic effect of sewage sludge and wheat straw co-pyrolysis appears at the biomass proportion of 60 wt.%. With an increase of temperature, the gas yield from the pyrolysis of sewage sludge increased but the liquid and char yields decreased. Moreover, the required heat of co-pyrolysis is significantly reduced compared with the pyrolysis of sewage sludge and wheat straw pyrolysis alone, because of the exothermic reactions between the ash components in two fuel samples.

  9. Defect structure, nonstoichiometry, and phase stability of Ca-doped YCrO3

    International Nuclear Information System (INIS)

    Carini, G.F. II; Anderson, H.U.; Nasrallah, M.M.; Sparlin, D.M.

    1991-01-01

    The dependence of the defect structure of Ca-doped YCrO 3 on oxygen activity and temperature was investigated by high temperature thermogravimetric measurements. Defect models developed from electrical conductivity data obtained in a previous study were used to interpret the thermogravimetric data. A correlation was found between the electrical conductivity and the thermogravimetric data which suggested that these data were concomitantly dependent on the acceptor dopant and oxygen vacancy dependence of the thermodynamic parameters. Kroeger-Vink type diagrams showing the regions of stability with respect to oxygen activity and temperature were constructed. The TGA data show that Ca-doped YCrO 3 is even more stable toward reduction than doped LaCrO 3

  10. A thermogravimetric analyzer for corrosive atmospheres, and its application to the chlorination of ZrO2-C mixtures

    International Nuclear Information System (INIS)

    Pasquevich, Daniel; Caneiro, Alberto

    1990-01-01

    A thermogravimetric analyzer built on the basis of a Cahn 2000 electrobalance, suitable for using with corrosive atmospheres, is reported. The corrections for buoyancy and gas-flow effects, which strongly modify the thermogravimetric curves are discussed. As an application, the kinetics of a reaction between chlorine and a mixture of zirconia and carbon has been studied. It has been able to measure the uptake of chlorine by carbon and the reaction rate within the first 50 seconds. Evidence of a transition to quite a different reaction rate at longer times is presented. (Author)

  11. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  12. Characterization of an alkali-treated grass fiber by thermogravimetric and X-ray crystallographic analysis

    NARCIS (Netherlands)

    De, D.; De, Debapriya

    2008-01-01

    The thermal behavior of grass fiber was characterized by means of thermogravimetric analysis and differential scanning calorimetry analysis. The results proved that the removal of water-soluble matter improved the thermal behavior of grass fiber over that of unleached fiber, and this was further

  13. Thermogravimetric analytical procedures for characterizing New Zealand and eastern Australian coals

    Energy Technology Data Exchange (ETDEWEB)

    Benfell, K.E.; Beamish, B.B.; Rodgers, K.A. [University of Auckland, Auckland (New Zealand). Dept. of Geology

    1996-09-01

    Under tightly constrained experimental conditions (particle size {lt}75 {mu}m, sample mass 5.0 {+-} 0.5 mg), heating rate 15{degree}C min{sup -1}, dry air purge 50 mL min{sup -1}, maximum temperature 900{degree}C a repeatability of {lt} {+-} 2{degree}C, may be achieved for significant temperatures that characterize the differential thermogravimetric burning profiles of typical medium-volatile, bituminous Australian Gondwanan coals and high-volatile, bituminous New Zealand Cretaceous-Tertiary coals.

  14. Fuel Fracture (Crumbling) Safety Impact (OCRWM)

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    The safety impact of experimentally observed N Reactor fuel sample fracture and fragmentation is evaluated using an average reaction rate enhancement derived from data from thermo-gravimetric analysis (TGA) experiments on fuel samples. The enhanced reaction rates attributed to fragmentation were within the existing safety basis

  15. Synthesis of BiFeO 3 by carbonate precipitation

    Indian Academy of Sciences (India)

    Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of ...

  16. Separation and analysis of low molecular weight plasticizers in poly(vinyl chloride) tubes

    DEFF Research Database (Denmark)

    Wang, Qian; Storm, Birgit Kjærside

    2005-01-01

    ) and thermogravimetric analysis (TGA), as well as by studying the extracted low molecular weight plasticizers by gas chromatography/mass spectroscopy (GC/MS) and GC. It was found that the simple room temperature extraction in chloroform showed the best separation of plasticizers from the PVC matrix. Close results...

  17. Gel stabilization in chelate sol-gel preparation of Bi-2223 superconductors

    Czech Academy of Sciences Publication Activity Database

    Rubešová, K.; Jakeš, V.; Hlásek, T.; Vašek, Petr; Matějka, P.

    2012-01-01

    Roč. 73, č. 3 (2012), s. 448-453 ISSN 0022-3697 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductors * sol-gel growth * infrared spectroscopy * thermogravimetric analysis (TGA) * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.527, year: 2012

  18. Flame retardancy and thermal properties of epoxy acrylate resin/alpha-zirconium phosphate nanocomposites used for UV-curing flame retardant films

    International Nuclear Information System (INIS)

    Xing Weiyi; Jie Ganxin; Song Lei; Wang Xin; Lv Xiaoqi; Hu Yuan

    2011-01-01

    This paper reported the UV-curing flame retardant film, which consisted of epoxy acrylate resin (EA) used as an oligomer, tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA) used as flame retardant (FR). The flame retardancy and thermal properties of films were reinforced by using alpha-zirconium phosphate (α-Zr (HPO 4 ) 2 H 2 O, α-ZrP). The morphology of nanocomposite film was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the organophilic α-ZrP (OZrP) layers were dispersed well in epoxy acrylate resin. Microscale Combustion Calorimeter (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TGA-IR) were used to characterize the flame retardant property and thermal stability. It was found that the incorporation of TAEP and TGICA can reduce the flammability of EA. Moreover, further reductions were observed due to the addition of OZrP. The char residue for systems with or without OZrP was also explored by scanning electron microscopy (SEM).

  19. Effect of humidity on the hydration behaviour of prazosin hydrochloride polyhydrate: Thermal, sorption and crystallographic study

    International Nuclear Information System (INIS)

    Kumar, Lokesh; Bansal, Arvind K.

    2011-01-01

    Highlights: → Utility of TGA to differentiate between unbound and bound water was demonstrated. → Nature of the lattice arrangement in prazosin hydrochloride polyhydrate was confirmed to be expanded (non-stoichiometric) type hydrate. → Correlation of the DSC, TGA, PXRD and DVS for dehydration of prazosin hydrochloride polyhydrate was delineated. - Abstract: In this study, hydration behaviour of prazosin hydrochloride polyhydrate was assessed using differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction and dynamic vapour sorption techniques. Differential scanning calorimetry and thermogravimetric analysis at faster heating rate (20 o C/min) showed single step water loss, attributed to both dihydrate and unbound water. In contrast, thermogravimetric analysis at slower heating rate (1 o C/min) showed unbound and dihydrate lattice water separately, with unbound water being lost initially, followed by loss of dihydrate water. Variable vacuum and variable humidity PXRD study revealed shift in diffraction peaks to higher values on removal of unbound water. Initial PXRD patterns were regained when kept again at ambient conditions. Dynamic vapour sorption depicted type I sorption isotherm with interstitial water, indicating that polyhydrate form show reversible behaviour with change in humidity. Correlation between thermal, sorption and crystallographic data established hydration behaviour to be characteristic of expanded channel type (non-stoichiometric) hydrate.

  20. Thermal decomposition of hydrotalcite-like compounds studied by a novel tapered element oscillating microbalance (TEOM)

    International Nuclear Information System (INIS)

    Perez-Ramirez, Javier; Abello, Sonia

    2006-01-01

    For the first time, we report on the application of a tapered element oscillating microbalance (TEOM) as a novel technique to investigate the thermal decomposition of hydrotalcite-like compounds (HTlcs) in air. Experiments were performed in the temperature range of 323-973 K with Mg-Al, Ni-Al, and Co-Al-HTlcs. The TEOM technique measures mass changes based on inertial forces, presenting important advantages over conventional thermogravimetric analyzers, such as the very rapid time response and the well-defined flow pattern. In general terms, excellent agreement between TEOM, TGA, and DTA techniques during HTlc decomposition was obtained. Interestingly, transition temperatures in the TEOM were lower than in TGA and DTA, particularly for removal of interlayer water but also for dehydroxylation of the brucite-like layers and decarbonation. This was attributed to the flow-through operation in the tapered element of the TEOM as compared to the recognized gas stagnancy and bypass in sample crucibles of conventional thermogravimetric analyzers. Our results conclude that the TEOM technique is suitable for temperature-programmed studies. However, due to its operation principle, blank runs are required in contrast to the more automatic operation in commercial thermogravimetric units. Besides, a careful sample loading and packing in the micro-reactor is essential for reproducible results

  1. Synthesis, characterization and thermogravimetric study of zinc and cadmium acetates-polyaniline hybrids

    International Nuclear Information System (INIS)

    Fernandes de Farias, Robson

    2004-01-01

    By dissolution of respective acetates and conducting polymer in dimethylformamide, homogeneous zinc acetate and cadmium acetate-polyaniline (PANI) hybrids were synthesized and characterized by infrared spectroscopy, thermogravimetry and SEM microscopy. The infrared spectra suggests that there are interactions between PANI and the metal cations involving both, imine and amine nitrogens in a typical Lewis acid-base reaction. The thermogravimetric degradation profile of the synthesized hybrids resembles those exhibited by PANI samples

  2. The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content

    Czech Academy of Sciences Publication Activity Database

    Cakić, S. M.; Špírková, Milena; Ristić, I. S.; B-Simendić, J. K.; M-Cincović, M.; Poreba, Rafal

    2013-01-01

    Roč. 138, č. 1 (2013), s. 277-285 ISSN 0254-0584 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : coatings * chemical synthesis * thermogravimetric analysis (TGA) Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.129, year: 2013

  3. Corrosion behaviour, microstructure and phase transitions of Zn ...

    Indian Academy of Sciences (India)

    This paper is aimed at investigating the corrosion behaviour, microstructure and phase transitions of Zn-based alloys with different compositions. The corrosion tests are carried out both in acidic medium using 1 N HCl solution and in temperature dependence of thermogravimetric analysis (TGA). In the two different media, ...

  4. The Synthesis of Novel Enclathration Compounds: Bis(9-amino-9 ...

    African Journals Online (AJOL)

    (DSC) and thermogravimetric analysis (TGA). Competition experiments were carried out with the compounds that successfully hosted solvent molecules in order to determine their relative affinity for these solvents. One of the hosts was also exposed to two vaporous guests in two separate experiments to assess its ability for ...

  5. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to

  6. Extraction and Characterization of Nano cellulose from Coconut Fiber

    International Nuclear Information System (INIS)

    Nor Liyana Ahmad; Ishak Ahmad

    2013-01-01

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  7. Modification of a cellulose derived for your application on enzyme immobilization

    International Nuclear Information System (INIS)

    Carvalho, Elaine S.; Rodriguez, Ruben J.S.; Lamonica, Alano C.; Tavares, Maria Ines B.

    2009-01-01

    The chemical modification of (acrylamidomethyl) cellulose acetate propionate (AMCAP) was done through the technique of grafting via radical using acrylic acid as modifier, with the objective to make the polymer more hydrophilic. The structural characterization of AMCAP and modified AMCAP-H 2 O 2 was analysed by using the technique of 13 C-nuclear magnetic resonance (NMR- 13 C). By the techniques differential scanning calorimetry analysis (DSC) and thermogravimetric analysis (TGA), the thermal properties was characterized and the hydrophobic / hydrophilic character was determined by measurements of the contact angle. The results show that occurred the change intended with the introduction of acrylic acid in the side chain of the polymer, increasing the hydrophilic character on the AMCAP. (author)

  8. Rheological phase synthesis of nanosized α-LiFeO_2 with higher crystallinity degree for cathode material of lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Haowen; Ji, Panyin; Han, Xiaoyan

    2016-01-01

    In this paper, rheological phase method has been successfully applied to synthesize nanosized α-LiFeO_2, a promising cathode material of lithium-ion batteries. The formation, structure and morphology of the as-prepared powder were characterized by Thermogravimetric and differential thermal analyses (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM). The particle size of the obtained α-LiFeO_2 ranged from 100 to 300 nm. It exhibited an initial discharge capacity 169 mAh g"−"1 at 0.1 C between 1.5 and 4.3 V, especially excellent cycling retention from the 10th to the 50th cycle (96.8%) between 1.5 and 4.3 V. The higher crystallinity degree might be responsible for the cyclability improvement. - Highlights: • α-LiFeO_2 with higher crystallinity degree has been synthesized. • The obtained samples were investigated by TGA/DTA, FTIR, SEM, XRD. • The prepared α-LiFeO_2 indicated excellent cycling retention.

  9. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  10. Thermal Decomposition Model Development of EN-7 and EN-8 Polyurethane Elastomers.

    Energy Technology Data Exchange (ETDEWEB)

    Keedy, Ryan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harrison, Kale Warren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Thermogravimetric analysis - gas chromatography/mass spectrometry (TGA- GC/MS) experiments were performed on EN-7 and EN-8, analyzed, and reported in [1] . This SAND report derives and describes pyrolytic thermal decomposition models for use in predicting the responses of EN-7 and EN-8 in an abnormal thermal environment.

  11. SYNTHESIS AND CHARACTERIZATION OF NEW HEAT ...

    African Journals Online (AJOL)

    Preferred Customer

    The thermal properties of the polymers 6a-c were investigated by thermogravimetric analysis (TGA). Polymer 6c due to presence of SO2 group as a polar group shows better thermal properties compare with polymer 6a and 6b. KEY WORDS: Polycondensation, Polyamide, Ether group, Thermal properties. INTRODUCTION.

  12. Polypropylene-modified kaolinite composites: Effect of chemical ...

    African Journals Online (AJOL)

    PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. The thermogravimetric analysis thermograms (TGA) ...

  13. A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids

    CSIR Research Space (South Africa)

    Makgopa, K

    2015-01-01

    Full Text Available with the XPS Peak 4.1 program and a Shirley function was used to subtract the back- ground. The metal oxide content in the nanohybrid was deter- mined by thermogravimetric analysis (TGA) using an STA Jupiter 449 C (Netzsch) in an Ar/O2 atmosphere at a...

  14. A room temperature cured low dielectric hyperbranched epoxy ...

    Indian Academy of Sciences (India)

    carbon chain in its structure.2 In the present study, a .... The degree of branching, epoxy equivalent and hydroxyl value ... The physical properties and swelling value of the hardener were ... samples were studied by thermogravimetric analysis. (TGA) in ..... Nalwa H S 1999 Handbook of low and high dielectric constant ...

  15. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  16. Determinação da espessura da camada polimérica de fases estacionárias imobilizadas para cromatografia líquida de alta eficiência por termogravimetria Determination of polymeric layer thickness on immobilized stationary phases for high-performance liquid chromatography using thermogravimetric analyses

    Directory of Open Access Journals (Sweden)

    Anizio M. Faria

    2008-01-01

    Full Text Available This paper presents a simple and practical thermogravimetric method for determining the layer thickness of immobilized polymer stationary phases used in reversed-phase high-performance liquid chromatography. In this method, the weight loss of different polysiloxanes immobilized onto chromatographic supports, determined over the temperature range 150-650 ºC, demonstrated excellent agreement with the sum of carbon and hydrogen content obtained by elemental analysis. The results presented here suggest that the thermogravimetric procedure is an accurate and precise method to determine the polymeric material content on polymer-coated stationary phases.

  17. Thermogravimetric study of the reaction of uranium oxides with fluorine

    International Nuclear Information System (INIS)

    Komura, Motohiro; Sato, Nobuaki; Kirishima, Akira; Tochiyama, Osamu

    2008-01-01

    Thermogravimetric study of the reaction of uranium oxides with fluorine was conducted by TG-DTA method using anti-corrosion type differential thermobalance. When UO 2 was heated from R.T. to 500 deg. C in 5% F 2 /He atmosphere, the weight increase appeared at ca. 250 deg. C with an exothermic peak. Then the weight decreased slightly with a small exothermic peak followed by the complete volatilization with a large exothermic peak at ca. 350 deg. C. At a flow rate of 15, 30, 60 ml min -1 , there seemed to be no significant change for the fluorination of UO 2 . With the different heating rates of 1, 2, 5 and 10 deg. C min -1 , the fluorination peak shifted to higher temperature with increasing heating rates. For the comparison with thermogravimetric results, phase analysis by XRD method was conducted for the products obtained at different temperatures. At 260 deg. C, the product was UO 2 with a small amount of the intermediate compound, UO 2 F. The amount of this compound increased with increasing temperature up to 320 deg. C. Then another phase of UO 2 F 2 appeared at 340 deg. C but it was immediately fluorinated to the volatile fluoride. When U 3 O 8 was used as a starting material, it was found that the steep weight decrease peak appeared at ca. 350 deg. C and the uranium volatilized completely. This result suggests that fluorination of U 3 O 8 occurs at this temperature forming UF 6 . Uranium trioxide showed the similar fluorination behavior to that of U 3 O 8

  18. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases

    International Nuclear Information System (INIS)

    Monteagudo, S.M.; Moragues, A.; Gálvez, J.C.; Casati, M.J.; Reyes, E.

    2014-01-01

    Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data

  19. Thermogravimetric analysis and fast pyrolysis of Milkweed.

    Science.gov (United States)

    Kim, Seung-Soo; Agblevor, Foster A

    2014-10-01

    Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis and characterization of new heat resistance and ...

    African Journals Online (AJOL)

    The thermal properties of the polymers 6a-c were investigated by thermogravimetric analysis (TGA). Polymer 6c due to presence of SO2 group as a polar group shows better thermal properties compare with polymer 6a and 6b. KEY WORDS: Polycondensation, Polyamide, Ether group, Thermal properties. Bull. Chem. Soc.

  1. Optimization of lead (ii) ions adsorption on to chemically activated ...

    African Journals Online (AJOL)

    The derivative thermal analysis (DTA) and thermogravimetric analysis (TGA) profile of the activated carbon were employed in the proximate analysis. The BET surface area shows a high microporous surface area and micropore volume of 840.38 m2/g and 0.30 cc/g respectively which aids sorption efficiency. The adsorption ...

  2. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  3. Comparative investigation of mortars from Roman Colosseum and cistern

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.A. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)]. E-mail: denise@ecv.ufsc.br; Wenk, H.R. [Department of Earth and Planetary Science, 497 McCone 94720-4767, University of California at Berkeley, Berkeley, CA (United States); Monteiro, P.J.M. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)

    2005-11-01

    Mortar from the Roman Colosseum and a Roman cistern from Albano Laziale were characterized with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). The different techniques provided consistent results that the mortar of the Colosseum is mainly calcareous lime, while the mortar of the cistern is pozzolanic siliceous material. The study highlights the capabilities of the different methods for the analysis of cement. For routine analysis XRD is adequate but for characterization of poorly crystalline phases FT-IR and TGA have definite advantages.

  4. Comparative investigation of mortars from Roman Colosseum and cistern

    International Nuclear Information System (INIS)

    Silva, D.A.; Wenk, H.R.; Monteiro, P.J.M.

    2005-01-01

    Mortar from the Roman Colosseum and a Roman cistern from Albano Laziale were characterized with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). The different techniques provided consistent results that the mortar of the Colosseum is mainly calcareous lime, while the mortar of the cistern is pozzolanic siliceous material. The study highlights the capabilities of the different methods for the analysis of cement. For routine analysis XRD is adequate but for characterization of poorly crystalline phases FT-IR and TGA have definite advantages

  5. Study and Thermogravimetric analysis of Poly N-4 Aminostyrol

    International Nuclear Information System (INIS)

    Meghezzi, A.; Lakhdar, Y.; Saidi, M.; Dadamoussa, B.

    2006-01-01

    The polyaminostyrol samples (PAS) and their copolymers with the styrol differing in position and quantity of amino-group, were obtained by polymerization of monomers on cyclogexan solution. The observed thermal effects were analyzed by the differential thermal analysis combined with a thermogravimetric analysis. It was found that the introduction of amino-groups into the polystyrols increased the temperature of total degradation of polymer from 150 till 260C. The increase in thermostability may be explained by the cohesion of macromolecules with the participation of amino-groups, which results in ammonium evolution, as well as in the decrease of valence area band of -NH2 grouping the region 3370-34440 cm. It was showed that the degree of cohesion formation and thermolysis rate depended on amino-group and their position into the cycle of benzene. (author)

  6. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    Science.gov (United States)

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region.

