WorldWideScience

Sample records for thermographically measured sar

  1. Standardized assessment of infrared thermographic fever screening system performance

    Science.gov (United States)

    Ghassemi, Pejhman; Pfefer, Joshua; Casamento, Jon; Wang, Quanzeng

    2017-03-01

    Thermal modalities represent the only currently viable mass fever screening approach for outbreaks of infectious disease pandemics such as Ebola and SARS. Non-contact infrared thermometers (NCITs) and infrared thermographs (IRTs) have been previously used for mass fever screening in transportation hubs such as airports to reduce the spread of disease. While NCITs remain a more popular choice for fever screening in the field and at fixed locations, there has been increasing evidence in the literature that IRTs can provide greater accuracy in estimating core body temperature if appropriate measurement practices are applied - including the use of technically suitable thermographs. Therefore, the purpose of this study was to develop a battery of evaluation test methods for standardized, objective and quantitative assessment of thermograph performance characteristics critical to assessing suitability for clinical use. These factors include stability, drift, uniformity, minimum resolvable temperature difference, and accuracy. Two commercial IRT models were characterized. An external temperature reference source with high temperature accuracy was utilized as part of the screening thermograph. Results showed that both IRTs are relatively accurate and stable (<1% error of reading with stability of +/-0.05°C). Overall, results of this study may facilitate development of standardized consensus test methods to enable consistent and accurate use of IRTs for fever screening.

  2. Calibration and verification of thermographic cameras for geometric measurements

    Science.gov (United States)

    Lagüela, S.; González-Jorge, H.; Armesto, J.; Arias, P.

    2011-03-01

    Infrared thermography is a technique with an increasing degree of development and applications. Quality assessment in the measurements performed with the thermal cameras should be achieved through metrology calibration and verification. Infrared cameras acquire temperature and geometric information, although calibration and verification procedures are only usual for thermal data. Black bodies are used for these purposes. Moreover, the geometric information is important for many fields as architecture, civil engineering and industry. This work presents a calibration procedure that allows the photogrammetric restitution and a portable artefact to verify the geometric accuracy, repeatability and drift of thermographic cameras. These results allow the incorporation of this information into the quality control processes of the companies. A grid based on burning lamps is used for the geometric calibration of thermographic cameras. The artefact designed for the geometric verification consists of five delrin spheres and seven cubes of different sizes. Metrology traceability for the artefact is obtained from a coordinate measuring machine. Two sets of targets with different reflectivity are fixed to the spheres and cubes to make data processing and photogrammetric restitution possible. Reflectivity was the chosen material propriety due to the thermographic and visual cameras ability to detect it. Two thermographic cameras from Flir and Nec manufacturers, and one visible camera from Jai are calibrated, verified and compared using calibration grids and the standard artefact. The calibration system based on burning lamps shows its capability to perform the internal orientation of the thermal cameras. Verification results show repeatability better than 1 mm for all cases, being better than 0.5 mm for the visible one. As it must be expected, also accuracy appears higher in the visible camera, and the geometric comparison between thermographic cameras shows slightly better

  3. Interest and limits of microwaves thermographic measurements for the diagnosis and pronostic of local acute exposure in the pig

    International Nuclear Information System (INIS)

    Daburon, F.; Lefaix, J.L.; Remy, J.; Fayart, G.; Tricaud, Y.

    1985-01-01

    Microwaves thermographic measurements were carried out on 30 pigs following local exposure of the thigh by a collimated source of iridium 192 at doses ranging between 30 and 84 Gy (2 cm depth dose). Measurement and data processing methods were developed both qualitatively (thermographic images vs anatomo-clinical evolution of the lesions) and quantitatively (by means of indexes calculated from the rough thermographic data to evaluate the relations between the intensity of the local thermic reaction and the applied dose or dose rate). Beside the diagnostic value of the method, which accounts for the global radiological injuries better than the physical dose really distributed, its pronostic value -much more reliable- makes it possible to estimate the severity of the injuries and their later evolution very early (between 10 and 15 days) [fr

  4. Thermographs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Thermograph data collection consists primary of weekly circular charts recording continuous temperature at a given station. The collection also includes...

  5. Temperature measurements on fast-rotating objects using a thermographic camera with an optomechanical image derotator

    Science.gov (United States)

    Altmann, Bettina; Pape, Christian; Reithmeier, Eduard

    2017-08-01

    Increasing requirements concerning the quality and lifetime of machine components in industrial and automotive applications require comprehensive investigations of the components in conditions close to the application. Irregularities in heating of mechanical parts reveal regions with increased loading of pressure, draft or friction. In the long run this leads to damage and total failure of the machine. Thermographic measurements of rotating objects, e.g., rolling bearings, brakes, and clutches provide an approach to investigate those defects. However, it is challenging to measure fast-rotating objects accurately. Currently one contact-free approach is performing stroboscopic measurements using an infrared sensor. The data acquisition is triggered so that the image is taken once per revolution. This leads to a huge loss of information on the majority of the movement and to motion blur. The objective of this research is showing the potential of using an optomechanical image derotator together with a thermographic camera. The derotator follows the rotation of the measurement object so that quasi-stationary thermal images during motion can be acquired by the infrared sensor. Unlike conventional derotators which use a glass prism to achieve this effect, the derotator within this work is equipped with a sophisticated reflector assembly. These reflectors are made of aluminum to transfer infrared radiation emitted by the rotating object. Because of the resulting stationary thermal image, the operation can be monitored continuously even for fast-rotating objects. The field of view can also be set to a small off-axis region of interest which then can be investigated with higher resolution or frame rate. To depict the potential of this approach, thermographic measurements on a rolling bearings in different operating states are presented.

  6. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor

    Science.gov (United States)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.

    2015-01-01

    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  7. Pilot Study on The Thermographic Change of Seven Acupoints by Digital Infrared Thermographic Imaging

    Directory of Open Access Journals (Sweden)

    Lee Yun-kyu

    2005-12-01

    Full Text Available Objective : This study was designed to find out the effect of seven acupoints of stroke in cerebrovascular hemiplegia patients. Methods : This study was performed on 6 patients with cerebrovascular hemiplegia (test group and 6 health persons(control group. We measured temperature of skin surface of test and control group using digital infrared thermographic imaging(D.I.T.I. after acupunture on seven acupoints of stroke. And we calculated difference of skin temperature between healthful and affected side for each groups. Results : There was significant difference in area 3 in both two groups between before and after acupuncture. But in general there was no significant difference between two groups on thermographic change. Conclusions : This is pilot study, so further studies are required to find out the effect of seven acupoints of stroke in cerebrovascular hemiplegia patients.

  8. Super-resolution thermographic imaging using blind structured illumination

    Science.gov (United States)

    Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther

    2017-07-01

    Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.

  9. Thermographic skin temperature measurement compared with cold sensation in predicting the efficacy and distribution of epidural anesthesia.

    Science.gov (United States)

    Bruins, Arnoud A; Kistemaker, Kay R J; Boom, Annemieke; Klaessens, John H G M; Verdaasdonk, Rudolf M; Boer, Christa

    2018-04-01

    Due to the high rates of epidural failure (3-32%), novel techniques are required to objectively assess the successfulness of an epidural block. In this study we therefore investigated whether thermographic temperature measurements have a higher predictive value for a successful epidural block when compared to the cold sensation test as gold standard. Epidural anesthesia was induced in 61 patients undergoing elective abdominal, thoracic or orthopedic surgery. A thermographic picture was recorded at 5, 10 and 15 min following epidural anesthesia induction. After 15 min a cold sensation test was performed. Epidural anesthesia is associated with a decrease in skin temperature. Thermography predicts a successful epidural block with a sensitivity of 54% and a PPV of 92% and a specificity of 67% and a NPV of 17%. The cold sensation test shows a higher sensitivity and PPV than thermography (97 and 93%), but a lower specificity and NPV than thermography (25 and 50%). Thermographic temperature measurements can be used as an additional and objective method for the assessment of the effectiveness of an epidural block next to the cold sensation test, but have a low sensitivity and negative predictive value. The local decrease in temperature as observed in our study during epidural anesthesia is mainly attributed to a core-to-peripheral redistribution of body heat and vasodilation.

  10. Advances in thermographic signal reconstruction

    Science.gov (United States)

    Shepard, Steven M.; Frendberg Beemer, Maria

    2015-05-01

    Since its introduction in 2001, the Thermographic Signal Reconstruction (TSR) method has emerged as one of the most widely used methods for enhancement and analysis of thermographic sequences, with applications extending beyond industrial NDT into biomedical research, art restoration and botany. The basic TSR process, in which a noise reduced replica of each pixel time history is created, yields improvement over unprocessed image data that is sufficient for many applications. However, examination of the resulting logarithmic time derivatives of each TSR pixel replica provides significant insight into the physical mechanisms underlying the active thermography process. The deterministic and invariant properties of the derivatives have enabled the successful implementation of automated defect recognition and measurement systems. Unlike most approaches to analysis of thermography data, TSR does not depend on flawbackground contrast, so that it can also be applied to characterization and measurement of thermal properties of flaw-free samples. We present a summary of recent advances in TSR, a review of the underlying theory and examples of its implementation.

  11. Thermographic measurements of high-speed metal cutting

    Science.gov (United States)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  12. A Thermographic Measurement Approach to Assess Supercapacitor Electrical Performances

    Directory of Open Access Journals (Sweden)

    Stanislaw Galla

    2017-12-01

    Full Text Available This paper describes a proposal for the qualitative assessment of condition of supercapacitors based on the conducted thermographic measurements. The presented measurement stand was accompanied by the concept of methodology of performing tests. Necessary conditions, which were needed to minimize the influence of disturbing factors on the performance of thermal imaging measurements, were also indicated. Mentioned factors resulted from both: the hardware limitations and from the necessity to prepare samples. The algorithm that was used to determine the basic parameters for assessment has been presented. The article suggests to use additional factors that may facilitate the analysis of obtained results. Measuring the usefulness of the proposed methodology was tested on commercial samples of supercapacitors. All of the tests were taken in conjunction with the classical methods based on capacitance (C and equivalent series resistance (ESR measurements, which were also presented in the paper. Selected results presenting the observed changes occurring in both: basic parameters of supercapacitors and accompanying fluctuations of thermal fields, along with analysis, were shown. The observed limitations of the proposed assessment method and the suggestions for its development were also described.

  13. Radionuclide and thermographic diagnosis of head and neck tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bogdasarov, Yu.B.; Lenskaya, O.P.; Polyakov, B.I.; Belkina, B.M. (Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Nauchnyj Tsentr)

    1983-10-01

    Radionuclide and thermographic studies using /sup 67/Ga-citrate and /sup 111/In-bleomycin were performed in 129 patients with laryngeal cancer, chemodectoma of the neck, retinoblastoma, rhabdomyosarcoma of the orbital and facial soft tissues and cancer of the tongue. Elevated amounts of the radiopharmaceuticals were found in patients with tumors. In thermographic studies higher temperature activity corresponding to the tumor was noted. Radio-nuclide thermographic studies extend diagnostic opportunities for head and neck tumors.

  14. Radionuclide and thermographic diagnosis of head and neck tumors

    International Nuclear Information System (INIS)

    Bogdasarov, Yu.B.; Lenskaya, O.P.; Polyakov, B.I.; Belkina, B.M.

    1983-01-01

    Radionuclide and thermographic studies using 67 Ga-citrate and 111 In-bleomycin were performed in 129 patients with laryngeal cancer, chemodectoma of the neck, retinoblastoma, rhabdomyosarcoma of the orbital and facial soft tissues and cancer of the tongue. Elevated amounts of the radiopharmaceuticals were found in patients with tumors. In thermographic studies higher temperature activity corresponding to the tumor was noted. Radio-nuclide thermographic studies extend diagnostic opportunities for head and neck tumors

  15. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  16. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  17. Implementation of thermographers' certification in Brazil

    Science.gov (United States)

    dos Santos, Laerte; Alves, Luiz M.; da Costa Bortoni, Edson

    2011-05-01

    In recent years Brazil has experienced extraordinary growth despite the recent economic global crisis. The demand for infrared thermography products and services has accompanied this growth. Like other non-destructive testing and inspection, the results obtained by thermography are highly dependent on the skills of thermographer. Therefore, it is very important to establish a serious and recognized process of certification to assess thermographers' qualifications and help services suppliers to establish credibility with their customers and increase the confidence of these costumers on the quality of these services. The Brazilian Society of Non-Destructive Testing and Inspection, ABENDI, a non-profitable, private technical-scientific entity, recognized nationally and internationally, has observed the necessity of starting a process for certification of thermographers in Brazil. With support of a work group composed by experts from oil and energy industries, transportation, universities and manufactures, the activities started in 2005. This paper describes the economic background required for installation of the certification process, its initial steps, the main characteristics of the Brazilian certification and the expectation for initiating the certification process.

  18. Methodology, models and algorithms in thermographic diagnostics

    CERN Document Server

    Živčák, Jozef; Madarász, Ladislav; Rudas, Imre J

    2013-01-01

    This book presents  the methodology and techniques of  thermographic applications with focus primarily on medical thermography implemented for parametrizing the diagnostics of the human body. The first part of the book describes the basics of infrared thermography, the possibilities of thermographic diagnostics and the physical nature of thermography. The second half includes tools of intelligent engineering applied for the solving of selected applications and projects. Thermographic diagnostics was applied to problematics of paraplegia and tetraplegia and carpal tunnel syndrome (CTS). The results of the research activities were created with the cooperation of the four projects within the Ministry of Education, Science, Research and Sport of the Slovak Republic entitled Digital control of complex systems with two degrees of freedom, Progressive methods of education in the area of control and modeling of complex object oriented systems on aircraft turbocompressor engines, Center for research of control of te...

  19. The zombie thermographer apocalypse preparedness 101: zombie thermographer pandemic

    Science.gov (United States)

    Colbert, Fred

    2013-05-01

    Fact: The U.S Government Centers for Disease Control and Prevention (CDC), Office of Public Health Preparedness and Response, rather remarkably has dedicated part of their web site to" Zombie Preparedness". See: http://www.cdc.gov/phpr/zombies.htm for more information. This is a tongue-incheek campaign with messages to engage audiences with the hazards of unpreparedness. The CDC director, U.S. Assistant Surgeon General Ali S. Khan (RET), MD, MPH notes, "If you are generally well equipped to deal with a zombie apocalypse you will be prepared for a hurricane, pandemic, earthquake, or terrorist attack. Make a plan, and be prepared!" (CDC Website, April 26th, 2013). Today we can make an easy comparison between the humor that the CDC is bringing to light, and what is actually happening in the Thermographic Industry. It must be acknowledge there are "Zombie Thermographers" out there. At times, it can be observed from the sidelines as a pandemic apocalypse attacking the credibility and legitimacy of the science and the industry that so many have been working to advance for over 30 years. This paper outlines and explores the trends currently taking place, the very real risks to facility plant, property, and human life as a result, and the strategies to overcome these problems.

  20. Spaceborne Differential SAR Interferometry: Data Analysis Tools for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Michele Crosetto

    2011-02-01

    Full Text Available This paper is focused on spaceborne Differential Interferometric SAR (DInSAR for land deformation measurement and monitoring. In the last two decades several DInSAR data analysis procedures have been proposed. The objective of this paper is to describe the DInSAR data processing and analysis tools developed at the Institute of Geomatics in almost ten years of research activities. Four main DInSAR analysis procedures are described, which range from the standard DInSAR analysis based on a single interferogram to more advanced Persistent Scatterer Interferometry (PSI approaches. These different procedures guarantee a sufficient flexibility in DInSAR data processing. In order to provide a technical insight into these analysis procedures, a whole section discusses their main data processing and analysis steps, especially those needed in PSI analyses. A specific section is devoted to the core of our PSI analysis tools: the so-called 2+1D phase unwrapping procedure, which couples a 2D phase unwrapping, performed interferogram-wise, with a kind of 1D phase unwrapping along time, performed pixel-wise. In the last part of the paper, some examples of DInSAR results are discussed, which were derived by standard DInSAR or PSI analyses. Most of these results were derived from X-band SAR data coming from the TerraSAR-X and CosmoSkyMed sensors.

  1. Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data

    Science.gov (United States)

    Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo

    2018-04-01

    To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.

  2. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  3. Quantitative thermographic imagery in the evaluation of antenna heating patterns

    International Nuclear Information System (INIS)

    Pearce, J.A.; Baughman, R.R.

    1984-01-01

    In quantitative thermographic imaging the temperature distribution of a surface is inferred from measurement of the radiant energy leaving the surface. Digital image processing and calibration methods allow the subtraction of preexisting temperature gradients so that precise heating patterns can be obtained. The primary limitation of quantitative thermography is that noise in the photodetector limits minimum resolvable temperature difference to around 0.5 0 C since frame integration cannot be used on the transient temperature distributions expected. The authors have developed and evaluated nonlinear smoothing operators which reduce the noise variance so that temperature differences of 0.1 0 C can be measured. They have applied digital thermographic imaging in the measurement of heating patterns obtained from two roughly orthogonal microwave antennas: a spiral antenna and a bow-tie antenna. These two antenna types are orthogonal in that the spiral has an H-field essentially normal to the phantom surface and the bow-tie has an E-field essentially normal to the surface. The resulting heating patterns clearly show the effect of non-uniform phantom electrical properties on the heating profiles obtained

  4. SU-F-I-27: Measurement of SAR and Temperature Elevation During MRI Scans

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: The poor reliability and repeatability of the manufacturer-reported SAR values on clinical MRI systems have been acknowledged. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation at 1.5 and 3T MRI systems. Methods: SAR measurement experiment was performed at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T1w inversion recovery, and T2w TSE) with imaging parameters were selected. A hydroxyl-ethylcelluose (HEC) gelled saline phantom mimicking human body tissue was made. Human torso phantom were constructed, based on Korean adult standard anthropometric reference data (Fig.1). FDTD method was utilized to calculate the SAR distribution using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located inside the phantom. 55 Fiber Bragg Grating (FBG) temperature sensors (27 sensors in upper and lower cover lids, and one sensor located in the center as a reference) were located inside the phantom to measure temperature change during MRI scan (Fig.2). Results: Simulation shows that SAR value is 0.4 W/kg in the periphery and 0.001 W/kg in the center (Fig.2). One 1.5T and one of two 3T MRI systems represent that the measured SAR values were lower than MRI scanner-reported SAR values. However, the other 3T MRI scanner shows that the averaged SAR values measured by probe 2, 3, and 4 are 6.83, 7.59, and 6.01 W/kg, compared to MRI scanner-reported whole body SAR value (<1.5 W/kg) for T2w TSE (Table 1). The temperature elevation measured by FBG sensors is 5.2°C in the lateral shoulder, 5.1°C in the underarm, 4.7°C in the anterior axilla, 4.8°C in the posterior axilla, and 4.8°C in the lateral waist for T2w TSE (Fig.3). Conclusion: It is essential to assess the safety of MRI system for patient by measuring accurate SAR deposited in the body during clinical MRI.

  5. Thermographic survey of two rural buildings in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martin Ocana, S.; Canas Guerrero, I. [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Madrid (Spain); Gonzalez Requena, I. [Departamento de Materiales y Produccion Aeroespacial, Escuela Tecnica Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Madrid (Spain)

    2004-07-01

    Two common housing prototypes of existing buildings in Spanish rural areas were surveyed by infrared inspection. The aim of the study is to assess the usefulness of infrared thermography as a technique for the detection of the thermal performance of rural buildings. For the traditional house the best results were obtained in the thermographic survey carried out in the evening. Contrarily, for the modern house the thermographic survey at daybreak provided more information. Infrared thermography allowed the comparison of the thermal performance of two buildings. (author)

  6. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data

    Science.gov (United States)

    Di Traglia, Federico; Nolesini, Teresa; Ciampalini, Andrea; Solari, Lorenzo; Frodella, William; Bellotti, Fernando; Fumagalli, Alfio; De Rosa, Giuseppe; Casagli, Nicola

    2018-01-01

    Stromboli (Aeolian Archipelago, Italy) is an active volcano that is frequently affected by moderate to large mass wasting, which has occasionally triggered tsunamis. With the aim of understanding the relationship between the geomorphologic evolution and slope instability of Stromboli, remote sensing information from space-born Synthetic Aperture Radar (SAR) change detection and interferometry (InSAR) () and Ground Based InSAR (GBInSAR) was compared with field observations and morphological analyses. Ground reflectivity and SqueeSAR™ (an InSAR algorithm for surface deformation monitoring) displacement measurements from X-band COSMO-SkyMed satellites (CSK) were analysed together with displacement measurements from a permanent-sited, Ku-band GBInSAR system. Remote sensing results were compared with a preliminary morphological analysis of the Sciara del Fuoco (SdF) steep volcanic flank, which was carried out using a high-resolution Digital Elevation Model (DEM). Finally, field observations, supported by infrared thermographic surveys (IRT), allowed the interpretation and validation of remote sensing data. The analysis of the entire dataset (collected between January 2010 and December 2014) covers a period characterized by a low intensity of Strombolian activity. This period was punctuated by the occurrence of lava overflows, occurring from the crater terrace evolving downslope toward SdF, and flank eruptions, such as the 2014 event. The amplitude of the CSK images collected between February 22nd, 2010, and December 18th, 2014, highlights that during periods characterized by low-intensity Strombolian activity, the production of materials ejected from the crater terrace towards the SdF is generally low, and erosion is the prevailing process mainly affecting the central sector of the SdF. CSK-SqueeSAR™ and GBInSAR data allowed the identification of low displacements in the SdF, except for high displacement rates (up to 1.5 mm/h) that were measured following both lava

  7. "Eyeball test" of thermographic patterns for predicting a successful lateral infraclavicular block.

    Science.gov (United States)

    Andreasen, Asger M; Linnet, Karen E; Asghar, Semera; Rothe, Christian; Rosenstock, Charlotte V; Lange, Kai H W; Lundstrøm, Lars H

    2017-11-01

    Increased distal skin temperature can be used to predict the success of lateral infraclavicular (LIC) block. We hypothesized that an "eyeball test" of specific infrared thermographic patterns after LIC block could be used to determine block success. In this observational study, five observers trained in four distinct thermographic patterns independently evaluated thermographic images of the hands of 40 patients at baseline and at one-minute intervals for 30 min after a LIC block. Sensitivity, specificity, and predictive values of a positive and a negative test were estimated to evaluate the validity of specific thermographic patterns for predicting a successful block. Sensory and motor block of the musculocutaneous, radial, ulnar, and median nerves defined block success. Fleiss' kappa statistics of multiple interobserver agreements were used to evaluate reliability. As a diagnostic test, the defined specific thermographic patterns of the hand predicted a successful block with increasing accuracy over the 30-min observation period. Block success was predicted with a sensitivity of 92.4% (95% confidence interval [CI], 86.8 to 96.2) and with a specificity of 84.0% (95% CI, 70.3 to 92.4) at min 30. The Fleiss' kappa for the five observers was 0.87 (95% CI, 0.77 to 0.96). We conclude that visual evaluation by an eyeball test of specific thermographic patterns of the blocked hands may be useful as a valid and reliable diagnostic test for predicting a successful LIC block.

  8. Determination of Flaw Size from Thermographic Data

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  9. High-speed railway bridge dynamic measurement based on GB-InSAR technology

    Science.gov (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao

    2015-12-01

    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  10. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    Science.gov (United States)

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  11. Application of postured human model for SAR measurements

    Science.gov (United States)

    Vuchkovikj, M.; Munteanu, I.; Weiland, T.

    2013-07-01

    In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.

  12. Thermographic analysis of waveguide-irradiated insect pupae

    Science.gov (United States)

    Olsen, Richard G.; Hammer, Wayne C.

    1982-01-01

    Pupae of the insect Tenebrio molitor L. were thermographically imaged during waveguide irradiation through longitudinal slots. T. molitor pupae have been subjects of microwave-induced teratology for a number of years, but until now the smallness of the insect has prevented detailed dosimetry. High-resolution thermographic imaging equipment was used to obtain the magnitude and spatial distribution of absorbed microwave energy at three frequencies, 1.3, 5.95, and 10 GHz. The detail of the thermal images obtained is sufficient to show the differential heating of structures as small as a single insect leg. Results show that the electrical properties of the head, thorax, and abdomen are sufficiently different to seriously impair the usefulness of any theoretical dosimetric model of homogeneous composition. Some general features of correlation with a slab model in waveguide are given.

  13. Aerial thermography from low-cost UAV for the generation of thermographic digital terrain models

    Science.gov (United States)

    Lagüela, S.; Díaz-Vilariño, L.; Roca, D.; Lorenzo, H.

    2015-03-01

    Aerial thermography is performed from a low-cost aerial vehicle, copter type, for the acquisition of data of medium-size areas, such as neighbourhoods, districts or small villages. Thermographic images are registered in a mosaic subsequently used for the generation of a thermographic digital terrain model (DTM). The thermographic DTM can be used with several purposes, from classification of land uses according to their thermal response to the evaluation of the building prints as a function of their energy performance, land and water management. In the particular case of buildings, apart from their individual evaluation and roof inspection, the availability of thermographic information on a DTM allows for the spatial contextualization of the buildings themselves and the general study of the surrounding area for the detection of global effects such as heat islands.

  14. Plasmatic and thermographic consequences of local acute irradiation; a qualitative and quantitative analysis in the pig

    International Nuclear Information System (INIS)

    Lefaix, J.L; Daburon, F.; Crechet, F.; Tricaud, Y.

    1987-04-01

    Acute phase reactant proteins associated with thermographic measurements and enzymatic activity assays in plasma were carried out on 39 pigs, following local exposure of the thigh to a collimated source of iridium 192 at doses ranging between 30 and 84 Gy (2 cm depth dose). The inflammatory response after irradiation, from day 1 to day 30 was accompanied by plasma protein changes associated with an elevation of local and general temperatures in irradiated animals. Degenerative processes in muscle led to an increase of plasmatic creatine kinase and lactate-dehydrogenase. Results were developed qualitatively (distribution pattern of proteins, thermographic measurements, enzymatic activities and clinical evolution of the lesions) and qualitatively (plasma level of creatine kinase versus applied radiation doses and pharmalogical treatments) [fr

  15. Fiber Optic Thermographic Detection of Flaws in Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  16. Thermographic Inspections And The Residential Conservation Service Program (RCS)

    Science.gov (United States)

    Ward, Ronald J.

    1983-03-01

    Rhode Islanders Saving Energy (RISE) is a non-profit corporation founded in 1977 to provide Rhode Island residents with a variety of energy conservation services. Since January of 1981, it has been performing energy audits in compliance with the Department of Energy's (DOE) Residential Conservation Service Program (RCS). One aspect of the RCS program is the performance of inspections on energy conservation activities completed according to RCS installation guidelines. This paper will describe both the use and results of thermographic inspections within the RISE program. The primary objective of these inspections has been to assure the quality of the building envelope after completion of retrofit measures. Thermal anamolies have been detected that vary in size, location and probable cause. Approximately 37% of all jobs performed through RISE in conjunction with the RCS program have required remedial work as a result of problems that were identi-fied during the thermographic inspection. This percentage was much higher when infra-red inspections were conducted on "Non-RCS" retrofits. Statistics will be presented that provide an interesting insight on the quality of retrofit work when performed in associa-tion with a constant inspection process.

  17. Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions

    International Nuclear Information System (INIS)

    Seo, Jin Ju; Yoon, Hanvit; Kim, Dong Yeon; Hong, Dong Pyo; Kim, Won Tae

    2011-01-01

    Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly

  18. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations

    Science.gov (United States)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.

    2016-05-01

    Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.

  19. A review of thermographic techniques for damage investigation in composites

    Directory of Open Access Journals (Sweden)

    Laura Vergani

    2014-01-01

    Full Text Available The aim of this work is a review of scientific results in the literature, related to the application of thermographic techniques to composite materials. Thermography is the analysis of the surface temperature of a body by infrared rays detection via a thermal-camera. The use of this technique is mainly based on the modification of the surface temperature of a material, when it is stimulated by means of a thermal or mechanical external source. The presence of defects, in fact, induces a localized variation in its temperature distribution and, then, the measured values of the surface temperature can be used to localize and evaluate the dimensions and the evolution of defects. In the past, many applications of thermography were proposed on homogeneous materials, but only recently this technique has also been extended to composites. In this work several applications of thermography to fibres reinforced plastics are presented. Thermographic measurements are performed on the surface of the specimens, while undergoing static and dynamic tensile loading. The joint analysis of thermal and mechanical data allows one to assess the damage evolution and to study the damage phenomenon from both mechanical and energetic viewpoints. In particular, one of the main issues is to obtain information about the fatigue behaviour of composite materials, by following an approach successfully applied to homogenous materials. This approach is based on the application of infrared thermography on specimens subjected to static or stepwise dynamic loadings and on the definition of a damage stress, D, that is correlated to the fatigue strength of the material. A wide series of experimental fatigue tests has been carried out to verify if the value of the damage stress, D, is correlated with the fatigue strength of the material. The agreement between the different values is good, showing the reliability of the presented thermographic techniques, to the study of composite

  20. The Radiometric Measurement Quantity for SAR Images

    OpenAIRE

    Döring, Björn J.; Schwerdt, Marco

    2013-01-01

    A Synthetic Aperture Radar (SAR) system measures among other quantities the terrain radar reflectivity. After image calibration, the pixel intensities are commonly expressed in terms of radar cross sections (for point targets) or as backscatter coefficients (for distributed targets), which are directly related. This paper argues that pixel intensities are not generally proportional to radar cross section or derived physical quantities. The paper further proposes to replace the inaccurate term...

  1. The consistency of thermographic findings in breast screening

    International Nuclear Information System (INIS)

    Pflanzer, K.; Kleedorfer, D.; Pflanzer, D.; Fochem, K.

    1983-01-01

    Thermography is a valuable complementary method in breast examination, but is not a suitable screening method. However, the results of control investigations in 200 females who were reexamined after at least two years, showed no change in the thermographic pattern in 87.5% of the women. In 10.5% the change in thermogram was due to pathological changes, whilst no explanation could be found in only 2% of cases. This high stability rate of the thermograms permits an alternative procedure: If, one year after a basic examination which includes clinical investigation, mammography and thermography, the thermographic pattern is identical with the first, no mammography is necessary. On the occasion of the next control, mammography should be carried out again at the time of the subsequent control examination. This schedule permits a reduction in irradiation without reducing the security of diagnosis. (Author)

  2. Thermographical Measuring of the Skin Temperature Using Laser Needle Acupuncture in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    Wolfgang Raith

    2012-01-01

    Full Text Available In children, laser acupuncture is used more often than needle acupuncture in Western countries, due to their aversion to needles. When applying laser acupuncture to premature babies and neonates, firstly the degree of the thermal increase to the skin has to be evaluated so as to guarantee safe application. The patients were premature neonates before their discharge from hospital. The measurements were carried out by means of a polygraphy while they were asleep shortly. The large intestine 4 acupoint (LI4, Hegu was stimulated by a microlaser needle (10 mW, 685 nm twice (5 and 10 min. Local thermographic pictures were taken with a thermal camera (Flir i5, Flir Systems Inc., Portland, USA, and the warmest point was determined and subsequently compared. The study included 10 premature neonates (7 male, 3 female. The measurements were carried out on the 33rd day of life (weight 2030 g, gestational age 36+3 weeks of pregnancy. In comparison to the initial temperature (32.9C°, after 5 minutes of stimulation (33.9°C (P=0.025 and also after 10 minutes of stimulation (34.0°C (P=0.01, there was found to be a significant increase in the skin temperature. The singular maximum value of 37.9°C bears a potential danger; however, compared to the local temperatures reached in transcutaneous blood gas measurements it appears not to entail any risks.

  3. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment

    Science.gov (United States)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian

    2018-02-01

    Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.

  4. Ionospheric effects on DInSAR measurements of interseismic deformation in China

    Science.gov (United States)

    Gong, W.; Shan, X.; Song, X.; Liao, H.; Meyer, F. J.

    2017-12-01

    Interseismic deformation signals are small ground displacement that is critical to monitor the strain accumulates of major faults to foresee the potential seismic hazard. Accurate measurements of surface deformation could help recognize and interpret even subtle displacement and to give a better understanding of active fault behavior. However, the value and applicability of InSAR for inter-seismic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations (atmospheric disturbance), both reducing the sensitivity and accuracy of the technique. Ionospheric signal, a major part of atmospheric disturbance in InSAR, is related to the density of free electrons along the ray path, thus, that is dependent on the SAR signal frequency. Ionosphere induced phase distortions can lead to azimuth/range defocusing, geometry distortions and interferometric phase distortions. Some ionosphere phenomenon have been reported more severe at equatorial region and polar zones, e.g., ionosphere irregularity, while for middle latitude regions like West China it has not been thoroughly analyzed. Thus, this study is focus on the evaluation of ionosphere impacts in middle latitude zone, and its impacts in monitoring interseismic deformation in West China. The outcome would be useful to provide an empiric prior error condition of ionosphere disturbance, which can further benefit InSAR result interpretation and geophysical inversion, as well as the SAR data arrangement in future operational-(cloud) InSAR processing system. The study focus on two parts: 1. We will analyze the temporal-spatial variation of ionosphere and its magnitude at middle latitude zone, and investigate its impacts to current satellite SAR (C-band (Sentinel-1) and L-band (ALOS2) dataset) in earthquake-related deformation studies, especially inter-seismic study. 2. Ionosphere phase patterns at mid latitudes is typically small and the structure is compatibly smooth. This

  5. Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic (registered) probes

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, E [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Triventi, M [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Calcagnini, G [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Censi, F [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Kainz, W [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bassen, H I [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bartolini, P [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy)

    2007-03-21

    The purpose of this work is to evaluate the error associated with temperature and SAR measurements using fluoroptic (registered) temperature probes on pacemaker (PM) leads during magnetic resonance imaging (MRI). We performed temperature measurements on pacemaker leads, excited with a 25, 64, and 128 MHz current. The PM lead tip heating was measured with a fluoroptic (registered) thermometer (Luxtron, Model 3100, USA). Different contact configurations between the pigmented portion of the temperature probe and the PM lead tip were investigated to find the contact position minimizing the temperature and SAR underestimation. A computer model was used to estimate the error made by fluoroptic (registered) probes in temperature and SAR measurement. The transversal contact of the pigmented portion of the temperature probe and the PM lead tip minimizes the underestimation for temperature and SAR. This contact position also has the lowest temperature and SAR error. For other contact positions, the maximum temperature error can be as high as -45%, whereas the maximum SAR error can be as high as -54%. MRI heating evaluations with temperature probes should use a contact position minimizing the maximum error, need to be accompanied by a thorough uncertainty budget and the temperature and SAR errors should be specified.