  7. Synthesis and characterization of perovskite oxides lafe 1-x cu x o 3 ...

    African Journals Online (AJOL)

    LaFe1-xCuxO3 (where x ranged from 0 to 0.4) powders are successfully synthesized by the solgel method employing metal nitrate salts as cations precursors and methanol as solvent. Thermogravimetric and differential thermal analysis (TGA/DTA) results exhibit that decomposition of the precursor to the oxide completed at ...

  8. Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides

    Science.gov (United States)

    Dennstedt, W.; Loeser, W.

    1982-01-01

    Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.

  9. Study on high-silicon boron-containing zeolite by thermogravimetric and IR-spectroscopy techniques

    International Nuclear Information System (INIS)

    Chukin, G.D.; Nefedov, B.K.; Surin, S.A.; Polinina, E.V.; Khusid, B.L.; Sidel'kovskaya, V.G.

    1985-01-01

    The structure identity of initial Na-forms of boron-containing and aluminosilicate high-silicon zeolites is established by thermogravimetric and IR-spectroscopy methods. The presence of boron in Na-forms of high-silicon zeolites is shown to lead to reduction of structure thermal stability. It is noted that thermal stability of the H-form of both high-silicon boron-containing and boron-free zeolites is practically equal and considerably higher than that of Na-forms

  10. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.

    Science.gov (United States)

    Mhd Haniffa, Mhd Abd Cader; Ching, Yern Chee; Chuah, Cheng Hock; Yong Ching, Kuan; Nazri, Nik; Abdullah, Luqman Chuah; Nai-Shang, Liou

    2017-10-01

    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2 I helical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper

    Science.gov (United States)

    Chanra, J.; Budianto, E.; Soegijono, B.

    2018-03-01

    Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.

  12. Clinical significance of combined determination of serum TPO-Ab and TGA levels and T lymphocyte subsets in patients with autoimmune thyroid disease (AITD)

    International Nuclear Information System (INIS)

    Zhang Jialin; Chen Daqiang; Li Ming; Xiao Yunzhen

    2007-01-01

    Objective: To investigate the possible relationship between serum thyroglobulin antibody, thyroid peroxidase antibody levels and the development of AITD. Methods: Thyroid peroxidase antibody (TPO-Ab) level was determined with electrochemilu-minescence assay, the thyroglobulin antibody (TGA) was detected by radiolmmunoassay and peripheral T-cells subsets were examined with monoclonal antibody technic in 87 patients with hyperthyroidism, 83 patients with hypothyroidism and 80 controls. Results: The thyroid peroxidase antibody and thyroglobulin antibody levels in AITD patients (including both hyper and hypothyroid patients) were significantly higher than those in the controls (P<0.01). Conclusion: It is proposed that increase of TPO-Ab and TGA is the cause of the development of AITD. (authors)

  13. Investigation of fatigue and mechanical properties of the pipe grade poly(vinyl chloride using recycled scraps

    Directory of Open Access Journals (Sweden)

    J-M. Lee

    2015-04-01

    Full Text Available In this paper, the effect of using pre-consumer PVC scraps on static and long-term mechanical properties is studied. The degradation characteristics of mixing virgin PVC with crushed pre-consumer and PVC pipe scraps are analyzed using various tools including Gel Permeation Chromatography (GPC, Thermogravimetric Analysis (TGA, X-ray fluorescence (XRF and Fourier Transform Infrared (FTIR spectroscopy. The variation of static mechanical properties as a function of adding pre-consumer PVC pipe scraps is investigated using the degradation analyses of recycled PVC scraps. In addition, fatigue tests are executed to evaluate the long-term durability of blending virgin PVC and recycled PVC scraps, and the fracture surface is investigated in detail to reveal the variation of the fracture mechanisms.

  14. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

    Directory of Open Access Journals (Sweden)

    Leonardo Fábio Rivas

    Full Text Available Abstract Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate (PHB up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analyses (TGA, respectively.

  15. Modification of a cellulose derived for your application on enzyme immobilization;Modificacao de um derivado celulosico para sua aplicacao na imobilizacao de enzimas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Elaine S.; Rodriguez, Ruben J.S.; Lamonica, Alano C., E-mail: ecarvalho@uenf.b [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados; Tavares, Maria Ines B. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    The chemical modification of (acrylamidomethyl) cellulose acetate propionate (AMCAP) was done through the technique of grafting via radical using acrylic acid as modifier, with the objective to make the polymer more hydrophilic. The structural characterization of AMCAP and modified AMCAP-H{sub 2}O{sub 2} was analysed by using the technique of {sup 13}C-nuclear magnetic resonance (NMR-{sup 13}C). By the techniques differential scanning calorimetry analysis (DSC) and thermogravimetric analysis (TGA), the thermal properties was characterized and the hydrophobic / hydrophilic character was determined by measurements of the contact angle. The results show that occurred the change intended with the introduction of acrylic acid in the side chain of the polymer, increasing the hydrophilic character on the AMCAP. (author)

  16. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    Science.gov (United States)

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The influence of cellulose nanocrystal additions on the performance of cement paste

    Science.gov (United States)

    Yizheng Cao; Pablo Zavaterri; Jeff Youngblood; Robert Moon; Jason Weiss

    2015-01-01

    The influence of cellulose nanocrystals (CNCs) addition on the performance of cement paste was investigated. Our mechanical tests show an increase in the flexural strength of approximately 30% with only 0.2% volume of CNCs with respect to cement. Isothermal calorimetry (IC) and thermogravimetric analysis (TGA) show that the degree of hydration (DOH) of the cement paste...

  18. Water Transport in MgSO4·7H2O during Dehydration in View of Thermal Storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Beckert, S.; Pel, L.; Stallmach, F.; Steiger, M.; Adan, O.C.G.

    2015-01-01

    The water phases in a MgSO4·7H2O crystal during heating were studied with the help of NMR. The thermogravimetric analysis (TGA) data showed that the heating rate has a strong effect on the dehydration process. NMR experiments showed that pore water, i.e., an aqueous solution of MgSO4, was produced

  19. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  20. Surface modification of synthetic clay aimed at biomolecule adsorption: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Angela de Mello Ferreira Guimarães

    2007-03-01

    Full Text Available This work describes the process for functionalization of laponite through the grafting of 3-mercaptopropyltrimethoxysilane (MPTS. Laponite is synthetic smectite clay with surface area of 350 m²/g. The samples, prior to and after functionalization, were characterized by chemical analyses, thermogravimetric analysis (TGA, x ray diffraction (XRD, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT, scanning electron microscopy and energy dispersive spectrometry (MEV/EDS. Infrared spectroscopy and elemental analyses confirmed the presence of organic chains and thiol groups in the modified clay. The immobilized and available thiol group, measured according to the Volhard method, totaled 1.4 meq/g of clay, with approximately 90% accessible for Ag+ trapping. These results represent an improvement as compared to other works concerning the functionalization of smectite-type clays in which the effect produced by functional group blockage limits the access of species to less than 10% of the complexing sites.

  1. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  2. Kinetic Model of LiFePO4 Formation Using Non-Isothermal Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Abdul Halim

    2014-03-01

    Full Text Available The formation reaction of LiFePO4 from decomposition of precursors LiOH, FeSO4.7H2O and (NH42HPO4 with mol ratio of Li:Fe:P=1:1:1 was investigated. The experiment was carried out by thermogravimetric differential thermal analysis (TG-DTA method using nitrogen as atmosfer at a constant heating rate to obtain kinetic constant parameters. Several heating rates were selected, there are 5, 7, 10, 15, 17.5, 22.5 and 25 °C/min. Activation energy, pre-exponential factor and reaction order were taken using Kissinger method and obtained respectively 56.086 kJ/mol, 6.95×108 min-1, and 1.058. Based on fitting result between reaction model and experiment were obtained that reaction obeyed the three dimension diffusion model. © 2014 BCREC UNDIP. All rights reservedReceived: 19th September 2013; Revised: 9th December 2013; Accepted: 23rd January 2014 [How to Cite: Halim, A., Widiyastuti, W., Setyawan, H., Winardi, S. (2014. Kinetic of LiFePO4 For-mation Using Non-isothermal Thermogravimetric Analysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 60-65. (doi:10.9767/bcrec.9.1.5508.60-65][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5508.60-65] 

  3. Thermogravimetric study of superconducting YBa2Cu3O9-x in hydrogen

    International Nuclear Information System (INIS)

    Swaminathan, K.; Janaki, J.; Rao, G.V.N.; Sreedharan, O.M.; Radhakrishnan, T.S.

    1988-01-01

    The thermogravimetric curve of YBa 2 Cu 3 O 9-x in hydrogen exhibits five steps, the first two corresponding to the reduction of copper oxide to copper by about 683 K (as identified by XRD on quenched samples) followed by three more steps predominantly due to hydration-dehydration behaviour of BaO. The need for blank corrections and the choice of 1223 K as the temperature for the determination of oxygen stoichiometry are discussed. 6 refs.; 2 figs.; 1 table

  4. Thermogravimetric analysis of silicon carbide-silicon nitride fibers at ambient to 1000 C in air

    Science.gov (United States)

    Daniels, J. G.; Ledbetter, F. E., III; Clemons, J. M.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis of silicon carbide-silicon nitride fibers was carried out at ambient to 1000 C in air. The weight loss over this temperature range was negligible. In addition, the oxidative stability at high temperature for a short period of time was determined. Fibers heated at 1000 C in air for fifteen minutes showed negligible weight loss (i.e., less than 1 percent).

  5. Chemical characterization of xyloglucan obtained from Tamarindus indica seeds from the semi arid northeastern; Caracterizacao quimica de xiloglucana obtida a partir de sementes de Tamarindus indica oriundas do semi arido nordestino

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Delane da C.; Cunha, Arcelina P.; Silva, Sarah M.F.; Gallao, Maria Izabel, E-mail: izagalao@gmail.com [Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE (Brazil). Centro de Ciencia; Azeredo, Henriette M.C. de [EMBRAPA Agroindustria Tropical, Fortaleza, CE (Brazil)

    2013-07-01

    Playing an important role in food, seeds are sources of carbohydrates, proteins and lipids, so they have been explored for a long time by the food industry. For this reason, the objective of present work is to obtain and characterize xyloglucan obtained from tamarind seeds (Tamarindus indica). In order to assess possible industrial applications of the polysaccharide, it was characterized by Infrared Fourier Transform spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and Thermogravimetric Analysis (TGA). Search results showed that it was possible to perform xyloglucan extraction but the process still requires improvements in order to increase the extraction yield. FTIR, NMR and TGA results were similar to those found in literature. (author)

  6. Chemical characterization of xyloglucan obtained from Tamarindus indica seeds from the semi arid northeastern (Brazil); Caracterizacao quimica de xiloglucana obtida a partir de sementes de tamarindus indica oriundas do semi arido nordestino

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Delane da C.; Cunha, Arcelina P.; Silva, Sarah M.F.; Gallao, Maria Izabel, E-mail: izagalao@gmail.com [Rede Nordeste de Biotecnologia (RENORBIO), Forteleza, CE (Brazil). Centro de Ciencia; Universidade Federal do Ceara (UFC), Fortalea, CE (Brazil); Azeredo, Henriette M.C. de [EMBRAPA Agroindustria Tropical, Fortaleza, CE (Brazil)

    2015-07-01

    Playing an important role in food, seeds are sources of carbohydrates, proteins and lipids, so they have been explored for a long time by the food industry. For this reason, the objective of present work is to obtain and characterize xyloglucan obtained from tamarind seeds (Tamarindus indica). In order to assess possible industrial applications of the polysaccharide, it was characterized by Infrared Fourier Transform spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and Thermogravimetric Analysis (TGA). Search results showed that it was possible to perform xyloglucan extraction but the process still requires improvements in order to increase the extraction yield. FTIR, NMR and TGA results were similar to those found in literature. (author)

  7. Kinetic Study on Pyrolysis of Oil Palm Frond

    International Nuclear Information System (INIS)

    Soon, V S Y; Chin, B L F; Lim, A C R

    2016-01-01

    The pyrolysis of oil palm frond is studied using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation behaviour and determination of the kinetic parameters such as the activation energy (E A ) and pre-exponential factor (A) values of oil palm frond under pyrolysis condition. The kinetic data is produced based on first order rate of reaction. In this study, the experiments are conducted at different heating rates of 10, 20, 30, 40 and 50 K/min in the temperature range of 323-1173 K under non-isothermal condition. Argon gas is used as an inert gas to remove any entrapment of gases in the TGA equipment. (paper)

  8. Study on curing reaction of 4-aminophenoxyphthalonitrile/bisphthalonitrile

    Institute of Scientific and Technical Information of China (English)

    Xiao

    2010-01-01

    A series of phthalonitrile blending resins were prepared from 4-aminophenoxyphthalonitrile (APN) and 4,4'-bis (3,4-dicyanophenoxy)biphenyl (BPH) by directly powder-mixing and copolymerization. Differential scanning calorimeter (DSC) and dynamic rheology were used to study the curing reaction behaviors of APN/BPH blends, and the results indicated that the introduction of APN accelerated the curing rate of BPH, and the existence of BPH decreased the curing temperature of APN/BPH systems. The thermal stability of postcured APN/BPH resins was investigated by thermogravimetric analysis (TGA), and the TGA results indicated that the crosslinked polymers of APN/BPH systems possessed good thermal stability.

  9. Chemical characterization of xyloglucan obtained from Tamarindus indica seeds from the semi arid northeastern (Brazil)

    International Nuclear Information System (INIS)

    Rodrigues, Delane da C.; Cunha, Arcelina P.; Silva, Sarah M.F.; Gallao, Maria Izabel; Azeredo, Henriette M.C. de

    2015-01-01

    Playing an important role in food, seeds are sources of carbohydrates, proteins and lipids, so they have been explored for a long time by the food industry. For this reason, the objective of present work is to obtain and characterize xyloglucan obtained from tamarind seeds (Tamarindus indica). In order to assess possible industrial applications of the polysaccharide, it was characterized by Infrared Fourier Transform spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and Thermogravimetric Analysis (TGA). Search results showed that it was possible to perform xyloglucan extraction but the process still requires improvements in order to increase the extraction yield. FTIR, NMR and TGA results were similar to those found in literature. (author)

  10. Thermal Dehydration Kinetics of Gypsum and Borogypsum under Non-isothermal Conditions

    Institute of Scientific and Technical Information of China (English)

    I.Y.Elbeyli; S.Piskin

    2004-01-01

    Thermal dehydration of gypsum and borogypsum was investigated under nonisothermal conditions in air by using simultaneous thermogravimetric-differential thermal analyzer. Nonisothermal experiments were carried out at various linear heating rates. Kinetics of dehydration in the temperature range of 373-503 K were evaluated from the DTA (differential thermal analysis)-TGA (thermogravimetric analysis) data by means of Coats-Redfern,Kissinger and Doyle Equations. Values of the activation energy and the pre-exponential factor of the dehydration were calculated. The results of thermal experiments and kinetic parameters indicated that borogypsum is similar to gypsum from dehydration mechanism point of view although it consists of boron and small amount of alkali metal oxides.

  11. Thermal Dehydration Kinetics of Gypsum and Borogypsum under Non-isothermal Conditions%在非等温条件下石膏和硼石膏的加热脱水动力学研究

    Institute of Scientific and Technical Information of China (English)

    ī.Y.Elbeyli; S.Piskin

    2004-01-01

    Thermal dehydration of gypsum and borogypsum was investigated under nonisothermal conditions in air by using simultaneous thermogravimetric-differential thermal analyzer. Nonisothermal experiments were carried out at various linear heating rates. Kinetics of dehydration in the temperature range of 373-503 K were evaluated from the DTA (differential thermal analysis)-TGA (thermogravimetric analysis) data by means of Coats-Redfern,Kissinger and Doyle Equations. Values of the activation energy and the pre-exponential factor of the dehydration were calculated. The results of thermal experiments and kinetic parameters indicated that borogypsum is similar to gypsum from dehydration mechanism point of view although it consists of boron and small amount of alkali metal oxides.

  12. Thermal degradation of ternary blend films containing PVA/chitosan/vanillin

    Science.gov (United States)

    Kasai, Deepak; Chougale, Ravindra; Masti, Saraswati; Narasgoudar, Shivayogi

    2018-05-01

    The ternary chitosan/poly (vinyl alcohol)/vanillin blend films were prepared by solution casting method. The influence of equal weight percent of poly (vinyl alcohol) and vanillin on thermal stability of the chitosan blend films were investigated by using thermogravimetric analysis (TGA). The kinetic parameters such as enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) in the first and second decomposition steps based on the thermogravimetric data were calculated. The thermal stabilities of the blend films were confirmed by thermodynamic parameters obtained in the activation energies, which indicated that increase in the equal weight percent of PVA/vanillin decreased the thermal stability of the chitosan film.

  13. Inorganic-organic hybrids based on poly (ε-Caprolactone and silica oxide and characterization by relaxometry applying low-field NMR

    Directory of Open Access Journals (Sweden)

    Mariana Sato de Souza de Bustamante Monteiro

    2012-12-01

    Full Text Available Poly (ε-caprolactone (PCL based hybrids containing different amounts of modified (Aerosil® R972 and unmodified (Aerosil® A200 silica oxide were prepared employing the solution method, using chloroform. The relationships of the amount of nanofillers, organic coating, molecular structure and intermolecular interaction of the hybrid materials were investigated mainly using low-field nuclear magnetic resonance (NMR. The NMR analyses involved the hydrogen spin-lattice relaxation time (T1H and hydrogen spin-lattice relaxation time in the rotating frame (T1ρH. The spin-lattice relaxation time measurements revealed that the PCL/silica oxide hybrids were heterogeneous, meaning their components were well dispersed. X-ray diffraction (XRD, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were also employed. The DSC data showed that all the materials had lower crystallization temperature (Tc and melting temperature (Tm, so the crystallinity degree of the PCL decreased in the hybrids. The TGA analysis demonstrated that the addition of modified and unmodified silica oxide does not cause considerable changes to PCL's thermal stability, since no significant variations in the maximum temperature (Tmax were observed in relation to the neat polymer.

  14. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Alaa A. A. Aljabali

    2018-03-01

    Full Text Available (1 Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2 Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of “greener” protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3 Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM, Scanning electron microscope (SEM, and Atomic Force microscopy (AFM, X-ray diffraction (XRD, UV-visible spectroscopy, energy dispersive X-ray (EDX, and thermogravimetric analyses (TGA; (4 Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents.

  15. Synthesis and characterization of electrical conducting nanoporous carbon structures

    International Nuclear Information System (INIS)

    El Mir, L.; Kraiem, S.; Bengagi, M.; Elaloui, E.; Ouederni, A.; Alaya, S.

    2007-01-01

    Nanoporous organic xerogel compounds were prepared by sol-gel method from pyrogallol-formaldehyde (PF) mixtures in water using perchloric acid as catalyst. The preparation conditions of electrical conducting carbon (ECC) structures were explored by changing the pyrolysis temperature. The effect of this preparation parameters on the structural and electrical properties of the obtained ECCs were studied, respectively, by thermogravimetric analysis (TGA), nitrogen adsorption isotherms, IR spectroscopy and electrical conductivity measurements. The analysis of the obtained results revealed that, the polymeric insulating phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers when the carbon microparticles inside the structure agglomerated with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity and the I(V) characteristics of the obtained ECC structures show a non-ohmic behaviour. The results obtained from TGA and differential thermal analyser (DTA) thermograms, scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs, IR spectroscopy and X-ray diffraction revealed that, the obtained ECC structures consist of amorphous and nanoporous electrical conducting carbon materials

  16. Preparation of Melamine - Formaldehyde Microcapsules Containing Hexadecane as a Phase Change Material: The Effect of Surfactants Type and Concentration

    Directory of Open Access Journals (Sweden)

    Zeinab Alinejad

    2013-05-01

    Full Text Available Microcapsules containing n-hexadecane (HD as the core and melamineformaldehyde (MF prepolymer as the shell were prepared by in-situ dispersion polymerization. The effects of surfactants type and amount were studied in relation to the morphology and thermal properties of microcapsules. The morphology of the microcapsules was studied using scanning electron microscopy (SEM and thermal properties were detected by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. SEM images showed that the increase in the amount of Triton X-100 (non-ionic to SDS (ionic ratio resulted in the agglomeration of the prepared microcapsules. This increase led also to lower encapsulated hexadecane and thermal stability of microcapsules. As a result, the optimum composition of the above surfactants for obtaining higher thermal stability and proper morphology wasfound to be 20 wt% of Triton X-100 and 80 wt% of SDS in the recipe. The optimum total amounts of surfactants was 4 wt%, which resulted in spherical and separate microcapsules. DSC and TGA analyses revealed that a sample prepared with 4 wt% of surfactants was not only successful in encapsulation of hexadecane but also showedhigher thermal stability compared with other formulations.

  17. Thermal release of {sup 3}He from tritium aged LaNi{sub 4.25}Al{sub 0.75} hydride

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G.C.; Crowder, M.L.; Klein, J.E. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site Tritium Facilities (SRS-TF) utilizes LANA.75 (LaNi{sub 4.25}Al{sub 0.75})in the tritium process to store hydrogen isotopes. The vast majority of {sup 3}He born from the radioactive decay of tritium stored in LANA.75 is trapped in the hydride metal matrix. The SRS-TF has multiple LANA.75 tritium storage beds that have been retired from service with significant quantities of He-3 trapped in the metal. To support He-3 recovery, the Savannah River National Laboratory (SRNL) conducted thermogravimetric analysis coupled with mass spectrometry (TGA-MS) on a tritium aged LANA.75 sample. TGA-MS testing was performed in an argon environment. Prior to testing, the sample was isotopically exchanged with deuterium to reduce residual tritium and passivated with air to alleviate pyrophoric concerns associated with handling the material outside of an inert glovebox. Analyses indicated that gas release from this sample was bimodal, with peaks near 220 and 490 C. degrees. The first peak consisted of both {sup 3}He and residual hydrogen isotopes, the second was primarily {sup 3}He. The bulk of the gas was released by 600 Celsius degrees. (author)

  18. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  19. Characteristics of curcumin using cyclic voltammetry, UV–vis, fluorescence and thermogravimetric analysis

    International Nuclear Information System (INIS)

    Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian

    2013-01-01

    Highlights: • Electrooxidation of curcumin was investigated with cyclic voltammetry. • The curcumin is irreversibly oxidized at the platinum electrode in anhydrous media. • Absorbance, fluorescence and thermogravimetric analysis of curcumin was studied. • The HOMO and Mapped Electron Densities were calculated using HyperChem. • Oxidation mechanism for curcumin proposed. -- Abstract: Curcumin, the yellow, primary bioactive component of turmeric, has recently received attention from chemists due its wide range of potential biological applications as an antioxidant, anti-inflammatory, and anti-carcinogenic agent. The electrochemical behaviour of curcumin at a platinum electrode has been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The oxidation of curcumin is an irreversible process that proceeds in two steps in 0.1 M (C 4 H 9 ) 4 NClO 4 in acetonitrile. The process of oxidation and its kinetics have been investigated. The rate constant, electron transfer coefficient and diffusion coefficients for the electrochemical oxidation of curcumin were determined. A mechanism for the oxidation of curcumin is proposed. The data obtained are consistent with the current literature and suggest that voltammetric studies on mechanically transferred solids may be a convenient method for elucidating the electrochemical oxidation mechanisms of compounds in anhydrous media. Theoretical calculations regarding the optimization of curcumin, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated using with HyperChem software by AM1 semi-empirical method. The properties of curcumin in a homogeneous environment were investigated using spectroscopic techniques and thermogravimetric analysis

  20. Biomass Thermogravimetric Analysis: Uncertainty Determination Methodology and Sampling Maps Generation

    Science.gov (United States)

    Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Eguía, Pablo; Collazo, Joaquín

    2010-01-01

    The objective of this study was to develop a methodology for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG), including moisture, volatile matter, fixed carbon and ash content. The sampling procedure of the TG analysis was of particular interest and was conducted with care. The results of the present study were compared to those of a prompt analysis, and a correlation between the mean values and maximum sampling errors of the methods were not observed. In general, low and acceptable levels of uncertainty and error were obtained, demonstrating that the properties evaluated by TG analysis were representative of the overall fuel composition. The accurate determination of the thermal properties of biomass with precise confidence intervals is of particular interest in energetic biomass applications. PMID:20717532

  1. Hydrogen Adsorption in Zeolite Studied with Sievert and Thermogravimetric Methods

    International Nuclear Information System (INIS)

    Lesnicenoks, P; Sivars, A; Grinberga, L; Kleperis, J

    2012-01-01

    Natural clinoptilolite (mixture from clinoptilolite, quartz and muscovite) is activated with palladium and tested for hydrogen adsorption capability at temperatures RT - 200°C. Thermogravimetric and volumetric methods showed that zeolite activated with palladium (1.25%wt) shows markedly high hydrogen adsorption capacity - up to 3 wt%. Lower amount of adsorbed hydrogen (∼1.5 wt%) was found for raw zeolite and activated with higher amount of palladium sample. Hypothesis is proposed that the heating of zeolite in argon atmosphere forms and activates the pore structure in zeolite material, where hydrogen encapsulation (trapping) is believed to occur when cooling down to room temperature. An effect of catalyst (Pd) on hydrogen sorption capability is explained by spillover phenomena were less-porous fractions of natural clinoptilolite sample (quartz and muscovite) are involved.

  2. Thermogravimetric kinetics of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata.

    Science.gov (United States)

    Wu, Jianguo; Gao, Shi; Wan, Jilin; Zeng, Yelin; Ma, Fuying; Zhang, Xiaoyu

    2011-04-01

    The thermogravimetric and composition of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata had been studied in this paper. Results indicated that pretreatment by oleaginous fungi C. echinulata could decrease the activation energy and make the pyrolysis more efficient and energy-saving. By bio-pretreatment, the contents of elements agreed with the weight loss, sugar content, and oil contents, especially the sulfur content was greatly decreased, greatly eliminating the inventory of gas contamination such as the emission of SOx and making the pyrolysis more environmentally friendly. Therefore, corn stalk with sugar pretreated by oleaginous fungi C. echinulata should be a good pyrolysis material to obtain high quality bio-oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  4. Layered Zinc Hydroxide Salts Intercalated with Anionic Surfactants and Adsolubilized with UV Absorbing Organic Molecules

    OpenAIRE

    Cursino,Ana C. T.; Rives,Vicente; Carlos,Luís D.; Rocha,João; Wypych,Fernando

    2015-01-01

    Two anionic surfactants, dodecylsulfate (DDS) and dodecylbenzenesulfonate (DBS), were intercalated into layered zinc hydroxide salts (LHS) using the direct alkaline co-precipitation method, and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and thermogravimetric analysis/differential thermal analysis (TGA/DTA). Different UV-absorbing organic molecules, like salicylates, cinnamates and benzophenones, were adsolubilized in the LHS interlayer following two di...

  5. Hydroxyapatite-Functionalized Graphene: A New Hybrid Nanomaterial

    OpenAIRE

    Rodríguez-González, C.; Cid-Luna, H. E.; Salas, P.; Castaño, V. M.

    2014-01-01

    Graphene oxide sheets (GO) were functionalized with hydroxyapatite nanoparticles (nHAp) through a simple and effective hydrothermal treatment and a novel physicochemical process. Microstructure and crystallinity were investigated by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) ...

  6. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  7. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Directory of Open Access Journals (Sweden)

    Hongda Chen

    2018-01-01

    Full Text Available In order to improve the efficiency of intumescent flame retardants (IFRs, a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine (PETAT with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP in combination with ammonium polyphosphate (APP via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR, and 1H nuclear magnetic resonance (NMR spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR. The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI values before and after soaking, underwritten laboratory-94 (UL-94 vertical burning test, cone calorimetric test (CCT, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS, and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR, total heat release (THR, and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  8. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  9. Comparison between the reactivity of coal and synthetic coal models

    Energy Technology Data Exchange (ETDEWEB)

    A. Arenillas; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    A mixture of carbon compounds was pyrolysed under an inert atmosphere at different temperatures in a fixed bed reactor. The resultant chars were characterised in terms of texture and thermal behaviour. Textural characterisation of the chars was carried out by N{sub 2} and CO{sub 2} adsorption isotherms at -196 and 0{sup o}C, respectively. Char isothermal reactivity in air at 500{sup o}C, and in CO{sub 2} at 1000{sup o}C, was performed in a thermogravimetric analyser (TGA). Temperature-programmed combustion tests under 20% oxygen in argon were also performed in the TGA linked to a mass spectrometer (TGA/MS). The results showed that char textural properties do not always relate well to their reactivity. Not only do physical properties (e.g. surface area, porosity) but also chemical properties (e.g. active sites concentration and distribution) play an important role in the reaction of carbonaceous material and oxidant. On the other hand, in terms of chemical composition the chars obtained from the mixture of carbon compounds were very similar to the chars produced under the same experimental conditions by a high volatile bituminous coal. The fact that carbon compounds are well known makes it easier to obtain knowledge about the functional groups present in synthetic char, and to study the mechanisms of heterogeneous reactions such as the reduction of NO with carbon. 13 refs., 8 figs., 3 tabs.

  10. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih

    2018-05-01

    Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2  = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A Novel Ruthenium-Decorating Polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH2]·24H2O: An Active Heterogeneous Oxidation Catalyst for Alcohols

    Directory of Open Access Journals (Sweden)

    Rong Wan

    2018-01-01

    Full Text Available The first example of wholly inorganic ruthenium-containing polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH2]·24H2O (1 was isolated and systematically characterized by element analysis, infrared spectroscopy (IR, thermogravimetric analyses (TGA, X-ray photoelectron spectroscopy (XPS, energy dispersive X-ray spectroscopy (EDX and single-crystal X-ray diffraction. Compound 1 is composed of an unprecedented {Mo14}-type isopolymolybdate with a di-ruthenium core precisely encapsulated in its center, exhibiting a three-tiered ladder-like structure. The title compound can act as an efficient heterogeneous catalyst in the transformation of 1-phenylethanol to acetophenone. This catalyst is also capable of being recycled and reused for at least ten cycles with its activity being retained under the optimal conditions.

  12. Preparation of lanthanum sulfide nanoparticles by thermal decomposition of lanthanum complex

    Institute of Scientific and Technical Information of China (English)

    LI Peisen; LI Huanyong; JIE Wanqi

    2011-01-01

    γ-La2S3 nanoparticles were successfully prepared by thermal decomposition of lanthanum complex La(Et2S2CN)3·phen at low temperature. The obtained sample was characterized by the X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and element analysis. The decomposition mechanism of lanthanum complex was studied by thermogravimetric analyses (TGA). The results showed that the obtained samples were cubic phase particles with uniform sizes among 10-30 nm and γ-La2S3 was prepared by decomposition of La(Et2S2CN)3 phen via La4(Et2S2CN)3 as an intermediate product. The band gap of γ-La2S3 was 2.97 eV, which was bigger than bulk crystal because of pronounced quantum confinement effect.

  13. The synthesis and characterization of 1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane and its complexes with Ni(II), Cu(II), Zn(II) and Cd(II)

    International Nuclear Information System (INIS)

    Canpolat, E.; Kaya, M.; Gorgulu, A.O.

    2002-01-01

    1,2-dihydroxyimino-3,6-di-aza-8,9-O-iso-butylidene nonane (H 2 L) was synthesized starting from 1,2-O-iso-butylidene-4-aza-6-amino hexane (RNH 2 ) and antichloroglyoxime. Ni(II) and Cu(II) complexes of H 2 L have a metal:ligand ratio 1:2 and the ligand coordinates through two N atoms, as do most of the vic-dioximes. However, Zn(II) and Cd(II) complexes of H 2 L have a metal: ligand ratio 1:1 and one chloride ion and one water molecule are also coordinated to the metal ion. Structures of the ligand and its transition-metal complexes are proposed, according to elemental analysis, IR, 13 C and 1 H NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). (author)

  14. Functionalization of Fe3O4 NPs by Silanization: Use of Amine (APTES and Thiol (MPTMS Silanes and Their Physical Characterization

    Directory of Open Access Journals (Sweden)

    Silvia Villa

    2016-10-01

    Full Text Available In this paper the results concerning the synthesis of magnetite (Fe3O4 nanoparticles (NPs, their functionalization using silane derivatives, such as (3-Aminopropyltriethoxysilane (APTES and (3-mercaptopropyltrimethoxysilane (MPTMS, and their exhaustive morphological and physical characterization by field emission scanning electron microscopy (FE-SEM with energy dispersion X-ray spectrometer (EDX analysis, AC magnetic susceptibility, UV-VIS and IR spectroscopy, and thermogravimetric (TGA analyses are reported. Two different paths were adopted to achieve the desired functionalization: (1 the direct reaction between the functionalized organo-silane molecule and the surface of the magnetite nanoparticle; and (2 the use of an intermediate silica coating. Finally, the occurrence of both the functionalization with amino and thiol groups has been demonstrated by the reaction with ninhydrin and the capture of Au NPs, respectively.

  15. Using thermal analysis techniques for identifying the flash point temperatures of some lubricant and base oils

    Directory of Open Access Journals (Sweden)

    Aksam Abdelkhalik

    2018-03-01

    Full Text Available The flash point (FP temperatures of some lubricant and base oils were measured according to ASTM D92 and ASTM D93. In addition, the thermal stability of the oils was studied using differential scanning calorimeter (DSC and thermogravimetric analysis (TGA under nitrogen atmosphere. The DSC results showed that the FP temperatures, for each oil, were found during the first decomposition step and the temperature at the peak of the first decomposition step was usually higher than FP temperatures. The TGA results indicated that the temperature at which 17.5% weigh loss take placed (T17.5% was nearly identical with the FP temperature (±10 °C that was measured according to ASTM D92. The deviation percentage between FP and T17.5% was in the range from −0.8% to 3.6%. Keywords: Flash point, TGA, DSC

  16. Two novel metal-organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    Science.gov (United States)

    Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-01

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.

  17. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis.

    Science.gov (United States)

    Hu, Zhiquan; Chen, Zhihua; Li, Genbao; Chen, Xiaojuan; Hu, Mian; Laghari, Mahmood; Wang, Xun; Guo, Dabin

    2015-10-01

    The pyrolysis characteristics and kinetic of Hydrilla verticillata (HV) have been investigated using non-isothermal thermogravimetric analysis. The results showed that the pyrolysis behavior of HV can be divided into two independent stages. The kinetics of Stage I was investigated using a distributed activation energy model (DAEM) with discrete 99 first-order reactions. Stage II was an independent stage which corresponds to the decomposition of calcium oxalate, whose kinetics was studied using iso-conversional method together with compensation effect and master-plots method. The activation energies ranged from 92.39 to 506.17 and 190.42 to 222.48 kJ/mol for the first and second stages respectively. Calculated data gave very good fit to the experimental data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Automation of a McBain-Bakr-type thermogravimetric analyzer using a digital image correlation technique

    International Nuclear Information System (INIS)

    Trexler, M.D.; Sanders, T.H. Jr.; Singh, P.M.

    2006-01-01

    Thermogravimetric analysis was used to obtain corrosion kinetics data for several materials in high-temperature environments. A thermogravimetric analyzer has been developed that uses a McBain-Bakr quartz spring balance in conjunction with a digital image acquisition and analysis package to accurately characterize materials through image correlation. This provides a new method for automatically measuring mass changes continuously with a variable resolution depending on the spring component. The decomposition of calcium oxalate was used to verify the validity of the technique. The results show two reactions, whose reaction temperatures were determined by the intercept method, upon heating to 650 deg. C. The mass loss at the first reaction temperature, 200 deg. C, was 20% and a 30% loss was observed at 500 deg. C. Comparison of the experimentally obtained results with those of other researchers who used commercial instruments suggests that the method of using digital image analysis in conjunction with a spring to monitor mass change is a viable and accurate replacement for automatic electrobalances and cathetometers for thermal analysis of materials. Additional comparison between corrosion tests performed on SA210 steel in H 2 S using both a commercial thermobalance and the developed technique confirmed that high-temperature corrosion can be monitored accurately with the proposed method

  19. Thermogravimetric analysis of the beryllium/steam reaction

    Energy Technology Data Exchange (ETDEWEB)

    Druyts, Frank E-mail: fdruyts@sckcen.be; Iseghem, Pierre van

    2000-11-01

    In view of the safety assessment of new fusion reactor designs, kinetic data are needed on the beryllium/steam reaction. Therefore, thermogravimetric analysis was used to determine the reactivity of beryllium in steam as a function of temperature, irradiation history and porosity of the samples. To this purpose, reference unirradiated S-200 VHP beryllium samples were compared with specimens irradiated in the BR2 reactor up to fast neutron fluences (E>1 MeV) of respectively 1.6x10{sup 21} n cm{sup -2} (resulting in a helium content of 300 appm He and a theoretical density of 99.9%) and 4x10{sup 22} n cm{sup -2} (21000 appm He, 97.2% theoretical density). Kinetics were parabolic for all tested beryllium types at 600 deg. C. At 700 deg. C, kinetics were parabolic for the unirradiated and irradiated 99.9% dense beryllium, and accelerating/linear for the irradiated 97.2% material. At 800 deg. C, all samples showed accelerating/linear behaviour. There was no influence of porosity on the reaction rate of beryllium in steam within the limited investigated density range, except at 700 deg. C, where the measured reaction rate for the irradiated 97.2% dense samples is an order of magnitude higher than for the irradiated 99.9% dense specimens.

  20. Radiation-induced branching and crosslinking of poly(tetrafluoroethylene) (PTFE)

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Jehnichen, D.; Pompe, G.; Lunkwitz, K.

    2001-01-01

    The effect of electron beams on poly(tetrafluoroethylene) (PTFE) at elevated temperatures above the melting point on oxygen-free conditions has been studied using differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), Fourier-transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and tensile test. The investigations have shown that the chemical structure and several properties of PTFE are greatly altered by the irradiation. DSC and WAXS indicate that the crystallinity of the PTFE irradiated with high doses is reduced. CF 3 side groups and branched structures are assumed to hinder the crystallization. TGA has shown that the thermal stability of the radiation-modified PTFE is considerably lower than that of unirradiated PTFE

  1. Photo and Thermal Behavior of New Reinforced Polyamide-nanocomposite Montmorillonite on 2,3-Pyrazin Dicarboxylic Acid

    Science.gov (United States)

    Faghihi, Khalil; Samiei, Mojtaba; Hajibeygi, Mohsen

    2012-06-01

    Two new samples of reinforce polyamidemontmorillonite nanocomposites were synthesized by a convenient solution intercalation technique. Polyamide (PA) 3 as a source of polymer matrix was synthesized by the direct polycondensation reaction of pyrazine 2,3-dicarboxylic acid 1 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PA matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  2. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    Science.gov (United States)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  3. Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium(II Coordination Polymer Based on L-Malic Acid

    Directory of Open Access Journals (Sweden)

    Duraisamy Senthil Raja

    2013-01-01

    Full Text Available A new calcium coordination polymer [Ca(HL-MA]n (H3L-MA = L-malic acid has been solvothermally synthesized. The structure of the newly synthesized complex has been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, reflectance UV-Vis & IR spectra, powder X-ray diffraction (PXRD, and thermogravimetric analysis (TGA. The single crystal structure analysis showed that the complex forms three-dimensional framework. The new Ca(II complex has displayed very high thermal stability which was inferred from TGA and PXRD results. As far as the optical property of the new complex is concerned, the complex emitted its own characteristic sensitized luminescence.

  4. Limestone-Concentrate-Pellet Roasting in wet Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    1990-01-01

    A roast process for treating chalcopyrite concentrate was developed. The investigation of the reaction of limestone-concentrate-pellet in a wet carbon dioxide flow was carried out by means of a thermogravimetric analysis (TGA) to determine at which temperatures the roasting reaction would take place. The thermodynamic calculations on the roast reaction were made by the use of SOLGASMIX-PV program. The TGA curves and thermodynamic calculations indicated that the conversion of chalcopyrite into bornite took place at about 975K, and the conversion of bornite into chalcocite at 1065-1123K. The thermodynamic calculations also showed that the sulfur released was fixed as calcium sulfide within roasted pellets. X-ray diffraction examination identified these phases in products.