  6. Thermographic observation of the divertor target plates in the stellarators W7-AS and W7-X

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Gadelmeier, F.; Grigull, P.; McCormick, K.; Naujoks, D.; Suender, D.

    2003-01-01

    Thermography is applied on the stellarator W7-AS to monitor the thermal load of the recently installed divertor targets. A three dimensional numerical code was developed to evaluate power fluxes arriving at the targets from the measured temporal evolution of the surface temperature distribution. Values of the thermal conductivity of the used CFC-target material for all three directions are required for this evaluation and determined by observing the propagation of controlled heat pulses applied by an infrared laser. The evaluation of the thermographic measurements during plasma operation shows characteristic spatial and temporal features of the arrived heat fluxes. Significant features in high density regimes like plasma detachment from the divertor target plates or strongly enhanced localised plasma radiation (MARFE) has been observed by the installed infrared cameras. The implications of these observations for the thermographic system for W7-X are shortly addressed

  7. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Korean University of Technology and Education, Cheonan (Korea, Republic of)

    2013-04-15

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  8. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2013-01-01

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  9. The Measuring of the Gamma Dose Rate in the Air at Location of the Sar-Mountain

    International Nuclear Information System (INIS)

    Adrovic, F.; Ninkovic, M.; Adrovic, S.

    1999-01-01

    The results of the measured values of gamma dose rate in the air at the location of Sar-mountain (Balkan Peninsula) using autonomous ADL-probe Gamma Tracer system. The difference between levels of the natural background radiation and natural environment has been pointed out at the different chosen measuring overall research of natural radioactivity at the location of Sar-mountain

  10. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

    Directory of Open Access Journals (Sweden)

    Donat Perler

    2008-12-01

    Full Text Available Spaceborne synthetic aperture radar (SAR measurements of the Earth’s surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy. The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS, placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements.

  11. Implementation of an Ultra-Bright Thermographic Phosphor for Gas Turbine Engine Temperature Measurements

    Science.gov (United States)

    Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.; hide

    2014-01-01

    The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.

  12. Soil gases and SAR measurements reveal hidden faults on the sliding flank of Mt. Etna (Italy)

    Science.gov (United States)

    Bonforte, Alessandro; Federico, Cinzia; Giammanco, Salvatore; Guglielmino, Francesco; Liuzzo, Marco; Neri, Marco

    2013-02-01

    From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSAR with soil gas prospecting methods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.

  13. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  14. Analysis of the effect of mobile phone base station antenna loading on localized SAR and its consequences for measurements.

    Science.gov (United States)

    Hansson, Björn; Thors, Björn; Törnevik, Christer

    2011-12-01

    In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.

  15. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon

    2015-01-01

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  16. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng

    2015-02-03

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  17. Low-SAR metamaterial-inspired printed monopole antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2017-01-01

    In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

  18. Effect of frost on phosphorescence for thermographic phosphor thermometry

    Science.gov (United States)

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  19. Treatment of Reflex sympathetic dystrophy with Bee venom -Using Digital Infrared Thermographic Imaging-

    Directory of Open Access Journals (Sweden)

    Myung-jang Lim

    2006-12-01

    Full Text Available Objectives : The purpose of this case is to report the patient with Reflex sympathetic dystrophy, who is improved by Bee venom. Method : We treated the patient with Bee venom who was suffering from Reflex sympathetic dystrophy, using Digital Infrared Thermographic Imaging and Verbal Numerical Rating Scale(VNRS to evaluate the therapeutic effects. We compared the temperature of the patient body before and after treatment. Result and Conclusion : We found that Bee venom had excellent outcome to relieve pain, atrophy and ankle joint ROM, and that Bee venom also had clinical effect on hypothermia on the Digital Infrared Thermographic Imaging.

  20. Integrated procedures and monitoring methodologies for thermographic investigations of architectural heritage: two applicative cases in Sicily, Italy

    International Nuclear Information System (INIS)

    Bianco, A.

    2013-01-01

    The paper explains some opportunities and limitations of thermographic investigations in terms of their capability to define the conservative conditions of architectural heritage and in terms of the historical recollection for a technical diagnosis. Different approaches are demonstrated in two case studies: the first integrates thermography with other investigative methods; the second combines thermographic monitoring with hygrothermal monitoring. (author)

  1. Thermographic and radionuclide investigation in combined diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Abushakhmanov, A.Kh.

    1986-01-01

    The results of examination of 157 women with breast diseases are given. Breast cancer was diagnosed in 94 patients, benign diseases in 63. The combined use of the thermographic and radionuclide methods was shown to raise the accuracy of breast cancer diagnosis

  2. Mass prophylactic screening of the organized female populaton using the Thermograph-Computer System

    International Nuclear Information System (INIS)

    Vepkhvadze, R.Ya.; Khvedelidze, E.Sh.

    1984-01-01

    Organizational aspects of the Thermograph Computer System usage have been analyzed. It has been shown that results of thermodiagnosis completely coincide with clinical conclusion, but roentrenological method permits to reveal a disease only for 19 patients from 36 ones. It is possible to examine 120 women for the aim of early diagnosis of mammary gland diseases during the day operating hours with the use of the Thermograph Computer System. A movable thermodiagnostic room simultaneoUsly served as an inspection room to discover visual forms of tumor diseases including diseases of cervix uteri and may be used for mass preventive examination of the organized female population

  3. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  4. Thermography. Principles and measurements; Thermographie. Principes et mesure

    Energy Technology Data Exchange (ETDEWEB)

    Pajani, D. [Ecole Centrale de Lyon, 69 - Ecully (France)

    2001-09-01

    Thermography is a technique which allows to obtain the thermal image of a given scene and for a determined spectral domain. Infrared thermography is the most well-known and used technique of thermography, but this article deals with the thermographic measurements in general and for a wider part of the radiation spectrum: 1 - general considerations: terminology, fluxes and temperatures measurement; 2 - radiations (emission and reception), radiative properties of materials: basic notions, simplified radiometer, radiative properties of materials; 3 - thermographic measurements: general considerations, calibration, radiometric measurement situation, from the radiometric measurement to the thermometric measurement and to the thermographic measurement, measurement uncertainties. (J.S.)

  5. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  6. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  7. Thermographic Mobile Mapping of Urban Environment for Lighting and Energy Studies

    Directory of Open Access Journals (Sweden)

    Susana Lagüela López

    2014-12-01

    Full Text Available The generation of 3D models of buildings has been proved as a useful procedure for multiple applications related to energy, from energy rehabilitation management to design of heating systems, analysis of solar contribution to both heating and lighting of buildings. In a greater scale, 3D models of buildings can be used for the evaluation of heat islands, and the global thermal inertia of neighborhoods, which are essential knowledge for urban planning. This paper presents a complete methodology for the generation of 3D models of buildings at big-scale: neighborhoods, villages; including thermographic information as provider of information of the thermal behavior of the building elements and ensemble. The methodology involves sensor integration in a mobile unit for data acquisition, and data processing for the generation of the final thermographic 3D models of urban environment.

  8. Application of SVM classifier in thermographic image classification for early detection of breast cancer

    Science.gov (United States)

    Oleszkiewicz, Witold; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał

    2016-09-01

    This article presents the application of machine learning algorithms for early detection of breast cancer on the basis of thermographic images. Supervised learning model: Support vector machine (SVM) and Sequential Minimal Optimization algorithm (SMO) for the training of SVM classifier were implemented. The SVM classifier was included in a client-server application which enables to create a training set of examinations and to apply classifiers (including SVM) for the diagnosis and early detection of the breast cancer. The sensitivity and specificity of SVM classifier were calculated based on the thermographic images from studies. Furthermore, the heuristic method for SVM's parameters tuning was proposed.

  9. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  10. Thermographic Imaging of the Superficial Temperature in Racing Greyhounds before and after the Race

    Directory of Open Access Journals (Sweden)

    Mari Vainionpää

    2012-01-01

    Full Text Available A total of 47 racing greyhounds were enrolled in this study on two race days (in July and September, resp. at a racetrack. Twelve of the dogs participated in the study on both days. Thermographic images were taken before and after each race. From the images, superficial temperature points of selected sites (tendo calcaneus, musculus gastrocnemius, musculus gracilis, and musculus biceps femoris portio caudalis were taken and used to investigate the differences in superficial temperatures before and after the race. The thermographic images were compared between the right and left legs of a dog, between the raced distances, and between the two race days. The theoretical heat capacity of a racing greyhound was calculated. With regard to all distances raced, the superficial temperatures measured from the musculus gastrocnemius were significantly higher after the race than at baseline. No significant differences were found between the left and right legs of a dog after completing any of the distances. Significant difference was found between the two race days. The heat loss mechanisms of racing greyhounds during the race through forced conduction, radiation, evaporation, and panting can be considered adequate when observing the calculated heat capacity of the dogs.

  11. Thermographic imaging of the superficial temperature in racing greyhounds before and after the race.

    Science.gov (United States)

    Vainionpää, Mari; Tienhaara, Esa-Pekka; Raekallio, Marja; Junnila, Jouni; Snellman, Marjatta; Vainio, Outi

    2012-01-01

    A total of 47 racing greyhounds were enrolled in this study on two race days (in July and September, resp.) at a racetrack. Twelve of the dogs participated in the study on both days. Thermographic images were taken before and after each race. From the images, superficial temperature points of selected sites (tendo calcaneus, musculus gastrocnemius, musculus gracilis, and musculus biceps femoris portio caudalis) were taken and used to investigate the differences in superficial temperatures before and after the race. The thermographic images were compared between the right and left legs of a dog, between the raced distances, and between the two race days. The theoretical heat capacity of a racing greyhound was calculated. With regard to all distances raced, the superficial temperatures measured from the musculus gastrocnemius were significantly higher after the race than at baseline. No significant differences were found between the left and right legs of a dog after completing any of the distances. Significant difference was found between the two race days. The heat loss mechanisms of racing greyhounds during the race through forced conduction, radiation, evaporation, and panting can be considered adequate when observing the calculated heat capacity of the dogs.

  12. Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Directory of Open Access Journals (Sweden)

    W. Dierking

    2017-08-01

    Full Text Available Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics. Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrieved with relative errors  ≤  0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collected during the TanDEM-X Science Phase are presented.

  13. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  14. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    . The accuracy of the SAR DEM is about 1.5 m. The mean difference between the laser heights and the SAR heights changes from 0 m in the soaked zone to a maximum of 13 m in the percolation zone. This is explained by the fact that the snow in the soaked zone contains liquid water which attenuates the radar signals......, while the transparency of the firn in the percolation zone makes volume scattering dominate at the higher elevations. For the first time, the effective penetration has been measured directly as the difference between the interferometric heights and reference heights obtained with GPS and laser altimetry....

  15. Thermographic inspection of pipes, tanks, and containment liners

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Muthu, Nathan [Electric Power Research Institute, 1300 West WT Harris Blvd., Charlotte, NC 28262 (United States); Lhota, James R.; Shepard, Steven M., E-mail: sshepard@thermalwave.com [Thermal Wave Imaging, 845 Livernois St., Ferndale, MI 48220 (United States)

    2015-03-31

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  16. Characterization of Photovoltaic Panels by means of Thermograph Analysis

    Directory of Open Access Journals (Sweden)

    Noe Samano

    2016-01-01

    Full Text Available Solar panels have become attractive in order to generate and supply electricity in commercial and residential applications. Their increased module efficiencies have caused not only a massive production but also a sensible drop on sale prices. Methods of characterization, instrumentation for in situ measurements, defect monitoring, process control, and performance are required. A temperature characterization method by means of thermograph analysis is exposed in this paper. The method was applied to multicrystalline modules, and the characterization was made with respect to two different variables, first a thermal transient and second a characterization with respect to the current. The method is useful in order to detect hot spots caused by mismatch conditions in electrical parameters. The description, results, and limitations of the proposed method are discussed.

  17. Interseismic Deformation along the Red River Fault from InSAR Measurements

    Science.gov (United States)

    Chen, J.; Li, Z.; Clarke, P. J.

    2017-12-01

    The Red River Fault (RRF) zone is a profound geological discontinuity separating South China from Indochina. Right lateral movements along this >900 km fault are considered to accommodate the extrusion of SE China. Crustal deformation monitoring at high resolution is the key to understand the present-day mode of deformation in this zone and its interaction with the adjacent regions. This is the first study to measure the interseismic deformation of the entire fault with ALOS-1/2 and Sentinel-1 observations. Nine ascending tracks of ALOS-1 data between 2007 and 2011 are collected from the Alaska Satellite Facility (ASF), four descending tracks of Sentinel-1 data are acquired every 24 days since October 2014, and ALOS-2 data are being systematically acquired since 2014. The long wavelength (L-band) of ALOS-1/2 and short temporal baseline of Sentinel-1 ensure good coherence to overcome the limitations of heavy vegetation and variable climate in the region. Stacks of interferograms are generated by our automatic processing chain based on the InSAR Scientific Computing Environment (ISCE) software, ionospheric errors are estimated and corrected using the split-spectrum method (Fattahi et al., IEEE Trans. Geosci. Remote Sens., 2017) and the tropospheric delays are calibrated using the Generic Atmospheric Correction Online Service for InSAR (GACOS: http://ceg-research.ncl.ac.uk/v2/gacos) with high-resolution ECMWF products (Yu et al., J. Geophys. Res., 2017). Time series analysis is performed to determine the interseismic deformation rate of the RRF using the in-house InSAR time series with atmospheric estimation model (InSAR TS + AEM) package based on the Small Baseline Subset (SBAS) algorithm. Our results reveal the decrease of slip rate from north to south. We map the interseismic strain rate field to characterize the deformation patterns and seismic hazard throughout the RRF zone.

  18. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint

    Directory of Open Access Journals (Sweden)

    Deng Yuan

    2014-08-01

    Full Text Available In the MOtion COmpensation (MOCO approach to airborne repeat-pass interferometric Synthetic Aperture Radar (SAR based on motion measurement data, the measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS and the positioning errors of the target, which may contribute to the residual uncompensated motion errors, affect the imaging result and interferometric measurement. Considering the effects of the two types of error, this paper builds a mathematical model of residual motion errors in presence of squint, and analyzes the effects on the residual motion errors induced by the measurement inaccuracies of IMU/GPS and the positioning errors of the target. In particular, the effects of various measurement inaccuracies of IMU/GPS on interferometric SAR image quality, interferometric phase, and digital elevation model precision are disscussed. Moreover, the paper quantitatively researches the effects of residual motion errors on airborne repeat-pass interferometric SAR through theoretical and simulated analyses and provides theoretical bases for system design and signal processing.

  19. Monitoring Building Deformation with InSAR: Experiments and Validation

    Science.gov (United States)

    Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng

    2016-01-01

    Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403

  20. Monitoring Building Deformation with InSAR: Experiments and Validation

    Directory of Open Access Journals (Sweden)

    Kui Yang

    2016-12-01

    Full Text Available Synthetic Aperture Radar Interferometry (InSAR techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.

  1. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  2. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  3. MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING

    Directory of Open Access Journals (Sweden)

    R. Dwivedi

    2016-06-01

    Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  4. SARS-related Perceptions in Hong Kong

    OpenAIRE

    Lau, Joseph T.F.; Yang, Xilin; Pang, Ellie; Tsui, H.Y.; Wong, Eric; Wing, Yun Kwok

    2005-01-01

    To understand different aspects of community responses related to severe acute respiratory syndrome (SARS), 2 population-based, random telephone surveys were conducted in June 2003 and January 2004 in Hong Kong. More than 70% of respondents would avoid visiting hospitals or mainland China to avoid contracting SARS. Most respondents believed that SARS could be transmitted through droplets, fomites, sewage, and animals. More than 90% believed that public health measures were efficacious means o...

  5. Estimating Elevation Angles From SAR Crosstalk

    Science.gov (United States)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  6. Combined DEM Extration Method from StereoSAR and InSAR

    Science.gov (United States)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  7. SARS-related perceptions in Hong Kong.

    Science.gov (United States)

    Lau, Joseph T F; Yang, Xilin; Pang, Ellie; Tsui, H Y; Wong, Eric; Wing, Yun Kwok

    2005-03-01

    To understand different aspects of community responses related to severe acute respiratory syndrome (SARS), 2 population-based, random telephone surveys were conducted in June 2003 and January 2004 in Hong Kong. More than 70% of respondents would avoid visiting hospitals or mainland China to avoid contracting SARS. Most respondents believed that SARS could be transmitted through droplets, fomites, sewage, and animals. More than 90% believed that public health measures were efficacious means of prevention; 40.4% believed that SARS would resurge in Hong Kong; and approximately equals 70% would then wear masks in public places. High percentages of respondents felt helpless, horrified, and apprehensive because of SARS. Approximately 16% showed signs of posttraumatic symptoms, and approximately equals 40% perceived increased stress in family or work settings. The general public in Hong Kong has been very vigilant about SARS but needs to be more psychologically prepared to face a resurgence of the epidemic.

  8. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  9. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara; Rockwood, Alyn; Ghanem, Bernard

    2015-01-01

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR's ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  10. Assessment of lower extremity ischemia using smartphone thermographic imaging

    Directory of Open Access Journals (Sweden)

    Peter H. Lin, MD

    2017-12-01

    Full Text Available Conventional diagnostic modalities for assessing arterial circulation or tissue perfusion include blood pressure measurement, ultrasound evaluation, and contrast-based angiographic assessment. An infrared thermal camera can detect infrared radiation energy from the human body, which generates a thermographic image to allow tissue perfusion analysis. We describe a smartphone-based miniature thermal imaging system that can be used as an adjunctive imaging modality to assess tissue perfusion. This smartphone-based camera device is noninvasive, simple to use, and cost-effective in assessing patients with lower extremity tissue perfusion. Assessment of patients with lower extremity arterial ischemia can be performed by a variety of diagnostic modalities, including ankle-brachial index, absolute systolic ankle or toe pressure, transcutaneous oximetry, arterial Doppler waveform, arterial duplex ultrasound, computed tomography scan, arterial angiography, and thermal imaging. We herein describe a noninvasive imaging modality using smartphone-based infrared thermography.

  11. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...... with GPS data and calibrated laser data....

  12. Polarimetric SAR interferometry-based decomposition modelling for reliable scattering retrieval

    Science.gov (United States)

    Agrawal, Neeraj; Kumar, Shashi; Tolpekin, Valentyn

    2016-05-01

    Fully Polarimetric SAR (PolSAR) data is used for scattering information retrieval from single SAR resolution cell. Single SAR resolution cell may contain contribution from more than one scattering objects. Hence, single or dual polarized data does not provide all the possible scattering information. So, to overcome this problem fully Polarimetric data is used. It was observed in previous study that fully Polarimetric data of different dates provide different scattering values for same object and coefficient of determination obtained from linear regression between volume scattering and aboveground biomass (AGB) shows different values for the SAR dataset of different dates. Scattering values are important input elements for modelling of forest aboveground biomass. In this research work an approach is proposed to get reliable scattering from interferometric pair of fully Polarimetric RADARSAT-2 data. The field survey for data collection was carried out for Barkot forest during November 10th to December 5th, 2014. Stratified random sampling was used to collect field data for circumference at breast height (CBH) and tree height measurement. Field-measured AGB was compared with the volume scattering elements obtained from decomposition modelling of individual PolSAR images and PolInSAR coherency matrix. Yamaguchi 4-component decomposition was implemented to retrieve scattering elements from SAR data. PolInSAR based decomposition was the great challenge in this work and it was implemented with certain assumptions to create Hermitian coherency matrix with co-registered polarimetric interferometric pair of SAR data. Regression analysis between field-measured AGB and volume scattering element obtained from PolInSAR data showed highest (0.589) coefficient of determination. The same regression with volume scattering elements of individual SAR images showed 0.49 and 0.50 coefficients of determination for master and slave images respectively. This study recommends use of

  13. Using thermographic cameras to investigate eye temperature and clinical severity in depression

    Science.gov (United States)

    Maller, Jerome J.; George, Shefin Sam; Viswanathan, Rekha Puzhavakkathumadom; Fitzgerald, Paul B.; Junor, Paul

    2016-02-01

    Previous studies suggest that altered corneal temperature may be a feature of schizophrenia, but the association between major depressive disorder (MDD) and corneal temperature has yet to be assessed. The aim of this study is to investigate whether eye temperature is different among MDD patients than among healthy individuals. We used a thermographic camera to measure and compare the temperature profile across the corneas of 16 patients with MDD and 16 age- and sex-matched healthy subjects. We found that the average corneal temperature between the two groups did not differ statistically, although clinical severity correlated positively with right corneal temperature. Corneal temperature may be an indicator of clinical severity in psychiatric disorders, including depression.

  14. PRE AND POSTPRANDIAL THERMOGRAPHIC PROFILE OF GREEN IGUANAS (IGUANA IGUANA

    Directory of Open Access Journals (Sweden)

    Simona Rusu

    2016-11-01

    Full Text Available Abstract The body temperature of 10 clinically healthy green iguanas (Iguana iguana was measured using a thermographic camera (FLIR E6, Flir Systems Sweden before and after the food was offered. For each animal there were performed a total of 6 measurements (3 before feeding and 3 after the food was offered. The purpose of this experiment was to observe the thermographic pattern of the body before and after the feeding, since herbivore reptiles tend to bask after the feeding to increase the body temperature that will help them afterwards digest the food. The animals were housed in individual vivariums with every animal having a basking spot available. The pictures were taken outside the vivarium in an adjacent room. The animals were handled with gloves and transported in a cardboard box in order to avoid heat transfer between the handler and the iguana that would have produced thermal artefacts. Each individual was placed on a table on a styrofoam slate, again, to avoid the heat transfer between the table and the animal`s body. For each animal a total of 4 pictures were taken (up, front, left and right. The pictures were analysed with the FLIR Tools program that is provided by the manufacturer and 3 temperatures were taken into consideration (the head temperature, body temperature on the right side and body temperature on the left side. The temperatures were compared between them and with the temperature of the vivariums that consisted of the average between the temperature in 3 different spots (basking spot, the feeding bowl site and the coldest spot measured with an infrared thermometer GM300 (Benetech, China. The temperature of the body was dependent on the vivarium temperature and it was a significant temperature difference between the measurements before the feeding and after the feeding. Also we discovered a significant difference between the head temperature and the body temperature on the left side before the feeding that disappeared

  15. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Diego O Andrey

    Full Text Available Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1, encoded by tst(H, and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1, RNAIII, rot, and the alternative stress sigma factor sigB (σB. By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.

  16. A study of exposure to RF radiation during MRI examinations. 2. A comparison of two procedures measuring the whole body SAR

    International Nuclear Information System (INIS)

    Yamada, Masayuki; Imaeda, Isao; Koga, Sukehiko; Sugie, Masami; Anno, Hirofumi; Kinoshita, Kazuo; Okada, Tatsuhiko; Endou, Yukio; Katada, Kazuhiro.

    1997-01-01

    The purpose of this study is to evaluate exposure to radiofrequency (RF) radiation during magnetic resonance imaging (MRI) examinations. Particularly, in this paper, the authors compared the measuring procedures of a whole body specific absorption rate (SAR) set forth in two safety guidelines respectively: the safety guideline of MRI equipments in Japan which based on the 1988 guideline of the Food and Drug Administration (FDA), and the 1995 standard of the International Electrotechnical Commission (IEC). As a result of the measurement, the measuring procedure set forth in the Japanese guideline underestimated the whole body SAR of a torso phantom in a tuneless type QD coil. The result of our experiment clearly showed that the measuring procedure set forth in the Japanese guideline did not adjust to the tuneless type QD coil. Therefore, the authors recommended ''the pulse energy method'' which is provided by the IEC standard as a measuring procedure of the whole body SAR. (author)

  17. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    Science.gov (United States)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  18. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...

  19. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2017-04-01

    Full Text Available nEMoS (nano Environmental Monitoring System is a 3D-printed device built following the Do-It-Yourself (DIY approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ. It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  20. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques.

    Science.gov (United States)

    Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina

    2017-04-11

    nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  1. A study of the exposure of subjects to RF radiation during MRI examinations. Measurement of the SAR of head parts and the evaluation of the measured values

    International Nuclear Information System (INIS)

    Yamada, Masayuki; Koga, Sukehiko; Sugie, Masami; Kinoshita, Kazuo; Anno, Hirofumi; Katada, Kazuhiro.

    1996-01-01

    Recently, as the fast spin echo technique has become prevailing among all the techniques in this line, there has been an increasing interest in the exposure of subjects to radiofrequency (RF) radiation during magnetic resonance imaging (MRI) examinations. On the other hand, there have been no reports about the safety of the MRI examination in Japan. For this reason, in this study, the authors aimed to evaluate the extent of the exposure of subjects to RF radiation during MRI examinations, and measured the specific absorption rate (SAR) of spherical phantoms, which assumed to be adult heads, by using the procedures set forth in two safety guidelines respectively: the 1988 Guideline of the Food and Drug Administration (FDA), and the 1995 Standards of the International Electrotechnical Commission (IEC). As a result of the measurement, it was found that the highest value of the SAR was 1.361 W/kg, which stayed far below the upper limits set forth by the respective safety guidelines referred to in the above. However, the measured values of the SAR varied depending on the respective measuring procedures. As both the measuring procedures are equivalent theoretically, the authors consider the variance to be very important. (author)

  2. Automatic recognition of thermographic examinations for early detection of breast cancer

    Science.gov (United States)

    Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał; Oleszkiewicz, Witold; Cichosz, Paweł; Jagodziński, Dariusz

    2016-09-01

    This article describes the processing and classification of thermographic examinations taken with device developed by Braster SA. The device records the surface temperature of the breast skin using the liquid crystal matrices. Images are analyzed with the use of machine learning algorithms. The result of classification is available after a few minutes and when it detects suspicious changes patient may be referred for detailed examinations.

  3. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  4. TerraSAR-X InSAR multipass analysis on Venice, Italy)

    Science.gov (United States)

    Nitti, D. O.; Nutricato, R.; Bovenga, F.; Refice, A.; Chiaradia, M. T.; Guerriero, L.

    2009-09-01

    The TerraSAR-X (copyright) mission, launched in 2007, carries a new X-band Synthetic Aperture Radar (SAR) sensor optimally suited for SAR interferometry (InSAR), thus allowing very promising application of InSAR techniques for the risk assessment on areas with hydrogeological instability and especially for multi-temporal analysis, such as Persistent Scatterer Interferometry (PSI) techniques, originally developed at Politecnico di Milano. The SPINUA (Stable Point INterferometry over Unurbanised Areas) technique is a PSI processing methodology which has originally been developed with the aim of detection and monitoring of coherent PS targets in non or scarcely-urbanized areas. The main goal of the present work is to describe successful applications of the SPINUA PSI technique in processing X-band data. Venice has been selected as test site since it is in favorable settings for PSI investigations (urban area containing many potential coherent targets such as buildings) and in view of the availability of a long temporal series of TerraSAR-X stripmap acquisitions (27 scenes in all). The Venice Lagoon is affected by land sinking phenomena, whose origins are both natural and man-induced. The subsidence of Venice has been intensively studied for decades by determining land displacements through traditional monitoring techniques (leveling and GPS) and, recently, by processing stacks of ERS/ENVISAT SAR data. The present work is focused on an independent assessment of application of PSI techniques to TerraSAR-X stripmap data for monitoring the stability of the Venice area. Thanks to its orbital repeat cycle of only 11 days, less than a third of ERS/ENVISAT C-band missions, the maximum displacement rate that can be unambiguously detected along the Line-of-Sight (LOS) with TerraSAR-X SAR data through PSI techniques is expected to be about twice the corresponding value of ESA C-band missions, being directly proportional to the sensor wavelength and inversely proportional to the

  5. Methods to attack or defend the professional integrity and competency of infrared thermographers and their work; what every attorney and infrared thermographer needs to know before going into a lawsuit

    Science.gov (United States)

    Colbert, Fred

    2013-05-01

    There has been a significant increase in the number of in-house Infrared Thermographic Predictive Maintenance programs for Electrical/Mechanical inspections as compared to out-sourced programs using hired consultants. In addition, the number of infrared consulting services companies offering out-sourced programs has also has grown exponentially. These market segments include: Building Envelope (commercial and residential), Refractory, Boiler Evaluations, etc... These surges are driven by two main factors: 1. The low cost of investment in the equipment (the cost of cameras and peripherals continues to decline). 2. Novel marketing campaigns by the camera manufacturers who are looking to sell more cameras into an otherwise saturated market. The key characteristics of these campaigns are to over simplify the applications and understate the significances of technical training, specific skills and experience that's needed to obtain the risk-lowering information that a facility manager needs. These camera selling campaigns focuses on the simplicity of taking a thermogram, but ignores the critical factors of what it takes to actually perform and manage a creditable, valid IR program, which in-turn expose everyone to tremendous liability. As the In-house vs. Out-sourced consulting services compete for market share head to head with each other in a constricted market space, the price for out-sourced/consulting services drops to try to compete on price for more market share. The consequences of this approach are, something must be compromised to be able to stay competitive from a price point, and that compromise is the knowledge, technical skills and experience of the thermographer. This also ends up being reflected back into the skill sets of the in-house thermographer as well. This over simplification of the skill and experience is producing the "Perfect Storm" for Infrared Thermography, for both in-house and out-sourced programs.

  6. 3D Monitoring of Buildings Using TerraSAR-X InSAR, DInSAR and PolSAR Capacities

    Directory of Open Access Journals (Sweden)

    Flora Weissgerber

    2017-09-01

    Full Text Available The rapid expansion of cities increases the need of urban remote sensing for a large scale monitoring. This paper provides greater understanding of how TerraSAR-X (TSX high-resolution abilities enable to reach the spatial precision required to monitor individual buildings, through the use of a 4 year temporal stack of 100 images over Paris (France. Three different SAR modes are investigated for this purpose. First a method involving a whole time-series is proposed to measure realistic heights of buildings. Then, we show that the small wavelength of TSX makes the interferometric products very sensitive to the ordinary building-deformation, and that daily deformation can be measured over the entire building with a centimetric accuracy, and without any a priori on the deformation evolution, even when neglecting the impact of the atmosphere. Deformations up to 4 cm were estimated for the Eiffel Tower and up to 1 cm for other lower buildings. These deformations were analyzed and validated with weather and in situ local data. Finally, four TSX polarimetric images were used to investigate geometric and dielectric properties of buildings under the deterministic framework. Despite of the resolution loss of this mode, the possibility to estimate the structural elements of a building orientations and their relative complexity in the spatial organization are demonstrated.

  7. Television-aided thermographic investigations in nuclear and solid state research

    International Nuclear Information System (INIS)

    Buettig, H.; Wollschlaeger, K.

    1983-01-01

    After a brief review of the physical and hardware fundamentals of televison-aided thermographic investigations, two practical examples of nuclear and solid state research work are presented. The problems discussed concern studies of the relative density distribution in beams of particles (ions, electrons, neutral atoms) or of visible radiation on the one hand, and the optimization of operating conditions in heavy-current implantations (ion implantation in Si at ion beam currents up to 60 μA) on the other hand

  8. SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.

    Science.gov (United States)

    Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen

    2012-07-23

    We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.

  9. Ionospheric errors compensation for ground deformation estimation with new generation SAR

    Science.gov (United States)

    Gomba, Giorgio; De Zan, Francesco; Rodriguez Gonzalez, Fernando

    2017-04-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) measurements are disturbed by the propagation velocity changes of microwaves that are caused by the high density of free electrons in the ionosphere. Most affected are low-frequency (L- or P-band) radars, as the recently launched ALOS-2 and the future Tandem-L and NISAR, although higher frequency (C- or X-band) systems, as the recently launched Sentinel-1, are not immune. Since the ionosphere is an obstacle to increasing the precision of new generation SAR systems needed to remotely measure the Earth's dynamic processes as for example ground deformation, it is necessary to estimate and compensate ionospheric propagation delays in SAR signals. In this work we discuss about the influence of the ionosphere on interferograms and the possible correction methods with relative accuracies. Consequently, the effect of ionospheric induced errors on ground deformation measurements prior and after ionosphere compensation will be analyzed. Examples will be presented of corrupted measurements of earthquakes and fault motion along with the corrected results using different methods.

  10. The effect of airflow on thermographically determined temperature of the distal forelimb of the horse.

    Science.gov (United States)

    Westermann, S; Stanek, C; Schramel, J P; Ion, A; Buchner, H H F

    2013-09-01

    Current literature suggests that thermographic imaging of horses should be performed in a draught-free room. However, studies on the effect of airflow on determined temperature have not been published. To investigate effects of airflow on thermographically determined temperature of horses' forelimbs; to assess the relationship of wind velocity, rectal temperature, ambient temperature and humidity. Thermographic images were obtained for the forelimbs of 6 horses in a draught-free room. Three replicates (R) with defined wind velocities (R1, 0.5-1.0 m/s; R2, 1.3-2.6 m/s; and R3, 3.0-4.0 m/s) were conducted. Each replicate consisted of a baseline image, a 15 min phase with the wind on and a 15 min phase with the wind off. We exposed only the right leg to airflow and determined the temperature by thermography with the wind on and wind off. Temperature differences between baseline and wind on, between wind on and wind off and between different wind velocities were analysed by a general linear model, Student's paired t test and ANOVA. After the onset of wind, the temperature on the right forelimb decreased within 1-3 min (by approximately 0.6°C at R1, 1.5°C at R2 and 2.1°C at R3). With the wind off, the temperature increased within 3 min (by approximately 1.2°C at R1, 1.7°C at R2 and 2.1°C at R3). With increasing wind velocity, the temperature differences between baseline and wind on and between wind on and wind off increased significantly. Barely noticeable wind velocities caused a decrease in thermographically determined temperatures of the forelimbs of the horse. Further research is required to assess the influence of airflow on other parts of the body and at different ambient temperatures, as well as the effect on horses with inflammatory lesions, especially of the distal limbs. It is essential for practitioners to perform thermography on horses in a draught-free environment in order to avoid false-positive or -negative diagnoses. © 2012 EVJ Ltd.

  11. Evaluation of the Wishart test statistics for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2003-01-01

    A test statistic for equality of two covariance matrices following the complex Wishart distribution has previously been used in new algorithms for change detection, edge detection and segmentation in polarimetric SAR images. Previously, the results for change detection and edge detection have been...... quantitatively evaluated. This paper deals with the evaluation of segmentation. A segmentation performance measure originally developed for single-channel SAR images has been extended to polarimetric SAR images, and used to evaluate segmentation for a merge-using-moment algorithm for polarimetric SAR data....

  12. The Singaporean response to the SARS outbreak: knowledge sufficiency versus public trust.

    Science.gov (United States)

    Deurenberg-Yap, M; Foo, L L; Low, Y Y; Chan, S P; Vijaya, K; Lee, M

    2005-12-01

    During the outbreak of severe acute respiratory syndrome (SARS) in Singapore from 1 March to 11 May 2003, various national prevention and control measures were undertaken to control and eliminate the transmission of the infection. During the initial period of the epidemic, public communication was effected through press releases and media coverage of the epidemic. About a month into the epidemic, a public education campaign was mounted to educate Singaporeans on SARS and adoption of appropriate behaviours to prevent the spread of the disease. A survey was conducted in late April 2003 to assess Singaporeans' knowledge about SARS and infection control measures, and their concerns and anxiety in relation to the outbreak. The survey also sought to assess their confidence in the ability of various institutions to deal with SARS and their opinion on the seemingly tough measures enforced. The study involved 853 adults selected from a telephone-sampling frame. Stratified sampling was used to ensure adequate representation from major ethnic groups and age groups. The study showed that the overall knowledge about SARS and control measures undertaken was low (mean per cent score of 24.5 +/- 8.9%). While 82% of respondents expressed confidence in measures undertaken by Tan Tock Seng Hospital (the hospital designated to manage SARS), only 36% had confidence in nursing homes. However, >80% of the public agreed that the preventive and control measures instituted were appropriate. Despite the low knowledge score, the overall mean satisfaction score of the government's response to SARS was 4.47 (out of possible highest score of 5.00), with >93% of adult Singaporeans indicating that they were satisfied or very satisfied with the government's response to SARS. Generally, Singaporeans had a high level of public trust (satisfaction with government, confidence in institutions, deeming government measures appropriate), scoring 11.4 out of possible maximum of 14. The disparity between low

  13. Laser Doppler imaging, thermographic imaging, and tissue oxygen saturation measurements detect early skin reactions during breast radiotherapy

    Science.gov (United States)

    Harrison, David K.; Harrison, Eileen M.; Newton, David J.; Windsor, Phyllis M.

    2001-05-01

    A range of acute skin reactions, ranging from mild erythema to moist desquamation, can be seen in patients receiving standard fractionated radiotherapy to the breast for conservation therapy of breast carcinoma. In a number of cases these reactions can cause considerable discomfort and seriously affect the patient's quality of life. In previous studies we have used the techniques of laser Doppler imaging, digital thermographic imaging and lightguide spectrophotometry to study oxygen supply and blood flow in inflammatory reactions induced experimentally in forearm skin. The present study is an attempt to use the same techniques to investigate whether any or all of them can detect changes in breast skin very early on in the course of radiotherapy treatment. A further aim of the longer term study is to investigate to what extent these early changes may be able to predict the occurrence later of severe acute or delayed reactions.

  14. SARS - Diagnosis

    Indian Academy of Sciences (India)

    SARS - Diagnosis. Mainly by exclusion of known causes of atypical pneumonia; * X ray Chest; * PCR on body fluids- primers defined by WHO centres available from website.-ve result does not exclude SARS. * Sequencing of amplicons; * Viral Cultures – demanding; * Antibody tests.

  15. Retrospective dosimetry: Preliminary use of the single aliquot regeneration (SAR) protocol for the measurement of quartz dose in young house bricks

    DEFF Research Database (Denmark)

    Banerjee, D.; Bøtter-Jensen, L.; Murray, A.S.

    1999-01-01

    with the expected values based on their known age and confirms the absolute accuracy of the SAR method. It is concluded that a similar to 18 mGy fallout dose component can be detected on a background of similar to 100 mGy; this detection limit is controlled by uncertainties in the natural dose rare measurement......In retrospective dosimetry, the total dose absorbed by some pre-existing dosemeters, such as house bricks or tiles, is used to derive the dose to the population arising from a nuclear accident. This paper uses the newly developed SAR protocol to determine the total dose in young house bricks from...... the vicinity of the Chernobyl reactor site and from Roskilde, Denmark. For these samples, it is shown that high precision (similar to 1%) on the mean estimates of total dose can be achieved with similar to 20 independent measurements. The SAR total dose estimates of two Danish house bricks agree...

  16. Bistatic sAR data processing algorithms

    CERN Document Server

    Qiu, Xiaolan; Hu, Donghui

    2013-01-01

    Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so sign

  17. Computer vision syndrome (CVS) - Thermographic Analysis

    Science.gov (United States)

    Llamosa-Rincón, L. E.; Jaime-Díaz, J. M.; Ruiz-Cardona, D. F.

    2017-01-01

    The use of computers has reported an exponential growth in the last decades, the possibility of carrying out several tasks for both professional and leisure purposes has contributed to the great acceptance by the users. The consequences and impact of uninterrupted tasks with computers screens or displays on the visual health, have grabbed researcher’s attention. When spending long periods of time in front of a computer screen, human eyes are subjected to great efforts, which in turn triggers a set of symptoms known as Computer Vision Syndrome (CVS). Most common of them are: blurred vision, visual fatigue and Dry Eye Syndrome (DES) due to unappropriate lubrication of ocular surface when blinking decreases. An experimental protocol was de-signed and implemented to perform thermographic studies on healthy human eyes during exposure to dis-plays of computers, with the main purpose of comparing the existing differences in temperature variations of healthy ocular surfaces.

  18. hPEPT1 Affinity and Translocation of Selected Gln-Sar and Glu-Sar Dipeptide Derivatives

    DEFF Research Database (Denmark)

    Eriksson, A. H.; Elm, Peter L.; Begtrup, Mikael

    2005-01-01

    using 14C-labeled Gly-Sar. Translocation was measured as fluorescence ratios induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All compounds showed high affinity to hPEPT1, but only the amides l-Gln(N,N-dimethyl)-Sar and l-Gln(N-piperidinyl)-Sar were...... been suggested. However, these are not necessarily predictive of compounds that are actually translocated by hPEPT1. More information on affinity to and translocation via hPEPT1 of side-chain-modified dipeptides may be gained by conducting a study of selected dipeptide derivatives with variety in size...... translocated by hPEPT1. hPEPT1 is very susceptible to modifications of the N-terminal amino acid side chain of dipeptidomimetic substrates, in terms of achieving compounds with high affinity for the transporter. However, as affinity is not predictive of translocation, derivatization in this position must...

  19. Information theoretic bounds for compressed sensing in SAR imaging

    International Nuclear Information System (INIS)

    Jingxiong, Zhang; Ke, Yang; Jianzhong, Guo

    2014-01-01

    Compressed sensing (CS) is a new framework for sampling and reconstructing sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in the Shannon sampling theorem. This new strategy, applied in various application areas including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to the signals of interest, and incoherence, which refers to the sensing modality. An important question in CS-based SAR system design concerns sampling rate necessary and sufficient for exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or sampling rate) in CS have been proposed from the perspective of information theory. However, these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, the SAR measurement system is modeled as an information channel, with channel capacity and rate-distortion characteristics evaluated to enable the determination of sampling rates required for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test the theoretic bounds against empirical results about sampling rates required to achieve certain detection error probabilities

  20. Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community

  1. Calibration of SAR probes in waveguide at 900 MHz

    International Nuclear Information System (INIS)

    Jokela, K.; Puranen, L.; Hyysalo, P.

    1998-01-01

    The radiation safety tests for hand-held mobile phones require precise calibration of the small electric field probes used for the measurement of SAR in phantoms simulating the human body. In this study a calibration based on a rectangular waveguide was developed for SAR calibrations at 900 MHz

  2. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  3. Keynote presentation : SAR systems

    NARCIS (Netherlands)

    Halsema, D. van; Otten, M.P.G.; Maas, A.P.M.; Bolt, R.J.; Anitori, L.

    2011-01-01

    Synthetic Aperture Radar (SAR) systems are becoming increasingly important sensors in as well the military environment as in the civilian market. In this keynote presentation an overview will be given over more than 2 decades of SAR system∼ and SAR application development at TNO in the Netherlands.

  4. Bistatic SAR: Proof of Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  5. Certification of building thermographers: experiences after three courses

    Science.gov (United States)

    Kauppinen, Timo; Hekkanen, Martti; Paloniitty, Sauli; Krankka, Juha

    2006-04-01

    The certification procedure of building thermographers was started in 2003, even though thermography has been used in Finland in building survey since late 70's. There has been about a 25 years' unorganized and more or less wild period, without any generally accepted rules for interpretation, as well as how to order thermography services, how to report the results, how to do the practical work in the buildings etc. The service was provided by consultants with varied backgrounds. More operators have come into the market and building developers and contractors have begun to use thermography for quality control in new building and in renovation planning. In the year 2004 various organizations in building trade launched a pilot project to certificate building thermographers. The structure and the topics of the course were introduced in Thermosense 2005. By the end of the year 2005 the third course was completed. From the beginning of the procedure to the end of the third course about 40 persons have received a certificate. During the certification process, two guidelines have been published, as part of RT (Building Information) - files: instructions for ordering, for practical field work and for reporting of thermography survey in buildings. The guidelines also contain basics for interpretation. The interpretation is consistent with the other existing directions (building codes etc). At the turn of 2005 - 2006 a new book of building thermography was published. There is still lack of comprehensive as well as unambiguous rules for interpretation. In the paper we will present experiences on the courses, the main problems posed to the participants and findings during the last two - three years' field work. We will also introduce briefly the structure and content of the guidelines and an example how to use thermography as a tool of quality control in new building. The case studies are new one-family houses in a housing fair and exhibition area in the city of Oulu.

  6. The Seamless SAR Archive (SSARA) Project and Other SAR Activities at UNAVCO

    Science.gov (United States)

    Baker, S.; Crosby, C. J.; Meertens, C. M.; Fielding, E. J.; Bryson, G.; Buechler, B.; Nicoll, J.; Baru, C.

    2014-12-01

    The seamless synthetic aperture radar archive (SSARA) implements a seamless distributed access system for SAR data and derived data products (i.e. interferograms). SSARA provides a unified application programming interface (API) for SAR data search and results at the Alaska Satellite Facility and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives. Interest from the international community has prompted an effort to incorporate ESA's Virtual Archive 4 Geohazard Supersites and Natural Laboratories (GSNL) collections and other archives into the federated query service. SSARA also provides Digital Elevation Model access for topographic correction via a simple web service through OpenTopography and tropospheric correction products through JPL's OSCAR service. Additionally, UNAVCO provides data storage capabilities for WInSAR PIs with approved TerraSAR-X and ALOS-2 proposals which allows easier distribution to US collaborators on associated proposals and facilitates data access through the SSARA web services. Further work is underway to incorporate federated data discovery for GSNL across SAR, GPS, and seismic datasets provided by web services from SSARA, GSAC, and COOPEUS.

  7. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    Science.gov (United States)

    Lu, Zhong; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  8. Crisis prevention and management during SARS outbreak, Singapore.

    Science.gov (United States)

    Quah, Stella R; Hin-Peng, Lee

    2004-02-01

    We discuss crisis prevention and management during the first 3 months of the severe acute respiratory syndrome (SARS) outbreak in Singapore. Four public health issues were considered: prevention measures, self-health evaluation, SARS knowledge, and appraisal of crisis management. We conducted telephone interviews with a representative sample of 1,201 adults, > or = 21 years of age. We found that sex, age, and attitude (anxiety and perception of open communication with authorities) were associated with practicing preventive measures. Analysis of Singapore's outbreak improves our understanding of the social dimensions of infectious disease outbreaks.

  9. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Ding

    2009-02-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  10. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  11. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  12. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  13. Monitoring of Land-Surface Deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Yusupujiang Aimaiti

    2017-07-01

    Full Text Available Synthetic Aperture Radar (SAR interferometry is a technique that provides high-resolution measurements of the ground displacement associated with various geophysical processes. To investigate the land-surface deformation in Karamay, a typical oil-producing city in the Xinjiang Uyghur Autonomous Region, China, Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR data were acquired for the period from 2007 to 2009, and a two-pass differential SAR interferometry (D-InSAR process was applied. The experimental results showed that two sites in the north-eastern part of the city exhibit a clear indication of land deformation. For a further evaluation of the D-InSAR result, the Persistent Scatterer (PS and Small Baseline Subset (SBAS-InSAR techniques were applied for 21 time series Environmental Satellite (ENVISAT C-band Advanced Synthetic Aperture Radar (ASAR data from 2003 to 2010. The comparison between the D-InSAR and SBAS-InSAR measurements had better agreement than that from the PS-InSAR measurement. The maximum deformation rate attributed to subsurface water injection for the period from 2003 to 2010 was up to approximately 33 mm/year in the line of sight (LOS direction. The interferometric phase change from November 2007 to June 2010 showed a clear deformation pattern, and the rebound center has been expanding in scale and increasing in quantity.

  14. Advanced InSAR imaging for dune mapping

    Science.gov (United States)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  15. Dynamic behavior of the Bering Glacier-Bagley icefield system during a surge, and other measurements of Alaskan glaciers with ERS SAR imagery

    Science.gov (United States)

    Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.

    1997-01-01

    ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.

  16. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  17. Detection of macroalgae blooms by complex SAR imagery

    International Nuclear Information System (INIS)

    Shen, Hui; Perrie, William; Liu, Qingrong; He, Yijun

    2014-01-01

    Highlights: • Complex SAR imagery enables better recognition of macroalgae patches. • Combination of different information in SAR matrix forms new index factors. • Proposed index factors contribute to unsupervised recognition of macroalgae. -- Abstract: Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean

  18. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  19. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  20. Analysis of the Effect of Radio Frequency Interference on Repeat Track Airborne InSAR System

    Directory of Open Access Journals (Sweden)

    Ding Bin

    2012-03-01

    Full Text Available The SAR system operating at low frequency is susceptible to Radio Frequency Interference (RFI from television station, radio station, and some other civil electronic facilities. The presence of RFI degrades the SAR image quality, and obscures the targets in the scene. Furthermore, RFI can cause interferometric phase error in repeat track InSAR system. In order to analyze the effect of RFI on interferometric phase of InSAR, real measured RFI signal are added on cone simulated SAR echoes. The imaging and interferometric processing results of both the RFI-contaminated and raw data are given. The effect of real measured RFI signal on repeat track InSAR system is analyzed. Finally, the imaging and interferometric processing results of both with and without RFI suppressed of the P band airborne repeat track InSAR real data are presented, which demonstrates the efficiency of the RFI suppression method in terms of decreasing the interferometric phase errors caused by RFI.

  1. Atmospheric Phase Delay in Sentinel SAR Interferometry

    Science.gov (United States)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation

  2. ATMOSPHERIC PHASE DELAY IN SENTINEL SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    V. Krishnakumar

    2018-04-01

    Full Text Available The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR Interferometry (InSAR has been a widely used geodetic technique for observing the Earth’s surface, especially for mapping the Earth’s topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth’s atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR. To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate

  3. There is no one-size-fits-all product for InSAR; on the inclusion of contextual information for geodetically-proof InSAR data products

    Science.gov (United States)

    Hanssen, R. F.

    2017-12-01

    In traditional geodesy, one is interested in determining the coordinates, or the change in coordinates, of predefined benchmarks. These benchmarks are clearly identifiable and are especially established to be representative of the signal of interest. This holds, e.g., for leveling benchmarks, for triangulation/trilateration benchmarks, and for GNSS benchmarks. The desired coordinates are not identical to the basic measurements, and need to be estimated using robust estimation procedures, where the stochastic nature of the measurements is taken into account. For InSAR, however, the `benchmarks' are not predefined. In fact, usually we do not know where an effective benchmark is located, even though we can determine its dynamic behavior pretty well. This poses several significant problems. First, we cannot describe the quality of the measurements, unless we already know the dynamic behavior of the benchmark. Second, if we don't know the quality of the measurements, we cannot compute the quality of the estimated parameters. Third, rather harsh assumptions need to be made to produce a result. These (usually implicit) assumptions differ between processing operators and the used software, and are severely affected by the amount of available data. Fourth, the `relative' nature of the final estimates is usually not explicitly stated, which is particularly problematic for non-expert users. Finally, whereas conventional geodesy applies rigorous testing to check for measurement or model errors, this is hardly ever done in InSAR-geodesy. These problems make it rather impossible to provide a precise, reliable, repeatable, and `universal' InSAR product or service. Here we evaluate the requirements and challenges to move towards InSAR as a geodetically-proof product. In particular this involves the explicit inclusion of contextual information, as well as InSAR procedures, standards and a technical protocol, supported by the International Association of Geodesy and the

  4. Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    Directory of Open Access Journals (Sweden)

    Manabu Watanabe

    2010-01-01

    Full Text Available We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR and airborne SAR (PiSAR over a flood test site at which a simple house was constructed in a field. The PiSAR σ∘ under flood condition was 0.9 to 3.4 dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the σ∘ difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that σ∘ and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.

  5. Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    Directory of Open Access Journals (Sweden)

    Shimada Masanobu

    2010-01-01

    Full Text Available Abstract We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR and airborne SAR (PiSAR over a flood test site at which a simple house was constructed in a field. The PiSAR under flood condition was 0.9 to 3.4 dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.

  6. LTE modem power consumption, SAR and RF signal strength emulation

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new methodology for emulating the LTE modem power consumption, emitted SAR and RF signal strength when transmitting an LTE signal. The inputs of the methodology are: modem logical/protocol commands, time advance, near-field specifier, and antenna characteristics. The power...... emulation model(s) are computed by a two layer 451 neural network based on physical power measurements. SAR is emulated by polynomial interpolation models based on FDTD simulations. The accuracies of the mathematical function approximations for the emulation models of power and SAR are 5.19% and 3...

  7. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  8. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  9. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  10. PolinSAR coherence optimisation for deformation measurement in an agricultural region

    CSIR Research Space (South Africa)

    Engelbrecht, Jeanine

    2015-10-01

    Full Text Available of the scattering processes implied that different phase centres were present in interferograms which introduced a spatially heterogeneous topographic phase contribution. Consequently, the polInSAR techniques are considered to be unsuccessful in enhancing...

  11. The experience of SARS-related stigma at Amoy Gardens.

    Science.gov (United States)

    Lee, Sing; Chan, Lydia Y Y; Chau, Annie M Y; Kwok, Kathleen P S; Kleinman, Arthur

    2005-11-01

    Severe Acute Respiratory Syndrome (SARS) possesses characteristics that render it particularly prone to stigmatization. SARS-related stigma, despite its salience for public health and stigma research, has had little examination. This study combines survey and case study methods to examine subjective stigma among residents of Amoy Gardens (AG), the first officially recognized site of community outbreak of SARS in Hong Kong. A total of 903 residents of AG completed a self-report questionnaire derived from two focus groups conducted toward the end of the 3-month outbreak. Case studies of two residents who lived in Block E, the heart of the SARS epidemic at AG, complement the survey data. Findings show that stigma affected most residents and took various forms of being shunned, insulted, marginalized, and rejected in the domains of work, interpersonal relationships, use of services and schooling. Stigma was also associated with psychosomatic distress. Residents' strategies for diminishing stigma varied with gender, age, education, occupation, and proximity to perceived risk factors for SARS such as residential location, previous SARS infection and the presence of ex-SARS household members. Residents attributed stigma to government mismanagement, contagiousness of the mysterious SARS virus, and alarmist media reporting. Stigma clearly decreased, but never completely disappeared, after the outbreak. The findings confirm and add to existing knowledge on the varied origins, correlates, and impacts of stigma. They also highlight the synergistic roles of inconsistent health policy responses and risk miscommunication by the media in rapidly amplifying stigma toward an unfamiliar illness. While recognizing the intrinsically stigmatizing nature of public health measures to control SARS, we recommend that a consistent inter-sectoral approach is needed to minimize stigma and to make an effective health response to future outbreaks.

  12. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  13. Research on Airborne SAR Imaging Based on Esc Algorithm

    Science.gov (United States)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  14. RESEARCH ON AIRBORNE SAR IMAGING BASED ON ESC ALGORITHM

    Directory of Open Access Journals (Sweden)

    X. T. Dong

    2017-09-01

    Full Text Available Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC. In this paper, extend chirp scaling algorithm (ECS is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  15. Mapping Regional Inundation with Spaceborne L-Band SAR

    Directory of Open Access Journals (Sweden)

    Bruce Chapman

    2015-04-01

    Full Text Available Shortly after the launch of ALOS PALSAR L-band SAR by the Japan Space Exploration Agency (JAXA, a program to develop an Earth Science Data Record (ESDR for inundated wetlands was funded by NASA. Using established methodologies, extensive multi-temporal L-band ALOS ScanSAR data acquired bi-monthly by the PALSAR instrument onboard ALOS were used to classify the inundation state for South America for delivery as a component of this Inundated Wetlands ESDR (IW-ESDR and in collaboration with JAXA’s ALOS Kyoto and Carbon Initiative science programme. We describe these methodologies and the final classification of the inundation state, then compared this with results derived from dual-season data acquired by the JERS-1 L-band SAR mission in 1995 and 1996, as well as with estimates of surface water extent measured globally every 10 days by coarser resolution sensors. Good correspondence was found when comparing open water extent classified from multi-temporal ALOS ScanSAR data with surface water fraction identified from coarse resolution sensors, except in those regions where there may be differences in sensitivity to widespread and shallow seasonal flooding event, or in areas that could be excluded through use of a continental-scale inundatable mask. It was found that the ALOS ScanSAR classification of inundated vegetation was relatively insensitive to inundated herbaceous vegetation. Inundation dynamics were examined using the multi-temporal ALOS ScanSAR acquisitions over the Pacaya-Samiria and surrounding areas in the Peruvian Amazon.

  16. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  17. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  18. Localized landslide risk assessment with multi pass L band DInSAR analysis

    Science.gov (United States)

    Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo

    2014-05-01

    In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error

  19. Design and realization of an active SAR calibrator for TerraSAR-X

    Science.gov (United States)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  20. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  1. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    Science.gov (United States)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  2. Evaluation of the Oh, Dubois and IEM Backscatter Models Using a Large Dataset of SAR Data and Experimental Soil Measurements

    Directory of Open Access Journals (Sweden)

    Mohammad Choker

    2017-01-01

    Full Text Available The aim of this paper is to evaluate the most used radar backscattering models (Integral Equation Model “IEM”, Oh, Dubois, and Advanced Integral Equation Model “AIEM” using a wide dataset of SAR (Synthetic Aperture Radar data and experimental soil measurements. These forward models reproduce the radar backscattering coefficients ( σ 0 from soil surface characteristics (dielectric constant, roughness and SAR sensor parameters (radar wavelength, incidence angle, polarization. The analysis dataset is composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR and TerraSAR-X data and in situ measurements (soil moisture and surface roughness. Results show that Oh model version developed in 1992 gives the best fitting of the backscattering coefficients in HH and VV polarizations with RMSE values of 2.6 dB and 2.4 dB, respectively. Simulations performed with the Dubois model show a poor correlation between real data and model simulations in HH polarization (RMSE = 4.0 dB and better correlation with real data in VV polarization (RMSE = 2.9 dB. The IEM and the AIEM simulate the backscattering coefficient with high RMSE when using a Gaussian correlation function. However, better simulations are performed with IEM and AIEM by using an exponential correlation function (slightly better fitting with AIEM than IEM. Good agreement was found between the radar data and the simulations using the calibrated version of the IEM modified by Baghdadi (IEM_B with bias less than 1.0 dB and RMSE less than 2.0 dB. These results confirm that, up to date, the IEM modified by Baghdadi (IEM_B is the most adequate to estimate soil moisture and roughness from SAR data.

  3. The Total Electron Content From InSAR and GNSS: A Midlatitude Study

    DEFF Research Database (Denmark)

    Musico, Elvira; Cesaroni, Claudio; Spogli, Luca

    2018-01-01

    The total electron content (TEC) measured from the interferometric synthetic aperture radar (InSAR) and froma dense network of global navigation satellite system (GNSS) receivers are used to assess the capability of InSAR to retrieve ionospheric information, when the tropospheric contribution...

  4. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  5. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  6. Monitoring of Three Case Studies of Creeping Landslides in Ecuador using L-band SAR Interferometry (InSAR)

    Science.gov (United States)

    Mayorga Torres, T. M.; Mohseni Aref, M.

    2015-12-01

    Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with

  7. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  8. Monitoring Line-Infrastructure With Multisensor SAR Interferometry : Products and Performance Assessment Metrics

    NARCIS (Netherlands)

    Chang, L.; Dollevoet, R.P.B.J.; Hanssen, R.F.

    2018-01-01

    Satellite radar interferometry (InSAR) is an emerging technique to monitor the stability and health of line-infrastructure assets, such as railways, dams, and pipelines. However, InSAR is an opportunistic approach as the location and occurrence of its measurements (coherent scatterers) cannot be

  9. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  10. Sentinel-3 SAR Altimetry Toolbox

    Science.gov (United States)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  11. Influencial factors in thermographic analysis in substations

    Science.gov (United States)

    Zarco-Periñán, Pedro J.; Martínez-Ramos, José L.

    2018-05-01

    Thermography is one of the best predictive maintenance tools available due to its low cost, fast implementation and effectiveness of the results obtained. The detected hot spots enable serious incidents to be prevented, both in the facilities and equipment where they have been located. In accordance with the criticality of such points, the repair is carried out with greater or lesser urgency. However, for detection to remain reliable, the facility must meet a set of requirements that are normally assumed, otherwise hot spots cannot be detected correctly and will subsequently cause unwanted defects. This paper analyses three aspects that influence the reliability of the results obtained: the minimum percentage of load that a circuit must contain in order to be able to locate all the hot spots therein; the minimum waiting time from when an item of equipment or facility is energized until a thermographic inspection can be carried out with a complete guarantee of hot spot detection; and the influence on the generation of hot spots exerted by the tightening torque realized in the assembly process.

  12. Measured airtightness of twenty-four detached houses over periods of up to three years

    Energy Technology Data Exchange (ETDEWEB)

    Prowskiw, G.

    1992-05-01

    A three year field study of 20 energy efficient houses and four conventional dwellings was conducted to evaluate the performance of their building envelope systems. Ten of the houses were built with polyethylene air barriers and 14 using the airtight drywall approach (ADA). All were newly built and used dry wood for framing members, i.e. with a wood moisture content (WMC) below 19%. Building envelope performace was evaluated by developing a comprehensive monitoring program which included measurements of wall, attic and floor joist WMC levels, detailed thermographic examinations and regular airtightness testing. Over 13,000 WMC measurements were performed, 1013 thermographic images recorded and 167 airtightness tests conducted. Both the energy efficient and conventional building envelope systems performed satisfactory manner although fewer problems were found in the energy efficient houses. Lower mean WMC levels were measured in the walls and attics and fewer WMC excursions above 19% were recorded. The energy efficient houses also displayed fewer thermographic anomalies, particulary those of a severe nature. The energy efficient houses were found to be more airtight. No evidence of envelope degradation was found in the energy efficient houses. Both the polyethylene air barriers and the ADA system demonstrated predominately stable WMC levels, thermographic characteristics and airtightness. The building envelopes constructed using polyethylene barriers generally performed in a superior fashion to those which used ADA, although both systems provided satisfactory performance. WMC levels were slightly lower in the polyethylene houses as were the number of thermographic faults, particularly those of a severe nature. 11 refs., 28 figs., 10 tabs.

  13. SAR compliance assessment of PMR 446 and FRS walkie-talkies.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2015-10-01

    The vast amount of studies on radiofrequency dosimetry deal with exposure due to mobile devices and base station antennas for cellular communication systems. This study investigates compliance of walkie-talkies to exposure guidelines established by the International Commission on Non-Ionizing Radiation Protection and the Federal Communications Committee. The generic walkie-talkie consisted of a helical antenna and a ground plane and was derived by reverse engineering of a commercial walkie-talkie. Measured and simulated values of antenna characteristics and electromagnetic near fields of the generic walkie-talkie were within 2% and 8%, respectively. We also validated normalized electromagnetic near fields of the generic walkie-talkie against a commercial device and observed a very good agreement (deviation based on magnetic near field. Finally, we found that SAR of commercial devices is within current SAR limits for general public exposure for a worst-case duty cycle of 100%, that is, about 3 times and 6 times lower than the limit on the 1 g SAR (1.6 W/kg) and 10 g SAR (2 W/kg), respectively. But, an effective radiated power as specified by the Private Mobile Radio at 446 MHz (PMR 446) radio standard can cause localized SAR exceeding SAR limits for 1 g of tissue. © 2015 Wiley Periodicals, Inc.

  14. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    Science.gov (United States)

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  15. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  16. Integrated analysis of differential interferometric synthetic aperture radar (DInSAR) and geological data for measuring deformation movement of Kaligarang fault, Semarang-Indonesia

    Science.gov (United States)

    Prasetyo, Y.; Fakhrudin, Warasambi, S. M.

    2016-05-01

    Semarang is one of the densely populated city in Central Java which is has Kaligarang's fault. It is lie in Kaligarang River and across several dense urban settlement. The position of Kaligarang's river itself divides in the direction nearly north-south city of Semarang. The impact of the fault can be seen in severals indication such as a land subsidence phenomenon in Tinjomoyo village area which is make impact to house and road destruction. In this research, we have used combination methods between InSAR, DinSAR and geomorphology (geology data) where is this techniques used to identity the fault area and estimate Kaligarang's fault movement velocity. In fault movement velocity observation, we only compute the movement in vertical with neglect horizontal movement. The data used in this study of one pair ALOS PALSAR level 1.0 which was acquired on June 8, 2007and 10 of September 2009. Besides that third ALOS PALSAR earlier, also used data of SRTM DEM 4th version, is used for the correction of the topography. The use of the three methods already mentioned earlier have different functions. For the lnSAR method used for the establishment of a digital model in Semarang. After getting high models digital city of Semarang, the identification process can be done layout, length, width and area of the Kaligarang fault using geomorphology. Results of such identification can be calculated using the rate of deformation and fault movement. From the result generated DinSAR method of land subsidence rate between 3 em to II em. To know the truth measurement that used DinSAR method, is performed with the decline of validation that measured using GPS. After validating obtained standard deviation of 3,073 em. To estimate the Kaligarang's fault pattern and direction is using the geomorphology method. The results that Kaligarang's is an active fault that has fault strike slip as fault pattern. It makes this research is useful because could be used as an inquick assessment in fault

  17. Thermographic method for evaluation of thermal influence of exterior surface colour of buildings

    Science.gov (United States)

    Wu, Yanpeng; Li, Deying; Jin, Rendong; Liu, Li; Bai, Jiabin; Feng, Jianming

    2008-12-01

    Architecture colour is an important part in urban designing. It directly affects the expressing and the thermal effect of exterior surface of buildings. It has proved that four factors affect the sign visibility, graphics, colour, lighting condition and age of the observers, and colour is the main aspect. The best method is to prevent the exterior space heating up in the first place, by reflecting heat away room the exterior surface.The colour of paint to coat building's exterior wall can have a huge impact on energy efficiency. While the suitable colour is essential to increasing the energy efficiency of paint colour during the warm summer months, those products also help paint colour efficiency and reduce heat loss from buildings during winter months making the interior more comfortable all year long. The article is based on analyzing the importance of architecture color design and existing urban colour design. The effect of external surface colour on the thermal behaviour of a building has been studied experimentally by Infrared Thermographic method in University of Science and technology Beijing insummer.The experimental results showed that different colour has quietly different thermal effect on the exterior surface of buildings. The thermal effect of carmine and fawn has nearly the same values. The main factor which is color express, give some suggest ting about urban color design. The investigation reveals that the use of suitable surface colour can dramatically reduce maximum the temperatures of the exterior wall. Keywords: architectural colour, thermal, thermographic

  18. Potential of X-Band TerraSAR-X and COSMO-SkyMed SAR Data for the Assessment of Physical Soil Parameters

    Directory of Open Access Journals (Sweden)

    Azza Gorrab

    2015-01-01

    Full Text Available The aim of this paper is to analyze the potential of X-band SAR measurements (COSMO-SkyMed and TerraSAR-X made over bare soils for the estimation of soil moisture and surface geometry parameters at a semi-arid site in Tunisia (North Africa. Radar signals acquired with different configurations (HH and VV polarizations, incidence angles of 26° and 36° are statistically compared with ground measurements (soil moisture and roughness parameters. The radar measurements are found to be highly sensitive to the various soil parameters of interest. A linear relationship is determined for the radar signals as a function of volumetric soil moisture, and a logarithmic correlation is observed between the radar signals and three surface roughness parameters: the root mean square height (Hrms, the parameter Zs = Hrms2/l (where l is the correlation length and the parameter Zg = Hrms × (Hrms/lα (where α is the power of the surface height correlation function. The highest dynamic sensitivity is observed for Zg at high incidence angles. Finally, the performance of different physical and semi-empirical backscattering models (IEM, Baghdadi-calibrated IEM and Dubois models is compared with SAR measurements. The results provide an indication of the limits of validity of the IEM and Dubois models, for various radar configurations and roughness conditions. Considerable improvements in the IEM model performance are observed using the Baghdadi-calibrated version of this model.