  5. Kinetics of the Thermal Degradation of Granulated Scrap Tyres: a Model-free Analysis

    Directory of Open Access Journals (Sweden)

    Félix A. LÓPEZ

    2013-12-01

    Full Text Available Pyrolysis is a technology with a promising future in the recycling of scrap tyres. This paper determines the thermal decomposition behaviour and kinetics of granulated scrap tyres (GST by examining the thermogravimetric/derivative thermogravimetric (TGA/DTG data obtained during their pyrolysis in an inert atmosphere at different heating rates. The model-free methods of Friedman, Flynn-Wall-Ozawa and Coats-Redfern were used to determine the reaction kinetics from the DTG data. The apparent activation energy and pre-exponential factor for the degradation of GST were calculated. A comparison with the results obtained by other authors was made.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2947

  6. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  7. Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices

    OpenAIRE

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-01-01

    We report the synthesis and structural studies of ZnS and CdS nanoparticles in polyvinylpyrrolidone (PVP), poly(vinyl alcohol) (PVA), and poly(methyl methacrylate) (PMMA) matrices. The metal sulfides/polymer nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, electronic spectroscopy (UV-Vis), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The particle sizes as calculated from the absorption spectra were in agree...

  8. Joining of 25CePO4/ZrO2 and ZrO2 on Green State Without Pressure

    Institute of Scientific and Technical Information of China (English)

    GAO Hai; LIU Jia-chen; LIU Ming-zheng; WANG Li-juan; HUO Wei-rong

    2004-01-01

    High-yielding low-cost vanadium oxide nanotubes were prepared by hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates. Moreover, a new method was discovered to determine the content of V (IV) in vanadium oxide nanotubes by thermogravimetric analysis (TGA). This method can be extended to determine the content of low oxidation state in other transition metal oxide nanomaterials.

  9. Synthesis and Characterization of New Thieno[3,2-b]thiophene Derivatives

    Directory of Open Access Journals (Sweden)

    Wojciech Pisula

    2012-10-01

    Full Text Available Three derivatives of thieno[3,2-b]thiophene end-capped with phenyl units have been synthesized and characterized by MALDI TOF mass spectroscopy, elemental analysis, UV-vis absorption spectroscopy and thermogravimetric analysis (TGA. All compounds were prepared using Pd-catalyzed Stille or Suzuki coupling reactions. Optical measurements and thermal analysis revealed that these compounds are promising candidates for p-type organic semiconductor applications.

  10. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications.

    Science.gov (United States)

    Pan, Shu-Yuan; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-04-15

    Accelerated carbonation of alkaline solid wastes is an attractive method for CO2 capture and utilization. However, the evaluation criteria of CaCO3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200-900°C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO3 standards, carbonated BOFS samples and synthetic CaCO3/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for determining CaCO3 content in alkaline wastes was precise and accurate, thereby enabling to effectively assess the CO2 capture capacity of alkaline wastes for mineral carbonation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Reaction of LiD with water vapor: thermogravimetric and scanning electron microscopy studies

    International Nuclear Information System (INIS)

    Balooch, M; Dinh, L N; LeMay, J D

    2000-01-01

    The kinetics of hydroxide film growth on LiD have been studied by the thermogravimetric method in nitrogen saturated with water vapor and by scanning electron microscopy (SEM) of samples that have been exposed to air with 50% relative humidity. The reaction probability is estimated to be 4 x 10 -7 for LiD exposed to ambient air with 50% relative humidity, suggesting that the diffusion through the hydroxide film is not the limiting step on the overall process at high moisture levels. The rate of growth is drastically reduced when the temperature is increased to 60 C

  12. WRKY71 and TGA1a physically interact and synergistically regulate the activity of a novel promoter isolated from Petunia vein-clearing virus.

    Science.gov (United States)

    Shrestha, Ankita; Khan, Ahamed; Mishra, Dipti Ranjan; Bhuyan, Kashyap; Sahoo, Bhabani; Maiti, Indu B; Dey, Nrisingha

    2018-02-01

    Caulimoviral promoters have become excellent tools for efficient transgene expression in plants. However, the transcriptional framework controlling their systematic regulation is poorly understood. To understand this regulatory mechanism, we extensively studied a novel caulimoviral promoter, PV8 (-163 to +138, 301 bp), isolated from Petunia vein-clearing virus (PVCV). PVCV was found to be Salicylic acid (SA)-inducible and 2.5-3.0 times stronger than the widely used CaMV35S promoter. In silico analysis of the PV8 sequence revealed a unique clustering of two stress-responsive cis-elements, namely, as-1 1 and W-box 1-2 , located within a span of 31 bp (-74 to -47) that bound to the TGA1a and WRKY71 plant transcription factors (TFs), respectively. We found that as-1 (TTACG) and W-box (TGAC) elements occupied both TGA1a and WRKY71 on the PV8 backbone. Mutational studies demonstrated that the combinatorial influence of as-1 (-57) and W-box 1-2 (-74 and -47) on the PV8 promoter sequence largely modulated its activity. TGA1a and WRKY71 physically interacted and cooperatively enhanced the transcriptional activity of the PV8 promoter. Biotic stress stimuli induced PV8 promoter activity by ~1.5 times. We also established the possible pathogen-elicitor function of AtWRKY71 and NtabWRKY71 TFs. Altogether, this study elucidates the interplay between TFs, biotic stress and caulimoviral promoter function. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.

    Science.gov (United States)

    Liu, Guangrui; Song, Huijuan; Wu, Jinhu

    2015-07-01

    Thermogravimetric experiments of two different industrial sludge samples were carried out with non-isothermal temperature programs. The results indicated that the pyrolysis process contains three obvious stages and the main decomposition reaction occurred in the range of 200-600°C. The distributed activation energy model (DAEM) was also proposed describing equally well the pyrolysis behavior of the samples. The calculated activation energy was ranged from 170 to 593kJ/mol and 125 to 756kJ/mol for SLYG (sludge sample from chemical fiber factory) and SQD (sludge sample from woody industry), respectively. The reliability of this model not only provided good fit for all experiments, but also allowed accurate extrapolations to relative higher heating rates. Besides, the FTIR measurement was also used to further understand the relationship between pyrolysis behavior and chemical structures for industrial sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thermogravimetric Analysis and Kinetic Study on Pyrolysis of Veteri-narian Solid Waste

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-10-01

    Full Text Available Context: Institutional waste from clinical centers can be classified as those coming from health institutions dedicated to human attention and those coming from centers for animal veterinary care. The latter are mainly hazardous wastes, hence their disposal requires incineration. Most of such waste is organic, and it is possible, therefore, to take advantage of their energetic power in combustion or pyrolysis processes. This work is motivated because no literature was found on the pyrolysis kinetics veterinary waste, as this kind of studies are mainly focused on hospital waste of human health care. Method: The kinetics of pyrolysis is characterized and studied by means of thermogravimetric analysis of 6 major veterinary waste (gauze, cotton swabs, cotton, nails, hair, plastic syringes. The characterization is performed by proximate and elemental analysis, and thermogravimetric analysis. Reactivity characteristics and pyrolytic capability of wastes are established. The kinetics study on pyrolysis was carried out by determining the kinetic triplet by isoconversional Starink method. Results: It was established that the pyrolysis index increases with the heating rate and that the thermal degradation depends on the material type of the waste. Similarly, it was found that the temperature (ΔT = Tf - Ti for the thermal decomposition of veterinary waste is: ΔTnails> ΔThair > ΔTcotton swabs > ΔTgauze > ΔTcotton > ΔTplastic syringes; the activation energy is Enails> E hair > Eplastic syringes > Ecotton swabs > E gauze > Ecotton, and the reaction order is: n hair > nnails > ncotton swabs > ncotton > n gauze > n plastic syringes. Conclusions: These results suggest the possibility of using veterinary wastes for power generation, providing an alternative for sustainable energy development to cities in continuous growth, from both, energetic and environmental points of view.

  15. Modified thermogravimetric apparatus to measure magnetic susceptibility on-line during annealing of metastable ferromagnetic materials

    International Nuclear Information System (INIS)

    Luciani, G.; Constantini, A.; Branda, F.; Ausanio, G.; Hison, C.; Iannotti, V.; Luponio, C.; Lanotte, L.

    2004-01-01

    The insertion of proper coils to generate a magnetic field, with controlled gradient, in a standard thermogravimetric apparatus is shown to be a valid solution to measure on-line, upon heat treatment, the magnetic susceptibility in ribbon shaped samples of a metastable ferromagnetic material. The method is very useful to individuate the annealing conditions that optimise soft or hard magnetic properties without using separate apparatuses for heat treatment, control of the structural phase transition and characterization of magnetic susceptibility

  16. Thermogravimetric analysis of silicon carbide-silicon nitride polycarbosilazane precursor during pyrolysis from ambient to 1000 C

    Science.gov (United States)

    Ledbetter, F. E., III; Daniels, J. G.; Clemons, J. M.; Hundley, N. H.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis data are presented on the unmeltable polycarbosilazane precursor of silicon carbide-silicon nitride fibers, over the room temperature-1000 C range in a nitrogen atmosphere, in order to establish the weight loss at various temperatures during the precursor's pyrolysis to the fiber material. The fibers obtained by this method are excellent candidates for use in applications where the oxidation of carbon fibers (above 400 C) renders them unsuitable.

  17. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.

    Science.gov (United States)

    Beagle, E; Wang, Y; Bell, D; Belmont, E

    2018-03-01

    Pine and oak biochars derived as byproducts of demonstration-scale pyrolysis, and blends of these two feedstocks with Powder River Basin coal, were gasified in a carbon dioxide environment using a modified drop tube reactor (MDTR) and a thermogravimetric analyzer (TGA). The impact of gasification temperature on conversion kinetics was evaluated from the temporal evolution of major product gases in the MDTR as measured using a mass spectrometer. Random pore modeling was conducted to simulate gasification in the MDTR with favorable results. The MDTR and TGA were used to conduct gasification for assessment of non-linear additive effects in the blends. Additive analysis of the blends showed deviation from the experimental blend results, indicating inhibiting effects of co-gasifying the biochar and coal. Inhibitory effects are more significant for oak than pine and more pronounced in the TGA at lower gasification temperatures. Results are discussed in the context of feedstock and reactor type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preparation and thermogravimetric study of some uranyl phosphates

    International Nuclear Information System (INIS)

    Schaekers, J.M.

    1970-10-01

    The preparation of uranyl ammonium phosphate trihydrate (UAP = UO 2 NH 4 PO 4 .3H 2 O), acid uranyl phosphate tetrahydrate(AUP = UO 2 HPO 4 .4H 2 O) and neutral uranyl phosphate tetrahydrate (NUPT = (UO 2 ) 3 (PO 4 ) 2 .4H 2 O) was investigated during the data from the literature. The thermal decomposition in different atmospheres, such as air, oxygen, nitrogen and argon, was studied in the temperature range 25-1000 0 C. It was found that the pyrophosphate U 2 O 3 P 2 O 7 is a stable decomposition product of UAP as well as of AUP. A mixture of U 3 O 8 and U 2 O 3 P 2 O 7 is obtained when the NUPT is decomposed in an oxygen-free atmosphere. NUPT however is stable in an oxidising atmosphere. Hydrogen and carbon reductions were also carried out, and UO 2 or (UO) 2 P 2 O 7 as well as mixtures of these two products can be obtained, depending on the starting material and the reduction temperature. The different reduction and decomposition reactions were studied by means of thermogravimetric analysis, and activation energies were calculated where possible. I.R. spectral analysis was also used to identify various products with the same composition [af

  19. Modification of nylon-6 fibres by radiation-induced graft polymerisation of vinylbenzyl chloride

    International Nuclear Information System (INIS)

    Ting, T.M.; Nasef, Mohamed Mahmoud; Hashim, Kamaruddin

    2015-01-01

    Modification of nylon-6 fibres by radiation-induced graft copolymerisation (RIGP) of vinylbenzyl chloride (VBC) using the preirradiation method was investigated. A number of grafting parameters such as type of solvent, total dose, monomer concentrations, reaction temperature and reaction time were studied to obtain desired degree of grafting (DG). The DG was found to be a function of reaction parameters and achieved a maximum value of 130 wt% at 20 vol% VBC concentration in methanol, 300 kGy dose, 30 °C temperature and 3 h reaction time. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to evaluate the chemical, morphological and structural changes that occurred in the grafted fibres, respectively. Thermogravimetric analysis (TGA) was also applied to determine the thermal stability, whereas differential scanning calorimeter (DSC) and universal mechanical tester were used to analyse respective thermal and mechanical properties of the grafted fibres. The results of these analyses provide strong evidence for successful grafting of VBC onto nylon-6, and the variation in the properties of the grafted fibres depends on DG. - Highlights: • Modification of nylon-6 fibres by radiation induced grafting of VBC in methanol. • Establishment of relations between DG and reaction parameters. • Evidence of VBC grafting was provided by FTIR, SEM, XRD, DSC and TGA. • The properties of VBC-grafted nylon-6 fibres depend on DG. • Amendable VBC-grafted nylon-6 fibres retain favourable properties

  20. Pyrolysis and combustion kinetics of lycopodium particles in thermogravimetric analysis

    Institute of Scientific and Technical Information of China (English)

    Seyed Alireza Mostafavi; Sadjad Salavati; Hossein Beidaghy Dizaji; Mehdi Bidabadi

    2015-01-01

    Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250−550 °C where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500−600 °C, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error.

  1. Uncertainty Determination Methodology, Sampling Maps Generation and Trend Studies with Biomass Thermogravimetric Analysis

    Science.gov (United States)

    Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Eguía, Pablo; Collazo, Joaquín

    2010-01-01

    This paper investigates a method for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG analysis) for several lignocellulosic materials (ground olive stone, almond shell, pine pellets and oak pellets), completing previous work of the same authors. A comparison has been made between results of TG analysis and prompt analysis. Levels of uncertainty and errors were obtained, demonstrating that properties evaluated by TG analysis were representative of the overall fuel composition, and no correlation between prompt and TG analysis exists. Additionally, a study of trends and time correlations is indicated. These results are particularly interesting for biomass energy applications. PMID:21152292

  2. Damage sensing ability of polymer nanocomposites filled with long, shortened and damaged carbon nanotubes

    OpenAIRE

    Inam, Fawad; Okolo, Chichi; Vo, Thuc

    2016-01-01

    Carbon nanotubes (CNTs) were aggressively tip-ultrasonicated to produce shortened and damaged carbon nanotubes. High-resolution scanning electron microscopic analysis was performed to measure the dimensions of CNTs. Thermo-gravimetric analysis (TGA) was used to evaluate the damage in the sonicated CNTs. Shortened CNTs, in their pristine form (undamaged), were used for comparison with damaged CNTs. Nanocomposite bars, containing CNTs, were indented using Vickers hardness testing machine to pro...

  3. STRUCTURAL EVOLUTION AND COMPOSITION CHANGE IN THE SURFACE REGION OF POLYPROPYLENE/CLAY NANOCOMPOSITES ANNEALED AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    唐涛

    2009-01-01

    A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene(PP)/organically modified montmorillonite(OMMT) nanocomposites.The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation.The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis(TGA).The structural evolution and composition change in the surface region of...

  4. Studies on the Synthesis,Characterization and Properties of the Reactive Thermotropic Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Four species of reactive thermotropic liquid crystalline polymer (LCMC) with different relative molecular weight were synthesized in this work (see scheme 1, n=2, 6, 10, ∞.n means number of repeat structure unit). Their structure, morphology and properties were investigated systemically by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WAXD), polarizing opticalmicroscopy (POM) and ubb...

  5. Ignition behaviour of different rank coals in an entrained flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    J. Faundez; A. Arenillas; F. Rubiera; X. Garcia; A.L. Gordon; J.J. Pis [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2005-12-01

    An experimental study to determine the temperature and mechanism of coal ignition was carried out by using an entrained flow reactor (EFR) at relatively high coal feed rates (0.5 g min{sup -1}). Seven coals ranging in rank from subbituminous to semianthracite, were tested and the evolved gases (O{sub 2}, CO, CO{sub 2}, NO) were measured continuously. The ignition temperature was evaluated from the gas evolution profiles, and it was found to be inversely correlated to the reactivity of the coal, as reflected by the increasing values of the ignition temperature in the sequence: subbituminous, high volatile bituminous, low volatile bituminous and semianthracite coals. The mechanism of ignition varied from a heterogeneous mechanism for subbituminous, low volatile bituminous and semianthracite coals, to a homogeneous mechanism for high volatile bituminous coals. A thermogravimetric analyser (TGA) was also used to evaluate coal ignition behaviour. Both methods, TGA and EFR, were in agreement as regards the mechanism of coal ignition. From the SEM micrographs of the coal particles retrieved from the cyclone, it was possible to observe the external appearance of the particles before, during and after ignition. The micrographs confirmed the mechanism deduced from the gas profiles. 23 refs., 5 figs., 1 tab.

  6. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  7. Characterization of Amazon fibers of the peach palm, balsa, and babassu by XDR, TGA and NMR

    International Nuclear Information System (INIS)

    Martins, Maria A.; Marconcini, Jose M.; Morelli, Carolina L.; Marinelli, Alessandra L.; Bretas, Rosario E.S.

    2011-01-01

    The aim of this work was to present the results by testing X-ray diffraction (XRD), thermogravimetric analysis (TG), nuclear magnetic resonance (NMR) and determining the moisture content of the peach palm, balsa and babassu fibers for assessing the feasibility of composite materials. The fibers of peach palm, balsa and babassu showed characteristic chemical structure of lignocellulosic material, and good thermal stability up to 220 deg C. The fiber with the highest crystallinity index (Ic) is the peach palm (72%) and the less crystalline is the babassu (37%), while the balsa fibers have Ic equal to 64%. The results have shown that these fibers can be used in the manufacture of composite materials. (author)

  8. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    Science.gov (United States)

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  10. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  11. Two new coordination polymers based on tartaric acid ligand: Syntheses, crystal structure and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan; Lan, You-Zhao, E-mail: sky37@zjnu.cn; Han, Min-Min; Feng, Yun-Long, E-mail: lyzhao@zjnu.cn [Zhejiang Normal University, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry (China)

    2016-09-15

    Two new coordination polymers [Cd{sub 3}(D-Tar){sub 3}]{sub n} (1) and [Pb(meso-Tar)]{sub n} (2) (H{sub 2}Tar = tartaric acid) have been synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction analysis and IR spectra. 1 crystallizes in the C222{sub 1} chiral space group and shows a 3D (4,4)-connected net with the (4.6.8{sup 4}){sub 4}(4.6{sup 2}.8{sup 2}.10)(4.6{sup 2}.8{sup 3})(4.6{sup 3}.8{sup 2})(4.6{sup 3}.8{sup 2}){sub 4}(4.8{sup 5}){sub 2} topology. 2 possesses a 3D (4,4)-connected net with the (4{sup 3}.6{sup 2}.8) topology. In addition, the thermogravimetric analyses (TGA) results for polymers are discussed.

  12. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  13. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  14. A vacuum thermogravimetric method for outgassing evaluations of silicone-coated fiberglass cloth

    Science.gov (United States)

    Jensen, L. B.; Mccauley, G. B.; Honma, M.; Hultquist, A. E.

    1972-01-01

    A method for evaluating outgassing characteristics of space-sensitive materials was devised by modifying a thermogravimetric balance so that a continual weight loss trace is obtained as a function of time at constant temperature and nearly constant pressure. In addition the apparatus is capable of collecting room temperature condensibles during the outgassing run. A series of silicone-coated glass cloth samples were evaluated by this method. The major advantage of the technique is that data presentation is developed in the form of a continuous trace. This data can then be utilized to develop the kinetics of weight loss. The technique has been shown to be a useful and valid one for indicating small differences between materials under vacuum and elevated temperature conditions.

  15. Influence of chain microstructure on thermodegradative behavior of furfuryl methacrylate-N-vinylpyrrolidone random copolymers by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Peniche, C.; Zaldivar, D. (Univ. de la Habana, Havana (Cuba). Centro de Biomateriales); Bulay, A. (Plastmassi, Moscow (Russian Federation)); Roman, J.S. (CSIC, Madrid (Spain). Inst. de Ciencia y Tecnologia de Polimeros)

    1993-12-20

    The thermal behavior of random copolymers of furfuryl methacrylate (F) and N-vinyl-pyrrolidone (P) was studied by means of dynamic thermogravimetric analysis (TGA) in the range 100--600 C. The dynamic experiments show that these copolymers exhibit two degradation steps in the intervals 260--320 C and 350--520 C, respectively. The normalized weight loss in the low temperature interval increases as the mole fraction of F in the copolymer m[sub F] increases, whereas an inverted trend in the high temperature interval is observed. The apparent activation energy E[sub a] of the first degradation step for copolymers prepared with different composition, was obtained according to the treatment suggested by Broido. A plot of the values of E[sub a] versus the F dead molar fraction in the copolymer chains m[sub FF] gave a straight line that indicates that there is a direct relationship between the thermogravimetric behavior of these systems and their corresponding microstructure, that is, the distribution of comonomeric units along the copolymers chains. The first decomposition step was also studied by isothermal TGA and a good linearity for the variation of the weight loss percentage [Delta]W versus m[sub F] at least during the first 30 min of treatment was obtained.