  19. Improved oceanographic measurements fom SAR altimetry: Results and scientific roadmap from ESA cryosat plus for oceans project

    DEFF Research Database (Denmark)

    Cotton, P. D.; Andersen, Ole Baltazar; Stenseng, Lars

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. It thus provides the first opportunity to test and evaluate, using real data, the significant potential benefits of SAR altimetry for ocean applications. The obje...

  20. Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR Soil Moisture Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2016-04-01

    Full Text Available Due to complicated and undefined systematic errors in satellite observation, data assimilation integrating model states with satellite observations is more complicated than field measurements-based data assimilation at a local scale. In the case of Synthetic Aperture Radar (SAR soil moisture, the systematic errors arising from uncertainties in roughness conditions are significant and unavoidable, but current satellite bias correction methods do not resolve the problems very well. Thus, apart from the bias correction process of satellite observation, it is important to assess the inherent capability of satellite data assimilation in such sub-optimal but more realistic observational error conditions. To this end, time-evolving sequential ensembles of the Ensemble Kalman Filter (EnKF is compared with stationary ensemble of the Ensemble Optimal Interpolation (EnOI scheme that does not evolve the ensembles over time. As the sensitivity analysis demonstrated that the surface roughness is more sensitive to the SAR retrievals than measurement errors, it is a scope of this study to monitor how data assimilation alters the effects of roughness on SAR soil moisture retrievals. In results, two data assimilation schemes all provided intermediate values between SAR overestimation, and model underestimation. However, under the same SAR observational error conditions, the sequential ensembles approached a calibrated model showing the lowest Root Mean Square Error (RMSE, while the stationary ensemble converged towards the SAR observations exhibiting the highest RMSE. As compared to stationary ensembles, sequential ensembles have a better tolerance to SAR retrieval errors. Such inherent nature of EnKF suggests an operational merit as a satellite data assimilation system, due to the limitation of bias correction methods currently available.

  1. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  2. Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging.

    Science.gov (United States)

    Bortolami, A; Fiore, E; Gianesella, M; Corrò, M; Catania, S; Morgante, M

    2015-01-01

    Subclinical mastitis in dairy cows is a big economic loss for farmers. The monitoring of subclinical mastitis is usually performed through Somatic Cell Count (SCC) in farm but there is the need of new diagnostic systems able to quickly identify cows affected by subclinical infections of the udder. The aim of this study was to evaluate the potential application of thermographic imaging compared to SCC and bacteriological culture for infection detection in cow affected by subclinical mastitis and possibly to discriminate between different pathogens. In this study we evaluated the udder health status of 98 Holstein Friesian dairy cows with high SCC in 4 farms. From each cow a sample of milk was collected from all the functional quarters and submitted to bacteriological culture, SCC and Mycoplasma spp. culture. A thermographic image was taken from each functional udder quarter and nipple. Pearson's correlations and Analysis of Variance were performed in order to evaluate the different diagnostic techniques. The most frequent pathogen isolated was Staphylococcus aureus followed by Coagulase Negative Staphylococci (CNS), Streptococcus uberis, Streptococcus agalactiae and others. The Somatic Cell Score (SCS) was able to discriminate (pnegative at the bacteriological culture except for cows with infection caused by CNS. Infrared thermography was correlated to SCS (pnegative cows. Thermographic imaging seems to be promising in evaluating the inflammation status of cows affected by subclinical mastitis but seems to have a poor diagnostic value.

  3. SARS: systematic review of treatment effects.

    Directory of Open Access Journals (Sweden)

    Lauren J Stockman

    2006-09-01

    Full Text Available BACKGROUND: The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. METHODS AND FINDINGS: In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r, type I interferon (IFN, intravenous immunoglobulin (IVIG, and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. CONCLUSIONS: Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage

  4. SARS knowledge, perceptions, and behaviors: a comparison between Finns and the Dutch during the SARS outbreak in 2003

    NARCIS (Netherlands)

    Vartti, A.M.; Oenema, A.; Schreck, M.; Uutela, A.; Zwart, de O.; Brug, J.; Aro, A.R.

    2009-01-01

    BACKGROUND: The SARS outbreak served to test both local and international outbreak management and risk communication practices. PURPOSE: The study compares SARS knowledge, perceptions, behaviors, and information between Finns and the Dutch during the SARS outbreak in 2003. METHOD: The participants

  5. Thermographic and microscopic evaluation of LARS knee ligament tearing.

    Science.gov (United States)

    Pătraşcu, Jenel Marian; Amarandei, Mihaela; Kun, Karla Noemy; Borugă, Ovidiu; Totorean, Alina; Andor, Bogdan; Florescu, Sorin

    2014-01-01

    Damage to knee articular ligaments causes important functional problems and adversely affects particularly the stability of the knee joint. Several methods were developed in order to repair damage to the anterior cruciate ligament (ACL), which employ autografts, allografts, as well as synthetic ligaments. One such synthetic scaffold, the ligament advanced reinforcement system (LARS) synthetic ligament is made of non-absorbing polyethylene terephthalate fibers whose structure allow tissue ingrowths in the intra-articular part, improving the stability of the joint. The LARS ligament is nowadays widely used in modern knee surgery in the Europe, Canada, China or Japan. This paper evaluates LARS ligament from two perspectives. The first regards a study done by the Orthopedics Clinic II, Timisoara, Romania, which compared results obtained by employing two techniques of ACL repair - the Bone-Tendon-Bone (BTB) or LARS arthroscopic, intra-articular techniques. This study found that patients treated with the BTB technique presented with an IKDC score of 45.82±1.14 units preoperative, with increasing values in the first nine months after each implant post-surgical ligament restoration, reaching an average value of 75.92 ± 2.88 units postoperative. Patients treated with the LARS technique presented with an IKDC score of 43.64 ± 1.11 units preoperative, and a score of 77.32 ± 2.71 units postoperative. The second perspective describes the thermographic and microscopic analysis of an artificial knee ligament tearing or loosening. The objective of the study was to obtain information regarding the design of artificial ligaments in order to expand their lifespan and avoid complications such as recurring synovitis, osteoarthritis and trauma of the knee joint. Thermographic data has shown that tearing begins from the inside out, thus improving the inner design of the ligament would probably enhance its durability. An optical microscope was employed to obtain images of structural

  6. Radioisotopic and thermographic imaging of the lower limbs oedema - comparison diagnostic techniques

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Nowak, E.; Kulka, J.; Gielzycki, J.; Kraft, O.

    2005-01-01

    In this paper, authors achieved comparison between lymphoscintigraphy and thermography in patients with limbs oedema. It allow to determinate current role of lymphoscintigraphy and verify useful of thermography in limbs oedema diagnosis. Analysis included 60 patients with the lower limbs oedema. Each patients Doppler duplex scan and thermographic study was performed. Additionally, 10 patients were classified to the lymphoscintigraphy. Thermography: In studies camera ThermaCAM S60 (FLIR SYSTEM) were used. Infrared radiation detector was 320 x 240 uncooled microbolometers with thermal resolution - 0.08 o C (for 30 o C). Lymphoscintigraphy: Each patient received subcutaneous, in the second web space, Nanosis (schering) labeled 99m Tc. Dynamic data acquisition has been started immediately after injection the radiotracer to the both extremities using digital gamma camera X Ring (Mediso). Static study of whole body was performed after 1.5 hour. Thermal disorders were observed in 58 patients. On the base ultrasound and clinical examinations 10 patients were classified to lymphoscintigraphy. In this group in 5 cases traits lymphatic insufficient were observed. Thermographic study in group of patients with scintigraphic disorders was showed regional hypothermia, with small regions of hypothermia in tissues included oedema. Lymphoscintigraphy is a useful and indispensable tool in oedema diagnosis. In patients with insufficient of lymphatic system, thermography comparison to lymphoscintigraphy, in clinical diagnosis did not influence on the future diagnosis and therapeutics proceedings. Regional hyperthermic disorders in patients with limbs oedema, who had negative results of examinations (Doppler duplex scan and lymphoscintigraphy), could indicate on inflammatory complications. In cases of venous insufficient thermography allow to visualize specific venous disorders. (author)

  7. SARS: Key factors in crisis management.

    Science.gov (United States)

    Tseng, Hsin-Chao; Chen, Thai-Form; Chou, Shieu-Ming

    2005-03-01

    This study was conducted at a single hospital selected in Taipei during the SARS (Severe Acute Respiratory Syndrome) outbreak from March to July, 2003 in Taiwan. During this period of time, 104 SARS patients were admitted to the hospital. There were no negative reports related to the selected hospital despite its being located right in the center of an area struck by the epidemic. The purpose of this study was to identify the key factors enabling the hospital to survive SARS unscathed. Data were collected from in-depth interviews with the nursing directors and nursing managers of the SARS units, along with a review of relevant hospital documents. The five key elements identified as survival factors during this SARS crisis are as follows: 1. good control of timing for crisis management, 2. careful decision-making, 3. thorough implementation, 4. effective communication, and 5. trust between management and employees. The results of this study reconfirmed the selected hospital as a model for good crisis management during the SARS epidemic.

  8. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  9. SAR Raw Data Generation for Complex Airport Scenes

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-10-01

    Full Text Available The method of generating the SAR raw data of complex airport scenes is studied in this paper. A formulation of the SAR raw signal model of airport scenes is given. Via generating the echoes from the background, aircrafts and buildings, respectively, the SAR raw data of the unified SAR imaging geometry is obtained from their vector additions. The multipath scattering and the shadowing between the background and different ground covers of standing airplanes and buildings are analyzed. Based on the scattering characteristics, coupling scattering models and SAR raw data models of different targets are given, respectively. A procedure is given to generate the SAR raw data of airport scenes. The SAR images from the simulated raw data demonstrate the validity of the proposed method.

  10. Deep learning for SAR image formation

    Science.gov (United States)

    Mason, Eric; Yonel, Bariscan; Yazici, Birsen

    2017-04-01

    The recent success of deep learning has lead to growing interest in applying these methods to signal processing problems. This paper explores the applications of deep learning to synthetic aperture radar (SAR) image formation. We review deep learning from a perspective relevant to SAR image formation. Our objective is to address SAR image formation in the presence of uncertainties in the SAR forward model. We present a recurrent auto-encoder network architecture based on the iterative shrinkage thresholding algorithm (ISTA) that incorporates SAR modeling. We then present an off-line training method using stochastic gradient descent and discuss the challenges and key steps of learning. Lastly, we show experimentally that our method can be used to form focused images in the presence of phase uncertainties. We demonstrate that the resulting algorithm has faster convergence and decreased reconstruction error than that of ISTA.

  11. Thermographic image analysis for classification of ACL rupture disease, bone cancer, and feline hyperthyroid, with Gabor filters

    Science.gov (United States)

    Alvandipour, Mehrdad; Umbaugh, Scott E.; Mishra, Deependra K.; Dahal, Rohini; Lama, Norsang; Marino, Dominic J.; Sackman, Joseph

    2017-05-01

    Thermography and pattern classification techniques are used to classify three different pathologies in veterinary images. Thermographic images of both normal and diseased animals were provided by the Long Island Veterinary Specialists (LIVS). The three pathologies are ACL rupture disease, bone cancer, and feline hyperthyroid. The diagnosis of these diseases usually involves radiology and laboratory tests while the method that we propose uses thermographic images and image analysis techniques and is intended for use as a prescreening tool. Images in each category of pathologies are first filtered by Gabor filters and then various features are extracted and used for classification into normal and abnormal classes. Gabor filters are linear filters that can be characterized by the two parameters wavelength λ and orientation θ. With two different wavelength and five different orientations, a total of ten different filters were studied. Different combinations of camera views, filters, feature vectors, normalization methods, and classification methods, produce different tests that were examined and the sensitivity, specificity and success rate for each test were produced. Using the Gabor features alone, sensitivity, specificity, and overall success rates of 85% for each of the pathologies was achieved.

  12. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    Science.gov (United States)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  13. Episodic inflation of Akutan volcano, Alaska revealed from GPS and InSAR time series

    Science.gov (United States)

    DeGrandpre, K.; Lu, Z.; Wang, T.

    2016-12-01

    Akutan volcano is one of the most active volcanoes located long the Aleutian arc. At least 27 eruptions have been noted since 1790 and an intense swarm of volcano-tectonic earthquakes occurred in 1996. Surface deformation after the 1996 earthquake sequence has been studied using GPS and Interferometric Synthetic Aperture Radar (InSAR) separately, yet models created from these datasets require different mechanisms to produce the observed surface deformation: an inflating Mogi source results in the best approximation of displacement observed from GPS data, whereas an opening dyke is the best fit to deformation measured from InSAR. A recent study using seismic data revealed complex magmatic structures beneath the caldera, suggesting that the surface deformation may reflect more complicated mechanisms that cannot be estimated using one type of data alone. Here we integrate the surface deformation measured from GPS and InSAR to better understand the magma plumbing system beneath Akutan volcano. GPS time-series at 12 stations from 2006 to 2016 were analyzed, and two transient episodes of inflation in 2008 and 2014 were detected. These GPS stations are, however, too sparse to reveal the spatial distribution of the surface deformation. In order to better define the spatial extent of this inflation four tracks of Envisat data acquired during 2003-2010 and one track of TerraSAR-X data acquired from 2010 to 2016 were processed to produce high-resolution maps of surface deformation. These deformation maps show a consistently uplifting area on the northwestern flank of the volcano. We inverted for the source parameters required to produce the inflation using GPS, InSAR, and a dataset of GPS and InSAR measurements combined, to find that a deep Mogi source below a shallow dyke fit these datasets best. From the TerraSAR-X data, we were also able to measure the subsidence inside the summit caldera due to fumarole activity to be as high as 10 mm/yr. The complex spatial and temporal

  14. Comparison of four moderate-size earthquakes in southern California using seismology and InSAR

    Science.gov (United States)

    Mellors, R.J.; Magistrale, H.; Earle, P.; Cogbill, A.H.

    2004-01-01

    Source parameters determined from interferometric synthetic aperture radar (InSAR) measurements and from seismic data are compared from four moderate-size (less than M 6) earthquakes in southern California. The goal is to verify approximate detection capabilities of InSAR, assess differences in the results, and test how the two results can be reconciled. First, we calculated the expected surface deformation from all earthquakes greater than magnitude 4 in areas with available InSAR data (347 events). A search for deformation from the events in the interferograms yielded four possible events with magnitudes less than 6. The search for deformation was based on a visual inspection as well as cross-correlation in two dimensions between the measured signal and the expected signal. A grid-search algorithm was then used to estimate focal mechanism and depth from the InSAR data. The results were compared with locations and focal mechanisms from published catalogs. An independent relocation using seismic data was also performed. The seismic locations fell within the area of the expected rupture zone for the three events that show clear surface deformation. Therefore, the technique shows the capability to resolve locations with high accuracy and is applicable worldwide. The depths determined by InSAR agree with well-constrained seismic locations determined in a 3D velocity model. Depth control for well-imaged shallow events using InSAR data is good, and better than the seismic constraints in some cases. A major difficulty for InSAR analysis is the poor temporal coverage of InSAR data, which may make it impossible to distinguish deformation due to different earthquakes at the same location.

  15. Urban Monitoring Based on SENTINEL-1 Data Using Permanent Scatterer Interferometry and SAR Tomography

    Science.gov (United States)

    Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.

    2018-04-01

    A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.

  16. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  17. Stormwater runoff plumes in the Southern California Bight: A comparison study with SAR and MODIS imagery.

    Science.gov (United States)

    Holt, Benjamin; Trinh, Rebecca; Gierach, Michelle M

    2017-05-15

    Stormwater runoff is the largest source of pollution in the Southern California Bight (SCB), resulting from untreated runoff and pollutants from urban watersheds entering the coastal waters after rainstorms. We make use of both satellite SAR and MODIS-Aqua ocean color imagery to examine two different components of runoff plumes, the surface slick and the sediment discharge. We expand on earlier satellite SAR studies by examining an extensive collection of multi-platform SAR imagery, spanning from 1992 to 2014, that provides a more comprehensive view of the plume surface slick characteristics, illustrated with distribution maps of the extent and flow direction of the plumes. The SAR-detected surface plumes are compared with coincident rain and runoff measurements, and with available measured shoreline fecal bacteria loads. We illustrate differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS imagery. A conceptual satellite stormwater runoff monitoring approach is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  19. SAR Image Classification Based on Its Texture Features

    Institute of Scientific and Technical Information of China (English)

    LI Pingxiang; FANG Shenghui

    2003-01-01

    SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles and fewer bands. The authors conducted the experiments of texture statistics analysis on SAR image features in order to improve the accuracy of SAR image interpretation.It is found that the texture analysis is an effective method for improving the accuracy of the SAR image interpretation.

  20. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  1. The management of scarce water resources using GNSS, InSAR and in-situ micro gravity measurements as monitoring tools

    CSIR Research Space (South Africa)

    Wonnacott, R

    2015-08-01

    Full Text Available of Geomatics, Vol. 4, No. 3, August 2015 213  The management of scarce water resources using GNSS, InSAR and in-situ micro gravity measurements as monitoring tools Richard Wonnacott1, Chris Hartnady1, Jeanine Engelbrecht2 1Umvoto Africa (Pty) Ltd... shown to provide a useful tool for the measurement and monitoring of ground subsidence resulting from numerous natural and anthropogenic causes including the abstraction of groundwater and gas. Zerbini et al (2007) processed and combined data from a...

  2. Integrated Data Processing Methodology for Airborne Repeat-pass Differential SAR Interferometry

    Science.gov (United States)

    Dou, C.; Guo, H.; Han, C.; Yue, X.; Zhao, Y.

    2014-11-01

    Short temporal baseline and multiple ground deformation information can be derived from the airborne differential synthetic aperture radar Interforemetry (D-InSAR). However, affected by the turbulence of the air, the aircraft would deviate from the designed flight path with high frequent vibrations and changes both in the flight trajectory and attitude. Restricted by the accuracy of the position and orientation system (POS), these high frequent deviations can not be accurately reported, which would pose great challenges in motion compensation and interferometric process. Thus, these challenges constrain its wider applications. The objective of this paper is to investigate the accurate estimation and compensation of the residual motion errors in the airborne SAR imagery and time-varying baseline errors between the diffirent data acquirations, furthermore, to explore the integration data processing theory for the airborne D-InSAR system, and thus help to accomplish the correct derivation of the ground deformation by using the airborne D-InSAR measurements.

  3. Analysis on Vertical Scattering Signatures in Forestry with PolInSAR

    Science.gov (United States)

    Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen

    2014-11-01

    We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.

  4. Use of thermographic imaging in clinical diagnosis of small animal: preliminary notes

    Directory of Open Access Journals (Sweden)

    Veronica Redaelli

    2014-06-01

    Full Text Available INTRODUCTION. The authors, after a description of the physics of infrared thermographic technique (IRT, analyze the reading of images and the main applications in the veterinary field, compared to the existing literature on the subject and to their experimental researches. IRT lends itself to countless applications in biology, thanks to its characteristics of versatility, lack of invasiveness and high sensitivity. Probably the major limitation to its application in the animal lies in the ease of use and in its extreme sensitivity. MATERIALS AND METHODS. From September 2009 to October 2010, the experimental investigation with the thermo camera took into consideration 110 animals (92 dogs and 18 cats, without any selection criteria. All patients were brought to the Faculty of Veterinary Medicine in Milan University by the owner, to be examined by a specialist, or to undergo one of the following diagnostic procedures: X-rays, computed tomography, or ultrasound examinations; finally some patients were brought in for surgical procedures. With the consent of the owner, 1 to 10 thermographic images were recorded from each clinical case. Results. In this first experimental investigation, thermography has shown a high sensitivity (100%, but a low specificity (44%. This figure excludes the use of thermal imaging technology to replace other imaging techniques such as radiography, computed tomography and magnetic resonance imaging. Furthermore, it does not show any ability to recognize the etiology of the disease, but only the thermal alteration, and this is restricting its use. However, this experimental study has demonstrated that thermography can be used in veterinary medicine, and specifically in dogs and cats. It is hoped that in the field of targeted diseases this technique will become an important tool for diagnostic purposes by using working protocols validated and repeatable.

  5. FlexSAR, a high quality, flexible, cost effective, prototype SAR system

    Science.gov (United States)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2016-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible research prototype instrument. Radar researchers and practitioners often desire the ability to prototype new or advanced configurations, yet the ability to enhance or upgrade existing radar systems can be cost prohibitive. FlexSAR answers the need for a flexible radar system that can be extended easily, with minimal cost and time expenditures. The design approach focuses on reducing the resources required for developing and validating new advanced radar modalities. Such an approach fosters innovation and provides risk reduction since actual radar data can be collected in the appropriate mode, processed, and analyzed early in the development process. This allows for an accurate, detailed understanding of the corresponding trade space. This paper is a follow-on to last years paper and discusses the advancements that have been made to the FlexSAR system. The overall system architecture is discussed and presented along with several examples illustrating the system utility.

  6. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  7. PHARUS : PHased ARray Universal SAR

    NARCIS (Netherlands)

    Paquay, M.H.A.; Vermeulen, B.C.B.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a polarimetric C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronm for PHased ARray Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 active modules (expandable to 96). A module

  8. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Shane R. Cloude

    2005-12-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  9. Beyond PSInSAR: the SQUEESAR Approach

    Science.gov (United States)

    Ferretti, A.; Novali, F.; Fumagalli, A.; Prati, C.; Rocca, F.; Rucci, A.

    2009-12-01

    After a decade since the first results on ERS data, Permanent Scatterer (PS) InSAR has become an operational technology for detecting and monitoring slow surface deformation phenomena such as subsidence and uplift, landslides, seismic fault creeping, volcanic inflation, etc. Processing procedures have been continuously updated, but the core of the algorithm has not been changed significantly. As well known, in PSInSAR, the main target is the identification of individual pixels that exhibit a “PS behavior”, i.e. they are only slightly affected by both temporal and geometrical decorrelation. Typically, these scatterers correspond to man-made objects, but PS have been identified also in non-urban areas, where exposed rocks or outcrops can indeed create good radar benchmarks and enable high-quality displacement measurements. Contrary to interferogram stacking techniques, PS analyses are carried out on a pixel-by-pixel basis, with no filtering of the interferograms, in order to preserve phase values from possible incoherent clutter surrounding good radar targets. In fact, any filtering process implies a spatial smoothing of the data that could compromise - rather than improve - phase coherence, at least for isolated PS. Although the PS approach usually allows one to retrieve high quality deformation measurements on a sparse grid of good radar targets, in some datasets it is quite evident how the number of pixels where some information can be extracted could be significantly increased by relaxing the hypothesis on target coherence and searching for pixels where the coherence level is high enough at least in some interferograms of the data-stack, not necessarily all. The idea of computing a “coherence matrix” for each pixel of the area of interest have been already proposed in previous papers, together with a statistical estimation of some physical parameters of interest (e.g. the average displacement rate) based on the covariance matrix. In past publications

  10. Genome organization of the SARS-CoV

    DEFF Research Database (Denmark)

    Xu, Jing; Hu, Jianfei; Wang, Jing

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or devel......Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available...

  11. How infectious is SARS virus

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. How infectious is SARS virus. Influenza: 1 patient infects ten people. SARS: 1 patient infects 2-4 people. Incubation period 10 days. Are there `silent´ cases ? Is quarantine enough ? How will it behave if and when it returns ?

  12. Imaging in severe acute respiratory syndrome (SARS)

    International Nuclear Information System (INIS)

    Antonio, G.E.; Wong, K.T.; Chu, W.C.W.; Hui, D.S.C.; Cheng, F.W.T.; Yuen, E.H.Y.; Chung, S.S.C.; Fok, T.F.; Sung, J.J.Y.; Ahuja, A.T.

    2003-01-01

    Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a novel coronavirus, and has become pandemic within a short period of time. Imaging plays an important role in the diagnosis, management and follow-up of patients with SARS. The current status of imaging in SARS is presented in this review

  13. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  14. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  15. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    Science.gov (United States)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  16. Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain

    Directory of Open Access Journals (Sweden)

    O. Monserrat

    2013-07-01

    Full Text Available In the last decade, ground-based interferometry has proven to be a powerful technique for continuous deformation monitoring of landslides, glaciers, volcanoes, or manmade structures, among others. However, several limitations need to be addressed in order to improve the performances of the technique, especially for long-term monitoring. These limitations include the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component. In this paper, a new procedure to process the amplitude component of ground-based synthetic aperture radar (GB-SAR data acquired in discontinuous mode is compared and validated. The use of geometric features of the amplitude images combined with a matching technique will allow the estimation of the displacements over specific targets. Experimental results obtained during 19 months, in eight different campaigns carried out in the active landslide of Vallcebre (eastern Pyrenees, Spain, were analysed. During the observed period, from February 2010 to September 2011, displacements up to 80 cm were measured. The comparison with other surveying technique shows that the precision of the method is below 1 cm.

  17. Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR

    Science.gov (United States)

    Scher, C.; Saah, D.

    2017-12-01

    Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.

  18. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    1996-02-01

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the

  19. Non-Cooperative Bistatic SAR Clock Drift Compensation for Tomographic Acquisitions

    Directory of Open Access Journals (Sweden)

    Mario Azcueta

    2017-10-01

    Full Text Available In the last years, an important amount of research has been headed towards the measurement of above-ground forest biomass with polarimetric Synthetic Aperture Radar (SAR tomography techniques. This has motivated the proposal of future bistatic SAR missions, like the recent non-cooperative SAOCOM-CS and PARSIFAL from CONAE and ESA. It is well known that the quality of SAR tomography is directly related to the phase accuracy of the interferometer that, in the case of non-cooperative systems, can be particularly affected by the relative drift between onboard clocks. In this letter, we provide insight on the impact of the clock drift error on bistatic interferometry, as well as propose a correction algorithm to compensate its effect. The accuracy of the compensation is tested on simulated acquisitions over volumetric targets, estimating the final impact on tomographic profiles.

  20. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  1. Multi-image Matching of Airborne SAR Imagery by SANCC

    Directory of Open Access Journals (Sweden)

    DING Hao

    2015-03-01

    Full Text Available In order to improve accuracy of SAR matching, a multi-image matching method based on sum of adaptive normalized cross-correlation (SANCC is proposed. It utilizes geometrical and radiometric information of multi-baselinesynthetic aperture radar (SARimages effectively. Firstly, imaging parameters, platform parameters and approximate digital surface model (DSM are used to predict matching line. Secondly, similarity and proximity in Gestalt theory are introduced to SANCC, and SANCC measures of potential matching points along the matching line are calculated. Thirdly, multi-image matching results and object coordinates of matching points are obtained by winner-take-all (WTA optimization strategy. The approach has been demonstrated with airborne SAR images acquired by a Chinese airborne SAR system (CASMSAR system. The experimental results indicate that the proposed algorithm is effective for providing dense and accuracy matching points, reducing the number of mismatches caused by repeated textures, and offering a better solution to match in poor textured areas.

  2. Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors

    Science.gov (United States)

    Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh

    2006-12-01

    Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will

  3. Molecular mechanisms of severe acute respiratory syndrome (SARS

    Directory of Open Access Journals (Sweden)

    Zabel Peter

    2005-01-01

    Full Text Available Abstract Severe acute respiratory syndrome (SARS is a new infectious disease caused by a novel coronavirus that leads to deleterious pulmonary pathological features. Due to its high morbidity and mortality and widespread occurrence, SARS has evolved as an important respiratory disease which may be encountered everywhere in the world. The virus was identified as the causative agent of SARS due to the efforts of a WHO-led laboratory network. The potential mutability of the SARS-CoV genome may lead to new SARS outbreaks and several regions of the viral genomes open reading frames have been identified which may contribute to the severe virulence of the virus. With regard to the pathogenesis of SARS, several mechanisms involving both direct effects on target cells and indirect effects via the immune system may exist. Vaccination would offer the most attractive approach to prevent new epidemics of SARS, but the development of vaccines is difficult due to missing data on the role of immune system-virus interactions and the potential mutability of the virus. Even in a situation of no new infections, SARS remains a major health hazard, as new epidemics may arise. Therefore, further experimental and clinical research is required to control the disease.

  4. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    Science.gov (United States)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even

  5. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  6. Improving older adults' knowledge and practice of preventive measures through a telephone health education during the SARS epidemic in Hong Kong: a pilot study.

    Science.gov (United States)

    Chan, Sophia S C; So, Winnie K W; Wong, David C N; Lee, Angel C K; Tiwari, Agnes

    2007-09-01

    The outbreak of severe acute respiratory syndrome (SARS) in Hong Kong posed many challenges for health promotion activities among a group of older adults with low socio-economic status (SES). With concerns that this vulnerable group could be at higher risk of contracting the disease or spreading it to others, the implementation of health promotion activities appropriate to this group was considered to be essential during the epidemic. To assess the effectiveness of delivering a telephone health education programme dealing with anxiety levels, and knowledge and practice of measures to prevent transmission of SARS among a group of older adults with low SES. Pretest/posttest design. Subjects were recruited from registered members of a government subsidized social service center in Hong Kong and living in low-cost housing estates. The eligibility criteria were: (1) aged 55 or above; (2) able to speak Cantonese; (3) no hearing impairment, and (4) reachable by telephone. Of the 295 eligible subjects, 122 older adults completed the whole study. The interviewers approached all eligible subjects by telephone during the period of 15-25 May 2003. After obtaining the participants' verbal consent, the interviewer collected baseline data by use of a questionnaire and implemented a health education programme. A follow-up telephone call was made a week later using the same questionnaire. The level of anxiety was lowered (t=3.28, p<0.001), and knowledge regarding the transmission routes of droplets (p<0.001) and urine and feces (p<0.01) were improved after the intervention. Although statistical significant difference was found in the practice of identified preventive measures before and after intervention, influence on behavioral changes needed further exploration. The telephone health education seemed to be effective in relieving anxiety and improving knowledge of the main transmission routes of SARS in this group, but not the practice of preventing SARS. Telephone contact appears

  7. Unsupervised SBAS-DInSAR Processing of Space-borne SAR data for Earth Surface Displacement Time Series Generation

    Science.gov (United States)

    Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.

    2016-12-01

    During the last 25 years, the Differential Synthetic Aperture Radar Interferometry (DInSAR) has played an important role for understanding the Earth's surface deformation and its dynamics. In particular, the large collections of SAR data acquired by a number of space-borne missions (ERS, ENVISAT, ALOS, RADARSAT, TerraSAR-X, COSMO-SkyMed) have pushed toward the development of advanced DInSAR techniques for monitoring the temporal evolution of the ground displacements with an high spatial density. Moreover, the advent of the Copernicus Sentinel-1 (S1) constellation is providing a further increase in the SAR data flow available to the Earth science community, due to its characteristics of global coverage strategy and free and open access data policy. Therefore, managing and storing such a huge amount of data, processing it in an effcient way and maximizing the available archives exploitation are becoming high priority issues. In this work we present some recent advances in the DInSAR field for dealing with the effective exploitation of the present and future SAR data archives. In particular, an efficient parallel SBAS implementation (namely P-SBAS) that takes benefit from high performance computing is proposed. Then, the P-SBAS migration to the emerging Cloud Computing paradigm is shown, together with extensive tests carried out in the Amazon's Elastic Cloud Compute (EC2) infrastructure. Finally, the integration of the P-SBAS processing chain within the ESA Geohazards Exploitation Platform (GEP), for setting up operational on-demand and systematic web tools, open to every user, aimed at automatically processing stacks of SAR data for the generation of SBAS displacement time series, is also illustrated. A number of experimental results obtained by using the ERS, ENVISAT and S1 data in areas characterized by volcanic, seismic and anthropogenic phenomena will be shown. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.

  8. Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge

    Directory of Open Access Journals (Sweden)

    Chen Liangan

    2005-01-01

    Full Text Available Abstract Objective The intent of this study was to examine the recovery of individuals who had been hospitalized for severe acute respiratory syndrome (SARS in the year following their discharge from the hospital. Parameters studied included serum levels of SARS coronavirus (SARS-CoV IgG antibody, tests of lung function, and imaging data to evaluate changes in lung fibrosis. In addition, we explored the incidence of femoral head necrosis in some of the individuals recovering from SARS. Methods The subjects of this study were 383 clinically diagnosed SARS patients in Beijing, China. They were tested regularly for serum levels of SARS-CoV IgG antibody and lung function and were given chest X-rays and/or high resolution computerized tomography (HRCT examinations at the Chinese PLA General Hospital during the 12 months that followed their release from the hospital. Those individuals who were found to have lung diffusion abnormities (transfer coefficient for carbon monoxide [DLCO] Findings Of all the subjects, 81.2% (311 of 383 patients tested positive for serum SARS-CoV IgG. Of those testing positive, 27.3% (85 of 311 patients were suffering from lung diffusion abnormities (DLCO Interpretation The lack of sero-positive SARS-CoV in some individuals suggests that there may have been some misdiagnosed cases among the subjects included in this study. Of those testing positive, the serum levels of SARS-CoV IgG antibody decreased significantly during the 12 months after hospital discharge. Additionally, we found that the individuals who had lung fibrosis showed some spontaneous recovery. Finally, some of the subjects developed femoral head necrosis.

  9. Severe acute respiratory syndrome (SARS) in a paediatric cluster in Singapore

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, Ian Y.; Kaw, Gregory J.; Chee, Thomas S. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore (Singapore); Loh, Lik Eng; Chan, Irene [Department of Paediatric Medicine, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, 229899, Singapore (Singapore)

    2004-01-01

    Severe acute respiratory syndrome (SARS) is a major infectious disease pandemic that occurred in early 2003, and one of the diagnostic criteria is the presence of chest radiographic findings. To describe the radiographic features of SARS in a cluster of affected children. The chest radiographs of four related children ranging in age from 18 months to 9 years diagnosed as having SARS were reviewed for the presence of air-space shadowing, air bronchograms, peribronchial thickening, interstitial disease, pleural effusion, pneumothorax, hilar lymphadenopathy and mediastinal widening. Ill-defined air-space shadowing was the common finding in all the children. The distribution was unifocal or multifocal. No other findings were seen on the radiographs. None of the children developed radiographic findings consistent with acute respiratory distress syndrome. All four children showed significant resolution of the radiographic findings 4-6 days after the initial radiograph. Early recognition of these features is important in implementing isolation and containment measures to prevent the spread of infection. SARS in children appears to manifest as a milder form of the disease as compared to adults. (orig.)

  10. Nano(Q)SAR: Challenges, pitfalls and perspectives.

    Science.gov (United States)

    Tantra, Ratna; Oksel, Ceyda; Puzyn, Tomasz; Wang, Jian; Robinson, Kenneth N; Wang, Xue Z; Ma, Cai Y; Wilkins, Terry

    2015-01-01

    Regulation for nanomaterials is urgently needed, and the drive to adopt an intelligent testing strategy is evident. Such a strategy will not only provide economic benefits but will also reduce moral and ethical concerns arising from animal testing. For regulatory purposes, such an approach is promoted by REACH, particularly the use of quantitative structure-activity relationships [(Q)SAR] as a tool for the categorisation of compounds according to their physicochemical and toxicological properties. In addition to compounds, (Q)SAR has also been applied to nanomaterials in the form of nano(Q)SAR. Although (Q)SAR in chemicals is well established, nano(Q)SAR is still in early stages of development and its successful uptake is far from reality. This article aims to identify some of the pitfalls and challenges associated with nano-(Q)SARs in relation to the categorisation of nanomaterials. Our findings show clear gaps in the research framework that must be addressed if we are to have reliable predictions from such models. Three major barriers were identified: the need to improve quality of experimental data in which the models are developed from, the need to have practical guidelines for the development of the nano(Q)SAR models and the need to standardise and harmonise activities for the purpose of regulation. Of these three, the first, i.e. the need to improve data quality requires immediate attention, as it underpins activities associated with the latter two. It should be noted that the usefulness of data in the context of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, consistency and accessibility of those data.

  11. Playback system designed for X-Band SAR

    International Nuclear Information System (INIS)

    Yuquan, Liu; Changyong, Dou

    2014-01-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement

  12. Playback system designed for X-Band SAR

    Science.gov (United States)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  13. The Application of Principal Component Analysis Using Fixed Eigenvectors to the Infrared Thermographic Inspection of the Space Shuttle Thermal Protection System

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2006-01-01

    The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the good material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued when a fixed set of eigenvectors is used to process the thermal data from the RCC materials. These eigen vectors can be generated either from an analytic model of the thermal response of the material under examination, or from a large cross section of experimental data. This paper will provide the

  14. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  15. Detection and Characterization of Hedgerows Using TerraSAR-X Imagery

    Directory of Open Access Journals (Sweden)

    Julie Betbeder

    2014-04-01

    Full Text Available Whilst most hedgerow functions depend upon hedgerow structure and hedgerow network patterns, in many ecological studies information on the fragmentation of hedgerows network and canopy structure is often retrieved in the field in small areas using accurate ground surveys and estimated over landscapes in a semi-quantitative manner. This paper explores the use of radar SAR imagery to (i detect hedgerow networks; and (ii describe the hedgerow canopy heterogeneity using TerraSAR-X imagery. The extraction of hedgerow networks was achieved using an object-oriented method using two polarimetric parameters: the Single Bounce and the Shannon Entropy derived from one TerraSAR-X image. The hedgerow canopy heterogeneity estimated from field measurements was compared with two backscattering coefficients and three polarimetric parameters derived from the same image. The results show that the hedgerow network and its fragmentation can be identified with a very good accuracy (Kappa index: 0.92. This study also reveals the high correlation between one polarimetric parameter, the Shannon entropy, and the canopy fragmentation measured in the field. Therefore, VHSR radar images can both precisely detect the presence of wooded hedgerow networks and characterize their structure, which cannot be achieved with optical images.

  16. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  17. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    Science.gov (United States)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  18. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    < 2m and the zero-crossing period during the satellite overpass is small (< 6s, �O�O < 60m). We therefore utilized the visit of one of the authors (Sarma) to the Southampton Oceanographic Centre, U.K., to procure two ERS-1 digital image mode SAR...-dimensional FFT as well as a computer program for downloading SAR data from CCT. Finally we owe a debt of gratitude to J C da Silva, Southampton Oceanographic Centre, U K for sharing some of his SAR data with us. References Allan T. D. (Ed) (1983...

  19. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  20. Spatiotemporal Characterization of Land Subsidence and Uplift (2009–2010 over Wuhan in Central China Revealed by TerraSAR-X InSAR Analysis

    Directory of Open Access Journals (Sweden)

    Lin Bai

    2016-04-01

    Full Text Available The effects of ground deformation pose a significant geo-hazard to the environment and infrastructure in Wuhan, the most populous city in Central China, in the eastern Jianghan Plain at the intersection of the Yangtze and Han rivers. Prior to this study, however, rates and patterns of region-wide ground deformation in Wuhan were little known. Here we employ multi-temporal SAR interferometry to detect and characterize spatiotemporal variations of ground deformation in major metropolitan areas in Wuhan. A total of twelve TerraSAR-X images acquired during 2009–2010 are used in the InSAR time series analysis. InSAR-derived results are validated by levelling survey measurements and reveal a distinct subsidence pattern within six zones in major commercial and industrial areas, with a maximum subsidence rate up to −67.3 mm/year. A comparison analysis between subsiding patterns and urban developments as well as geological conditions suggests that land subsidence in Wuhan is mainly attributed to anthropogenic activities, natural compaction of soft soil, and karst dissolution of subsurface carbonate rocks. However, anthropogenic activities related to intensive municipal construction and industrial production have more significant impacts on the measured subsidence than natural factors. Moreover, remarkable signals of secular land uplift are found along both banks of the Yangtze River, especially along the southern bank, with deformation rates ranging mostly from +5 mm/year to +17.5 mm/year. A strong temporal correlation is highlighted between the detected displacement evolutions and the water level records of the Yangtze River, inferring that this previously unknown deformation phenomenon is likely related to seasonal fluctuations in water levels of the Yangtze River.

  1. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    Science.gov (United States)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  2. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    Science.gov (United States)

    Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-03-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.

  3. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    International Nuclear Information System (INIS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-01-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc

  4. L’interferometria SAR satellitare per la misura delle deformazioni superficiali

    Directory of Open Access Journals (Sweden)

    Marco Chini

    2012-04-01

    Full Text Available La tecnica interferometrica, basata  sull’elaborazione coerente della fase del ritorno del segnale radar dalla superficie terrestre, ha reso il telerilevamento radar uno strumento di analisi quantitativa in molteplici campi applicativi quali cartografia, geodesia, rischio sismico, idrogeologico e vulcanico. In particolare, l’InSAR consente di produrre mappe di spostamento co-sismico, ovvero di misurare  il campo di deformazione superficiale causato da un terremoto con accuratezze centimetriche.Satellite  SAR  interferometry  for the measurement of surface deformationThe SAR Interferometry (InSAR technique is mostly used to measure the characteristics of the topography and its  changes  during  time.  The  interferometric  technique,  based  on  the coherent elaboration of radar returns from the surface, has made the radar remote  sensing  a  valuable  tool  for a  quantitative  analysis  in  many  applicative  fields  such  as  cartography, geodesy, seismic, hydrogeologic and volcanic  hazards.  In  particular,  InSAR technique is able to measure the co-seismic  surface  deformation  caused by  an  earthquake  with  accuracies  at order of centimeters. This kind of data is extremely important for the estima-tion  of  the  geometric  parameters  of the seismic source  which is a relevant information  for  the  management  of event scenarios.In the last decade a new technique for the elaboration of the interferometric signal  arises,  the  multitemporal  SAR Interferometry. Thanks to the exploita-tion of a conspicuous number of SAR images,  it  is  possible  detecting  and monitoring the slow soil deformation with millimetric accuracies. Moreover, the recent very high resolution satellite  SAR  sensors  make  possible  to apply  this  technique  in  urban  areas in  order  to  monitor  single  structures such as bridges, buildings, roads and

  5. Image based SAR product simulation for analysis

    Science.gov (United States)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  6. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  7. Long term landslide monitoring with Ground Based SAR

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  8. Answering the right question - integration of InSAR with other datasets

    Science.gov (United States)

    Holley, Rachel; McCormack, Harry; Burren, Richard

    2014-05-01

    The capabilities of satellite Interferometric Synthetic Aperture Radar (InSAR) are well known, and utilized across a wide range of academic and commercial applications. However there is a tendency, particularly in commercial applications, for users to ask 'What can we study with InSAR?'. When establishing a new technique this approach is important, but InSAR has been possible for 20 years now and, even accounting for new and innovative algorithms, this ground has been thoroughly explored. Too many studies conclude 'We show the ground is moving here, by this much', and mention the wider context as an afterthought. The focus needs to shift towards first asking the right questions - in fields as diverse as hazard awareness, resource optimization, financial considerations and pure scientific enquiry - and then working out how to achieve the best possible answers. Depending on the question, InSAR (and ground deformation more generally) may provide a large or small contribution to the overall solution, and there are usually benefits to integrating a number of techniques to capitalize on the complementary capabilities and provide the most useful measurements. However, there is still a gap between measurements and answers, and unlocking the value of the data relies heavily on appropriate visualization, integrated analysis, communication between technique and application experts, and appropriate use of modelling. We present a number of application examples, and demonstrate how their usefulness can be transformed by moving from a focus on data to answers - integrating complementary geodetic, geophysical and geological datasets and geophysical modeling with appropriate visualization, to enable comprehensive solution-focused interpretation. It will also discuss how forthcoming developments are likely to further advance realisation of the full potential satellite InSAR holds.

  9. Low cost realization of space-borne synthectic aperture radar - MicroSAR

    Science.gov (United States)

    Carter, D.; Hall, C.

    Spaceborne Earth Observation data has been used for decades in the areas of meteorology and optical imaging. The systems and satellites have, in the main, been owned and operated by a few government institutions and agencies. More recently industrial organizations in North America have joined the list. Few of these, however, include Synthetic Aperture Radar (SAR)., although the additional utility in terms of all weather, 24 hour measurement capability over the Earth's surface is well recognized. Three major factors explain this:1) Relationships between the SAR measurements of radar backscatter and images to the specific information needs have not been seen as sufficiently well understood or robust2) Availability of suitable sources, at the relevant performance and data quality have been inadequate to provide service assurance that is necessary to sustain commercial businesses3) Costs associated with building, launching and operating spaceborne SAR have not been low enough as to achieve an acceptable return of investment. A significant amount of research and development has been undertaken throughout the World to establish reliable and robust algorithms for information extraction from SAR data. Much of this work has been carried out utilizing airborne systems over localized and carefully controlled regions. In addition, an increasing number of pilot services have been offered by geo-information providers. This has allowed customer confidence to grow. With the status of spaceborne SAR being effectively in the development phase, commercial funding has been scarce, and there has been need to rely on government and institutional budgets. Today the increasing maturity of the technology of SAR and its applications is beginning to attract the commercial sector. This is the funding necessary to realize sufficient assets to be able to provide a robust supply of SAR data to the geo-information providers and subsequently a reliable service to customers. Reducing the costs

  10. Pyrimidine and nucleoside gamma-esters of L-Glu-Sar

    DEFF Research Database (Denmark)

    Eriksson, André H; Elm, Peter L; Begtrup, Mikael

    2005-01-01

    -tetrahydrofuran-3-yl ester)-Sar (I), l-Glu(thymine-1-yl-methyl ester)-Sar (II) and l-Glu(acyclothymidine)-Sar (III) were synthesised and in vitro stability was studied in various aqueous and biological media. Affinity to and translocation via hPEPT1 was investigated in mature Caco-2 cell monolayers, grown......The aim of the present study was to improve the synthetic pathway of bioreversible dipeptide derivatives as well as evaluate the potential of using l-Glu-Sar as a pro-moiety for delivering three newly synthesised nucleoside and pyrimidine l-Glu-Sar derivatives. l-Glu(trans-2-thymine-1-yl...

  11. Use of SAR data for proliferation monitoring

    International Nuclear Information System (INIS)

    Lafitte, M.; Robin, J.P.

    2013-01-01

    Synthetic Aperture Radar (SAR) is an active and coherent system. SAR images are complex data which contain both amplitude and phase information. The analysis of single SAR data required a very good experience and a good understanding of SAR geometry regarding layover, shadowing, texture and speckle. Image analyst can depicts and describes most of the facilities related to nuclear proliferation and weapons of mass destruction (WMD). The Amplitude Change Detection (ACD) technique consists of a combination of two or three SAR amplitude data acquired with similar orbit and frequency parameters on different dates. That technique provides a very good overview of the changes and particularly regarding vehicles activity and constructions ongoing within the area of interest over the monitoring period. One of the particularities of the SAR systems is to be coherent. The phase of a single image is not exploitable. Thus when two or more SAR data have been acquired with identical orbit and frequency parameters, the phases shift are indicators of changes such as structural changes, terrain subsidence or motion. The Multi-Temporal Coherence (MTC) product merged the two type of information previously detailed: the ACD and coherence analysis. It consists of the combination of two amplitude images and the corresponding coherence computed image. The MTC image may highlights changes between two states of a target which on the ACD analysis appeared unchanged. EUSC uses the difference interferometry techniques in order to estimate volumes that have changed between two acquisition dates. The paper is followed by the slides of the presentation. (A.C.)

  12. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  13. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-02-01

    Full Text Available By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  14. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields

  15. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  16. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2016-08-01

    Full Text Available In this paper, a semi-empirical algorithm for significant wave height (Hs and mean wave period (Tmw retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE of Hs with a 18.6% of scatter index (SI and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

  17. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    Science.gov (United States)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  18. Federated query services provided by the Seamless SAR Archive project

    Science.gov (United States)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  19. Curvelet-based compressive sensing for InSAR raw data

    Science.gov (United States)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications

  20. SARS – Koch´Postulates proved.

    Indian Academy of Sciences (India)

    SARS – Koch´Postulates proved. Novel coronavirus identified from fluids of patients. Virus cultured in Vero cell line. Sera of patients have antibodies to virus. Cultured virus produces disease in Macaque monkeys. -produces specific immune response; -isolated virus is SARS CoV; -pathology similar to human.

  1. Attribute Learning for SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-04-01

    Full Text Available This paper presents a classification approach based on attribute learning for high spatial resolution Synthetic Aperture Radar (SAR images. To explore the representative and discriminative attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the low-level feature space, where the maximum edge response and the ratio of mean-to-variance are included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute dictionary, a representation vector describing certain categories in the SAR image can be generated, which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X images indicate that those learned attributes have strong visual semantics, which are characterized by bright and dark spots, stripes, or their combinations. The classification method based on these learned attributes achieves better results.

  2. Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR

    Science.gov (United States)

    Xu, X.; Sandwell, D. T.

    2017-12-01

    We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.

  3. SAR system development for UAV multicopter platforms

    OpenAIRE

    Escartin Martínez, Antonio

    2015-01-01

    SAR system development for UAV multicopter platforms This thesis describes the optimization of a synthetic aperture radar (SAR) at X-band and its integration into an unmanned aerial vehicle (UAV) of type octocopter. For such optimization the SAR system functionality was extended from singlepol to fulpol and it has been optimized at hardware level in order to improve its quality against noise figure. After its integration into the octocopter platform, its features has been used in order to ...

  4. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  5. Estimation of Melt Pond Fractions on First Year Sea Ice Using Compact Polarization SAR

    Science.gov (United States)

    Li, Haiyan; Perrie, William; Li, Qun; Hou, Yijun

    2017-10-01

    Melt ponds are a common feature on Arctic sea ice. They are linked to the sea ice surface albedo and transmittance of energy to the ocean from the atmosphere and thus constitute an important process to parameterize in Arctic climate models and simulations. This paper presents a first attempt to retrieve the melt pond fraction from hybrid-polarized compact polarization (CP) SAR imagery, which has wider swath and shorter revisit time than the quad-polarization systems, e.g., from RADARSAT-2 (RS-2). The co-polarization (co-pol) ratio has been verified to provide estimates of melt pond fractions. However, it is a challenge to link CP parameters and the co-pol ratio. The theoretical possibility is presented, for making this linkage with the CP parameter C22/C11 (the ratio between the elements of the coherence matrix of CP SAR) for melt pond detection and monitoring with the tilted-Bragg scattering model for the ocean surface. The empirical transformed formulation, denoted as the "compact polarization and quad-pol" ("CPQP") model, is proposed, based on 2062 RS-2 quad-pol SAR images, collocated with in situ measurements. We compared the retrieved melt pond fraction with CP parameters simulated from quad-pol SAR data with results retrieved from the co-pol ratio from quad-pol SAR observations acquired during the Arctic-Ice (Arctic-Ice Covered Ecosystem in a Rapidly Changing Environment) field project. The results are shown to be comparable for observed melt pond measurements in spatial and temporal distributions. Thus, the utility of CP mode SAR for melt pond fraction estimation on first year level ice is presented.

  6. Population-based Post-crisis Psychological Distress: An Example From the SARS Outbreak in Taiwan

    Science.gov (United States)

    Peng, Eugene Yu-Chang; Lee, Ming-Been; Tsai, Shang-Ta; Yang, Chih-Chien; Morisky, Donald Edward; Tsai, Liang-Ting; Weng, Ya-Ling; Lyu, Shu-Yu

    2011-01-01

    Background/Purpose As a result of the severe acute respiratory syndrome (SARS) pandemic, the World Health Organization placed Taiwan on the travel alert list from May 21 to July 5, 2003. The aim of this study was to explore the post-crisis psychological distress among residents in Taiwan after the SARS epidemic. Methods The target population consisted of a nationwide representative sample of residents aged ≥ 18 years. Data were collected using computer assisted telephone interview systems by stratified random sampling according to geographic area. The survey (n = 1278) was conducted in November 2003, about 4 months after resolution of the SARS crisis in Taiwan. The maximum deviation of sampling error at the 95% confidence level was ± 2.74%. Psychological distress was measured by a question related to subject’s changes in perception of life, plus the five-item Brief Symptom Rating Scale. Multivariate logistic regression was used to examine the correlation of psychological distress. Results About 9.2% of the participants reported that their perceptions of life became more pessimistic following the SARS crisis. The prevalence of psychiatric morbidity was 11.7%. Major predictors of higher levels of pessimism after the SARS epidemic included demographic factors, perception of SARS and pre-paredness, knowing people or having personal experiences of SARS-related discrimination, and individual worries and psychiatric morbidity. The correlates of symptomatic cases, as indicated by the five-item Brief Symptom Rating Scale, included age ≥ 50 years, senior high school graduate, and worries about recurrence of SARS. Conclusion Psychological distress was significantly correlated with demographic factors and perception regarding the SARS epidemic. It is suggested that marketing of mental health education should be segmented according to age and education level, which should enhance crisis communication for newly emerging infectious diseases among community populations

  7. Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary

    Science.gov (United States)

    Farkas, Péter; Hevér, Renáta; Grenerczy, Gyula

    2015-04-01

    ESA's latest Synthetic Aperture Radar (SAR) mission Sentinel-1 is a huge step forward in SAR interferometry. With its default acquisition mode called the Interferometric Wide Swath Mode (IW) areas through all scales can be mapped with an excellent return time of 12 days (while only the Sentinel-1A is in orbit). Its operational data policy is also a novelty, it allows scientific users free and unlimited access to data. It implements a new type of ScanSAR mode called Terrain Observation with Progressive Scan (TOPS) SAR. It has the same resolution as ScanSAR but with better signal-to-noise ratio distribution. The bigger coverage is achieved by rotation of the antenna in the azimuth direction, therefore it requires very precise co-registration because even errors under a pixel accuracy can introduce azimuth phase variations caused by differences in Doppler-centroids. In our work we will summarize the benefits and the drawbacks of the IW mode. We would like to implement the processing chain of GAMMA Remote Sensing of such data for mapping surface motion with special attention to the co-registration step. Not only traditional InSAR but the advanced method of Persistent Scatterer InSAR (PSInSAR) will be performed and presented as well. PS coverage, along with coherence, is expected to be good due to the small perpendicular and temporal baselines. We would also like to integrate these measurements into national geodetic networks using common reference points. We have installed trihedral corner reflectors at some selected sites to aid precise collocation. Thus, we aim to demonstrate that Sentinel-1 can be effectively used for surface movement detection and monitoring and it can also provide valuable information for the improvement of our networks.

  8. PHARUS: A C-band Airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Pouwels, H.; Snoeij, P.

    1990-01-01

    In The Netherlands a plan to design aircraft and build a polarimetric C-band SAR system of a novel design, called PHARUS (PHased Array Universal SAR) is carried out by three institutes. These institutes are the Physics and Electronics Laboratory TNO in The Hague (prime contractor and project

  9. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    Directory of Open Access Journals (Sweden)

    Matthew C. Garthwaite

    2017-06-01

    Full Text Available Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR satellites. Therefore, either a corner reflector design tailored to a specific data type or a compromise design for multiple data types is required. In this paper, I outline the practical and theoretical considerations that need to be made when designing appropriate radar targets, with a focus on supporting multi-frequency SAR data. These considerations are tested by performing field experiments on targets of different size using SAR images from TerraSAR-X, COSMO-SkyMed and RADARSAT-2. Phase noise behaviour in SAR images can be estimated by measuring the Signal-to-Clutter ratio (SCR in individual SAR images. The measured SCR of a point target is dependent on its RCS performance and the influence of clutter near to the deployed target. The SCR is used as a metric to estimate the expected InSAR displacement error incurred by the design of each target and to validate these observations against theoretical expectations. I find that triangular trihedral corner reflectors as small as 1 m in dimension can achieve a displacement error magnitude of a tenth of a millimetre or less in medium-resolution X-band data. Much larger corner reflectors (2.5 m or greater are required to achieve the same displacement error magnitude in medium-resolution C-band data. Compromise designs should aim to satisfy the requirements of the lowest SAR frequency to be used, providing that these targets will not saturate the sensor of the highest frequency to be used. Finally, accurate boresight alignment of the corner reflector can be critical to the overall

  10. Thermographic process monitoring in powderbed based additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Harald, E-mail: harald.krauss@iwb.tum.de; Zaeh, Michael F. [AMLab, iwb Application Center Augsburg, Technische Universität München (Germany); Zeugner, Thomas [Augsburg University (Germany)

    2015-03-31

    on the other hand. These issues and proper key figures for thermographic monitoring of the Selective Laser Melting process are discussed in the paper. Even though microbolometric temperature measurement is limited to repetition rates in the Hz-regime and sub megapixel resolution, current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.

  11. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    International Nuclear Information System (INIS)

    Wake, Kanako; Watanabe, Soichi; Taki, Masao; Varsier, Nadege; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-01-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  12. MERGING AIRBORNE LIDAR DATA AND SATELLITE SAR DATA FOR BUILDING CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    2015-05-01

    Full Text Available A frequent map revision is required in GIS applications, such as disaster prevention and urban planning. In general, airborne photogrammetry and LIDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, these approaches classify geometrical attributes. Moreover, ground survey and manual editing works are finally required in attribute data classification. On the other hand, although geometrical data extraction is difficult, SAR data have a possibility to automate the attribute data acquisition and classification. The SAR data represent microwave reflections on various surfaces of ground and buildings. There are many researches related to monitoring activities of disaster, vegetation, and urban. Moreover, we have an opportunity to acquire higher resolution data in urban areas with new sensors, such as ALOS2 PALSAR2. Therefore, in this study, we focus on an integration of airborne LIDAR data and satellite SAR data for building extraction and classification.

  13. Multi-temporal InSAR Datastacks for Surface Deformation Monitoring: a Review

    Science.gov (United States)

    Ferretti, A.; Novali, F.; Prati, C.; Rocca, F.

    2009-04-01

    In the last decade extensive processing of thousands of satellite radar scenes acquired by different sensors (e.g. ERS-1/2, ENVISAT and RADARSAT) has demonstrated how multi-temporal data-sets can be successfully exploited for surface deformation monitoring, by identifying objects on the terrain that have a stable, point-like behaviour. These objects, referred to as Permanent or Persistent Scatterers (PS), can be geo-coded and monitored for movement very accurately, acting as a "natural" geodetic network, integrating successfully continuous GPS data. After a brief analysis of both advantages and drawbacks of InSAR datastacks, the paper presents examples of applications of PS measurements for detecting and monitoring active faults, aquifers and oil/gas reservoirs, using experience in Europe, North America and Japan, and concludes with a discussion on future directions for PSInSAR analysis. Special attention is paid to the possibility of creating deformation maps over wide areas using historical archives of data already available. This second part of the paper will briefly discuss the technical features of the new radar sensors recently launched (namely: TerraSAR-X, RADARSAT-2, and CosmoSkyMed) and their impact on space geodesy, highlighting the importance of data continuity and standardized acquisition policies for almost all InSAR and PSInSAR applications. Finally, recent advances in the algorithms applied in PS analysis, such as detection of "temporary PS", PS characterization and exploitation of distributed scatterers, will be briefly discussed based on the processing of real data.

  14. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.

  15. Accelerated Scientific InSAR Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Neva Ridge Technologies proposes to develop a suite of software tools for the analysis of SAR and InSAR data, focused on having a robust and adopted capability well...

  16. Automated system for crack detection using infrared thermograph

    International Nuclear Information System (INIS)

    Starman, Stanislav

    2009-01-01

    The objective of this study was the development of the automated system for crack detection on square steel bars used in the automotive industry for axle and shaft construction. The automated system for thermographic crack detection uses brief pulsed eddy currents to heat steel components under inspection. Cracks, if present, will disturb the current flow and so generate changes in the temperature profile in the crack area. These changes of temperature are visualized using an infrared camera. The image acquired by the infrared camera is evaluated through an image processing system. The advantages afforded by the system are its inspection time, its excellent flaw detection sensitivity and its ability to detect hidden, subsurface cracks. The automated system consists of four IR cameras (each side of steel bar is evaluated at a time), coil, high frequency generator and control place with computers. The system is a part of the inspection line where the subsurface and surface cracks are searched. If the crack is present, the cracked place is automatically marked. The components without cracks are then deposited apart from defective blocks. The system is fully automated and its ability is to evaluate four meter blocks within 20 seconds. This is the real reason for using this system in real industrial applications. (author)

  17. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  18. Measured airtightness of twenty-four detached houses over periods of up to three years

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A three year field study of 20 energy efficient houses and four conventional dwellings was conducted in Winnipeg, Manitoba to evaluate the performance of their building envelope systems. Ten of the houses were built with polyethylene air barriers and 14 using the Airtight Drywall Approach (ADA). All were newly constructed and used dry wood for the framing members with a wood moisture content (WMC) below 19 percent. Building envelope performance was evaluated by developing a comprehensive monitoring program which included measurements of wall, attic, and floor joist WMC levels, detailed thermographic examinations and regular airtightness testing. Over 13,000 WMC measurements were performed, 1,013 thermographic images recorded, and 167 airtightness tests conducted.

  19. Constraints on Pressure-Driven Flow Beneath Askja Volcano, Iceland, from Microgravity and InSAR Measurements

    Science.gov (United States)

    Giniaux, J. M.; Hooper, A. J.; Dumont, S.; Bagnardi, M.; Drouin, V.; Sigmundsson, F.

    2017-12-01

    Askja is an active volcano in the Northern Volcanic Zone of Iceland, lying within a spreading segment of the mid-Atlantic ridge. There have been at least 40 eruptions in the last 1100 years, including the 1875 VEI-5 caldera-forming Plinian event. However the current state of the complex magmatic system and the probability of an eruption in the near future are not well understood. Steadily decaying subsidence within the main caldera has been recorded with a variety of geodetic measurements since at least 1983. It has been postulated that rifting extension and shallow magmatic processes, e.g. outflow and/or crystallisation, could be responsible for this subsidence. All models using surface deformation data agree that there is at least one shallow source at 2-2.5 km b.s.l. (3-3.5 km below the surface), shrinking at a rate of approximately -1.4 to -2.1x106 km3yr-1. This depth is consistent with results from seismic tomography, which also reveal the presence of two melt storage regions at about 5-7 and 9-11 km b.s.l. The subsidence has been accompanied by a gravity decrease (mass loss) since at least 1988, except for a measured increase between 2007 and 2008. These gravity signals have been interpreted as the result of magma drainage and magma intrusion, respectively. Here, we present new gravity results from 2015-2017, measured over an extended network within the caldera, together with new InSAR time series results. We use these data to model the location, depth, volume and mass changes beneath Askja from 2002-2017. Our results show a gravity decrease over a larger area than previously recognised, implying greater mass loss than previously thought. The InSAR results show a gradually decreasing rate of subsidence, consistent with earlier results from levelling and GPS, but the spatial pattern is more complicated than a simple spherical source would imply. Taken together the volume and mass decreases can be explained by magmatic drainage from shallow to deeper reservoirs

  20. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  1. Forest parameter estimation using polarimetric SAR interferometry techniques at low frequencies

    International Nuclear Information System (INIS)

    Lee, Seung-Kuk

    2013-01-01

    Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) is an active radar remote sensing technique based on the coherent combination of both polarimetric and interferometric observables. The Pol-InSAR technique provided a step forward in quantitative forest parameter estimation. In the last decade, airborne SAR experiments evaluated the potential of Pol-InSAR techniques to estimate forest parameters (e.g., the forest height and biomass) with high accuracy over various local forest test sites. This dissertation addresses the actual status, potentials and limitations of Pol-InSAR inversion techniques for 3-D forest parameter estimations on a global scale using lower frequencies such as L- and P-band. The multi-baseline Pol-InSAR inversion technique is applied to optimize the performance with respect to the actual level of the vertical wave number and to mitigate the impact of temporal decorrelation on the Pol-InSAR forest parameter inversion. Temporal decorrelation is a critical issue for successful Pol-InSAR inversion in the case of repeat-pass Pol-InSAR data, as provided by conventional satellites or airborne SAR systems. Despite the limiting impact of temporal decorrelation in Pol-InSAR inversion, it remains a poorly understood factor in forest height inversion. Therefore, the main goal of this dissertation is to provide a quantitative estimation of the temporal decorrelation effects by using multi-baseline Pol-InSAR data. A new approach to quantify the different temporal decorrelation components is proposed and discussed. Temporal decorrelation coefficients are estimated for temporal baselines ranging from 10 minutes to 54 days and are converted to height inversion errors. In addition, the potential of Pol-InSAR forest parameter estimation techniques is addressed and projected onto future spaceborne system configurations and mission scenarios (Tandem-L and BIOMASS satellite missions at L- and P-band). The impact of the system parameters (e.g., bandwidth

  2. Near Surface Soil Moisture Estimation Using SAR Images: A Case Study in the Mediterranean Area of Catalonia

    Science.gov (United States)

    Reppucci, Antonio; Moreno, Laura

    2010-12-01

    Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.