  16. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Mangut, V.; Sabio, E.; Ganan, J.; Gonzalez, J.F.; Ramiro, A.; Gonzalez, C.M.; Roman, S.; Al-Kassir, A. [Department of Chemical and Energy Engineering, University of Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain)

    2006-01-15

    There is an increasing concern with the environmental problems associated with the increasing CO{sub 2}, NO{sub x} and SO{sub x} emissions resulting from the rising use of fossil fuels. Renewable energy, mainly biomass, can contribute to reduce the fossil fuels consumption. Biomass is a renewable resource with a widespread world distribution. Tomato processing industry produces a high amount of biomass residue (peel and seeds) that could be used for thermal energy and electricity. A characterization and thermogravimetric study has been carried out. The residue has a high HHV and volatile content, and a low ash, and S contents. A kinetic model has been developed based on the degradation of hemicellulose, cellulose, lignin and oil that describe the pyrolysis of peel, seeds and peel and seeds residues. (author)

  17. Composite Superabsorbent Hydrogel of Acrylic Copolymer and Eggshell: Effect of Biofiller Addition

    OpenAIRE

    Queirós, Marcos Vinícius A.; Bezerra, Maslândia N.; Feitosa, Judith P. A.

    2017-01-01

    Eggshell (ES) is an abundant waste material which is mainly composed of calcium carbonate. A superabsorbent hydrogel composite based on poly(acrylamide-co-potassium acrylate) as matrix containing 17 wt.% of chicken ES powder as a filler was synthesized and compared with the gel without filler. The characterization was carried out by Fourier transform infrared (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), thermogravimetric analysis (TGA), X-ray diffr...

  18. Effect of gamma radiation on the optical properties of intraocular lenses

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2006-01-01

    The effect of gamma rays in the range of doses up to 150 gray on optical and thermal properties of the intraocular lenses (IOL) made of polymethyl methacrylate (PMMA) was studied. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) have been performed to study the effect of gamma irradiation on the IOL. The results indicate that irradiation up to 150 Gy did not affect greatly the optical and thermal properties of the investigated IOL

  19. Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS

    OpenAIRE

    Lin, Xiaona; Sui, Shujuan; Tan, Shun; Pittman, Charles; Sun, Jianping; Zhang, Zhijun

    2015-01-01

    Pyrolysis is a promising approach that is being investigated to convert lignin into higher value products including biofuels and phenolic chemicals. In this study, fast pyrolysis of four types of lignin, including milled Amur linden wood lignin (MWL), enzymatic hydrolysis corn stover lignin (EHL), wheat straw alkali lignin (AL) and wheat straw sulfonate lignin (SL), were performed using pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS). Thermogravimetric analysis (TGA) showed that the...

  20. Synthesis and characterization of poly(glycerol citrate/sebacate)

    International Nuclear Information System (INIS)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Boaventura, Jaime S.; Jose, Nadia M.

    2011-01-01

    In this work were prepared and characterized the poly(glycerol citrate/sebacate) in three different ratios between acids. The polymers were prepared by a polycondensation reaction between glycerol and citric/sebacic acids and characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The results showed that the polymers are polyesters and its crystallinity, thermal and morphological properties were modified by sebacic acid adding. (author)

  1. Synthesis and characterization of poly(glycerol citrate/sebacate); Preparacao de caracterizacao do poli(glicerol citrato/sebacato)

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Boaventura, Jaime S.; Jose, Nadia M., E-mail: mbrioude@gmail.com [Universidade Federal da Bahia - UFBA, Instituto de Quimica, Salvador, BA (Brazil)

    2011-07-01

    In this work were prepared and characterized the poly(glycerol citrate/sebacate) in three different ratios between acids. The polymers were prepared by a polycondensation reaction between glycerol and citric/sebacic acids and characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The results showed that the polymers are polyesters and its crystallinity, thermal and morphological properties were modified by sebacic acid adding. (author)

  2. Self-assembling Synthesis of Vanadium Oxide Nanotubes and Simple Determination of the Content of Ⅴ(Ⅳ)

    Institute of Scientific and Technical Information of China (English)

    MAI Li-qiang; CHEN Wen; XU Qing; ZHU Quan-yao; HAN Chun-hua; PENG Jun-feng

    2003-01-01

    High-yielding low-cost vanadium oxide nanotubes were prepared by the hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates. Moreover, a new method was discovered for determining the content of V (Ⅳ) in vanadium oxide nanotubes by thermogravimetric analysis ( TGA ). This method is simple, precise and feasible and can be extended to determine the content of low oxidation state in the other transition metal oxide nanomaterials.

  3. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    徐又一

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...

  4. Chemical pulping of waste pineapple leaves fiber for kraft paper production

    OpenAIRE

    Laftah, Waham Ashaier; Abdul Rahaman, Wan Aizan Wan

    2015-01-01

    The main objective of this study is to evaluate the implementation of acetone as a pulping agent for pineapple leaves. Mixtures of water and acetone with concentration of 1%, 3%, 5%, 7%, and 10% were used. The effects of soaking and delignification time on the paper properties were investigated. Thermal and physical properties of paper sheet were studied using thermogravimetric analysis (TGA) and tearing resistance test respectively. The morphological properties were observed using microscope...

  5. The Effect of Multidentate Biopolymer Based on Polyacrylamide Grafted onto Kappa-Carrageenan on the Spectrofluorometric Properties of Water-Soluble CdS Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2011-01-01

    Full Text Available A new fluorescent composite based on CdS quantum dots immobilized on the multidentate biopolymer matrix is prepared through the graft copolymerization of the acrylamide onto kappa-Carrageenan. A variety of techniques like thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and Fourier transform infrared spectroscopy (FT-IR was used to confirm the structure of the obtained samples. To investigate the spectrofluorometric properties, fluorescence spectroscopy of the obtained quantum dots was studied.

  6. Factors influencing moisture analysis in the 3013 destructive examination surveillance program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-24

    Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material stored in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.

  7. Factors influencing moisture analysis in the 3013 destructive examination surveillance program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2017-01-01

    Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material stored in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.

  8. A novel LaFeO3−XNX oxynitride. Synthesis and characterization

    International Nuclear Information System (INIS)

    Sierra Gallego, G.; Marín Alzate, N.; Arnache, O.

    2013-01-01

    Highlights: ► LaFeO 3 perovskite synthesized by auto combustion method. ► LaFeO 3−X N X oxynitride produced by ammonolysis reaction. ► Oxynitride characterized by XRD, Rietveld, SEM, EDX, BET, Raman, TGA and FTIR. ► Partial replacement of oxygen by nitrogen increases slightly the cell parameters. ► TGA shows that oxynitride start to decompose in air above 550 °C. Evolution of N 2 and NO was detected. - Abstract: A perovskite LaFeO 3 was synthesized by auto combustion method and then LaFeO 3−X N X oxynitride was produced by ammonolysis reaction. The synthesized LaFeO 3−X N X oxynitride was characterized by X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET) nitrogen adsorption, particle size distribution, Raman spectroscopy, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Nitrogen effect into the perovskite structure was confirmed by DRX. The structure refinement using the Rietveld method indicates that partial replacement of oxygen by nitrogen increases slightly the cell parameters of the LaFeO 3 perovskite. FTIR analysis show that bands at 995 and 1070 cm −1 in the oxynitrides spectra could be assigned to the stretching vibration modes of Fe–N bonds in the FeO 6−X N X octahedral. Thermogravimetric analysis (TGA) showed that LaFeO 3−X N X oxynitride series start to decompose in air above 550 °C. During the decomposition it was found that some amount of nitrogen stays retained in the structure forming intermediate compounds. MS analysis of the gaseous products reveals the evolution of N 2 and NO, suggesting a complex reaction mechanism. To our knowledge, there are no reports on the synthesis and characterization of the LaFeO 3−X N X oxynitrides.

  9. Thermogravimetric study of the kinetics of lithium titanate reduction by hydrogen

    International Nuclear Information System (INIS)

    Sonak, Sagar; Rakesh, R.; Jain, Uttam; Mukherjee, Abhishek; Kumar, Sanjay; Krishnamurthy, Nagaiyar

    2014-01-01

    Highlights: • Li 2 TiO 3 powder is synthesized by the gel combustion route. • Activation energy of reduction of Li 2 TiO 3 by H 2 found out to be 27.45 kJ/mol H 2 . • Non-stoichiometric phase of Li 2 TiO 3 is formed in hydrogen atmosphere. • One-dimensional diffusion appears to be the most probable mechanism of reduction. - Abstract: The lithium titanate powder was synthesized by gel-combustion route. The mechanism and the kinetics of hydrogen interaction with lithium titanate powder were studied using non-isothermal thermogravimetric technique. Lithium titanate underwent reduction in hydrogen atmosphere which led to the formation of oxygen deficient non-stoichiometric compound in lithium titanate. One-dimensional diffusion appeared to be the most probable reaction mechanism. The activation energy for reduction of lithium titanate under hydrogen atmosphere was found to be 27.4 kJ/mol/K. Structural changes after hydrogen reduction in lithium titanate were observed in X-ray diffraction analysis

  10. Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis.

    Science.gov (United States)

    Gai, Chao; Liu, Zhengang; Han, Guanghua; Peng, Nana; Fan, Aonan

    2015-04-01

    Thermogravimetric analysis and differential thermal analysis were employed to investigate combustion characteristics of two low-lipid microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP) and iso-conversional Starink approach was used to calculate the kinetic parameters in the present study. The results showed that three stages of mass loss, including dehydration, devolatilization and char oxidation, were observed during combustion of both of two low-lipid microalgae. The whole weight loss of combustion of two microalgae was both shifted to higher temperature zones with increased heating rates from 10 to 40 K/min. In the 0.1-0.9 conversion range, the apparent activation energy of CP increased first from 51.96 to 79.53 kJ/mol, then decreased to 55.59 kJ/mol. Finally, it slightly increased to 67.27 kJ/mol. In the case of SP, the apparent activation energy gradually increased from 68.51 to 91.06 kJ/mol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Combustion properties, water absorption and grindability of raw/torrefied biomass pellets and Silantek coal

    Science.gov (United States)

    Matali, Sharmeela; Rahman, Norazah Abdul; Idris, Siti Shawaliah; Yaacob, Nurhafizah

    2017-12-01

    Torrefaction, also known as mild pyrolysis, is proven to convert raw biomass into a value-added energy commodity particularly for application in combustion and co-firing systems with improved storage and handling properties. This paper aims to compare the characteristics of Malaysian bituminous coal i.e. Silantek coal with raw and torrefied biomass pellet originated from oil palm frond and fast growing tree species, Leucaena Leucocephala. Biomass samples were initially torrefied at 300 °C for 60 minutes. Resulting torrefied biomass pellets were analysed using a number of standard fuel characterisation analyses i.e. elemental analysis, proximate analysis and calorific content (high heating values) experiments. Investigations on combustion characteristics via dynamic thermogravimetric analysis (TGA), grindability and moisture uptake tests were also performed on the torrefied biomass pellets. Better quality bio-chars were produced as compared to its raw forms and with optimal process conditions, torrefaction may potentially produces a solid fuel with combustion reactivity and porosity equivalent to raw biomass while having compatible energy density and grindability to coal.

  12. Development Of Hyper branched UV Curable Resin From Palm Oil

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohamad Lokman Latif; Rida Tajau; Nik Ghazali Nik Salleh; Mohd Sofian Alias

    2014-01-01

    The hyper branched polyurethane acrylate (HBPUA) was prepared by reacting hyper branched polyol polyester (HBP) from palm oil based with diisocyanate and hydroxyl-containing acrylate monomer with the presence of 0.1-2 wt % dibutyltin dilaurate as a catalyst. The reaction was confirmed by several analyses for example determination of hydroxyl value (OHV), acid value (AV), Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analyses. HBPUA required 0.36 J/ cm 2 energy when undergone curing with UV radiation. HBPUA / TMPTA films showed 4B-2H of pencil hardness, gel content of 60-80 %, contact angle θ between 65-74 degree and T g at -15 to -5 degree Celsius. The presence of TMPTA increased degree of cross-linking and pencil hardness. The characteristic of the polymeric material and the thermal stability of UV cured films of HBPUA formulations were determined by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). The thermal decomposition temperature started at 200 degree Celsius with T max at 450 to 455 degree Celsius. (author)

  13. Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Shurong; LIU Qian; LUO Zhongyang; WEN Lihua; CEN Kefa

    2007-01-01

    Based on the investigation of the polysaccharide structure of cellulose by using Fourier transform spectrum analysis,the pyrolysis behaviour of cellulose was studied at a heating rate of 20 K/min by thermogravimetric (TG) analysis coupled with Fourier transform infrared (FTIR) spectroscopy.Experimental results show that the decomposition of cellulose mainly occurs at the temperature range of 550-670 K.The weight loss becomes quite slow when the temperature increases further up to 680 K and the amount of residue reaches a mass percent of 14.7%.The FTIR analysis shows that free water is released first during cellulose pyrolysis,followed by depolymerization and dehydration.Glucosidic bond and carbon-carbon bond break into a series of hydrocarbons,alcohols,aldehydes,acids,etc.Subsequently these large-molecule compounds decompose further into gases,such as methane and carbon monoxide.

  14. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis.

    Science.gov (United States)

    Dhyani, Vaibhav; Kumar, Jitendra; Bhaskar, Thallada

    2017-12-01

    The thermal decomposition of sorghum straw was investigated by non-isothermal thermogravimetric analysis, where the determination of kinetic triplet (activation energy, pre-exponential factor, and reaction model), was the key objective. The activation energy was determined using different isoconversional methods: Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink, Iterative method of Chai & Chen, Vyazovkin AIC method, and Li & Tang equation. The pre-exponential factor was calculated using Kissinger's equation; while the reaction model was predicted by comparison of z-master plot obtained from experimental values with the theoretical plots. The values of activation energy obtained from isoconversional methods were further used for evaluation of thermodynamic parameters, enthalpy, entropy and Gibbs free energy. Results showed three zones of pyrolysis having average activation energy values of 151.21kJ/mol, 116.15kJ/mol, and 136.65kJ/mol respectively. The data was well fitting with two-dimension 'Valensi' model for conversion values from 0 to 0.4 with a coefficient of determination (R 2 ) value of 0.988, and with third order reaction model for values from 0.4 to 0.9 with an R 2 value of 0.843. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Research on Mechanism of Paper Burning by Thermogravimetric Analysis

    Institute of Scientific and Technical Information of China (English)

    QIN Da; HAN Xingzhou; WANG Xiaoguang; QI Fengliang; WANG Zijie; GUO Zihan; HAO Hongguang

    2015-01-01

    The examination of charred document is a challenge and usually requires a careful application of certain scientific techniques due to its unstable property. To address this issue, the mechanism of paper burning was studied in this paper. Here thermal-gravimetry (TG) was applied to investigate five kinds of paper, along with their TG and derivative thermogravimetric curve (DTG) observed at different atmospheric conditions. The results showed that the shape of curves, albeit similar, varied with the physical and chemical composition of paper. In the burning process, dehydration and de-polymerization are the two main pathways for cellulose, the major ingredient of paper. The heating rate indicated little influence on the curves while the sort of atmosphere worked strongly. The reason is due to the lack of tar oxidation when nitrogen used as the atmospheric environment. At moderate temperature, de-polymerization prevails and the tar can be observed. With temperature increasing, the tar and cellulose are further decomposed, leading to products of high boiling-point. According to the results, the charred document can be classified as one of the dehydrated, tarred, charred and ashed. Except the ashed stage, the other three can be handled and the writing whereon can be deciphered. The results exposed hereof may provide a fundamental for examining and deciphering charred document.

  16. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    International Nuclear Information System (INIS)

    Pan, Shu-Yuan; Chang, E.-E.; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-01-01

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO 3 decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO 2 capture and utilization. However, the evaluation criteria of CaCO 3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO 3 standards, carbonated BOFS samples and synthetic CaCO 3 /BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO 3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for

  17. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan (China); Kim, Hyunook [Department of Environmental Engineering, University of Seoul, Seoul 130-743 (Korea, Republic of); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China)

    2016-04-15

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO{sub 3} decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO{sub 2} capture and utilization. However, the evaluation criteria of CaCO{sub 3} content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO{sub 3} standards, carbonated BOFS samples and synthetic CaCO{sub 3}/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO{sub 3} in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed

  18. Fluorescence Determination of Warfarin Using TGA-capped CdTe Quantum Dots in Human Plasma Samples.

    Science.gov (United States)

    Dehbozorgi, A; Tashkhourian, J; Zare, S

    2015-11-01

    In this study, some effort has been performed to provide low temperature, less time consuming and facile routes for the synthesis of CdTe quantum dots using ultrasound and water soluble capping agent thioglycolic acid. TGA-capped CdTe quantum dots were characterized through x-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy. The prepared quantum dots were used for warfarin determination based on the quenching of the fluorescence intensity in aqueous solution. Under the optimized conditions, the linear range of quantum dots fluorescence intensity versus the concentration of warfarin was 0.1-160.0 μM, with the correlation coefficient of 0.9996 and a limit of detection of 77.5 nM. There was no interference to coexisting foreign substances. The selectivity of the sensor was also tested and the results show that the developed method possesses a high selectivity for warfarin.

  19. DECOMPOSIÇÃO TÉRMICA DE PELLETS DE MADEIRA POR TGA

    Directory of Open Access Journals (Sweden)

    Dorival Pinheiro Garcia

    2016-03-01

    Full Text Available A utilização dos pellets de madeira para a geração de energia térmica está se difundindo no Brasil e a termogravimetria tem sido amplamente aplicada para o estudo da decomposição da madeira e seus principais componentes como a celulose, hemiceluloses e lignina. O objetivo deste trabalho foi investigar o comportamento térmico de quatro diferentes amostras de pellets de madeira, em condições não isotérmicas, por meio das análises termogravimétricas TGA. Os ensaios foram conduzidos desde a temperatura ambiente até 500°C, com taxa de aquecimento de 20°C/min, em atmosfera inerte de gás nitrogênio, com fluxo de 100 mL/min.  Os termogramas mostraram três estágios de decomposição: o primeiro, atribuído à evaporação da água e dos materiais voláteis; o segundo, refere-se à decomposição da holocelulose na pirólise ativa; e o terceiro, atribuído a decomposição da lignina na pirólise passiva. Além disso, conclui-se que a maior decomposição térmica ocorreu na faixa de temperatura compreendida entre 250°C e 400°C, com perdas superiores a 60,8% da massa inicial do biocombustível.

  20. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  1. Synergetic effect of LaB6 and ITO nanoparticles on optical properties and thermal stability of poly(vinylbutyral) nanocomposite films

    International Nuclear Information System (INIS)

    Tang, Hongbo; Su, Yuchang; Hu, Te; Liu, Shidong; Mu, Shijia; Xiao, Lihua

    2014-01-01

    In this work, different compositions of lanthanum hexaboride (LaB 6 ) and tin-doped indium oxide (ITO) nanoparticles were doped into poly(vinylbutyral) (PVB) matrix to prepare PVB/LaB 6 -ITO nanocomposite (PLINC) films by a solution casting method. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis (TGA) and ultraviolet-visible-near infrared spectroscopy (UV-vis-NIR) were employed to characterize the PLINCs. The TGA and UV-vis-NIR results reveal that the nanocomposite films possessed outstanding thermal stability. The temperature where 5 % weight loss of the PVB matrix was improved after the addition of LaB 6 and ITO particles and the property for blocking near infrared light was also enhanced as compared with the case of pure PVB film. (orig.)