  3. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets

    NARCIS (Netherlands)

    ter Meulen, Jan; Bakker, Alexander B. H.; van den Brink, Edward N.; Weverling, Gerrit J.; Martina, Byron E. E.; Haagmans, Bart L.; Kuiken, Thijs; de Kruif, John; Preiser, Wolfgang; Spaan, Willy; Gelderblom, Hans R.; Goudsmit, Jaap; Osterhaus, Albert D. M. E.

    2004-01-01

    SARS coronavirus continues to cause sporadic cases of severe acute respiratory syndrome (SARS) in China. No active or passive immunoprophylaxis for disease induced by SARS coronavirus is available. We investigated prophylaxis of SARS coronavirus infection with a neutralising human monoclonal

  4. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  5. Using InSAR for Characterizing Pyroclastic Flow Deposits at Augustine Volcano Across Two Eruptive Cycles

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2014-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.

  6. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  7. Protecting healthcare workers in an acute care environment during epidemics: lessons learned from the SARS outbreak

    Directory of Open Access Journals (Sweden)

    John Casken

    2011-01-01

    Full Text Available During the 2002-2003 the SARS outbreak resulted in 8,450 illnesses and 812 deaths. Out of these documented cases 1706 were among healthcare workers (HCWsThe purpose of this paper is to focus on and examine the details of infection control (IC measures and which of these measures appear to be the most effective in stopping disease spread. Historically, HCWs have had poor compliance with the use of IC measures prior to the SARS outbreak. A number of lessons were learned from the SARS epidemic that should be incorporated into healthcare institutions policies and procedures. They include the following: an emphasis on the correct and immediate use of IC measures; an increased focus on HCWs recognizing early perceived threats; healthcare institutions should mandate routine in-house education with periodic updates on IC measures; administrators need to acknowledge and encourage role models among staff; engineeringcontrols should be put in place to protect staff from pathogens; and finally, there should be clear and constant communication between administration and staff.

  8. Mapping mountain meadow with high resolution and polarimetric SAR data

    International Nuclear Information System (INIS)

    Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli

    2014-01-01

    This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow

  9. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  10. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  11. Airborne eXpendable BathyThermographs (AXBT) data from Ocean Surveys in the Gulf of Mexico during Hurricane Lili 2002-10-02 to 2002-10-04 (NCEI Accession 0159386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne eXpendable BathyThermographs (AXBT) data from deployments during field operations to study Hurricane Lili. The data were used in model simulations for...

  12. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  13. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon; Hanssen, Ramon F.

    2014-01-01

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  14. URBAN MODELLING PERFORMANCE OF NEXT GENERATION SAR MISSIONS

    Directory of Open Access Journals (Sweden)

    U. G. Sefercik

    2017-09-01

    Full Text Available In synthetic aperture radar (SAR technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX and Cosmo-SkyMed (CSK since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM acquisition for urban areas utilizing interferometric SAR (InSAR technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8–10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  15. InSAR deformation monitoring of high risk landslides

    Science.gov (United States)

    Singhroy, V.; Li, J.

    2013-05-01

    During the past year there were at least twenty five media reports of landslides and seismic activities some fatal, occurring in various areas in Canada. These high risk geohazards sites requires high resolution monitoring both spatially and temporally for mitigation purposes, since they are near populated areas and energy, transportation and communication corridors. High resolution air photos, lidar and satellite images are quite common in areas where the landslides can be fatal. Radar interferometry (InSAR) techniques using images from several radar satellites are increasingly being used in slope stability assessment. This presentation provides examples of using high-resolution (1-3m) frequent revisits InSAR techniques from RADARSAT 2 and TerraSAR X to monitor several types of high-risk landslides affecting transportation and energy corridors and populated areas. We have analyses over 200 high resolution InSAR images over a three year period on geologically different landslides. The high-resolution InSAR images are effective in characterizing differential motion within these low velocity landslides. The low velocity landslides become high risk during the active wet spring periods. The wet soils are poor coherent targets and corner reflectors provide an effective means of InSAR monitoring the slope activities.

  16. Thermographic analysis of photodynamic therapy with intense pulsed light and needle-free injection photosensitizer delivery: an animal study

    Science.gov (United States)

    Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.

    2018-02-01

    The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.

  17. Tie Points Extraction for SAR Images Based on Differential Constraints

    Science.gov (United States)

    Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.

    2018-04-01

    Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  18. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  19. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  20. Flood extent and water level estimation from SAR using data-model integration

    Science.gov (United States)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  1. Monitoring of surface deformation in open pit mine using DInSAR time-series: a case study in the N5W iron mine (Carajás, Brazil) using TerraSAR-X data

    Science.gov (United States)

    Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.

    2014-10-01

    We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.

  2. SAR Study of Mobile Phones as a function of Antenna Q

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Jagielski, Ole

    2015-01-01

    density associated with high-Q antennas. The higher energy stored in the electric and magnetic near-field components can result in higher SAR. Hence, SAR study of high-Q antennas is necessary which, if not addressed, might not comply with the SAR safety guidelines. In this paper, SAR as a function...

  3. SAR calculation using FDTD simulations

    OpenAIRE

    Ferro, Francisco Nabais; Pinto, Guilherme Taveira; Pinho, Pedro

    2009-01-01

    The main intend of this work, is to determinate the Specific Absorption Rate (SAR) on human head tissues exposed to radiation caused by sources of 900 and 1800MHz, since those are the typical frequencies for mobile communications systems nowadays. In order to determinate the SAR, has been used the FDTD (Finite Difference Time Domain), which is a numeric method in time domain, obtained from the Maxwell equations in differential mode. In order to do this, a computational model from the human he...

  4. High-Level Performance Modeling of SAR Systems

    Science.gov (United States)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  5. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    Science.gov (United States)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  6. Permanent scatterer InSAR processing: Forsmark

    International Nuclear Information System (INIS)

    Dehls, John F.

    2006-04-01

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km 2 . Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of errors

  7. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  8. Automatic Coregistration for Multiview SAR Images in Urban Areas

    Science.gov (United States)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  9. Information extraction from dynamic PS-InSAR time series using machine learning

    Science.gov (United States)

    van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R. F.

    2017-12-01

    Due to the increasing number of SAR satellites, with shorter repeat intervals and higher resolutions, SAR data volumes are exploding. Time series analyses of SAR data, i.e. Persistent Scatterer (PS) InSAR, enable the deformation monitoring of the built environment at an unprecedented scale, with hundreds of scatterers per km2, updated weekly. Potential hazards, e.g. due to failure of aging infrastructure, can be detected at an early stage. Yet, this requires the operational data processing of billions of measurement points, over hundreds of epochs, updating this data set dynamically as new data come in, and testing whether points (start to) behave in an anomalous way. Moreover, the quality of PS-InSAR measurements is ambiguous and heterogeneous, which will yield false positives and false negatives. Such analyses are numerically challenging. Here we extract relevant information from PS-InSAR time series using machine learning algorithms. We cluster (group together) time series with similar behaviour, even though they may not be spatially close, such that the results can be used for further analysis. First we reduce the dimensionality of the dataset in order to be able to cluster the data, since applying clustering techniques on high dimensional datasets often result in unsatisfying results. Our approach is to apply t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for dimensionality reduction of high-dimensional data to a 2D or 3D map, and cluster this result using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The results show that we are able to detect and cluster time series with similar behaviour, which is the starting point for more extensive analysis into the underlying driving mechanisms. The results of the methods are compared to conventional hypothesis testing as well as a Self-Organising Map (SOM) approach. Hypothesis testing is robust and takes the stochastic nature of the observations into account

  10. InSAR Reveals Land Deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data

    Directory of Open Access Journals (Sweden)

    Alex Hay-Man Ng

    2018-05-01

    Full Text Available Subsidence from groundwater extraction and underground tunnel excavation has been known for more than a decade in Guangzhou and Foshan, but past studies have only monitored the subsidence patterns as far as 2011 using InSAR. In this study, the deformation occurring during the most recent time-period between 2011 and 2017 has been measured using COSMO-SkyMed (CSK to understand if changes in temporal and spatial patterns of subsidence rates occurred. Using InSAR time-series analysis (TS-InSAR, we found that significant surface displacement rates occurred in the study area varying from −35 mm/year (subsidence to 10 mm/year (uplift. The 2011–2017 TS-InSAR results were compared to two separate TS-InSAR analyses (2011–2013, and 2013–2017. Our CSK TS-InSAR results are in broad agreement with previous ENVISAT results and levelling data, strengthening our conclusion that localised subsidence phenomena occurs at different locations in Guangzhou and Foshan. A comparison between temporal and spatial patterns of deformations from our TS-InSAR measurements and different land use types in Guangzhou shows that there is no clear relationship between them. Many local scale deformation zones have been identified related to different phenomena. The majority of deformations is related to excessive groundwater extraction for agricultural and industrial purposes but subsidence in areas of subway construction also occurred. Furthermore, a detailed analysis on the sinkhole collapse in early 2018 has been conducted, suggesting that surface loading may be a controlling factor of the subsidence, especially along the road and highway. Roads and highways with similar subsidence phenomenon are identified. Continuous monitoring of the deforming areas identified by our analysis is important to measure the magnitude and spatial pattern of the evolving deformations in order to minimise the risk and hazards of land subsidence.

  11. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  12. An analytical solution for improved HIFU SAR estimation

    International Nuclear Information System (INIS)

    Dillon, C R; Vyas, U; Christensen, D A; Roemer, R B; Payne, A

    2012-01-01

    Accurate determination of the specific absorption rates (SARs) present during high intensity focused ultrasound (HIFU) experiments and treatments provides a solid physical basis for scientific comparison of results among HIFU studies and is necessary to validate and improve SAR predictive software, which will improve patient treatment planning, control and evaluation. This study develops and tests an analytical solution that significantly improves the accuracy of SAR values obtained from HIFU temperature data. SAR estimates are obtained by fitting the analytical temperature solution for a one-dimensional radial Gaussian heating pattern to the temperature versus time data following a step in applied power and evaluating the initial slope of the analytical solution. The analytical method is evaluated in multiple parametric simulations for which it consistently (except at high perfusions) yields maximum errors of less than 10% at the center of the focal zone compared with errors up to 90% and 55% for the commonly used linear method and an exponential method, respectively. For high perfusion, an extension of the analytical method estimates SAR with less than 10% error. The analytical method is validated experimentally by showing that the temperature elevations predicted using the analytical method's SAR values determined for the entire 3D focal region agree well with the experimental temperature elevations in a HIFU-heated tissue-mimicking phantom. (paper)

  13. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    Science.gov (United States)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground

  14. Relations of SARS-Related Stressors and Coping to Chinese College Students' Psychological Adjustment during the 2003 Beijing SARS Epidemic

    Science.gov (United States)

    Main, Alexandra; Zhou, Qing; Ma, Yue; Luecken, Linda J.; Liu, Xin

    2011-01-01

    This study examined the main and interactive relations of stressors and coping related to severe acute respiratory syndrome (SARS) with Chinese college students' psychological adjustment (psychological symptoms, perceived general health, and life satisfaction) during the 2003 Beijing SARS epidemic. All the constructs were assessed by self-report…

  15. A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003-2004 community outbreak of SARS in Guangzhou, China.

    Science.gov (United States)

    Che, Xiao-yan; Di, Biao; Zhao, Guo-ping; Wang, Ya-di; Qiu, Li-wen; Hao, Wei; Wang, Ming; Qin, Peng-zhe; Liu, Yu-fei; Chan, Kwok-hong; Cheng, Vincent C C; Yuen, Kwok-yung

    2006-07-01

    An asymptomatic case of severe acute respiratory syndrome (SARS) occurred early in 2004, during a community outbreak of SARS in Guangzhou, China. This was the first time that a case of asymptomatic SARS was noted in an individual with antigenemia and seroconversion. The asymptomatic case patient and the second index case patient with SARS in the 2003-2004 outbreak both worked in the same restaurant, where they served palm civets, which were found to carry SARS-associated coronaviruses. Epidemiological information and laboratory findings suggested that the findings for the patient with asymptomatic infection, together with the findings from previously reported serological analyses of handlers of wild animals and the 4 index case patients from the 2004 community outbreak, reflected a likely intermediate phase of animal-to-human transmission of infection, rather than a case of human-to-human transmission. This intermediate phase may be a critical stage for virus evolution and disease prevention.

  16. Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR

    Directory of Open Access Journals (Sweden)

    Kefeng Ji

    2015-06-01

    Full Text Available Dual polarization is a typical operational mode of polarimetric synthetic aperture radar (SAR. However, few studies have considered the scattering mechanism extraction of dual-polarization SARs. A modified Cloude-Pottier decomposition is proposed to investigate the performance of the scattering mechanism extraction of dual-polarization SARs. It is theoretically demonstrated that only HH-VV SAR can discriminate the three canonical scattering mechanisms from an isotropic surface, horizontal dipole, and isotropic dihedral. Various experiments are conducted using 21 scenes from real datasets acquired by AIRSAR, Convair-580 SAR, EMISAR, E-SAR, Pi-SAR, and RADARSAT-2. Division of the dual-polarization H-α plane is experimentally obtained. The lack of cross-polarization induces the diffusion of scattering mechanisms and their overlap in the HH-VV H-α plane. However, the performance of HH-VV SAR for extracting scattering mechanisms is acceptable. Thus, HH-VV SAR is a suitable alternative to full-polarization SAR in certain cases. Meanwhile, the extraction performance of the other two dual-polarization SARs is badly degraded due to the lack of co-polarization. Therefore, HH-HV and HV-VV SARs cannot effectively extract the scattering mechanisms in the H-α plane.

  17. AUTOMATIC COREGISTRATION FOR MULTIVIEW SAR IMAGES IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Xiang

    2017-09-01

    Full Text Available Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  18. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  19. Applications of SAR Interferometry in Earth and Environmental Science Research.

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  20. SARS Risk Perception, Knowledge, Precautions, and Information Sources, the Netherlands

    Science.gov (United States)

    Aro, Arja R.; Oenema, Anke; de Zwart, Onno; Richardus, Jan Hendrik; Bishop, George D.

    2004-01-01

    Severe acute respiratory syndrome (SARS)–related risk perceptions, knowledge, precautionary actions, and information sources were studied in the Netherlands during the 2003 SARS outbreak. Although respondents were highly aware of the SARS outbreak, the outbreak did not result in unnecessary precautionary actions or fears. PMID:15496256

  1. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    Science.gov (United States)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  2. Towards automatic SAR-optical stereogrammetry over urban areas using very high resolution imagery

    Science.gov (United States)

    Qiu, Chunping; Schmitt, Michael; Zhu, Xiao Xiang

    2018-04-01

    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established hand-crafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging.

  3. SAR antenna design for ambiguity and multipath suppression

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Dich, Mikael

    1993-01-01

    A high resolution airborne synthetic aperture radar (SAR) has been developed at the Electromagnetics Institute (EMI) for remote sensing applications. The paper considers the radiation of antennas for a SAR system from a systems perspective. The basic specifications of an idealised antenna...... are obtained from the required swath and the azimuth footprint needed for the SAR processing. The radiation from a real antenna causes unwanted signal returns that lead to intensity variations (multipath) and ghost echoes (ambiguity). Additional specifications are deduced by considering these signals...

  4. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    Science.gov (United States)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  5. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.

  6. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G; Jonsson, Sigurjon

    2010-01-01

    anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based

  7. Applications of SAR Interferometry in Earth and Environmental Science Research

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  8. Applications of SAR Interferometry in Earth and Environmental Science Research

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2009-03-01

    Full Text Available This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  9. New challenges for a SAR toolbox

    International Nuclear Information System (INIS)

    Loreaux, P.; Quin, G.

    2013-01-01

    High resolution multi-frequency synthetic aperture radar (SAR) imagery, available since early 2008, brings all weather capability and day/night operability in support of safeguards verification. Today, a combined approach of high resolution optical and radar imagery in monitoring exercise would enable looking at any area of interest on daily basis. One of the challenges is the co-registration of SAR images acquired with different acquisition mode and also with different optical images. We show in this paper the on-going research work to find a general co-register method and an automatic tool to detect changes. Before having an operational co-register tool, a method to find automatically tie points between SAR images acquired with different acquisition mode and with optical images has to be developed. Concerning an automatic change detection method we can conclude that the study of the Harmonic mean, Geometric mean and Arithmetic mean, enables several applications like change detection for SAR imagery. Thus, we developed the MAGMA (Method for Arithmetic and Geometric Means Analysis) change detection method. As shown in this paper, the MAGMA method improves the Maximum Likelihood techniques like GLRT, using Information-Theory concepts to detect changes between SAR amplitude images. The major improvement consists in a lower false detection rate, especially in low amplitude areas. The second improvement consists in a better location of the changes in clearly delimited areas, which enables precise interpretations. Results presented here reveal the potential of high resolution radar imagery for a baseline description of some sites, change detection based on repeat pass imagery acquisitions and site specific constraints in coherent change detection due to cover conditions. (A.C.)

  10. Basin Scale Assessment of Landslides Geomorphological Setting by Advanced InSAR Analysis

    Directory of Open Access Journals (Sweden)

    Francesca Bozzano

    2017-03-01

    Full Text Available An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010 have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space.

  11. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  12. The economic impact of SARS in Beijing, China.

    Science.gov (United States)

    Beutels, Philippe; Jia, Na; Zhou, Qing-Yi; Smith, Richard; Cao, Wu-Chun; de Vlas, Sake J

    2009-11-01

    To document the impact of the severe acute respiratory syndrome (SARS) outbreak in Beijing on indicators of social and economic activity. Associations between time series of daily and monthly SARS cases and deaths and volume of public train, airplane and cargo transport, tourism, household consumption patterns and gross domestic product growth in Beijing were investigated using the cross-correlation function. Significant correlation coefficients were found for all indicators except wholesale accounts and expenditures on necessities, with the most significant correlations occurring with a delay of 1 day to 1 month. Especially leisure activities, local and international transport and tourism were affected by SARS particularly in May 2003. Much of this consumption was merely postponed; but irrecoverable losses to the tourist sector alone were estimated at about US$ 1.4 bn, or 300 times the cost of treatment for SARS cases in Beijing.

  13. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  14. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  15. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  16. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  17. TIE POINTS EXTRACTION FOR SAR IMAGES BASED ON DIFFERENTIAL CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    X. Xiong

    2018-04-01

    Full Text Available Automatically extracting tie points (TPs on large-size synthetic aperture radar (SAR images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  18. Discrimination of land cover from a multiparameter SAR data set

    International Nuclear Information System (INIS)

    Pierdicca, N.; Castracane, P.; Basili, P.; Ciotti, P.; Marzano, F.S.

    2001-01-01

    The identification of the most valuable radar observation parameters (e.g., frequency, polarisation, incidence angle) is important both for designing non-redundant high-performance sensors (i.e. selection of frequency bands and polarizations) and for specifying mission operation requirements (i.e. temporal sampling, incidence angle). Moreover, the task of classifying multiparameter SAR images may require to adopt a strategy that implies the selection of a number of features among those available from this kind of sensors. In this paper it has performed this kind of analysis in a specific area of interest to account for the particular conditions in which remotely sensed data are going to be used. The paper summarises the results of the analysis of the radar data acquired during the MAC Europe '91 and X-SAR/SIR-C campaigns over the Montespertoli test site in Italy. The analysis is based mainly on a statistical approach aiming at demonstrating what is the contribution of different measurements performed by the polarimetric SAR for discriminating the surface coverage. The work is intended to furnish a guideline to develop an optimal strategy for acquiring and processing polarimetric data to be used for land classification

  19. SAR distribution in human beings when using body-worn RF transmitters

    International Nuclear Information System (INIS)

    Christ, A.; Samaras, T.; Neufeld, E.; Klingenboeck, A.; Kuster, N.

    2007-01-01

    This study analyzes the exposure of the human torso to electromagnetic fields caused by wireless body-mounted or hand-held devices. Because of the frequency and distance ranges from 30-5800 MHz and 10 to 200 mm, respectively, both near-field and far-field effects are considered. A generic body model and simulations of anatomical models are used to evaluate the worst case tissue composition with respect to the absorption of electromagnetic energy. Both standing wave effects and enhanced coupling of reactive near-field components can lead to a specific absorption rate (SAR) increase in comparison to homogeneous tissue. In addition, the exposure and temperature increase of different inner organs is assessed. With respect to compliance testing, the observed SAR enhancement may require the introduction of a multiplication factor for the spatial peak SAR measured in the liquid-filled phantom in order to obtain a conservative exposure assessment. The observed tissue heating at the body surface under adiabatic conditions can be significant, whereas the temperature increase in the inner organs turned out to be negligible for the cases investigated. (authors)

  20. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-07-01

    Full Text Available The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR and Global Positioning System (GPS to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.

  1. Comparison of SAR calculation algorithms for the finite-difference time-domain method

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami

    2010-01-01

    Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)

  2. VenSAR on EnVision: Taking earth observation radar to Venus

    Science.gov (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  3. Global Rapid Flood Mapping System with Spaceborne SAR Data

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from

  4. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.

    Science.gov (United States)

    Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.

  5. Hydrodynamics of the groundwater-fed Sian Ka'an Wetlands, Mexico, From InSAR and SAR Data

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Hong, S.; Wdowinski, S.

    2008-01-01

    The 5300 km2 pristine Sian Ka'an wetland in Mexico is fed entirely by groundwater from the karst aquifer of the Yucatan Peninsula. The area is undeveloped and hence difficult to access. The inflow through underground rivers and karst structures is hard to observe resulting in difficulties......-changes of the backscattered radar signal, which can be related to the water level changes in vegetated wetlands. SAR data reveals information of surface properties such as the degree of flooding through the amplitude of the backscattered signal. We used RADARSAT-1 InSAR and SAR data to form 36 interferograms and 13 flooding...... maps with 24 to 48 day intervals covering the time span of October 2006 to March 2008. The dataset has a high spatial resolution of ca. 20 to 60 m. Sian Ka'an consists of a mosaic of freshwater sloughs, canals, floodplains and brackish tidally-influenced areas. Throughout most of the year, water level...

  6. A study of mammographic and thermographic findings in breast diseases

    International Nuclear Information System (INIS)

    Cho, Won Sik; Jeon, Woo Ki; Kim, Jeong Sook; Han, Chang Yul

    1989-01-01

    The ideal diagnostic methods in breast diseases consist of the physical examination and complementary radiologic examination. In radiologic examination mammography is the most popular screening methods and the older simple complementary method is thermography which is efficient under the conditions of elevated skin temperature in inflammatory and malignant lesions. From Jan. 1st 1987 through Jan. 30th, 1988, 110 pts. with complaints of mammary problems were examined by mammography and thermography at Paik Hospital, Inje University. The authors selected and analyzed 97 cases had been pathologically proved through the operation and the fine needle aspiration biopsy. The results were as follows: 1. The most prevalent age group was 5th decade (40%) in cancer, 4th decade (47%) in mammary dysplasia and followed by fibroadenoma (63%) in 4th decade. 2. The mammographic and thermographic findings were compared between the mammary dysplasia and the infiltrating ductal cancer. In mammary dysplasia abnormal hot emissions were appeared in 9/44 (17%) correlated with atypical hyperchromatic cytoplasm relates to pre-malignant group. 3. We hope and expect the early detection of breast cancer through the follow-up study in pre-malignant group of mammary dysplasia

  7. Methodology of dose calculation for the SRS SAR

    International Nuclear Information System (INIS)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided

  8. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  9. Improving InSAR geodesy using Global Atmospheric Models

    Science.gov (United States)

    Jolivet, Romain; Agram, Piyush Shanker; Lin, Nina Y.; Simons, Mark; Doin, Marie-Pierre; Peltzer, Gilles; Li, Zhenghong

    2014-03-01

    Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

  10. Certainties and Uncertainties Facing Emerging Respiratory Infectious Diseases: Lessons from SARS

    Directory of Open Access Journals (Sweden)

    Yee-Chun Chen

    2008-06-01

    Full Text Available Every emerging infectious disease is a challenge to the whole of mankind. There are uncertainties regarding whether there will be a pandemic, if it will be caused by the highly pathogenic H5N1 influenza virus, when or where it will occur, how imminent or how severe it will be. No one can accurately predict if and when a given virus will become a pandemic virus. Pandemic prevention strategies must be based on preparing for the unexpected and being capable of reacting accordingly. There is growing evidence that infection control measures were helpful in containment of severe acute respiratory syndrome (SARS as well as avian influenza. Compliance of standard infection control measures, intensive promotion of hand and respiratory hygiene, vigilance and triage of patients with febrile illness, and specific infection control measures are key components to contain a highly contagious disease in hospital and to protect healthcare workers, patients and visitors. The importance of standard precautions for any patient and cleaning and disinfection for the healthcare environment cannot be overemphasized. SARS illustrated dramatically the potential of air travel and globalization for the dissemination of an emerging infectious disease. To prevent the potential serious consequences of pandemic influenza, timely implementation of pharmaceutical and non-pharmaceutical interventions locally within the outbreak area is the key to minimizing global spread. Herein, we relate our perspective on useful lessons derived from a review of the SARS epidemic that may be useful to physicians, especially when looking ahead to the next epidemic.

  11. Time domain SAR raw data simulation using CST and image focusing of 3D objects

    Science.gov (United States)

    Saeed, Adnan; Hellwich, Olaf

    2017-10-01

    This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.

  12. Demonstrator for Automatic Target Classification in SAR Imagery

    NARCIS (Netherlands)

    Wit, J.J.M. de; Broek, A.C. van den; Dekker, R.J.

    2006-01-01

    Due to the increasing use of unmanned aerial vehicles (UAV) for reconnaissance, surveillance, and target acquisition applications, the interest in synthetic aperture radar (SAR) systems is growing. In order to facilitate the processing of the enormous amount of SAR data on the ground, automatic

  13. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  14. Phase correction and error estimation in InSAR time series analysis

    Science.gov (United States)

    Zhang, Y.; Fattahi, H.; Amelung, F.

    2017-12-01

    During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same

  15. Program Merges SAR Data on Terrain and Vegetation Heights

    Science.gov (United States)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  16. The Danish (Q)SAR Database Update Project

    DEFF Research Database (Denmark)

    Nikolov, Nikolai Georgiev; Dybdahl, Marianne; Abildgaard Rosenberg, Sine

    2013-01-01

    The Danish (Q)SAR Database is a collection of predictions from quantitative structure–activity relationship ((Q)SAR) models for over 70 environmental and human health-related endpoints (covering biodegradation, metabolism, allergy, irritation, endocrine disruption, teratogenicity, mutagenicity......, carcinogenicity and others), each of them available for 185,000 organic substances. The database has been available online since 2005 (http://qsar.food.dtu.dk). A major update project for the Danish (Q)SAR database is under way, with a new online release planned in the beginning of 2015. The updated version...... will contain more than 600,000 discrete organic structures and new, more precise predictions for all endpoints, derived by consensus algorithms from a number of state-of-the-art individual predictions. Copyright © 2013 Published by Elsevier Ireland Ltd....

  17. Research on the method of extracting DEM based on GBInSAR

    Science.gov (United States)

    Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping

    2016-05-01

    Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.

  18. The effect of severe acute respiratory syndrome (SARS) on emergency airway management.

    Science.gov (United States)

    Wong, Evelyn; Ho, Khoy Kheng

    2006-07-01

    From early March 2003 to late May 2003, severe acute respiratory syndrome (SARS) was detected in Singapore. The increase in workload and new infection control procedures were thought to affect resuscitation and airway management. Our aim was to study the effects of wearing of personal protective equipment (PPE) and powered air-purifying respirator (PAPR) and the restriction in the number of resuscitation personnel on airway management during the SARS crisis. Data was collected prospectively through an ongoing emergency airway registry. The data was divided into three periods: (1) before PPE was instituted from 1 November 2002 to 31 March 2003; (2) during SARS (when PPE use was mandatory) from 1 April to 31 July 2003; (3) post-SARs (when PPE use was non-mandatory but encouraged) from 1 August to 31 March 2004. There was no change in patient demographics during the three periods. There were significant increases in the proportion of resuscitation cases and airway interventions during the SARS period compared to the pre-SARS period. The resident medical officer intubation rate decreased from 45.1% pre-SARS to 35.2% during SARS and 17.7% post-SARS. The complication rates were 10.5%, 9.9% and 9.4% in periods 1-3, respectively. Restriction in the number of healthcare staff attending to each patient may have influenced the department's decision to allow only the most confident or experienced personnel to manage the airway. The exposure of junior medical officers in emergency airway management during SARS and the immediate post-SARS period was decreased. This trend should be monitored further and intervention may be necessary should it continue to decline.

  19. SAR Imagery Applied to the Monitoring of Hyper-Saline Deposits: Death Valley Example (CA)

    Science.gov (United States)

    Lasne, Yannick; Paillou, Philippe; Freeman, Anthony; Chapman, Bruce

    2009-01-01

    The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.

  20. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  1. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  2. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  3. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  4. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    Science.gov (United States)

    Wang, Xin-Wei; Li, Jin-Song; Guo, Ting-Kai; Zhen, Bei; Kong, Qing-Xin; Yi, Bin; Li, Zhong; Song, Nong; Jin, Min; Wu, Xiao-Ming; Xiao, Wen-Jun; Zhu, Xiu-Mei; Gu, Chang-Qing; Yin, Jing; Wei, Wei; Yao, Wei; Liu, Chao; Li, Jian-Feng; Ou, Guo-Rong; Wang, Min-Nian; Fang, Tong-Yu; Wang, Gui-Jie; Qiu, Yao-Hui; Wu, Huai-Huan; Chao, Fu-Huan; Li, Jun-Wen

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system. METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SARS patients in Beijing in China. RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise, cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals. The RNA could not be detected in urine and stool samples from patients recovered from SARS. CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded. PMID:16038039

  5. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities

    Directory of Open Access Journals (Sweden)

    Pascal Bonnefond

    2018-01-01

    Full Text Available Initially developed to monitor the performance of TOPEX/Poseidon and to follow the Jason legacy satellite altimeters at Senetosa Cape, Corsica, this calibration/validation site has been extended to include a new location at Ajaccio. This addition enables the site to monitor Envisat and ERS missions, CryoSat-2 and, more recently, the SARAL/AltiKa mission and Sentinel-3A satellites. Sentinel-3A and CryoSat-2 carry altimeters that use a synthetic aperture radar (SAR mode that is different to the conventional pulse-bandwidth limited altimeters often termed “low resolution mode” (LRM. The aim of this study is to characterize the sea surface height (SSH bias of the new SAR altimeter instruments and to demonstrate the improvement of data quality close to the coast. Moreover, some passes of Sentinel-3A and CryoSat-2 overfly both Senetosa and Ajaccio with only a few seconds time difference, allowing us to evaluate the reliability and homogeneity of both ground sites in term of geodetic datum. The Sentinel-3A and CryoSat-2 SSH biases for the SAR mode are respectively +22 ± 7 mm and −73 ± 5 mm (for CryoSat-2 baseline C products. The results show that the stability of the SAR SSH bias time series is better than standard LRM altimetry. Moreover, compared to standard LRM data, for which the measurements closer than ~10 km from the coast were generally unusable, SAR mode altimeters provide measurements that are reliable at less than few hundred meters from the coast.

  6. Supportive Noninvasive Tool for the Diagnosis of Breast Cancer Using a Thermographic Camera as Sensor

    Directory of Open Access Journals (Sweden)

    Marco Antonio Garduño-Ramón

    2017-03-01

    Full Text Available Breast cancer is the leading disease in incidence and mortality among women in developing countries. The opportune diagnosis of this disease strengthens the survival index. Mammography application is limited by age and periodicity. Temperature is a physical magnitude that can be measured by using multiple sensing techniques. IR (infrared thermography using commercial cameras is gaining relevance in industrial and medical applications because it is a non-invasive and non-intrusive technology. Asymmetrical temperature in certain human body zones is associated with cancer. In this paper, an IR thermographic sensor is applied for breast cancer detection. This work includes an automatic breast segmentation methodology, to spot the hottest regions in thermograms using the morphological watershed operator to help the experts locate the tumor. A protocol for thermogram acquisition considering the required time to achieve a thermal stabilization is also proposed. Breast thermograms are evaluated as thermal matrices, instead of gray scale or false color images, increasing the certainty of the provided diagnosis. The proposed tool was validated using the Database for Mastology Research and tested in a voluntary group of 454 women of different ages and cancer stages with good results, leading to the possibility of being used as a supportive tool to detect breast cancer and angiogenesis cases.

  7. PSInSAR technology and its use for monitoring of the Earth's surface deformation; Technologia PSInSAR a jej vyuzitie na monitorovanie deformacii zemskeho povrchu

    Energy Technology Data Exchange (ETDEWEB)

    Batorova, K [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra inzinierskej geologie, 84215 Bratislava (Slovakia)

    2012-04-25

    Method of permanent reflex points (PSInSAR) allows to monitor the time evolution of deformations of the Earth's surface with a millimeter precision. For deformation size determination there are used the maps of movement speed or time delay of line set of data that are obtained by evaluating of SAR images. SAR files must be processed using the basic mathematical calculation presented in the work, with an emphasis on the parameters used in geology. Extensive processing of multiple SAR imagery showed that they can be used during monitoring of the field with an accurate identification of the objects on the Earth's surface, which provide a stable reflection of radar rays transmitted from the satellite. These objects are known as permanent reflection points (PS). PS can be geo-referenced, allowing accurate determination of the movement size of the Earth's surface deformation. In this paper an example of using of PSInSAR technology for monitoring of slope movements on the territory of Slovakia is presented. (authors)

  8. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China

    Directory of Open Access Journals (Sweden)

    Chunxiang Cao

    2016-01-01

    Full Text Available Severe acute respiratory syndrome (SARS is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.