  2. Aminoalkylated Merrifield Resins Reticulated by Tris-(2-chloroethyl Phosphate for Cadmium, Copper, and Iron (II Extraction

    Directory of Open Access Journals (Sweden)

    Mokhtar Dardouri

    2015-01-01

    Full Text Available We aimed to synthesize novel substituted polymers bearing functional groups to chelate heavy metals during depollution applications. Three polyamine functionalized Merrifield resins were prepared via ethylenediamine (EDA, diethylenetriamine (DETA, and triethylenetetramine (TETA modifications named, respectively, MR-EDA, MR-DETA, and MR-TETA. The aminoalkylated polymers were subsequently reticulated by tris-(2-chloroethyl phosphate (TCEP to obtain new polymeric resins called, respectively, MR-EDA-TCEP, MR-DETA-TCEP, and MR-TETA-TCEP. The obtained resins were characterized via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, elemental analysis (EA, and thermogravimetric (TGA, thermodynamic (DTA, and differential thermogravimetric (DTG analysis. The synthesized resins were then assayed to evaluate their efficiency to extract metallic ions such as Cd2+, Cu2+, and Fe2+ from aqueous solutions.

  3. An effective approach to synthesis of poly(methyl methacrylate)/silica nanocomposites

    International Nuclear Information System (INIS)

    Ding Xuefeng; Wang Zichen; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO 2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance

  4. Moessbauer investigations of palygorskite from Xuyi, China

    International Nuclear Information System (INIS)

    Huang Yanjun; Li Zhen; Li Shuzhen; Shi Ziliang; Yin Lin; Hsia Yuanfu

    2007-01-01

    The original palygorskite clay mineral has been collected from Longwangshan, Xuyi, Jiangsu Province, China. XRF analysis was performed to study its chemical compositions. Thermogravimetric analysis and differential thermogravimetric analysis (TGA/DTA) were used to study the weight loss due to dehydration and dehydroxylation. Then eight samples were prepared by heating at various temperatures. X-ray diffraction (XRD) patterns and Moessbauer spectra were measured to study the crystal evolvement and the occupation of iron cations. It revealed that the iron ions occupied the M1 and M2 with the ratio closed to 3:1. Hematite has been observed when heated at 650 deg. C, which indicated that iron cations mainly occupy M1 sites. An unknown silicate was identified when heated at 750 deg. C and dominated at 850 deg. C

  5. Novel measurement method of activation energy of non-metallic materials for NPP

    International Nuclear Information System (INIS)

    Park, Chang-Dae; Lim, Byung-Ju; Song, Chi-Sung

    2008-01-01

    This paper presents novel technique and its applicability for measuring activation energy of non-metallic materials for NPPs (nuclear power plants). The E a is a principal property for life assessment and accelerating thermal aging of equipment during environmental qualification. The E a is conventionally obtained by tensile test using UTM (Universal Testing Machine). However, this conventional method has many difficulties such as lots of big standardized specimens required and long measuring time of at least 3 months. Moreover, this is not only an inapplicable method during inservice inspection but destructive method, which are main obstacles for using UTM. Fortunately, newly developed technique for the E a such as TGA (Thermo-gravimetric Analysis) and DMA (Dynamic Mechanical Analysis) can eliminate almost all the problems of UTM. The common TGA is to measure weight change with time under constant heating rate. TGA was devised to perform the compositional analysis of materials such as rubber, carbon black, filler, volatile, etc., and to determine the thermal stability/decomposition, stoichiometry of reactions, and kinetics of reaction, by weight changes of materials when heated. TGA method has various advantages such as small amount of the sample (e.g. 20 mg), shortened measuring time of approximately 2 days, and virtually non-destructive method. In this study, we have tried to find the justification of TGA utilization for E a measurement by comparing the measured TGA data to UTM data for three cable materials. Considering reasonable consistency of our TGA data with UTM data, we conclude that TGA method gives convenient way to measure the activation energy for EPR, CR, and CSP materials with many merits, such as measuring time, specimen size and quantity required, and test expenses. (author)

  6. Synthesis, spectral and quantum chemical studies on NO-chelating sulfamonomethoxine-cyclophosph(V)azane and its Er(III) complex.

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M A; Ammar, Reda A A; Koehler, Gottfried; Wolschann, Karl Peter; El-Gogary, Tarek M

    2014-07-15

    Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of novel ethane-1,2-diol-dichlorocyclophosph(V)azane of sulfamonomethoxine (L), and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 15.8 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra. The structures of the novel isolated products are proposed based on elemental analyses, IR, UV-VIS, (1)H NMR, (31)P NMR, SEM, XRD spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Blending effects on coal burnout and NO emissions

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; R. Backreedy; A. Arenillas; J.M. Jones; F. Rubiera; M. Pourkashanian; A. Williams; J.J. Pis [Instituto Nacional del Carbon, CSIC Oviedo (Spain)

    2003-07-01

    In this work, the combustion behaviour of individual coals of different rank and their blends was evaluated. The study was focused on burnout and NO emissions during blend combustion. Preliminary combustion tests of the coals and their blends were carried out in a thermogravimetric analyser (TGA). Some characteristic temperatures were obtained to evaluate the combustibility of the samples. These temperatures indicate an improvement in the combustibility of the less reactive coal when it is blended. An entrained flow reactor (EFR) was employed to study the behaviour of the samples at high heating rates and short residence times. Burnout and NO emissions were measured during EFR combustion tests. In some blends the results can be predicted from the weighted average of the values of the individual coals. However, other blends show an increase, from the averaged values, in burnout and especially in NO emissions. 14 refs., 10 figs., 3 tabs.

  8. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Hu, Shanchao; Ma, Xiaoqian; Lin, Yousheng; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Highlights: • Thermogravimetric analysis of paper mill sludge and municipal solid waste were studied. • The combustion of paper mill sludge could be improved by blending municipal solid waste. • There existed significant interaction during co-combustion of the blends. • The OFW and Starink methods were used to obtain the activation energy. • The average activation energy was the lowest by blending 20% municipal solid waste. - Abstract: The thermal characteristics and kinetics of paper mill sludge (PMS), municipal solid waste (MSW) and their blends in the combustion process were investigated in this study. The mass percentages of PMS in the blends were 10%, 30%, 50%, 70% and 90%, respectively. The experiments were carried out at different heating rates (10 °C/min, 20 °C/min and 30 °C/min) and the temperature ranged from room temperature to 1000 °C in a thermogravimetric simultaneous thermal analyzer. The results suggested that the ignition temperature and burnout temperature of MSW were lower than that of PMS, and the mass loss rate of MSW was larger especially at low temperatures. There were only two mass loss peaks in the differential thermogravimetry (DTG) curve, while three mass loss peaks were observed when the blending ratios of PMS were 30%, 50%, 70%. The value of the comprehensive combustion characteristic index of the blends indicated a good combustibility when the percentage of PMS (PPMS) in the blends was less than 30%. There existed certain interaction between the combustion process of PMS and MSW, especially at high temperature stage. Activation energy (E) value obtained by the Ozawa–Flynn–Wall (OFW) method and the Starink method were very consistent. When the mass percentage of PMS in the blends was 80%, the E average value attained the minimum

  9. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.

    Science.gov (United States)

    Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi

    2012-01-01

    Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    Science.gov (United States)

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Sandstrom, Mary M.; Jorgensen, Betty S.; Mang, Joseph T.; Smith, Bettina L.; Son, Steven F.

    2004-01-01

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  12. Kinetic analysis of thermogravimetric data of thorium-all-cis-1,2,3,4-cyclopentanetetracarboxylic acid complex

    International Nuclear Information System (INIS)

    Ramarao, G.A.; Nair, P.K.R.; Srinivasulu, K.

    1979-01-01

    Thorium (IV) forms 1:1 complex with all-cis-1,2,3,4-cyclopentanetetracarboxylic acid (CPTA). Thermogravimetric analysis indicated that it undergoes primarily a two step decomposition of one corresponding to loss of water and another to the decomposition of the complex. Apparent activation energy, frequency factor and activation entropy were determined. Using the experimental data, the reaction order and activation energy were calculated by Freeman-Carroll method and also by Doyle method as modified by J. Zsako, by calculation of standard deviation instead of curve fitting method. (author)

  13. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M. [Physics Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Moharram, A. H. [Physics Dept., College of Science and Arts, King Abdulaziz Univ., Rabigh 21911 (Saudi Arabia)

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  14. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  15. Obtaining and characterization of a biodegradable polymer starting from the tapioca starch

    International Nuclear Information System (INIS)

    Ruiz Aviles, Gladys

    2006-01-01

    This study focuses on the preparation of tapioca starch biodegradable polymer, processed by blends of starch modified with glycerin and water as plasticizers, by using roll mill and a single-screw extruder in the process. During extrusion, there is a series of variables to control namely: the barrel temperature profile, screw torque and screw rotation speed. Tensile test, differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), Fourier transformer infrared spectroscopy (FTIR) and morphology were used in the process

  16. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    Science.gov (United States)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  17. Predicting the Impact of Multiwalled Carbon Nanotubes on the Cement Hydration Products and Durability of Cementitious Matrix Using Artificial Neural Network Modeling Technique

    Directory of Open Access Journals (Sweden)

    Babak Fakhim

    2013-01-01

    Full Text Available In this study the feasibility of using the artificial neural networks modeling in predicting the effect of MWCNT on amount of cement hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest efficiency coefficient and the lowest root mean square error, the best ANN model was chosen. The results of TGA test implied that the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt% of MWCNT. Moreover, since the efficiency coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that the ANN prediction in higher ages was more precise.

  18. Thermogravimetric control of intermediate compounds in uranium metallurgy; Control termogravimetrico de productos intermedios de la metalurgia del uranio

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L; Fernandez Cellini, R

    1959-07-01

    The thermal decomposition of some intermediate compounds in the metallurgy of the uranium as uranium peroxide, ammonium uranate, uranium and ammonium penta-fluoride, uranium tetrafluoride and uranous oxide has been study by means of the Chevenard's thermo balance. Some data on pyrolysis of synthetic mixtures of intermediate compounds which may occasionally appear during the industrial process, are given. Thermogravimetric methods of control are suggested, usable in interesting products in the uranium metallurgy. (Author) 20 refs.

  19. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.

    Science.gov (United States)

    Shah, D K; Khandavilli, S; Panchagnula, R

    2008-09-01

    Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well

  20. The synthesis of poly(vinyl chloride) nanocomposite films containing ZrO2 nanoparticles modified with vitamin B1 with the aim of improving the mechanical, thermal and optical properties.

    Science.gov (United States)

    Mallakpour, Shadpour; Shafiee, Elaheh

    2017-01-01

    In the present investigation, solution casting method was used for the preparation of nanocomposite (NC) films. At first, the surface of ZrO 2 nanoparticles (NPs) was modified with vitamin B 1 (VB 1 ) as a bioactive coupling agent to achieve a better dispersion and compatibility of NPs within the poly(vinyl chloride) (PVC) matrix. The grafting of modifier on the surface of ZrO 2 was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA). Finally, the resulting modified ZrO 2 (ZrO 2 -VB 1 ), was used as a nano-filler and incorporated into the PVC matrix to improve its mechanical and thermal properties. These processes were carried out under ultrasonic irradiation conditions, which is an economical and eco-friendly method. The effect of ZrO 2 -VB 1 on the properties and morphology of the PVC matrix was characterized by various techniques. Field emission scanning electron microscopy and transmission electron microscopy analyses showed a good dispersion of fillers into the PVC matrix with the average diameter of 37-40 nm. UV-Vis spectroscopy was used to study optical behavior of the obtained NC films. TGA analysis has confirmed the presence of about 7 wt% VB 1 on the surface of ZrO 2 . Also, the data indicated that the thermal and mechanical properties of the NC films were enhanced.

  1. Characterization on the precipitate sample of cetyltrimethylammonium bromide adsorbed onto nanocube CaCO3 particles from aqueous-ammonia-rich solution

    International Nuclear Information System (INIS)

    Rivera Virtudazo, Raymond V.; Fuji, Masayoshi; Takai, Chika; Shirai, Takashi

    2012-01-01

    Physicochemical analysis on the precipitate samples of the cationic cetyltrimethylammonium bromide (CTAB) adsorbed onto nanocube CaCO 3 particles (NcCP) in aqueous ammonia rich (NH 4 + ) solution was initially examined. The amount of CTAB added to the (<100 nm) NcCP ranging from 0.04 to 88.5 mM was prepared under room temperature aqueous alkaline condition and characterized by thermogravimetry/differential thermogravimetric analysis (TGA/DTA), Raman spectroscopy (RS), scanning electron microscopy, transmission electron microscopy (TEM), gas chromatograph combined with mass spectrometer analysis (GC–MS), and powder X-ray diffraction pattern. RS, GC–MS, and TGA/DTA analyses indicate that only layer of CTAB molecules were present on the surface of the NcCP. Moreover, this thin sheet layer was morphologically observed by the TEM image (particularly at 88 mM concentration of CTAB). In general, adsorption of CTAB molecules onto NcCP under aqueous alkaline medium had no effect on the cubic crystal structure and particle morphology. The present study confirms the adsorption mechanism of cationic surfactant onto NcCP colloids model and contributes to the better understanding of the possible structural arrangement of the sorbed surfactant molecules onto the NcCP-aqueous alkaline interface by simple characterization method. This investigation is expected to create new, low-cost route to produce promising nanopowders and conversion to hollow particles with multi-component porous surface shell wall.

  2. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    Directory of Open Access Journals (Sweden)

    Ireana Yusra A. Fatah

    2014-10-01

    Full Text Available The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC. The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose were carried out by Fourier transform infrared spectroscopy (FT-IR and X-ray diffraction (XRD. The morphology and thermal stability were investigated by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric (TGA analyses, respectively. The FTIR results showed that lignin and hemicellulose were removed effectively from the extracted cellulose nanofibrils. XRD analysis revealed that the percentage of crystallinity was increased from raw EFB to microfibrillated cellulose (MFC, but the decrease for NFC might due to a break down the hydrogen bond. The size of the NFC was determined within the 5 to 10 nm. The TGA analysis showed that the isolated NFC had high thermal stability. The finding of present study reveals that combination of sulphuric acid hydrolysis and high-pressure homogenization could be an effective chemo-mechanical process to isolate cellulose nanofibers from cellulosic plant fiber for reinforced composite materials.

  3. Thermogravimetric kinetic model of the pyrolysis and combustion of an ethylene-vinyl acetate copolymer refuse

    Energy Technology Data Exchange (ETDEWEB)

    Angela N. Garcia; Rafael Font [Universidad de Alicante, Alicante (Spain). Faculty of Sciences

    2004-06-01

    A kinetic study of the pyrolysis as well as the combustion of EVA copolymer refuse originating from the footwear industry was carried out by thermogravimetric analysis. Different runs were performed at heating rates between 5-20{sup o}C min{sup -1} and atmospheres with different percentages of oxygen: 0, 10 and 20% (v/v). Pyrolysis and combustion processes can be simulated by two series reactions. The results obtained indicate that the second reaction begins when the first one is almost finished which implies that a good correlation is also obtained by simulation of the thermal decomposition of two independent fractions. 32 refs., 4 figs., 3 tabs.

  4. Effect of ethylene glycol on the orientation and magnetic properties of barium ferrite thin films derived by chemical solution deposition

    KAUST Repository

    Meng, Siqin

    2014-03-01

    Tb-doped BiFeO3 multiferroics nanoparticles fabricated via micro-emulsion route were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The fully characterized TbxBi1-xFeO3 nanoparticles were then subjected to magnetic behavior evaluation for various technological applications. The thermogravimetric analysis (TGA) conducted in the range 25-1000 degrees C predicted the temperature (similar to 960 degrees C) for phase formation. XRD estimated the crystallite size 30-47 nm, while the particles size estimated by SEM was found (80-120 nm). The XRD data confirmed the rhombohedral (space group R3c) phase with average cell volume 182.66 angstrom(3) (for BiFeO3). Various other physical parameters like bulk density, X-ray density and porosity were also determined from the XRD data and found in agreement with theoretical predictions. The magnetic studies showed that as Bi3+ was substituted by Tb3+, all magnetic parameters were altered. The maximum saturation magnetization (M-s) (0.6691 emug(-1)) was exhibited by Tb0.02Bi0.98FeO3 while the Tb0.00Bi1.00Fe1.00O3 showed the maximum (549 Oe) coercivity. The evaluated magnetic behavior categorized these materials as soft magnetic materials that may be useful for fabricating advanced technological applications. (C) 2013 Elsevier B.V. All rights reserved.

  5. TbxBi1-xFeO3 nanoparticulate multiferroics fabricated by micro-emulsion technique: Structural elucidation and magnetic behavior evaluation

    KAUST Repository

    Anwar, Zobia

    2014-04-01

    Tb-doped BiFeO3 multiferroics nanoparticles fabricated via micro-emulsion route were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The fully characterized TbxBi1-xFeO3 nanoparticles were then subjected to magnetic behavior evaluation for various technological applications. The thermogravimetric analysis (TGA) conducted in the range 25-1000 C predicted the temperature (~960 C) for phase formation. XRD estimated the crystallite size 30-47 nm, while the particles size estimated by SEM was found (80-120 nm). The XRD data confirmed the rhombohedral (space group R3c) phase with average cell volume 182.66 Å3 (for BiFeO 3). Various other physical parameters like bulk density, X-ray density and porosity were also determined from the XRD data and found in agreement with theoretical predictions. The magnetic studies showed that as Bi3+ was substituted by Tb3+, all magnetic parameters were altered. The maximum saturation magnetization (Ms) (0.6691 emug -1) was exhibited by Tb0.02Bi0.98FeO 3 while the Tb0.00Bi1.00Fe1.00O 3 showed the maximum (549 Oe) coercivity. The evaluated magnetic behavior categorized these materials as soft magnetic materials that may be useful for fabricating advanced technological applications. © 2013 Elsevier B.V.

  6. Thermogravimetric and kinetic study of Pinyon pine in the various gases.

    Science.gov (United States)

    Kim, Seung-Soo; Shenoy, Alok; Agblevor, Foster A

    2014-03-01

    As a renewable resource, Pinyon pine can be converted into bio-oil, gas, and char through pyrolysis. It is known that recycling of the non-condensable gases, which are produced by fast pyrolysis, can increase liquid yield and decrease char yield. In this study, pyrolysis characteristics and kinetics of Pinyon pine were investigated in TGA using simulated non-condensable gases (N2, H2/N2, H2/CO2, and He/CO/H2). The apparent activation energy of Pinyon pine increased from 43.9 to 160.3kJ mol(-1) with increasing pyrolysis conversion from 5% to 95% in pure nitrogen, and reaction order was 1.35. When hydrogen (H2) and carbon monoxide (CO) mixtures were used as simulated gases, the maximum degradation temperature and activation energy decreased by 4-11°C and 6.1-10.2kJ/mol, respectively. The results show that recycling of non-condensable gases could positively influence the fast pyrolysis of biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Thermogravimetric control of intermediate compounds in uranium metallurgy; Control termogravimetrico de productos intermedios de la metalurgia del uranio

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L.; Fernandez Cellini, R.

    1959-07-01

    The thermal decomposition of some intermediate compounds in the metallurgy of the uranium as uranium peroxide, ammonium uranate, uranium and ammonium penta-fluoride, uranium tetrafluoride and uranous oxide has been study by means of the Chevenard's thermo balance. Some data on pyrolysis of synthetic mixtures of intermediate compounds which may occasionally appear during the industrial process, are given. Thermogravimetric methods of control are suggested, usable in interesting products in the uranium metallurgy. (Author) 20 refs.

  8. Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates.

    Science.gov (United States)

    Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W

    2014-11-11

    The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    Science.gov (United States)

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    Science.gov (United States)

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  11. Preparación y caracterización de la zeolita MCM-22 y de su precursor laminar

    Directory of Open Access Journals (Sweden)

    Pergher Sibele B. C.

    2003-01-01

    Full Text Available The layered precursor of MCM-22 was prepared with different Si/Al ratios: 15, 25, 50, 100 and ¥. Upon heat treatment these precursors form MCM-22 zeolite. Both layered precursor and MCM-22 zeolite were characterized by several techniques: Chemical Analysis by Atomic Absorption Spectroscopy (AAS, X-Ray Diffraction (XRD, Thermo-gravimetric Analysis (TGA, Pore Analysis by N2 and Ar adsorption, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Temperature Programmed Desorption of ammonium (TPD.

  12. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying

    DEFF Research Database (Denmark)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas

    2013-01-01

    ) microparticles prepared by spray-drying. METHODS: Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties...... and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA). RESULTS: Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent...

  13. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India)

    2015-06-24

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  14. Effect of succinic acid concentration in poly(glycerol citrate/succinate) properties

    International Nuclear Information System (INIS)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Jose, Nadia M.

    2011-01-01

    In this work were prepared and characterized polymer based on glycerol, citric and succinic acid, in three different ratios to evaluate the effect of succinic acid concentration in materials properties. The polymers were obtained by polycondensation reaction between polyol and poly acids, and were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The materials are amorphous polyesters and its thermal and morphological properties change depending on the succinic acid concentration. (author)

  15. Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices

    Directory of Open Access Journals (Sweden)

    Jejenija Osuntokun

    2016-01-01

    Full Text Available We report the synthesis and structural studies of ZnS and CdS nanoparticles in polyvinylpyrrolidone (PVP, poly(vinyl alcohol (PVA, and poly(methyl methacrylate (PMMA matrices. The metal sulfides/polymer nanocomposites were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy, electronic spectroscopy (UV-Vis, transmission electron microscopy (TEM, and thermogravimetric analysis (TGA. The particle sizes as calculated from the absorption spectra were in agreement with the results obtained from TEM and XRD data. They showed metal sulfides nanoparticles in the polymers matrices with average crystallite sizes of 1.5–6.9 nm. The TGA results indicate that incorporation of the nanoparticles significantly altered the thermal properties of the respective polymers with ZnS/PVA and CdS/PVA nanocomposites displaying higher thermal stability than the other polymer nanocomposites.

  16. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization

    International Nuclear Information System (INIS)

    Mu Bin; Zhao Mingfei; Liu Peng

    2008-01-01

    Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results

  17. Electrospinning of PVC with natural rubber

    Science.gov (United States)

    Othman, Muhammad Hariz; Mohamed, Mahathir; Abdullah, Ibrahim

    2013-11-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber's mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  18. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mu Bin; Zhao Mingfei; Liu Peng [Lanzhou University, State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering (China)], E-mail: pliu@lzu.edu.cn

    2008-05-15

    Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results.

  19. Thermotropic phase behavior of long-chain alkylammonium-alkylcarbamates

    International Nuclear Information System (INIS)

    Holas, Tomas; Zbytovska, Jarmila; Vavrova, Katerina; Berka, Pavel; Madlova, Michaela; Klimentova, Jana; Hrabalek, Alexandr

    2006-01-01

    A series of alkylammonium-alkylcarbamates with different chain length including transdermal permeation enhancer Transkarbam 12 have been prepared and characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), temperature-dependent Fourier transform infrared spectroscopy (FTIR) and temperature-dependent X-ray powder diffraction. Four transitions have been observed including solid-solid transition (I), melting (II), decomposition of the carbamate salt (III) and boiling of the released amine (IV). The first transition was connected with rearrangement of the hydrocarbon chain packing and unusual shift of symmetric CH 2 stretching vibration in the IR spectra to lower wavenumbers indicated increase of conformational order. The second transition represented melting of the molecule and the third one was attributed to the decomposition of the carbamate salt into two amine molecules and carbon dioxide as evidenced by combination of DSC and TGA curves

  20. Electrospinning of PVC with natural rubber

    International Nuclear Information System (INIS)

    Othman, Muhammad Hariz; Abdullah, Ibrahim; Mohamed, Mahathir

    2013-01-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber

  1. Electrospinning of PVC with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Muhammad Hariz; Abdullah, Ibrahim [Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Mohamed, Mahathir [Radiation Processing Technology Division (BTS), Malaysian Nuclear Agency, Bangi, 43000, Kajang (Malaysia)

    2013-11-27

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  2. Experimental Studies on Combustion Characteristics of Mixed Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Fan Jiang; Zhonggang Pan; Shi Liu; Haigang Wang

    2003-01-01

    In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper,thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3~3.5 rain to burn out in FB, but in thermogravimetric analyzer, the time is 20~25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures.Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures,there was interference among the components during fluidized bed combustion.

  3. The Effect of Sodium Dodecyl Sulfate (SDS and Cetyltrimethylammonium Bromide (CTAB on the Properties of ZnO Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yun Hin Taufiq-Yap

    2012-10-01

    Full Text Available ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB and Sodium dodecyl sulfate (SDS as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD, thermogravimetric and differential thermogravimetric analysis (TGA-DTG, FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO(sub 2) capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO(sub 2) and H(sub 2)O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  6. Apparent heat capacity measurements and thermodynamic functions of D(−)-fructose by standard and temperature-modulated calorimetry

    International Nuclear Information System (INIS)

    Magoń, A.; Pyda, M.

    2013-01-01

    Highlights: ► Experimental, apparent heat capacity of fructose was investigated by advanced thermal analysis. ► Equilibrium melting parameters of fructose were determined. ► Decomposition, superheating of crystalline fructose during melting process were presented. ► TGA, DSC, and TMDSC are useful tools for characterisation of fructose. - Abstract: The qualitative and quantitative thermal analyses of crystalline and amorphous D(−)-fructose were studied utilising methods of standard differential scanning calorimetry (DSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-isothermal TMDSC), and thermogravimetric analysis (TGA). Advanced thermal analysis of fructose was performed based on heat capacity. The apparent total and apparent reversing heat capacities, as well as phase transition parameters were examined on heating and cooling. The melting temperature, T m , of crystalline D(−)-fructose shows a heating rate dependency, which increases with raising the heating rate and leads to superheating. The equilibrium melting temperatures: T m ∘ (onset) = 370 K and T m ∘ (peak) = 372 K, and the equilibrium enthalpy of fusion Δ fus H ° = 30.30 kJ · mol −1 , of crystalline D(−)-fructose were estimated on heating for the results at zero heating rate. Anomalies in the heat capacity in the liquid state of D(−)-fructose, assigned as possible tautomerisation equilibrium, were analysed by DSC and quasi-isothermal TMDSC, both on heating and cooling. Thermal stability of crystals in the region of the melting temperature was examined by TGA and quasi-isothermal TMDSC. Melting, mutarotation, and degradation processes occur simultaneously and there are differences in values of the liquid heat capacity of D(−)-fructose with varied thermal history, measured by quasi-isothermal TMDSC. Annealing of amorphous D(−)-fructose between the glass transition temperature, T g , and the melting temperature, T m , also leads to

  7. Characterization of UO{sub 2}, a) Characterization of UO{sub 2} powder; b) Investigation of U-O system by DDK and TGA methods; Karakterizacija UO{sub 2}, a) Karakterizacija praha UO{sub 2}; b) Ispitivanje sistema U-O metodama DDK i TGA

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    The objectives of the study of U-O powder system were: detailed characterization of the UO{sub 2} powder which will be used for studying the sintering process, and more detailed properties of the U-O system (thermodynamic aspects of oxidation kinetics). Study of the physical and chemical properties of UO{sub 2} powder were performed and then oxidation kinetics of UO{sub 2} {yields}U{sub 3}O{sub 7} was investigated. Detailed qualitative DDK analysis was done. Owing to the TGA equipment there was a possibility to obtain U{sub 3}O{sub 7} study of U{sub 3}O{sub 7} {yields} U{sub 3}O{sub 8} oxidation was possible.

  8. 硫化环氧化天然橡胶的热分析%Thermogravimetric Analysis of ENR Vulcanizate

    Institute of Scientific and Technical Information of China (English)

    张北龙; 陈美; 刘惠伦

    2001-01-01

    The thermogravimetric analysis of ENR(epoxidized natural rubber) has been carried out byTG-DTG methods at temperature rising rate of 5, 10, 15 and 20 ℃ · rmin-1. The results showed thatthe activation energy of the thermoreaction in flowing air during the course of mass loss wasn't alwayskeep rising, but declined at mass loss of 1.0%~10.0%, 20.0%~30.0% and 70. 0%~80. 0%.

  9. Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Wang, Jun, E-mail: scwangjun2011@126.com [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Wu, Wei-Ping [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Ma, Aiqing, E-mail: maqandght@126.com [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China); Liu, Jian-Qiang [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China); Yadav, Reena [Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007 (India); Kumar, Abhinav, E-mail: abhinavmarshal@gmail.com [Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007 (India)

    2017-06-15

    Two new d{sup 10} based coordination polymers having formula [Cd(HL1)(L2)] (1) and [Zn(HL1)(L2)] (2) (H{sub 3}L1=5-(4-carboxyphenoxy)isophthalic acid and L2=3-(4-methyl-6-(pyridine-3-yl)pyridine-2-yl)pyridine) have been synthesized and characterized using IR, thermogravimetric analyses (TGA), photoluminescence and single-crystal X-ray diffraction techniques. The single-crystal X-ray investigation reveals that both of 1 and 2 show 2D layer architectures with square lattice topology. The photoluminescence investigation indicates that both 1 and 2 could be a prospective candidate for developing luminescence sensors for the highly sensing of nitroaromatic analytes. Furthermore, the luminescent property of 1 and 2 in different solvents analytes as well as nitrobenzene derivative have been investigated and the observed quenching in fluorescence have been corroborated by theoretical calculations. - Graphical abstract: Two new d{sup 10}-based luminescent MOFs synthesized and their sensing properties towards different nitroaromatics investigated.

  10. Thermo-Analytical and Physico-Chemical Characterization of Woody and Non-Woody Biomass from an Agro-ecological Zone in Nigeria

    Directory of Open Access Journals (Sweden)

    Ayokunle Oluwabusayo Balogun

    2014-07-01

    Full Text Available Woody (Albizia pedicellaris and Terminalia ivorensis and non-woody (guinea corn (Sorghum bicolor glume and stalk biomass resources from Nigeria were subjected to thermo-analytical and physico-chemical analyses to determine their suitability for thermochemical processing. They were found to have comparably high calorific values (between 16.4 and 20.1 MJ kg-1. The woody biomass had very low ash content (0.32%, while the non-woody biomass had relatively high ash content (7.54%. Thermogravimetric analysis (TGA of the test samples showed significant variation in the decomposition behavior of the individual biomasses. Gas chromatography/mass spectrometry (GC/MS of fatty acid methyl esters (FAMEs derivatives indicated the presence of fatty and resin acids in the dichloromethane (CH2Cl2 extracts. Analytical pyrolysis (Py-GC/MS of the samples revealed that the volatiles liberated consisted mostly of acids, alcohols, ketones, phenols, and sugar derivatives. These biomass types were deemed suitable for biofuel applications.

  11. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  12. Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems

    Directory of Open Access Journals (Sweden)

    S. A. Jadhav

    2017-02-01

    Full Text Available A series of poly(N-isopropylacrylamide-co-acrylamide thermoresponsive random copolymers with different molecular weights and composition were synthesized and characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR, differential scanning calorimetry (DSC, size exclusion chromatography (SEC and proton nuclear magnetic resonance (NMR spectroscopy. The lower critical solution temperatures (LCST of the copolymers were tuned by changing the mole ratios of monomers. Copolymer with highest molecular weight and LCST (41.2 °C was grafted on SBA-15 type mesoporous silica particles by a two-step polymer grafting procedure. Bare SBA-15 and the thermoresponsive copolymergrafted (hybrid SBA-15 particles were fully characterized by scanning electron microscope (SEM, ATR-FTIR, thermogravimetric analysis (TGA and Brunauer-Emmett-Teller (BET analyses. The hybrid particles were tested for their efficiency as temperature-sensitive systems for dermal delivery of the antioxidant rutin (quercetin-3-O-rutinoside. Improved control over rutin release by hybrid particles was obtained which makes them attractive hybrid materials for drug delivery.

  13. Synthesis and morphological examination of high-purity Ca(OH)2 nanoparticles suitable to consolidate porous surfaces

    Science.gov (United States)

    Madrid, Juan Antonio; Lanzón, Marcos

    2017-12-01

    Adequate synthetic methods to obtain pure Ca(OH)2 nanoparticles are scarcely documented in the literature. This paper presents a complete methodology to obtain highly-pure Ca(OH)2 nanoparticles that are appropriate for strengthening heritage materials. The precipitation synthesis was operated in controlled atmosphere to avoid carbonation by atmospheric CO2. A complete purification method was developed to eliminate the sodium chloride generated in the reaction. Several analytical techniques, such as electrical conductivity, pH, ion chromatography, X-ray diffraction (XRD) and thermogravimetric analysis coupled to mass spectrometry (TGA-MS) were used to analyse both the aqueous medium and solid phase. The amount of material obtained in the synthesis (yield) was quantified throughout the purification procedure. The influence of temperature on the nanoparticles' size and stability was studied by transmission electron microscopy (HRTEM) and sedimentation tests (light scattering). It was found that the synthesis yielded high-purity nanoparticles, whose morphological features were greatly affected by the reaction temperature.

  14. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  15. Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders.

    Science.gov (United States)

    Ming, Jian; Chen, Long; Hong, Hui; Li, Jinlong

    2015-09-01

    Lentinus edodes is an edible mushroom commonly known as shiitake, which is the second most produced and consumed edible mushroom in the world and is an important nutrient source in the human diet. To fully use L. edodes, the mushrooms are occasionally ground into powder as a flavourful and functional food additive. This study produces powders from the cap and stipe of Lentinus edodes mushrooms through superfine grinding. These powders are composed of sub-micron range particles with various size distributions. The superfine grinding process is then compared with shear pulverisation to determine the different effects on both the cap and stipe powders in terms of particle size and physico-chemical, morphological and thermogravimetric properties. When average particle size was reduced to 0.54 and 0.46 µm, respectively, the moisture and protein content, angles of repose and slide, and water holding capacity of the powders decreased to varied extents. However, soluble dietary fibre, water solubility index, and swelling capacity increased. Scanning electron microscope images suggested that the superfine grinding process effectively changed the original surface structure of the L. edodes powders. The curves of thermogravimetric analysis and those of the derivatives of thermogravimetry indicated that superfine grinding can improve the thermostability of L. edodes powders. Furthermore, superfinely ground L. edodes powders may be used as pharmaceutical or food additives in various fields. The present study suggests that superfinely ground L. edodes powders may be applied in various fields as pharmaceutical or food additives. © 2014 Society of Chemical Industry.

  16. Climate to measure. Facility management for Universal Music at Berlin; Klima nach Mass. TGA-Planung fuer Universal Music in Berlin

    Energy Technology Data Exchange (ETDEWEB)

    McLead, E.A.

    2002-07-01

    Designing and constructing the technical facilities for a historical building like the 'Spreespeicher' in Berlin is a difficult but interesting task. The building is owned by Universal Music. Each department has its own office structure, and all offices and structures were integrated in a functional overall concept by the planners of Happold Ingenieure. [German] Klima, Lueftung und Elektroinstallation fuer ein historisches Gebaeude wie den Berliner Spreespeicher zu entwickeln, ist eine schwierige, aber reizvolle Aufgabe. Besonders, wenn der Nutzer Universal Music heisst: Jede Abteilung besitzt ihre eigene Buerostruktur, und alle mussten die TGA-Planer von Happold Ingenieure in ein funktionierendes Gesamtkonzept integrieren. (orig.)

  17. Thermogravimetric studies of high temperature reactions between potassium salts and chromium

    International Nuclear Information System (INIS)

    Lehmusto, J.; Lindberg, D.; Yrjas, P.; Skrifvars, B.-J.; Hupa, M.

    2012-01-01

    Highlights: ► K 2 CO 3 reacted with Cr 2 O 3 forming K 2 CrO 4 . ► Presence of chlorine did not alone explain the initiation of accelerated oxidation. ► More light was shed to the role of chromates in accelerated oxidation. ► Accelerated oxidation of chromia protected steels occurs in two consecutive stages. ► Both potassium and chloride are required, so that both stages of reaction occur. - Abstract: This study compares the high temperature reactions of potassium chloride (KCl) and potassium carbonate (K 2 CO 3 ), two salts found in fly ashes formed in biomass combustion, with both pure metallic chromium (Cr) and chromium oxide (Cr 2 O 3 ). The reactions were investigated with thermogravimetric measurements and the results discussed based on thermodynamic calculations. In simple terms: potassium chloride reacted with chromium forming potassium chromate (K 2 CrO 4 ) and chromium oxide. Potassium chloride did not react with chromium oxide. Potassium carbonate reacted with chromium oxide, but not with chromium. The presence of potassium is sufficient to initiate accelerated oxidation, but chloride is needed to sustain it.

  18. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation

    Science.gov (United States)

    Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.

    2018-04-01

    Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.

  19. Plasma-aided surface technology for modification of materials referred to fire protection

    International Nuclear Information System (INIS)

    Dineff, P.; Gospodinova, D.; Kostova, L.; Vladkova, T.; Chen, E.

    2008-01-01

    There has been considerable interest in dielectric barrier air discharge at atmospheric pressure and room temperature over the past decade due to the increased number of industrial applications. New plasma-aided capillary impregnation technology for flame spreading stop and fire protection of porous materials was developed. Research, based on thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC), proves that plasma-chemical surface pre-treatment exert material change on chemical interaction between phosphorus containing flame retardant and wood matrix (Pinus sylvestris, Bulgaria; Pseudotsuga, Canada)

  20. Study on the Properties of Microcapsulated Chlorocyclophosphazene Polypropylene Composites%三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    刘亚青; 赵贵哲

    2007-01-01

    Microcapsulated chlorocyclophosphazenes were synthesized, and then microcapsulated chlorocyclophosphazene/polypropylene(PP) composites were prepared.The results showed that microcapsulated chlorocyclophosphazene had good high thermal stability through thermogravimetric analysis (TGA).The flammability and mechanical properties of microcapsulated chlorocyclophosphazene/polypropylene composites were investigated by limiting oxygen index experiment, UL 94V flame retardancy test, cone calorimetry, tensile experiment, and impact test, respectively.It was shown that the microcapsulated chlorocyclophosphazene/PP composites had better tensile strength, impact strength, flame retardant properties and smoke suppress properties compared with chlorocyclophosphazene/PP composites.

  1. Modification of montmorillonite with alkyltrimethylammonium bromides. Effect of thermal and ultrasonic treatment upon the structure of montmorillonite

    International Nuclear Information System (INIS)

    Rodriguez M, F.J.; Galotto Lopez, M.J.; Guarda M, A.

    2009-01-01

    The aim of this work was synthesized organo clays using different methodologies oriented to improve the cationic interchange between montmorillonite and organic salts. Thermal and thermal-ultrasonic methods were studied. According to obtained results, the ultrasonic application improved the interchange between organic ammonium and sodium ion of the clay. On the other hand, an important effect of molecular weight of organic surfactant was observed. Formation of organo clays was evidenced through ray-X diffraction (RXD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). (author)

  2. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil.

    Science.gov (United States)

    Gallego, Rocío; Arteaga, Jesús F; Valencia, Concepción; Franco, José M

    2013-06-03

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  3. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal

    International Nuclear Information System (INIS)

    Zhang Chaoqun; Jiang Xiumin; Wei Lihong; Wang Hui

    2007-01-01

    Based on isothermal thermogravimetric analysis (TGA) and kinetic equations, the optimization toolbox of MATLAB was applied to study the effects of particle size and heating rate on the pyrolysis characteristics and kinetics and to obtain the mechanism function and kinetic parameters of Yuanbaoshan coal at four different particle sizes and heating rates. The pyrolysis characteristics of the samples were analyzed using thermogravimetric (TG) curves and differential thermogravimetric (DTG) curves. The results show that the coal pyrolysis process is strongly affected by heating rate and particle size. As the heating rate increases, the temperature of volatile matter initiation increases, the total volatile matter evolved decreases and the DTG peak shifts toward higher temperature. As the particle size decreases, the temperature of volatile matter initiation of the coal sample decreases and the maximum rate of mass loss increases. In the pyrolysis of coal, the activation energies of the samples were found to increase with growing particle size and decreasing heating rate for both of the devolatilization temperature stages. In the lower temperature stage, the coal samples show a great difference in mechanism function at different particle sizes and heating rates

  4. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    Science.gov (United States)

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT

    Science.gov (United States)

    Volynets, N. I.; Poddubskaya, O. G.; Demidenko, M. I.; Lyubimov, A. G.; Kuzhir, P. P.; Suslyaev, V. I.; Pletnev, M. A.; Zicans, Janis

    2017-08-01

    Mechanical and thermogravimetric properties of polymer composite materials with various concentrations of multiwalled carbon nanotubes effectively shielding radiation in the radio frequency (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges are studied. As a matrix, widely available polymeric materials, such as polyvinyl acetate and styrene-acrylate, were used in the form of dispersions. From the analysis of the obtained experimental data, it was shown that the introduction of carbon nanotubes into the polymer matrix makes it possible to increase mechanical properties and thermal stability of composite materials.