  9. Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data

    Science.gov (United States)

    Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.

    2017-12-01

    The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane

  10. A general rough-surface inversion algorithm: Theory and application to SAR data

    Science.gov (United States)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  11. Chinese HJ-1C SAR And Its Wind Mapping Capability

    Science.gov (United States)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  12. Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery

    Science.gov (United States)

    Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.

    2017-12-01

    Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.

  13. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  14. Infection control for SARS in a tertiary neonatal centre.

    Science.gov (United States)

    Ng, P C; So, K W; Leung, T F; Cheng, F W T; Lyon, D J; Wong, W; Cheung, K L; Fung, K S C; Lee, C H; Li, A M; Hon, K L E; Li, C K; Fok, T F

    2003-09-01

    The Severe Acute Respiratory Syndrome (SARS) is a newly discovered infectious disease caused by a novel coronavirus, which can readily spread in the healthcare setting. A recent community outbreak in Hong Kong infected a significant number of pregnant women who subsequently required emergency caesarean section for deteriorating maternal condition and respiratory failure. As no neonatal clinician has any experience in looking after these high risk infants, stringent infection control measures for prevention of cross infection between patients and staff are important to safeguard the wellbeing of the work force and to avoid nosocomial spread of SARS within the neonatal unit. This article describes the infection control and patient triage policy of the neonatal unit at the Prince of Wales Hospital, Hong Kong. We hope this information is useful in helping other units to formulate their own infection control plans according to their own unit configuration and clinical needs.

  15. Early appearance of SARS on chest CT scan

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Feng Suchen; Xia Guoguang; Zhao Tao; Gu Xiang; Qu Hui

    2003-01-01

    Objective: To evaluate the early appearance of SARS on chest CT scan and its role in the early diagnosis. Methods: Forty cases of SARS in keeping with the criteria of the Ministry of Health had chest CT scans within 7 days of onset of symptoms, and CR chest X-ray films were available as well. These chest X-rays and CT images were retrospectively reviewed to determine if there were any abnormalities on the images. The lesions on the chest CT images were then further analyzed in terms of the number, location, size, and density. Results: Positive abnormalities on chest CT scans were revealed in all 40 SARS cases. Positive findings on CR chest films were showed in only 25 cases, equivocal in 6, and normal in 9 cases. The main abnormalities seen on CT and X-rays were pulmonary infiltrations varied markedly in severity. 70 % cases had 1 or 2 lesions on chest CT scan, 30 % cases had 3 or more lesions. The lesions seen on chest CT scan tended to be ground-glass opacification, sometimes with consolidation which was very faint and inhomogeneous, easily missed on chest X-rays. Typically the lesions were located in the periphery of the lung, or both central and peripheral lung, but very rare in a pure central location. They were commonly in the shape of patch or ball. Conclusions: Chest CT scan is much more sensitive in detecting the lesions of the lung in SARS. The early appearance of SARS on chest CT scan is characteristic but non-specific, indicating that chest CT scan plays a very important role in the early diagnosis and differential diagnosis of SARS

  16. Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series

    Science.gov (United States)

    Morales Rivera, A. M.; Amelung, F.

    2014-12-01

    Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.

  17. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-02-01

    Full Text Available Owing to the development of spaceborne synthetic aperture radar (SAR platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR. Landslides have high socio-economic impacts in many countries because of potential geo-hazards and heavy casualties. In this study, taking into account the merits of ALOS PALSAR (L-band, good coherence preservation and TerraSAR (X-band, high resolution and short revisit times data, we applied an improved small baseline InSAR (SB-InSAR with 3-D phase unwrapping approach, to monitor slope superficial displacement in Hong Kong, China, a mountainous subtropical zone city influenced by over-urbanization and heavy monsoonal rains. Results revealed that the synergistic use of PALSAR and TerraSAR data produces different outcomes in relation to data reliability and spatial-temporal resolution, and hence could be of significant value for a comprehensive understanding and monitoring of unstable slopes.

  18. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    that is needed compared to single polarisation SAR to provide reliable and robust detection of changes. Polarimetric SAR data will be available from satellites in the near future, e.g. the Japanese ALOS, the Canadian Radarsat-2 and the German TerraSAR-X. An appropriate way of representing multi-look fully...... be split into a number of smaller fields, a building may be removed from or added to some area, hedgerows may be removed/added or other type of vegetated areas may be partly removed or added. In this case, ambiguities may arise when segments have changed shape and extent from one image to another...

  19. Crop Classification Using Short-Revisit Multitemporal SAR Data

    DEFF Research Database (Denmark)

    Skriver, Henning; Mattia, Francesco; Satalino, Giuseppe

    2011-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and SAR satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. An airborne SAR data set with a short revisi...

  20. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  1. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    Science.gov (United States)

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-11-01

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  2. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR to map the deformation of Donghai Bridge over a half of an annual cycle. The bridge, as the fourth longest cross-sea bridge in the world, located in the north of Hangzhou Bay, East China Sea where the featureless sea surface largely occupied the radar image raises challenges to accurately co-register the coherent points along the bridge. To tackle the issues due to co-registration and the limited number of synthetic aperture radar (SAR images, we adopt the termed temporarily-coherent point (TCP InSAR (TCPInSAR technique to process the radar images. TCPs that are not necessarily coherent during the whole observation period can be identified within every two SAR acquisitions during the co-registration procedure based on the statistics of azimuth and range offsets. In the process, co-registration is performed only using the offsets of these TCPs, leading to improved interferometric phases and the local Delaunay triangulation is used to construct point pairs to reduce the atmospheric artifacts along the bridge. With the TCPInSAR method the deformation rate along the bridge is estimated with no need of phase unwrapping. The achieved result reveals that the Donghai Bridge suffered a line-of-sight (LOS deformation rate up to −2.3 cm/year from January 2009 to July 2009 at the cable-stayed part, which is likely due to the thermal expansion of cables.

  3. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    Science.gov (United States)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  4. AN ASSESSMENT OF SPACEBORNE NEAR-NADIR INTERFEROMETRIC SAR PERFORMANCE OVER INLAND WATERS WITH REAL

    Directory of Open Access Journals (Sweden)

    H. Tan

    2018-04-01

    Full Text Available Elevation measurements of the continental water surface have been poorly collected with in situ measurements or occasionally with conventional altimeters with low accuracy. Techniques using InSAR at near-nadir angles to measure the inland water elevation with large swath and with high accuracy have been proposed, for instance, the WSOA on Jason 2 and the KaRIn on SWOT. However, the WSOA was abandoned unfortunately and the SWOT is planned to be launched in 2021. In this paper, we show real acquisitions of the first spaceborne InSAR of such kind, the Interferometric Imaging Radar Altimeter (InIRA, which has been working on Tiangong II spacecraft since 2016. We used the 90-m SRTM DEM as a reference to estimate the phase offset, and then an empirical calibration model was used to correct the baseline errors.

  5. An Assessment of Spaceborne Near-Nadir Interferometric SAR Performance Over Inland Waters with Real

    Science.gov (United States)

    Tan, H.; Li, S. Y.; Liu, Z. W.

    2018-04-01

    Elevation measurements of the continental water surface have been poorly collected with in situ measurements or occasionally with conventional altimeters with low accuracy. Techniques using InSAR at near-nadir angles to measure the inland water elevation with large swath and with high accuracy have been proposed, for instance, the WSOA on Jason 2 and the KaRIn on SWOT. However, the WSOA was abandoned unfortunately and the SWOT is planned to be launched in 2021. In this paper, we show real acquisitions of the first spaceborne InSAR of such kind, the Interferometric Imaging Radar Altimeter (InIRA), which has been working on Tiangong II spacecraft since 2016. We used the 90-m SRTM DEM as a reference to estimate the phase offset, and then an empirical calibration model was used to correct the baseline errors.

  6. Ship Classification with High Resolution TerraSAR-X Imagery Based on Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Zhi Zhao

    2013-01-01

    Full Text Available Ship surveillance using space-borne synthetic aperture radar (SAR, taking advantages of high resolution over wide swaths and all-weather working capability, has attracted worldwide attention. Recent activity in this field has concentrated mainly on the study of ship detection, but the classification is largely still open. In this paper, we propose a novel ship classification scheme based on analytic hierarchy process (AHP in order to achieve better performance. The main idea is to apply AHP on both feature selection and classification decision. On one hand, the AHP based feature selection constructs a selection decision problem based on several feature evaluation measures (e.g., discriminability, stability, and information measure and provides objective criteria to make comprehensive decisions for their combinations quantitatively. On the other hand, we take the selected feature sets as the input of KNN classifiers and fuse the multiple classification results based on AHP, in which the feature sets’ confidence is taken into account when the AHP based classification decision is made. We analyze the proposed classification scheme and demonstrate its results on a ship dataset that comes from TerraSAR-X SAR images.

  7. Influence of information about specific absorption rate (SAR) upon customers' purchase decisions and safety evaluation of mobile phones.

    Science.gov (United States)

    Wiedemann, Peter M; Schütz, Holger; Clauberg, Martin

    2008-02-01

    This study investigated whether the SAR value is a purchase-relevant characteristic of mobile phones for laypersons and what effect the disclosure of a precautionary SAR value has on laypersons' risk perception. The study consisted of two parts: Study part 1 used a conjoint analysis design to explore the relevance of the SAR value and other features of mobile phones for an intended buying decision. Study part 2 used an experimental, repeated measures design to examine the effect of the magnitude of SAR values and the disclosure of a precautionary SAR value on risk perception. In addition, the study included an analysis of prior concerns of the study participants with regard to mobile phone risks. Part 1 indicates that the SAR value has a high relevance for laypersons' purchase intentions. In the experimental purchase setting it ranks even before price and equipment features. The results of study part 2 show that providing information of a precautionary limit value does not influence risk perception. This result suggests that laypersons' underlying subjective "safety model" for mobile phones resembles more a "margin of safety" concept than a threshold concept. The latter observation holds true no matter how concerned the participants are. (c) 2007 Wiley-Liss, Inc.

  8. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization

    Directory of Open Access Journals (Sweden)

    Lin Ren

    2017-11-01

    Full Text Available This study analyzed the noise equivalent sigma zero (NESZ and ocean wind sensitivity for Chinese C-band Gaofen-3 (GF-3 quad-polarization synthetic aperture radar (SAR measurements to facilitate further operational wind extraction from GF-3 data. Data from the GF-3 quad-polarization SAR and collocated winds from both NOAA/NCEP Global Forecast System (GFS atmospheric model and National Data Buoy Center (NDBC buoys were used in the analysis. For NESZ, the co-polarization was slightly higher compared to the cross-polarization. Regarding co-polarization and cross-polarization, NESZ was close to RadarSAT-2 and Sentinel-1 A. Wind sensitivity was analyzed by evaluating the dependence on winds in terms of normalized radar cross-sections (NRCS and polarization combinations. The closest geophysical model function (GMF and the polarization ratio (PR model to GF-3 data were determined by comparing data and the model results. The dependence of co-polarized NRCS on wind speed and azimuth angle was consistent with the proposed GMF models. The combination of CMOD5 and CMOD5.N was considered to be the closest GMF in co-polarization. The cross-polarized NRCS exhibited a strong linear relationship with moderate wind speeds higher than 4 m·s−1, but a weak correlation with the azimuth angle. The proposed model was considered as the closest GMF in cross-polarization. For polarization combinations, PR and polarization difference (PD were considered. PR increased only with the incidence angle, whereas PD increased with wind speed and varied with azimuth angle. There were three very close PR models and each can be considered as the closest. Preliminary results indicate that GF-3 quad-polarization data are valid and have the ability to extract winds in each polarization.

  9. Performance Evaluation of Thermographic Cameras for Photogrammetric Measurements

    Science.gov (United States)

    Yastikli, N.; Guler, E.

    2013-05-01

    The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was modelled efficiently

  10. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    International Nuclear Information System (INIS)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-01-01

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication

  11. Detecting Landscape Disturbance at the Nasca Lines Using SAR Data Collected from Airborne and Satellite Platforms

    Directory of Open Access Journals (Sweden)

    Douglas C. Comer

    2017-10-01

    Full Text Available We used synthetic aperture radar (SAR data collected over Peru’s Lines and Geoglyphs of the Nasca and Palpa World Heritage Site to detect and measure landscape disturbance threatening world-renowned archaeological features and ecosystems. We employed algorithms to calculate correlations between pairs of SAR returns, collected at different times, and generate correlation images. Landscape disturbances even on the scale of pedestrian travel are discernible in correlation images generated from airborne, L-band SAR. Correlation images derived from C-band SAR data collected by the European Space Agency’s Sentinel-1 satellites also provide detailed landscape change information. Because the two Sentinel-1 satellites together have a repeat pass interval that can be as short as six days, products derived from their data can not only provide information on the location and degree of ground disturbance, but also identify a time window of about one to three weeks during which disturbance must have occurred. For Sentinel-1, this does not depend on collecting data in fine-beam modes, which generally sacrifice the size of the area covered for a higher spatial resolution. We also report on pixel value stretching for a visual analysis of SAR data, quantitative assessment of landscape disturbance, and statistical testing for significant landscape change.

  12. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Directory of Open Access Journals (Sweden)

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  13. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  14. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.

    2017-06-22

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  15. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B.; Stingl, Ulrich

    2017-01-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  16. Osservazione dei fenomeni deformativi nel centro di Roma. Dall'applicazione di tecniche avanzate DInSAR, all'analisi qualitativa della natura del rumore dei dati COSMO Sky-Med

    OpenAIRE

    Massimo Morigi

    2015-01-01

    This work was created to focus the attention on a particular aspect of theequivocation (aliasing) of the measurements made with Differential SAR interferometry (DInSAR) X-band for the presence of snow. Such equivocationemerge after a careful interpretation of the results obtained through theapplication of techniques Advanced DInSAR (A-DInSAR) for the observation ofthe deformation phenomena of the monumental structures in the center ofRome. The qualitative analysis have enabled the identificat...

  17. Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake

    KAUST Repository

    Wang, Teng

    2015-09-05

    Synthetic aperture radar (SAR) image offset tracking is increasingly being used for measuring ground displacements, e.g., due to earthquakes and landslide movement. However, this technique has been applied only to images acquired by the same or identical satellites. Here we propose a novel approach for determining offsets between images acquired by different satellite sensors, extending the usability of existing SAR image archives. The offsets are measured between two multiimage reflectivity maps obtained from different SAR data sets, which provide significantly better results than with single preevent and postevent images. Application to the 2001 Mw7.6 Bhuj earthquake reveals, for the first time, its near-field deformation using multiple preearthquake ERS and postearthquake Envisat images. The rupture model estimated from these cross-sensor offsets and teleseismic waveforms shows a compact fault slip pattern with fairly short rise times (<3 s) and a large stress drop (20 MPa), explaining the intense shaking observed in the earthquake.

  18. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DEFF Research Database (Denmark)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel

    2016-01-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas...... activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group....

  19. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2018-03-01

    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  20. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data

    Science.gov (United States)

    Schulz, William H.; Coe, Jeffrey A.; Ricci, Pier P.; Smoczyk, Gregory M.; Shurtleff, Brett L.; Panosky, Joanna

    2017-05-01

    Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s-1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985-1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow depths

  1. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  2. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  3. Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site

    Directory of Open Access Journals (Sweden)

    Federica Bardi

    2016-03-01

    Full Text Available This work concerns a proposal of the integration of InSAR (Interferometric Synthetic Aperture Radar data acquired by ground-based (GB and satellite platforms. The selected test site is the Åknes rockslide, which affects the western Norwegian coast. The availability of GB-InSAR and satellite InSAR data and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists of the organization of a geodatabase, performed in the GIS environment, containing all of the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013 and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012, both of them in ascending orbit, processed applying SBAS (Small BAseline Subset method, are available. GB-InSAR data related to five different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012, are available, as well. The third step relies on data integration, performed firstly from a qualitative point of view and later from a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them to GPS (Global Positioning System data. The proposed procedure allowed us to better define landslide sectors in terms of different ranges of displacements. From a qualitative point of view, stable and unstable areas have been distinguished. In the sector concerning movement, two different sectors have been defined thanks to the results of the semi-quantitative integration step: the first sector, concerning displacement values higher than 10 mm, and the 2nd sector, where the displacements did not exceed a 10-mm value of displacement in the analyzed period.

  4. Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy

    Science.gov (United States)

    Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam

    2017-04-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which

  5. PERFORMANCE EVALUATION OF THERMOGRAPHIC CAMERAS FOR PHOTOGRAMMETRIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    N. Yastikli

    2013-05-01

    Full Text Available The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was

  6. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  7. The integration of Human Factors (HF) in the SAR process training course text

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of the text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR

  8. The integration of Human Factors (HF) in the SAR process training course text

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of the text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR.

  9. Fusion method of SAR and optical images for urban object extraction

    Science.gov (United States)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  10. SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Aiming; Zhu Minhui

    2004-01-01

    Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.

  11. Implementation of integrated circuit and design of SAR ADC for fully implantable hearing aids.

    Science.gov (United States)

    Kim, Jong Hoon; Lee, Jyung Hyun; Cho, Jin-Ho

    2017-07-20

    designed SAR ADC occupied 124.9 μm × 152.1 μm. The circuit verification was performed by layout versus schematic (LVS) and design rule check (DRC) which are provided by Calibre (Mentor Graphics, USA), and it was confirmed that there was no error. The designed SAR ADC was implemented in SMIC 180 nm CMOS technology. The operation of the manufactured SAR ADC was confirmed by using an oscilloscope. The SAR ADC output was measured using a distortion meter (HM 8027), when applying pure tone sounds of 94 dB SPL at 500, 800, and 1600 Hz regions. As a result, the THD performance of the proposed chip was satisfied with the ANSI. s3. 22. 2003 standard. We proposed a low-power 16-bit 32 kHz SAR ADC for fully implantable hearing aids. The manufactured SAR ADC based on this design was confirmed to have advantages in power consumption and size through the comparison with the conventional ADC. Therefore, the manufactured SAR ADC is expected to be used in the implantable medical device field and speech signal processing field, which require small size and low power consumption.

  12. Risk factors for chronic post-traumatic stress disorder (PTSD) in SARS survivors.

    Science.gov (United States)

    Mak, Ivan Wing Chit; Chu, Chung Ming; Pan, Pey Chyou; Yiu, Michael Gar Chung; Ho, Suzanne C; Chan, Veronica Lee

    2010-01-01

    Post-traumatic stress disorder (PTSD) is one of the most prevalent long-term psychiatric diagnoses among survivors of severe acute respiratory syndrome (SARS). The objective of this study was to identify the predictors of chronic PTSD in SARS survivors. PTSD at 30 months after the SARS outbreak was assessed by the Structured Clinical Interview for the DSM-IV. Survivors' demographic data, medical information and psychosocial variables were collected for risk factor analysis. Multivariate logistic regression analysis showed that female gender as well as the presence of chronic medical illnesses diagnosed before the onset of SARS and avascular necrosis were independent predictors of PTSD at 30 months post-SARS. Associated factors included higher-chance external locus of control, higher functional disability and higher average pain intensity. The study of PTSD at 30 months post-SARS showed that the predictive value of acute medical variables may fade out. Our findings do not support some prior hypotheses that the use of high dose corticosteroids is protective against the development of PTSD. On the contrary, the adversity both before and after the SARS outbreak may be more important in hindering recovery from PTSD. The risk factor analysis can not only improve the detection of hidden psychiatric complications but also provide insight for the possible model of care delivery for the SARS survivors. With the complex interaction of the biopsychosocial challenges of SARS, an integrated multidisciplinary clinic setting may be a superior approach in the long-term management of complicated PTSD cases. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Elevated plasma surfactant protein D (SP-D) levels and a direct correlation with anti-severe acute respiratory syndrome coronavirus-specific IgG antibody in SARS patients

    DEFF Research Database (Denmark)

    Wu, Y P; Liu, Z H; Wei, R

    2009-01-01

    Pulmonary SP-D is a defence lectin promoting clearance of viral infections. SP-D is recognized to bind the S protein of SARS-CoV and enhance phagocytosis. Moreover, systemic SP-D is widely used as a biomarker of alveolar integrity. We investigated the relation between plasma SP-D, SARS-type pneum......Pulmonary SP-D is a defence lectin promoting clearance of viral infections. SP-D is recognized to bind the S protein of SARS-CoV and enhance phagocytosis. Moreover, systemic SP-D is widely used as a biomarker of alveolar integrity. We investigated the relation between plasma SP-D, SARS......-type pneumonia and the SARS-specific IgG response. Sixteen patients with SARS, 19 patients with community-acquired pneumonia (CAP) (Streptococcus pneumonia) and 16 healthy control subjects were enrolled in the study. Plasma SP-D and anti-SARS-CoV N protein IgG were measured using ELISA. SP-D was significantly...... elevated in SARS-type pneumonia [median (95% CI), 453 (379-963) ng/ml versus controls 218 (160-362) ng/ml, P protein IgG (r(2) = 0.5995, P = 0.02). The possible re-emergence of SARS or SARS-like infections suggests a need...

  14. SAR Cross-Ambiguities in SAOCOM-CS Large Baseline Bistatic Configuration

    OpenAIRE

    Bordoni, Federica; Rodriguez-Cassola, Marc; Younis, Marwan; Prats-Iraola, Pau; Lopez-Dekker, Paco; Krieger, Gerhard

    2016-01-01

    The evaluation of the ambiguous signal level, the Ambiguity-to-Signal Ratio (ASR), plays a key role in the Synthetic Aperture Radar (SAR) design and performance prediction. In conventional SAR acquisition scenarios, the computation of the ASR is based on the evaluation of the range and azimuth ambiguous contributes. Though appealing for its simplicity, this approach could be inaccurate in case of complex SAR acquisition geometries. In this paper we focus on the ASR performance of the SAOCOM-...

  15. Rice Crop Monitoring and Yield Estimation Through Cosmo Skymed and TerraSAR-X: A SAR-Based Experience in India

    OpenAIRE

    Pazhanivelan, S.; Kannan, P.; Christy Nirmala Mary, P.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M.

    2015-01-01

    Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used...

  16. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  17. Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia

    Directory of Open Access Journals (Sweden)

    Xiaojing Li

    2013-07-01

    . The L-band SAR is the less accurate one for grass biomass measurement due to stronger penetration.

  18. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  19. The Generalized Gamma-DBN for High-Resolution SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhao

    2018-06-01

    Full Text Available With the increase of resolution, effective characterization of synthetic aperture radar (SAR image becomes one of the most critical problems in many earth observation applications. Inspired by deep learning and probability mixture models, a generalized Gamma deep belief network (g Γ-DBN is proposed for SAR image statistical modeling and land-cover classification in this work. Specifically, a generalized Gamma-Bernoulli restricted Boltzmann machine (gΓB-RBM is proposed to capture high-order statistical characterizes from SAR images after introducing the generalized Gamma distribution. After stacking the g Γ B-RBM and several standard binary RBMs in a hierarchical manner, a gΓ-DBN is constructed to learn high-level representation of different SAR land-covers. Finally, a discriminative neural network is constructed by adding an additional predict layer for different land-covers over the constructed deep structure. Performance of the proposed approach is evaluated via several experiments on some high-resolution SAR image patch sets and two large-scale scenes which are captured by ALOS PALSAR-2 and COSMO-SkyMed satellites respectively.

  20. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    Science.gov (United States)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  1. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks

    Science.gov (United States)

    Xu, Xin; Gui, Rong; Pu, Fangling

    2018-01-01

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499

  2. Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Directory of Open Access Journals (Sweden)

    Feifei Qu

    2015-12-01

    Full Text Available Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July–August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48–130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the six years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  3. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Science.gov (United States)

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  4. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR

    Directory of Open Access Journals (Sweden)

    Christian N. Koyama

    2017-06-01

    Full Text Available At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm.

  5. SAR Tomography for Terrestrial Snow Stratigraphy

    Science.gov (United States)

    Lei, Y.; Xu, X.; Baldi, C.; Bleser, J. W. D.; Yueh, S. H.; Elder, K.

    2017-12-01

    Traditional microwave observation of snowpack includes brightness temperature and backscatter. The single baseline configuration and loss of phase information hinders the retrieval of snow stratigraphy information from microwave observations. In this paper, we are investigating the tomography of polarimetric SAR to measure snow stratigraphy. In the past two years, we have developed a homodyne frequency modulated continuous wave radar (FMCW), operation at three earth exploration satellite bands within the X-band and Ku-band spectrums (centered at 9.6 GHz, 13.5 GHz, and 17.2 GHz) at Jet Propulsion Laboratory. The transceiver is mounted to a dual-axis planar scanner (60cm in each direction), which translates the antenna beams across the target area creating a tomographic baseline in two directions. Dual-antenna architecture was implemented to improve the isolation between the transmitter and receiver. This technique offers a 50 dB improvement in signal-to-noise ratio versus conventional single-antenna FMCW radar systems. With current setting, we could have around 30cm vertical resolution. The system was deployed on a ground based tower at the Fraser Experimental Forest (FEF) Headquarters, near Fraser, CO, USA (39.847°N, 105.912°W) from February 1 to April 30, 2017 and run continuously with some gaps for required optional supports. FEF is a 93-km2 research watershed in the heart of the central Rocky Mountains approximately 80-km West of Denver. During the campaign, in situ measurements of snow depth and other snowpack properties were performed every week for comparison with the remotely sensed data. A network of soil moisture sensors, time-lapse cameras, acoustic depth sensors, laser depth sensor and meteorological instruments was installed next to the site to collect in situ measurements of snow, weather, and soil conditions. Preliminary tomographic processing of ground based SAR data of snowpack at X- and Ku- band has revealed the presence of multiple layers within

  6. Thermographic visualization of the superficial vein and extravasation using the temperature gradient produced by the injected materials

    Science.gov (United States)

    Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi

    2014-11-01

    There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.

  7. Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    Science.gov (United States)

    Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  8. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  9. SAR11 Bacteria: The Most Abundant Plankton in the Oceans.

    Science.gov (United States)

    Giovannoni, Stephen J

    2017-01-03

    SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×10 28 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.

  10. New free Danish online (Q)SAR predictions database with >600,000 substances

    DEFF Research Database (Denmark)

    Wedebye, Eva Bay; Dybdahl, Marianne; Reffstrup, Trine Klein

    Since 2005 the Danish (Q)SAR Database has been freely available on the Internet. It is a tool that allows single chemical substance profiling and screenings based on predicted hazard information. The database is also included in the OECD (Q)SAR Application Toolbox which is used worldwide...... by regulators and industry. A lot of progress in (Q)SAR model development, application and documentation has been made since the publication in 2005. A new and completely rebuild online (Q)SAR predictions database was therefore published in November 2015 at http://qsar.food.dtu.dk. The number of chemicals...... in the database has been expanded from 185,000 to >600,000. As far as possible all organic single constituent substances that were pre-registered under REACH have been included in the new structure set. The new Danish (Q)SAR Database includes estimates from more than 200 (Q)SARs covering a wide range of hazardous...

  11. What is missing? An operational inundation mapping framework by SAR data

    Science.gov (United States)

    Shen, X.; Anagnostou, E. N.; Zeng, Z.; Kettner, A.; Hong, Y.

    2017-12-01

    Compared to optical sensors, synthetic aperture radar (SAR) works all-day all-weather. In addition, its spatial resolution does not decrease with the height of the platform and is thus applicable to a range of important studies. However, existing studies did not address the operational demands of real-time inundation mapping. The direct proof is that no water body product exists for any SAR-based satellites. Then what is missing between science and products? Automation and quality. What makes it so difficult to develop an operational inundation mapping technique based on SAR data? Spectrum-wise, unlike optical water indices such as MNDWI, AWEI etc., where a relative constant threshold may apply across acquisition of images, regions and sensors, the threshold to separate water from non-water pixels in each SAR images has to be individually chosen. The optimization of the threshold is the first obstacle to the automation of the SAR data algorithm. Morphologically, the quality and reliability of the results have been compromised by over-detection caused by smooth surface and shadowing area, the noise-like speckle and under-detection caused by strong-scatter disturbance. In this study, we propose a three-step framework that addresses all aforementioned issues of operational inundation mapping by SAR data. The framework consists of 1) optimization of Wishart distribution parameters of single/dual/fully-polarized SAR data, 2) morphological removal of over-detection, and 3) machine-learning based removal of under-detection. The framework utilizes not only the SAR data, but also the synergy of digital elevation model (DEM), and optical sensor-based products of fine resolution, including the water probability map, land cover classification map (optional), and river width. The framework has been validated throughout multiple areas in different parts of the world using different satellite SAR data and globally available ancillary data products. Therefore, it has the potential

  12. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  13. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B; Stingl, Ulrich

    2017-07-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea: one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Observation of Drifting Icebergs and Sea Ice from Space by TerraSAR-X and TanDEM-X

    Science.gov (United States)

    Won, Joong-Sun

    2017-04-01

    Detection and monitoring drifting icebergs and sea ice is of interest across wide range of Arctic and Antarctic coastal studies such as security of navigation, climatic impact, geological impact, etc. It is not easy to discriminate drifting ices from stationary ones, and to measure their drifting speeds. There is a potential to use space-borne SAR for this purpose, but it is difficult to precisely measure because the drift velocity is usually very slow. In this study, we investigate two approaches for discriminating drifting ices on the sea from surrounding static ones and for measuring their range velocity. The first method is to utilize the quad-pol TerraSAR-X which adopts dual receive antenna (DRA), and the second one is to examine the potential use of TanDEM-X bistatic along-track interferometry (ATI). To utilize DRA mode quad-pol SAR as ATI, it is necessary to remove the phase difference of scattering centers between transmitted H- and V-pol signals. By assume that the individual scattering center of returned signal does not change for a few inter-pulse periods, it is possible to measure the Doppler frequency induced by motion through measuring slow-time (or azimuth time) Doppler phase derivative of co-pol or cross-pol pairs. Results applied to TerraSAR-X quad-pol data over the Cape Columbia in the Arctic Ocean are to be presented and discussed. It was successful to detect and measure drift sea ice that was flowing away from the antenna with a velocity of about 0.37 m/s (or 1.4 km/h) to 0.67 m/s (or 2.4 km/h) while neighboring ones were static. A more sophisticated approach would be a bistatic ATI which exploits a long along-track baseline for observation of slowly moving ground objects. TanDEM-X bistatic ATI pairs are examined, which were acquired at an Antarctic coast. The ATI interferograms show an innovative capability of TanDEM-X/TerraSAR-X constellation. An along-track baseline of a few hundred meters is superior to a few meter baseline of DRA mode ATI

  15. A time series deformation estimation in the NW Himalayas using SBAS InSAR technique

    Science.gov (United States)

    Kumar, V.; Venkataraman, G.

    2012-12-01

    A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of

  16. TOWARDS CHANGE DETECTION IN URBAN AREA BY SAR INTERFEROMETRY AND RADARGRAMMETRY

    Directory of Open Access Journals (Sweden)

    C. Dubois

    2013-04-01

    Full Text Available Change detection in urban area is an active topic in remote sensing. However, well-dealt subject in optical remote sensing, this research topic is still at an early stage and needs deeper investigations and improvement in what concerns SAR and InSAR remote sensing. Due to their weather and daylight-independency, SAR sensors allow an all-time observation of the earth. This is determining in cases where rapid change detection is required after a natural – or technological – disaster. Due to the high resolution that can be achieved, the new generation of space-borne radar sensors opens up new perspectives for analysing buildings in urban areas. Moreover, due to their short revisiting cycle, they give rise to monitoring and change detection applications. In this paper, we present a concept for change detection in urban area at building level, relying only on SAR- and InSAR data. In this approach, interferometric and radargrammetric SAR data are merged in order to detect changes. Here, we present the overall workflow, the test area, the required data as well as first findings on the best-suited stereo-configurations for change detection.