  6. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Novakovic, L.; Gal, O.; Markovic, V.; Stannett, V.T.

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author)

  7. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae.

    Science.gov (United States)

    Gai, Chao; Zhang, Yuanhui; Chen, Wan-Ting; Zhang, Peng; Dong, Yuping

    2013-12-01

    The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO2 adsorption performance

    Science.gov (United States)

    Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef

    2017-06-01

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.

  9. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, Hazizan Md.; Noor, Ahmad Md.

    2010-01-01

    Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 o C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs-epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.

  10. Synergistic effects of iron powder on intumescent flame retardant polypropylene system

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available The effects of iron powder as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP were studied. The thermogravimetric analysis (TGA and cone calorimeter (CONE were used to evaluate the synergistic effects of iron powder (Fe. The TGA data showed that Fe could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that Fe and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR, mass loss (ML, Mass loss rate (MLR, total heat release (THR, carbon monoxide and so on. Thus, a suitable amount of Fe plays a synergistic effect in the flame retardancy of IFR composites.

  11. Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.

    Science.gov (United States)

    Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad

    2018-04-01

    In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.

  12. Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reduction

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Agersted, Karsten; Hansen, Karin Vels

    2015-01-01

    The reduction of a metal oxide is often a critical preparation step for activating catalytic behaviour. This study addresses the reduction process of NiO in pure form and in a composite of NiO/yttria-stabilized zirconia (YSZ) in hydrogen relevant for solid oxide electrochemical cells by comparing...... results from environmental transmission electron microscopy (ETEM) with thermogravimetric analysis (TGA). The temperature dependent reduction profiles obtained from TGA confirm an inhibitive effect from YSZ on the NiO reduction. The ETEM images show the growth of Ni in decaying NiO and reveal...... the nanoscale morphological changes such as pore formation in NiO above 280°C and densification and collapse of the pore structures above 400°C. The accelerated Ni front in NiO illustrates the auto catalysis of the reaction. A rapid temperature ramping from room temperature to 780°C in hydrogen in 1 second...

  13. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application

    Science.gov (United States)

    Kiani, Mohammad Amin; Ahmadi, Seyed Javad; Outokesh, Mohammad; Adeli, Ruhollah; Mohammadi, Aghil

    2017-12-01

    In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower Young's modulus in all samples under consideration. TGA analysis also shows that thermal stability of the nanocomposite, increases in presence of B4C. Finally, neutron absorption analysis shows that increasing the B4C concentration leads to a nonlinearly build-up of neutron absorption cross section.

  14. SYNTHESIS AND CHARACTERISTICS OF GRAFT COPOLYMERS OF POLY (BUTYL ACRYLATE AND CELLULOSE WITH ULTRASONIC PROCESSING AS A MATERIAL FOR OIL ABSORPTION

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2011-11-01

    Full Text Available A series of materials used for oil absorption based on cellulose fiber grafted with butyl acrylate (BuAc have been prepared by radical polymerization under ultrasonic waves processing. Effects of ultrasonic dose for the maximum graft yield were considered. The dependency of optimum conditions for oil absorption rate on parameters such as ultrasonic processing time and ultrasonic power were also determined. Fourier infrared (FT-IR analysis was used to confirm the chemical reaction taking place between cellulose and butyl acrylate. The thermogravimetric behavior of the graft copolymer was characterized by thermogravimetric analysis (TGA. Scanning electron microscope (SEM analysis was used to determine the surface structure of the grafted material. With the increase of the ultrasonic treatment dose, the surface of the ultrasonic processed material became more regular, and the material was transformed into a homogeneous network polymer having a good structure and good adsorbing ability.

  15. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2011-09-01

    In this work, multiwall carbon nanotubes (CNT) were functionalized by acid treatment and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Polystyrene/CNT composites of both the untreated and acid treated carbon nanotubes were prepared by thermal bulk polymerization without any initiator at different loadings of CNT. The tensile tests showed that the addition of 0.5 wt.% of acid treated CNT results in 22% increase in Young\\'s modulus. The DSC measurements showed a decrease in glass transition temperature (Tg) of PS in the composites. The rheological studies at 190 °C showed that the addition of untreated CNT increases the viscoelastic behavior of the PS matrix, while the acid treated CNT acts as plasticizer. Thermogravimetric analysis indicated that the incorporation of CNT into PS enhanced the thermal properties of the matrix polymer. © 2011 Elsevier Ltd. All rights reserved.

  16. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  17. Synthesis of superabsorbent hydrogel by radiation crosslinking of acrylic acid, semi-refined kappa-carrageenan and sugarcane bagasse blend

    International Nuclear Information System (INIS)

    Jizmundo, Leonie-Lou Dominguez

    2015-04-01

    Superabsorbent hydrogels have three-dimensional networks that enable it to exhibit great water absorption capacity leading to its promising applications. However, existing commercial hydrogels are mainly acrylic acid which causes environmental problems. In this study, the incorporation of agricultural waste as filler and polysaccharide from natural sources as binder for the production of superabsorbent hydrogel was done to reduce the use of acrylic acid as well as its environmental impact while adding value to the incorporated materials. A series of superabsorbent hydrogel with the blend of acrylic acid, semi-refined kappa carrageenan and sugarcane bagasse were synthesized by radiation crosslinking. The gel fraction and swelling capacity of the hydrogels were determined and studied. The characterizations were facilitated by Fourier transform infrared spectroscopy technique (FTIR) and Thermogravimetric Analysis (TGA). In the results obtained from analyses, the characteristic peaks of acrylic acid and sugarcane bagasse were observed in the FTIR spectra and the three step peaks if synthesized hydrogel in its TGA implies an improvement in thermal stability of the product. The synthesized superabsorbent hydrogel blends had exhibited comparable gel fraction to that of the polyacrylic acid hydrogel, had great swelling capacity, and achieved equilibrium degree of swelling within 72-96 hours. The optimum synthesized superabsorbent hydrogel is 3% semi-refined kappa-carrageenan, 3% sugarcane bagasse, 15% acrylic acid neutralize up to 50% and irradiated at 15kGy dose which exhibited a swelling of 599.53 and gel fraction of 39.73. (author)

  18. Characterization of coal and char reactivity as a function of burn-off

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J. [DTU, Dept. of Energy Engineering (Denmark); Holst Soerensen, L. [Risoe National Lab. (Denmark); Peck, R.E. [Arizona State University (United States)

    1996-12-01

    Four coal types have been tested under varying burning conditions in three high-temperature experimental facilities: A 1.3 MW test furnace, an entrained flow reactor and a down-fired tube furnace with a flat flame burner have been used to produce char samples. More than one hundred partly burned samples with burn-off from 30% to 99% have been collected from the experimental facilities, and analyzed in a thermogravimetric analyser (TGA) giving, besides the proximate data, a char burning profile of each individual sample, using a linear TGA-temperature ramp of 3 deg. C/minute. The burning profile derived by this procedure agrees well with reactivity profiles derived at a constant temperature. It is shown that small particle burn faster than large particles, and that small particles in general are more reactive than large particles. Particles burn faster when the oxygen partial pressure is increased, and apparently the oxygen partial pressure influences the combustion rate differently for different coal types. Except for one coal type, that apparently behaves differently in different burning environments, the ranking with respect to reactivity among the coals remains consistent at both high and at low temperatures. It is further shown how samples from one coal type varies more in behavior than samples from the other coal types, indicating a larger inhomogeneity of this coal. In general the reactivity of collected samples decrease with high-temperature burn-off. (au) 20 refs.

  19. Thermogravimetric analysis, PXRD, EDX and XPS study of chrysocolla (Cu,Al)2H2Si2O5(OH)4·nH2O-structural implications

    International Nuclear Information System (INIS)

    Frost, Ray L.; Xi, Yunfei; Wood, Barry J.

    2012-01-01

    Highlights: ► We have undertaken a TG X PS study of the mineral chrysocolla. ► The chemical bonding of Cu, O and Si has been determined. ► It is concluded that chrysocolla is a mineral in its own right. ► It is not a colloidal mixture of spertiniite and amorphous silica. - Abstract: Selected chrysocolla mineral samples from different origins have been studied by using PXRD, SEM, EDX and XPS. The XRD patterns show that the chrysocolla mineral samples are non-diffracting and no other phases are present in the minerals, thus showing the chrysocolla samples are pure. SEM analyses show the chrysocolla surfaces are featureless. EDX analyses enable the formulae of the chrysocolla samples to be calculated. The thermal decomposition of the mineral chrysocolla has been studied using a combination of thermogravimetric analysis and derivative thermogravimetric analysis. Five thermal decomposition mass loss steps are observed for the chrysocolla from Arizona (a) at 125 °C with the loss of water, (b) at 340 °C with the loss of hydroxyl units, (c) at 468.5 °C with a further loss of hydroxyls, (d) at 821 °C with oxygen loss and (e) at 895 °C with a further loss of oxygen. The thermal analysis of the chrysocolla from Congo shows mass losses at 125, 275.3, 805.6 and 877.4 °C and for the Nevada chrysocolla, mass loss steps at 268, 333, 463, 786.0 and 817.7 °C are observed. The thermal analysis of spertiniite is very different from that of chrysocolla and thermally decomposes at around 160 °C. XPS shows that there are two different copper species present, one which is bonded to oxygen and one to a hydroxyl unit. The O 1s is broad and very symmetrical suggesting two O species of equal number. The bond energy of 102.9 eV for the Si 2p suggests that it is in the form of a silicate. The bond energy is much higher for silicas around ∼103.5 eV. The reported value for silica gel has Si 2p at 103.4 eV. The combination of TG, PXRD, EDX and XPS adds to our fundamental

  20. FERLENT - a controlled release fertilizer produced from a polymer material

    International Nuclear Information System (INIS)

    Gonzalez, Mayra; Arces, Milagros; Cuesta, Ernesto; Corredera, Pilar; Sardina, Carmen; Rieumont, Jacques; Quintana, Patricia; Bartolo, Pascual; Guenther, Bluma

    2011-01-01

    The possibility to use release controlled fertilizers in the agriculture of the tropical countries is more important than in the agriculture of the countries of the template regions. In this context, this work purpose the development of a new Fertilizer of Controlled Release named FERLENT, which was obtained starting from a polymeric material, under controlled conditions which allowed to corroborate the adjustment of the synthesis parameters under the modulate of nutrients liberation. It was characterized by, Scanning Microscopy Electron (SEM), Thermogravimetric analysis (TGA), Nuclear Magnetic Resonance (NMR) and infrared spectroscopy (FTIR). (author)

  1. Near-infrared spectroscopy. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy's (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program

  2. A Comparative Study of Carbon Nanotubes Synthesized from Co/Zn/Al and Fe/Ni/Al Catalyst

    Directory of Open Access Journals (Sweden)

    Ezekiel Dixon Dikio

    2011-01-01

    Full Text Available The catalyst systems Fe/Ni/Al and Co/Zn/Al were synthesized and used in the synthesis of carbon nanotubes. The carbon nanotubes produced were characterized by Field Emission Scanning Electron Microscope (FE-SEM, Energy Dispersive x-ray Spectroscopy (EDS, Raman spectroscopy, Thermogravimetric Analysis (TGA and Transmission Electron Microscope (TEM. A comparison of the morphological profile of the carbon nanotubes produced from these catalysts indicates the catalyst system Fe/Ni/Al to have produced higher quality carbon nanotubes than the catalyst system Co/Zn/Al.

  3. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    International Nuclear Information System (INIS)

    EL-Nahas, H.H.; Gad, Y.H.; Magida, M.M.

    2013-01-01

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  4. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  5. Hydroxyapatite-Functionalized Graphene: A New Hybrid Nanomaterial

    Directory of Open Access Journals (Sweden)

    C. Rodríguez-González

    2014-01-01

    Full Text Available Graphene oxide sheets (GO were functionalized with hydroxyapatite nanoparticles (nHAp through a simple and effective hydrothermal treatment and a novel physicochemical process. Microstructure and crystallinity were investigated by Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, X-ray diffraction (XRD, ultraviolet-visible (UV-Vis absorption spectroscopy, and thermogravimetric analysis (TGA. Transmission electron microscopy (TEM and scanning electron microscopy (SEM were performed to characterize the morphology of the functionalized material. The resulting novel materials combine the biocompatibility of the nHAp with the strength and physical properties of the graphene.

  6. Radiation processed hydrogels (wound dressings) for medical applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2004-01-01

    Thermal analysis plays an important role in study and development of hydrogel materials for medical applications. Thermal stability of the ingredients which is important from the point of manufacturing, rate of evaporation for shelf life evaluation, determination of gelation and temperature responsive temperatures, cooling behaviour, gel elasticity, radiation effects etc. can be studied using thermal analysis equipment like Differential scanning calorimetry (DSC), Thermo-gravimetric analysis (TGA) and thermo-mechanical analysis (TMA). In this use of these techniques in development, evaluation and quality control of hydrogel wound dressing is discussed

  7. Structural and thermal properties of γ – irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Sarojini, B. K. [Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Somashekar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore - 570006 (India)

    2015-06-24

    The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.

  8. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    OpenAIRE

    Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

    2006-01-01

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 oK in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct t...

  9. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  10. Synthesis and Thermal Properties of a Novel Nitrogen-containing Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    Xing Hong ZHANG; Hong Mei WAN; Yu Qin MIN; Zuo FANG; Guo Rong QI

    2005-01-01

    A new nitrogen-containing epoxy resin (XT resin) was synthesized from chain extension of xylenephenolformaldehyde resin (XPF) and triglycidyl isocyanurate (TGIC) in the presence of base catalyst. FT-IR and 1H-NMR analysis confirmed the chemical structure of XT resin. It was cured with dicyandiamide (DICY) and diaminodiphenyl sulfone (DDS). Dynamic mechanical analysis (DMA) results showed that the introduction of triazine ring provides epoxy polymer with good thermal stability. Furthermore, high char yields at 800℃ in thermogravimetric (TGA)analysis indicated that XT resin had potential flame retardance.

  11. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  12. Effect of oxygen content on the electrical transport and superconducting properties of Pb0.5Sr2.5Y0.6Ca0.4Cu2O7-y

    International Nuclear Information System (INIS)

    Ruan, K.Q.; China Univ. of Science and Technology, Hefei, AH; Jin, H.; China Univ. of Science and Technology, Hefei, AH; Feng, Y.; China Univ. of Science and Technology, Hefei, AH; Zhou, Y.Q.; China Univ. of Science and Technology, Hefei, AH; Chui, X.D.; China Univ. of Science and Technology, Hefei, AH; Wang, C.Y.; China Univ. of Science and Technology, Hefei, AH; Cao, L.Z.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Zhang, Y.H.

    1997-01-01

    Two kinds of methods have been used to synthesize Pb 0.5 Sr 2.5 Y 0.6 Ca 0.4 Cu 2 O 7-y samples. The synthesized sample using the first method shows superconductivity, while that using the second method exhibits a localized behavior at low temperatures Thermogravimetric analysis (TGA) and electrical transport measurements have been carried out on superconducting and nonsuperconducting samples grown under the two kinds of synthesis conditions and the effect of oxygen content on the transport and superconducting properties is discussed briefly. (orig.)

  13. Synthesis, characterization, and property studies of (La, Ag) FeO{sub 3} (0.0 {<=} x {<=} 0.3) perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Bellakki, Manjunath B.; Kelly, Brandon J. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Manivannan, V., E-mail: mani@engr.colosate.ed [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2010-01-07

    Applying a solution - based combustion process, Ag-doped LaFeO{sub 3} orthoferrites were synthesized. The samples were characterized by multiple techniques to establish structure - property relationships. Specifically, for structural characterization, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transmission infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), and X-ray photoelectron microscopy (XPS) were carried out. For properties, squid magnetometer measurements (for magnetic properties), titrations (for chemical analysis), and diffuse reflectance (for optical band gap properties) measurements were carried out to elucidate structure-property relationship.

  14. Role of CA-EDTA on the Synthesizing Process of Cerate-Zirconate Ceramics Electrolyte

    OpenAIRE

    Abdullah, Nur Athirah; Hasan, Sharizal; Osman, Nafisah

    2013-01-01

    The role of a combination between citric acid (CA) and ethylenediaminetetra acetic acid (EDTA) as chelating agents in preparation of BaCe0.54Zr0.36Y0.1O2.95 powder by a modified sol-gel method is reported. The precursor solutions were prepared from metal nitrate salts (M+), chelating agents (C), and ethylene glycol (EG) at molar ratio of M+ : C : EG = 3 : 2 : 3. Chemical and phase transformation of samples during thermal decomposition were analyzed by thermogravimetric analysis (TGA) and Four...

  15. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  16. Differential thermal, Thermogravimetric and X-ray diffraction investigation of hydration phases in cementitious waste form

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Nagy, M.E.; El-Sourougy, M.R.; Zaki, A.A.

    1996-01-01

    Hydration phases of cement determine the final properties of the product. Adding other components to the cement paste may alter the final phases formed and affect properties of the hardened products. In this work ordinary portland cement and/or blast furnace slag cement were hardened with low-or intermediate-level radioactive liquid wastes and different additives. Hydration phases were investigated using differential thermal, thermogravimetric, and X-ray diffraction techniques. Low-and intermediate-level liquid wastes were found not to affect the hydration phases of cement. The addition of inorganic exchangers and latex were found to affect the hydration properties of the cement waste system. This resulted in a reduction of compressive strength. On the contrary, addition of epoxy also affected the hydration causing increase in compressive strength. 10 figs., 2 tabs

  17. Water desorption of cassava starch granules: A study based on thermogravimetric analysis of aqueous suspensions and humid powders.

    Science.gov (United States)

    Ayala Valencia, Germán; Djabourov, Madeleine; do Amaral Sobral, Paulo José

    2016-08-20

    This work reports on water desorption from cassava starch in relation with the structure and conditioning of granules in suspensions or after equilibration in desiccators. The experimental work is performed by thermogravimetric analysis with isothermal and non-isothermal protocols and interpreted to derive the activation energies and desorption frequencies according to the humidity range with no adjustable parameter. The analysis points out the different types of water interacting with the starch granules and relates the drying coefficients to their microscopic structure. The work helps clarifying contradictory and partial results from the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallotetraphenylporphyrins

    Directory of Open Access Journals (Sweden)

    Rasha K. Al-Shewiki

    2017-06-01

    Full Text Available Subsequent treatment of H2TPP(CO2H4 (tetra(p-carboxylic acid phenylporphyrin, 1 with an excess of oxalyl chloride and HNR2 afforded H2TPP(C(ONR24 (R = Me, 2; iPr, 3 with yields exceeding 80%. The porphyrins 2 and 3 could be converted to the corresponding metalloporphyrins MTPP(C(ONR24 (R = Me/iPr for M = Zn (2a, 3a; Cu (2b, 3b; Ni (2c, 3c; Co (2d, 3d by the addition of 3 equiv of anhydrous MCl2 (M = Zn, Cu, Ni, Co to dimethylformamide solutions of 2 and 3 at elevated temperatures. Metalloporphyrins 2a–d and 3a–d were obtained in yields exceeding 60% and have been, as well as 2 and 3, characterized by elemental analysis, electrospray ionization mass spectrometry (ESIMS and IR and UV–vis spectroscopy. Porphyrins 2, 2a–d and 3, 3a–d are not suitable for organic molecular beam deposition (OMBD, which is attributed to their comparatively low thermal stability as determined by thermogravimetric analysis (TG of selected representatives.

  19. Isolation and Characterization of Nano-Hydroxyapatite from Salmon Fish Bone

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2015-08-01

    Full Text Available Nano-Hydroxyapatite (nHA was isolated from salmon bone by alkaline hydrolysis. The resulting nHA was characterized using several analytical tools, including thermogravimetric analysis (TGA, Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction analysis (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM, to determine the purity of the nHA sample. The removal of organic matter from the raw fish was confirmed by TGA. FT-IR confirmed the presence of a carbonated group and the similarities to synthetic Sigma HA. XRD revealed that the isolated nHA was amorphous. Microscopy demonstrated that the isolated nHA possessed a nanostructure with a size range of 6–37 nm. The obtained nHA interacted with mesenchymal stem cells (MSCs and was non-toxic. Increased mineralization was observed for nHA treated MSCs compared to the control group. These results suggest that nHA derived from salmon is a promising biomaterial in the field of bone tissue engineering.

  20. Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber

    Science.gov (United States)

    Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.

    2016-04-01

    In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.