  17. Using PS-InSAR data in landslide hazard management: the case of Veneto Region (NE Italy)

    Science.gov (United States)

    Floris, Mario; Viganò, Alessandro; Busnardo, Enrico; Arziliero, Luciano; Zanette, Doriano

    2013-04-01

    The Project Persistent Scatterers Interferometry, performed by the Italian Ministry of Environment and Territory of the Sea (METS) in the framework of the Extraordinary Plan of Environmental Remote Sensing, has made available a high quantity of data useful for local Authorities (Regions, Provinces, and Municipalities) in the management of the main geological hazards, such as landslides, subsidence, and sinkholes. The main output of the Project consists of ground displacements and velocities measured at target points over the entire Italian territory by using PS-InSAR processing technique applied to SAR data acquired by satellites ESA (European Space Agency) ERS-1 and ERS-2 (Earth Resources Satellite) and ENVISAT (Environmental Satellite) in the period 1992-2010. Description and results of the Project are available for public browsing at the geoportal of the METS (http://www.pcn.minambiente.it). On the basis of PS-InSAR data, several studies have been recently performed for the identification and characterization of landslides both at small and large scale. These studies led to a more precise delimitation of instable areas and to a better evaluation of the state of activity of mass movements. But, as now well known, interferometry techniques can't be applied to the whole territory due to geometric distortions in SAR data acquisition and to ground conditions. In this work we analyze the potentiality of PS-InSAR data from the Project Persistent Scatterers Interferometry in landslide hazard management of the Veneto Region, located in the north-eastern part of Italy. A synthetic description on the main features of landslides affecting the Region is reported, then the percentage of instabilities where PS-InSAR data can be used, is calculated. At the scale of the entire Region we suggest to follow the method proposed in the scientific literature to evaluate the state of activity of landslides on the basis of the measured velocities at the ground surface, while at local

  18. SAR China Land Mapping Project: Development, Production and Potential Applications

    International Nuclear Information System (INIS)

    Zhang, Lu; Guo, Huadong; Liu, Guang; Fu, Wenxue; Yan, Shiyong; Song, Rui; Ji, Peng; Wang, Xinyuan

    2014-01-01

    Large-area, seamless synthetic aperture radar (SAR) mosaics can reflect overall environmental conditions and highlight general trends in observed areas from a macroscopic standpoint, and effectively support research at the global scale, which is in high demand now across scientific fields. The SAR China Land Mapping Project (SCLM), supported by the Digital Earth Science Platform Project initiated and managed by the Center for Earth Observation and Digital Earth, Chinese Academy of Sciences (CEODE), is introduced in this paper. This project produced a large-area SAR mosaic dataset and generated the first complete seamless SAR map covering the entire land area of China using EnviSat-ASAR images. The value of the mosaic map is demonstrated by some potential applications in studies of urban distribution, rivers and lakes, geologic structures, geomorphology and paleoenvironmental change

  19. Vegetation Parameter Extraction Using Dual Baseline Polarimetric SAR Interferometry Data

    Science.gov (United States)

    Zhang, H.; Wang, C.; Chen, X.; Tang, Y.

    2009-04-01

    For vegetation parameter inversion, the single baseline polarimetric SAR interferometry (POLinSAR) technique, such as the three-stage method and the ESPRIT algorithm, is limited by the observed data with the minimum ground to volume amplitude ration, which effects the estimation of the effective phase center for the vegetation canopy or the surface, and thus results in the underestimated vegetation height. In order to remove this effect of the single baseline inversion techniques in some extend, another baseline POLinSAR data is added on vegetation parameter estimation in this paper, and a dual baseline POLinSAR technique for the extraction of the vegetation parameter is investigated and improved to reduce the dynamic bias for the vegetation parameter estimation. Finally, the simulated data and real data are used to validate this dual baseline technique.

  20. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  1. Exploring cloud and big data components for SAR archiving and analysis

    Science.gov (United States)

    Baker, S.; Crosby, C. J.; Meertens, C.; Phillips, D.

    2017-12-01

    Under the Geodesy Advancing Geoscience and EarthScope (GAGE) NSF Cooperative Agreement, UNAVCO has seen the volume of the SAR Data Archive grow at a substantial rate, from 2 TB in Y1 and 5 TB in Y2 to 41 TB in Y3 primarily due to WInSAR PI proposal management of ALOS-­2/JAXA (Japan Aerospace Exploration Agency) data and to a lesser extent Supersites and other data collections. JAXA provides a fixed number of scenes per year for each PI, and some data files are 50­-60GB each, which accounts for the large volume of data. In total, over 100TB of SAR data are in the WInSAR/UNAVCO archive and a large portion of these are available unrestricted for WInSAR members. In addition to the existing data, newer data streams from the Sentinel-1 and NISAR missions will require efficient processing pipelines and easily scalable infrastructure to handle processed results. With these growing data sizes and space concerns, the SAR archive operations migrated to the Texas Advanced Computing Center (TACC) via an NSF XSEDE proposal in spring 2017. Data are stored on an HPC system while data operations are running on Jetstream virtual machines within the same datacenter. In addition to the production data operations, testing was done in early 2017 with container based InSAR processing analysis using JupyterHub and Docker images deployed on a VM cluster on Jetstream. The JupyterHub environment is well suited for short courses and other training opportunities for the community such as labs for university courses on InSAR. UNAVCO is also exploring new processing methodologies using DC/OS (the datacenter operating system) for batch and stream processing workflows and time series analysis with Big Data open source components like the Spark, Mesos, Akka, Cassandra, Kafka (SMACK) stack. The comparison of the different methodologies will provide insight into the pros and cons for each and help the SAR community with decisions about infrastructure and software requirements to meet their research

  2. Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS

    Directory of Open Access Journals (Sweden)

    Liming He

    2015-09-01

    Full Text Available Mapping deformation field time-series, including vertical and horizontal motions, is vital for landslide monitoring and slope safety assessment. However, the conventional differential synthetic aperture radar interferometry (DInSAR technique can only detect the displacement component in the satellite-to-ground direction, i.e., line-of-sight (LOS direction displacement. To overcome this constraint, a new method was developed to obtain the displacement field time series of a slope by coupling DInSAR based small baseline subset approach (DInSAR-SBAS with multiple-aperture InSAR (MAI based small baseline subset approach (MAI-SBAS. This novel method has been applied to a set of 11 observations from the phased array type L-band synthetic aperture radar (PALSAR sensor onboard the advanced land observing satellite (ALOS, spanning from 2007 to 2011, of two large-scale north–south slopes of the largest Asian open-pit mine in the Northeast of China. The retrieved displacement time series showed that the proposed method can detect and measure the large displacements that occurred along the north–south direction, and the gradually changing two-dimensional displacement fields. Moreover, we verified this new method by comparing the displacement results to global positioning system (GPS measurements.

  3. Project PHARUS: Towards a polarimetric C-band airborne SAR

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Otten, M.P.G.; Pouwels, H.; Snoeij, P.

    1989-01-01

    A few years ago three institutes in the Netherlands developed a plan to design and build a polarimetric C-band aircraft SAR system of a novel design, called PHARUS (PHased Array Universal SAR), meant as a replacement for our current digital SLAR system. These institutes are the Physics and

  4. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  5. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  6. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography

    Directory of Open Access Journals (Sweden)

    Victor Cazcarra-Bes

    2017-11-01

    Full Text Available Synthetic Aperture Radar Tomography (TomoSAR allows the reconstruction of the 3D reflectivity of natural volume scatterers such as forests, thus providing an opportunity to infer structure information in 3D. In this paper, the potential of TomoSAR data at L-band to monitor temporal variations of forest structure is addressed using simulated and experimental datasets. First, 3D reflectivity profiles were extracted by means of TomoSAR reconstruction based on a Compressive Sensing (CS approach. Next, two complementary indices for the description of horizontal and vertical forest structure were defined and estimated by means of the distribution of local maxima of the reconstructed reflectivity profiles. To assess the sensitivity and consistency of the proposed methodology, variations of these indices for different types of forest changes in simulated as well as in real scenarios were analyzed and assessed against different sources of reference data: airborne Lidar measurements, high resolution optical images, and forest inventory data. The forest structure maps obtained indicated the potential to distinguish between different forest stages and the identification of different types of forest structure changes induced by logging, natural disturbance, or forest management.

  7. Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition

    Science.gov (United States)

    Hong, Sang-Hoon; Wdowinski, Shimon

    2013-08-01

    Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.

  8. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands

    Science.gov (United States)

    Kim, J.-W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  9. From genome to antivirals: SARS as a test tube.

    Science.gov (United States)

    Kliger, Yossef; Levanon, Erez Y; Gerber, Doron

    2005-03-01

    The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.

  10. Target discrimination method for SAR images based on semisupervised co-training

    Science.gov (United States)

    Wang, Yan; Du, Lan; Dai, Hui

    2018-01-01

    Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.

  11. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    Science.gov (United States)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  12. Relationship between ocular surface temperature and peripheral vasoconstriction in healthy subjects: a thermographic study.

    Science.gov (United States)

    Vannetti, Federica; Matteoli, Sara; Finocchio, Lucia; Lacarbonara, Francesco; Sodi, Andrea; Menchini, Ugo; Corvi, Andrea

    2014-03-01

    An impairment of ocular blood flow regulation is commonly considered one of the main pathogenetic mechanisms involved in the development of several eye diseases, like glaucoma. The aim of this study was to investigate whether an alteration of ocular blood supply induced by peripheral vasoconstriction might be detected by measuring the ocular surface temperature. The ocular surface temperature was evaluated in a group of 38 healthy young subjects (28 males and 10 females; mean age: 25.4 ± 4.1 years) by infrared thermography. For each subject, the experimental procedure consisted of two thermographic acquisitions both lasting 10 s, recorded before and during the immersion of both hands in a mixture of ice and water (1.6 °C ± 0.4 °C). Specifically, the second acquisition began 20 s after the hand immersion. Analysis of variance was used to compare the ocular surface temperature of the two profiles. The analysis of infrared images was carried out every 2 s: at the eye opening (t(0)) until 10 s (t(5)), for both profiles. Data showed that ocular surface temperature increased significantly (p-value temperature at t(0) for P(1) = 0.12 °C ± 0.13 °C). Therefore, these results suggest a response of the ocular hemodynamic to the peripheral vasoconstriction. The ocular surface temperature may represent a cheap, non-invasive and non-time-consuming test to evaluate ocular vaso-regulation.

  13. Lava Lake Level Drop and Related Ground Subsidence in the Nyiragongo Main Crater (D.R.Congo) Measured by Close-Range Photogrammetry and InSAR Time-Series

    Science.gov (United States)

    Smets, B.; d'Oreye, N.; Samsonov, S. V.; Nobile, A.; Geirsson, H.; Kervyn, F.

    2015-12-01

    Nyiragongo volcano is the most active African volcano and among the most active volcanoes on Earth. It is also among the infrequent volcanoes that host a long-lived lava lake. The morphology of the Nyiragongo main crater is characterized by 2 levels of remnant platforms partly preserved and attached to its inner flanks, which correspond to former lava lake levels, and by a bottom "active" platform, which delimits the current active lava lake. The elevation of the bottom platform increases through time, with successive lava lake overflows. After a period of low level between late 2010 and August 2011, the lava lake next came back to its highest level. However, on September 30, 2011, it started a long and progressive fall, reaching ~70 m below the bottom platform in July 2014. This recent evolution of the lava lake, which occurred at the same time period as eruptive events at the neighboring Nyamulagira volcano, was accompanied by a ground subsidence of the bottom platform, leading to the appearance of ring fissures. This ground deformation is restricted to the bottom platform and, hence, suggests a very shallow source for the observed movement. All these changes in the Nyiragongo main crater were recorded by time-series of photographs, allowing the 3D reconstruction of the crater using close-range photogrammetric techniques and, hence, a detailed measurement of the observed changes. The ground subsidence was also recorded by time-series of RADARSAT-2 and CosmoSky-Med SAR interferograms, providing more detailed information on the velocity of deformation. Based on field data and the photogrammetric and InSAR time-series measurements, several hypotheses on the cause(s) of these changes in the Nyiragongo crater are discussed. The present work also highlights the potential of close-range photogrammetry and high-resolution InSAR to study and monitor active volcanoes in Equatorial environment.

  14. Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Directory of Open Access Journals (Sweden)

    G. Vasumathi

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN, Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS classifier and proposed ANFIS with Particle Swarm Optimization (PSO classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages.

  15. An Efficient SAR Image Segmentation Framework Using Transformed Nonlocal Mean and Multi-Objective Clustering in Kernel Space

    Directory of Open Access Journals (Sweden)

    Dongdong Yang

    2015-02-01

    Full Text Available Synthetic aperture radar (SAR image segmentation usually involves two crucial issues: suitable speckle noise removing technique and effective image segmentation methodology. Here, an efficient SAR image segmentation method considering both of the two aspects is presented. As for the first issue, the famous nonlocal mean (NLM filter is introduced in this study to suppress the multiplicative speckle noise in SAR image. Furthermore, to achieve a higher denoising accuracy, the local neighboring pixels in the searching window are projected into a lower dimensional subspace by principal component analysis (PCA. Thus, the nonlocal mean filter is implemented in the subspace. Afterwards, a multi-objective clustering algorithm is proposed using the principals of artificial immune system (AIS and kernel-induced distance measures. The multi-objective clustering has been shown to discover the data distribution with different characteristics and the kernel methods can improve its robustness to noise and outliers. Experiments demonstrate that the proposed method is able to partition the SAR image robustly and accurately than the conventional approaches.

  16. Precise Determination of the Baseline Between the TerraSAR-X and TanDEM-X Satellites

    Science.gov (United States)

    Koenig, Rolf; Rothacher, Markus; Michalak, Grzegorz; Moon, Yongjin

    TerraSAR-X, launched on June 15, 2007, and TanDEM-X, to be launched in September 2009, both carry the Tracking, Occultation and Ranging (TOR) category A payload instrument package. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), for precise orbit determination and atmospheric sounding and a Laser retro-reflector (LRR) serving as target for the global Satellite Laser Ranging (SLR) ground station network. The TOR is supplied by the GeoForschungsZentrum Potsdam (GFZ) Germany, and the Center for Space Research (CSR), Austin, Texas. The objective of the German/US collaboration is twofold: provision of atmospheric profiles for use in numerical weather predictions and climate studies from the occultation data and precision SAR data processing based on precise orbits and atmospheric products. For the scientific objectives of the TanDEM- X mission, i.e., bi-static SAR together with TerraSAR-X, the dual-frequency GPS receiver is of vital importance for the millimeter level determination of the baseline or distance between the two spacecrafts. The paper discusses the feasibility of generating millimeter baselines by the example of GRACE, where for validation the distance between the two GRACE satellites is directly available from the micrometer-level intersatellite link measurements. The distance of the GRACE satellites is some 200 km, the distance of the TerraSAR-X/TanDEM-X formation will be some 200 meters. Therefore the proposed approach is then subject to a simulation of the foreseen TerraSAR-X/TanDEM-X formation. The effect of varying space environmental conditions, of possible phase center variations, multi path, and of varying center of mass of the spacecrafts are evaluated and discussed.

  17. InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico

    Science.gov (United States)

    Castellazzi, Pascal; Garfias, Jaime; Martel, Richard; Brouard, Charles; Rivera, Alfonso

    2017-12-01

    This paper illustrates how InSAR alone can be used to delineate potential ground fractures related to aquifer system compaction. An InSAR-derived ground fracturing map of the Toluca Valley, Mexico, is produced and validated through a field campaign. The results are of great interest to support sustainable urbanization and show that InSAR processing of open-access Synthetic Aperture Radar (SAR) data from the Sentinel-1 satellites can lead to reliable and cost-effective products directly usable by cities to help decision-making. The Toluca Valley Aquifer (TVA) sustains the water needs of two million inhabitants living within the valley, a growing industry, an intensively irrigated agricultural area, and 38% of the water needs of the megalopolis of Mexico City, located 40 km east of the valley. Ensuring water sustainability, infrastructure integrity, along with supporting the important economic and demographic growth of the region, is a major challenge for water managers and urban developers. This paper presents a long-term analysis of ground fracturing by interpreting 13 years of InSAR-derived ground displacement measurements. Small Baseline Subset (SBAS) and Persistent Scatterer Interferometry (PSI) techniques are applied over three SAR datasets totalling 93 acquisitions from Envisat, Radarsat-2, and Sentinel-1A satellites and covering the period from 2003 to 2016. From 2003 to 2016, groundwater level declines of up to 1.6 m/yr, land subsidence up to 77 mm/yr, and major infrastructure damages are observed. Groundwater level data show highly variable seasonal responses according to their connectivity to recharge areas. However, the trend of groundwater levels consistently range from -0.5 to -1.5 m/yr regardless of the well location and depth. By analysing the horizontal gradients of vertical land subsidence, we provide a potential ground fracture map to assist in future urban development planning in the Toluca Valley.

  18. Evaluation of the subsidence based on dInSAR and GPS measurements near Karviná, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kadlečík, Pavel; Kajzar, Vlastimil; Nekvasilová, Z.; Wegmüller, U.; Doležalová, Hana

    2015-01-01

    Roč. 50, č. 1 (2015), s. 51-61 ISSN 0300-5402 R&D Projects: GA MŠk(CZ) LC506; GA MŠk(CZ) LO1406 Institutional support: RVO:67985891 ; RVO:68145535 Keywords : InSAR * subsidence * Karviná region * undermining Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  19. Research on Strong Clutter Suppression for Gaofen-3 Dual-Channel SAR/GMTI

    Directory of Open Access Journals (Sweden)

    Mingjie Zheng

    2018-03-01

    Full Text Available In spaceborne synthetic aperture radar (SAR, moving targets are almost buried in ground clutter due to the wide clutter Doppler spectrum and the restricted pulse repetition frequency (PRF, which increases the difficulty of moving target detection. Clutter suppression is one of the key issues in the spaceborne SAR moving target indicator operation. In this paper, we describe the clutter suppression principle and analyze the influence of amplitude and phase error on clutter suppression. In the following, a novel dual-channel SAR clutter suppression algorithm is proposed, which is suitable for the Gaofen-3(GF-3 SAR sensor. The proposed algorithm consists of three technique steps, namely adaptive two-dimensional (2D channel calibration, refined amplitude error correction and refined phase error correction. After channel error is corrected by these procedures, the clutter component, especially a strong clutter component, can be well suppressed. The validity of the proposed algorithm is verified by GF-3 SAR real data which demonstrates the ground moving-target indication (GMTI capability of GF-3 SAR sensor.

  20. Towards assimilation of InSAR data in operational weather models

    Science.gov (United States)

    Mulder, Gert; van Leijen, Freek; Barkmeijer, Jan; de Haan, Siebren; Hanssen, Ramon

    2017-04-01

    based on several case studies. This research can be seen as a first step towards the operational use of InSAR data in state-of-the-art weather models and can be a driver for the design and development for new SAR missions, such as NISAR. References: [1] Hanssen, R. F., Weckwerth, T. M., Zebker, H. A., & Klees, R. (1999). High-resolution water vapor mapping from interferometric radar measurements.Science, 283(5406), 1297-1299. [2] P. Mateus, R. Tomé, G. Nico and J. Catalão, "Three-Dimensional Variational Assimilation of InSAR PWV Using the WRFDA Model," in IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7323-7330, Dec. 2016. [3] Navascués, B., Calvo, J., Morales, G., Santos, C., Callado, A., Cansado, A., ... & García-Colombo, O. (2013). Long-term verification of HIRLAM and ECMWF forecasts over southern europe: History and perspectives of numerical weather prediction at AEMET. Atmospheric Research, 125, 20-33. [4] Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France Convective-Scale Operational Model. Mon. Wea. Rev., 139, 976-991. [5] Lorenc, A. C. and Rawlins, F. (2005), Why does 4D-Var beat 3D-Var?. Q.J.R. Meteorol. Soc., 131: 3247-3257.

  1. Latitudinal dynamics of SAR-arcs relative to the local time

    International Nuclear Information System (INIS)

    Alekseev, V.N.; Ievenko, I.B.

    1991-01-01

    In November-December, 1988, January-April, 1989-1990, at the Maymaga station in Yakutia according to spectrophotometric data 47 events of the occurrence of red stable middle-latitudinal arcs (SAR-arcs) were recorded. On the basis of these data the latitudinal dynamics of SAR-arcs was studied depending on the local time and geomagnetic disturbance level. The uniform equatorial shift of SAR arcs in the night time is noticed, and a sharp increase of the speed of this motion can be caused by the nonstationary character of the magnetospheric activity

  2. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    Science.gov (United States)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  3. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  4. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR

    Science.gov (United States)

    Bayer, Benedikt; Simoni, Alessandro; Mulas, Marco; Corsini, Alessandro; Schmidt, David

    2018-05-01

    Slow moving landslides are widespread geomorphological features in the Northern Apennines of Italy where they represent one of the main landscape forming processes. The lithology of the Northern Apennines fold and thrust belt is characterized by alternations of sandstone, siltstone and clayshales, also known as flysch, and clay shales with a chaotic block in matrix fabric, which are often interpreted as tectonic or sedimentary mélanges. While flysch rocks with a high pelitic fraction host earthslides that occasionally evolve into flow like movements, earthflows are the dominant landslide type in chaotic clay shales. In the present work, we document the kinematic response to rainfall of landslides in these different lithologies using radar interferometry. The study area includes three river catchments in the Northern Apennines. Here, the Mediterranean climate is characterized by two wet seasons during autumn and spring respectively, separated by dry summers and winters with moderate precipitation. We use SAR imagery from the X-band satellite COSMO SkyMed and from the C-band satellite Sentinel 1 to retrieve spatial displacement measurements between 2009 and 2016 for 25 landslides in our area of interest. We also document detailed temporal and spatial deformation signals for eight representative landslides, although the InSAR derived deformation signal is only well constrained by our dataset during the years 2013 and 2015. In spring 2013, long enduring rainfalls struck the study area and numerous landslide reactivations were documented by the regional authorities. During 2013, we measured higher displacement rates on the landslides in pelitic flysch formations compared to the earthflows in the clay shales. Slower mean velocities were measured on most landslides during 2015. We analyse the temporal deformation signal of our eight representative landslides and compare the temporal response to precipitation. We show that earthslides in pelitic flysch formations

  5. Blood donors--Serious adverse reactions (SAR) 2010-2014 EFS Châteauroux, France.

    Science.gov (United States)

    Riga, A; Sapey, T; Bacanu, M; Py, J-Y; Dehaut, F

    2015-06-01

    In 2013, the national French incidence of serious adverse reactions (SAR) was 155.7 per 100,000 donations and 82% of SAR were grade 2 (French classification of SAR related to blood donors) The purpose of our study was to describe the profile of blood donator candidate which had a SAR in our center. The study contains all the SAR superior to grade 1 occurred on the site EFS Châteauroux (site and mobile blood collection) from January 2010 to October 31, 2014. We analyzed 37 parameters from the e-fit files (e-site French blood vigilance) and In-log software. We identified 82 SAR for 72,553 blood donations (incidence: 113.02 SAR per 100,000 donations). Forty-one men and 41 women, middle age 39 years (18-66). Average height: 1.68 m (1.49-1.85); average weight: 68 kg (50-98); body mass index (kg/m(2)): 24,13(18.6-31.9). All donors were Caucasian and 30% unemployed. We found 74 vasovagal syncope (VVS), 5 hematomas, 2 arterial injuries and an adverse reaction to citrate. In 90%, the SAR was immediate and of grade 2 in 85% of cases. Thirty-seven percent of SAR were first donation in connection with whole blood in 87% of cases. Regarding the seniority of donors, the number of average donations (whole blood, plasma, platelets) was 16.5. An SAR determined the stop of blood donation in 65% of cases with nearly 80% stoppage if it was a first donation. Seventy-three percent of SAR as a VVS took place during blood collection or within 5 minutes following the end of the donation. Sixty-one percent were men. Forty-four percent of cases were a first donation and 83% occurred in mobile blood collection. Average age was 36 years. The result was a permanent stop of all type of donations in 76% of cases. Twenty-seven percent of SAR as a VVS took place beyond 5 minutes after the end of the donation. Seventy-five percent were women. Thirty percent of cases were a first donation and 95% of SAR occurred in mobile blood collection. Average age was 42 years. The result was a permanent stop of

  6. The planned Alaska SAR Facility - An overview

    Science.gov (United States)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  7. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  8. Geologic mapping in Greenland with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Brooks, C. K.

    1995-01-01

    The application of synthetic aperture radar (SAR) for geologic mapping in Greenland is investigated by the Danish Center for Remote Sensing (DCRS) in co-operation with the Danish Lithosphere Centre (DLC). In 1994 a pilot project was conducted in East Greenland. The Danish airborne SAR, EMISAR...... mapping is complicated by an extreme topography leading to massive shadowing, foreshortening and layover. An artifact characterised by high cross-polarisation is observed behind many sharp mountain ridges. A multi-reflection hypothesis has been investigated without finding the ultimate proof...

  9. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Rivera, Alfonso; Huang, Jianliang; Pavlic, Goran; Calderhead, Angus I.; Chaussard, Estelle; Garfias, Jaime; Salas, Javier

    2016-08-01

    Groundwater deficits occur in several areas of Central Mexico, where water resource assessment is limited by the availability and reliability of field data. In this context, GRACE and InSAR are used to remotely assess groundwater storage loss in one of Mexico's most important watersheds in terms of size and economic activity: the Lerma-Santiago-Pacifico (LSP). In situ data and Land Surface Models are used to subtract soil moisture and surface water storage changes from the total water storage change measured by GRACE satellites. As a result, groundwater mass change time-series are obtained for a 12 years period. ALOS-PALSAR images acquired from 2007 to 2011 were processed using the SBAS-InSAR algorithm to reveal areas subject to ground motion related to groundwater over-exploitation. In the perspective of providing guidance for groundwater management, GRACE and InSAR observations are compared with official water budgets and field observations. InSAR-derived subsidence mapping generally agrees well with official water budgets, and shows that deficits occur mainly in cities and irrigated agricultural areas. GRACE does not entirely detect the significant groundwater losses largely reported by official water budgets, literature and InSAR observations. The difference is interpreted as returns of wastewater to the groundwater flow systems, which limits the watershed scale groundwater depletion but suggests major impacts on groundwater quality. This phenomenon is enhanced by ground fracturing as noticed in the field. Studying the fate of the extracted groundwater is essential when comparing GRACE data with higher resolution observations, and particularly in the perspective of further InSAR/GRACE combination in hydrogeology.

  10. Avaluation of the adaptability of dairy goats with help of thermographic precision in the semiarid brazilian

    Directory of Open Access Journals (Sweden)

    Elisângela Maria Nunes da Silva

    2014-06-01

    Full Text Available ABSTRACT. Silva E.M.N., Souza B.B., Silva G.A., Alcântara M.D.B., Cunha M.G.G. & Marques B.A.A. [Avaluation of the adaptability of dairy goats with help of thermographic precision in the semiarid brazilian.] Avaliação da adaptabilidade de caprinos leiteiros com auxílio da precisão termográfica no semiárido brasileiro. Revista Brasileira de Medicina Veterinaria, 36(2:231-237, 2014. Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Campina Grande, Rodovia Patos-Teixeira, Km 01, Jatobá, Patos, PB 58708-110, Brasil. E-mail: elisangelamns@yahoo.com.br The present study aimed to evaluate the adaptability of dairy goats with help of thermographic precision in the semiarid brazilian. Thirty-six female goats were used in the study, mean age 2.5 years old and mean weight of 45 kg, all of them pure-bred, lactating and not pregnant, distributed in a completely randomized design, in a factorial outline 2 x 2; two genotypes (Anglo Nubian and Alpine vs two shifts (morning and afternoon with 18 repetitions. Analysis of variance showed that the shift had significant effect (P0.05. Also, there was no significant interaction between breed and shift. Regarding the parameters: respiratory rate (RR and surface temperature of the muzzle of cinnamon there was significant effect of breed and shift and significant interaction between breed and shift (P<0.05. Positive correlations between physiological parameters and room temperature and negative correlation between thermal gradients and more parameters. The Anglo Nubian breed had become more adapted to the semi-arid environmental conditions representing a good alternative for breeding programs. The Alpine breed increased respiratory effort required to dissipate heat and maintain homeothermy, proving to be more demanding regarding system creation and management in the semi-arid climatic conditions.

  11. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy

    Directory of Open Access Journals (Sweden)

    F. Ferrigno

    2017-06-01

    Full Text Available On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy reactivated, affecting both state road 90 Delle Puglie and the Rome–Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  12. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

    Science.gov (United States)

    Ferrigno, Federica; Gigli, Giovanni; Fanti, Riccardo; Intrieri, Emanuele; Casagli, Nicola

    2017-06-01

    On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie and the Rome-Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  13. SAR processing in the cloud for oil detection in the Arctic

    Science.gov (United States)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  14. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  15. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions

    Science.gov (United States)

    Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang

    2018-05-01

    Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.

  16. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  17. InSAR observations of active volcanoes in Latin America

    Science.gov (United States)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  18. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Wang Jianqing; Fujiwara, Osamu; Kodera, Sachiko; Watanabe, Soichi

    2006-01-01

    Due to the difficulty of the specific absorption rate (SAR) measurement in an actual human body for electromagnetic radio-frequency (RF) exposure, in various compliance assessment procedures the incident electric field or power density is being used as a reference level, which should never yield a larger whole-body average SAR than the basic safety limit. The relationship between the reference level and the whole-body average SAR, however, was established mainly based on numerical calculations for highly simplified human modelling dozens of years ago. Its validity is being questioned by the latest calculation results. In verifying the validity of the reference level with respect to the basic SAR limit for RF exposure, it is essential to have a high accuracy of human modelling and numerical code. In this study, we made a detailed error analysis in the whole-body average SAR calculation for the finite-difference time-domain (FDTD) method in conjunction with the perfectly matched layer (PML) absorbing boundaries. We derived a basic rule for the PML employment based on a dielectric sphere and the Mie theory solution. We then attempted to clarify to what extent the whole-body average SAR may reach using an anatomically based Japanese adult model and a scaled child model. The results show that the whole-body average SAR under the ICNIRP reference level exceeds the basic safety limit nearly 30% for the child model both in the resonance frequency and 2 GHz band

  19. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianqing [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Fujiwara, Osamu [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kodera, Sachiko [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Watanabe, Soichi [National Institute of Information and Communications Technology, Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2006-09-07

    Due to the difficulty of the specific absorption rate (SAR) measurement in an actual human body for electromagnetic radio-frequency (RF) exposure, in various compliance assessment procedures the incident electric field or power density is being used as a reference level, which should never yield a larger whole-body average SAR than the basic safety limit. The relationship between the reference level and the whole-body average SAR, however, was established mainly based on numerical calculations for highly simplified human modelling dozens of years ago. Its validity is being questioned by the latest calculation results. In verifying the validity of the reference level with respect to the basic SAR limit for RF exposure, it is essential to have a high accuracy of human modelling and numerical code. In this study, we made a detailed error analysis in the whole-body average SAR calculation for the finite-difference time-domain (FDTD) method in conjunction with the perfectly matched layer (PML) absorbing boundaries. We derived a basic rule for the PML employment based on a dielectric sphere and the Mie theory solution. We then attempted to clarify to what extent the whole-body average SAR may reach using an anatomically based Japanese adult model and a scaled child model. The results show that the whole-body average SAR under the ICNIRP reference level exceeds the basic safety limit nearly 30% for the child model both in the resonance frequency and 2 GHz band.

  20. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information

    Directory of Open Access Journals (Sweden)

    Mathias Becquaert

    2018-05-01

    Full Text Available This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1 between the components inside the side information and (2 between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  1. SAR Interferometry and Precise Leveling for the Determination of Vertical Displacements in the Upper Rhine Graben Area, Southwest Germany

    Science.gov (United States)

    Fuhrmann, T.; Schenk, A.; Westerhaus, M.; Zippelt, K.; Heck, B.

    2013-12-01

    The PS-InSAR (Persistent Scatterer SAR Interferometry) method and precise levelings provide a unique database to detect recent displacements of the Earth's surface. Data of both measurement techniques are analyzed at Geodetic Institute, Karlsruhe Institute of Technology, in order to gain detailed insight into the velocity field of the Upper Rhine Graben (URG). As central and most prominent segment of the European Cenozoic rift system, the seismically and tectonically active Rhine Graben is of steady geo-scientific interest. In the last decades, the URG is characterized by small tectonic movements (Switzerland over the last 100 years building a network of leveling lines. A kinematic network adjustment is applied on the leveling data, providing an accurate solution for vertical displacement rates with accuracies of 0.2 to 0.4 mm/a. The biggest disadvantage of the leveling database is the sparse spatial distribution of the measurement points. Therefore, PS-InSAR is used to significantly increase the number of points within the leveling loops. To obtain a high accuracy for line of sight displacement rates, ERS-1/2 and Envisat data from ascending and descending orbits covering a period from 1992 to 2000 and 2002 to 2010, resp., are processed using StaMPS (Stanford Method for Persistent Scatterers). As the tectonic displacements cover a large area, the separation of atmospheric effects and orbit errors plays an important role in the PS-InSAR processing chain. Besides the tectonic signal, man-induced surface displacements caused by oil extraction are investigated. A comparison between the estimates from leveling and InSAR provides detailed insight into the temporal and spatial characteristics of the surface displacement as well as into the possibilities and limits of the measurement techniques.

  2. [SARS: a new emergency in the world health].

    Science.gov (United States)

    Calza, Leonardo; Manfredi, Roberto; Verucchi, Gabriella; Chiodo, Francesco

    2003-01-01

    The Severe Acute Respiratory Syndrome (SARS) is a new life-threatening respiratory disease which has its origins in Guangdong province, China, where the earliest known cases were identified in November 2002. Since then, probable cases of SARS have been reported in 30 countries and the current cumulative number of cases is 8,240 with 745 deaths and a global fatality rate of 9%. The most frequently involved areas include China, Hong Kong, Singapore, Canada, Vietnam and Philippines. Most cases of SARS to date have occurred in young adults and this disease appears to spread most commonly by close person-to-person contact, involving exposure to infectious droplets and body fluids. This transmission pattern generally involves household members, health care workers and international travellers, while a large and sudden cluster of almost simultaneous cases in an housing estate of Hong Kong has raised the possibility of transmission from an environmental source. The most common presenting symptoms are fever, malaise, non-productive cough and dyspnea, associated with pulmonary interstitial infiltrates on chest radiography. A novel coronavirus is associated with this outbreak, and the laboratory evidences indicate that this virus has an etiologic role in SARS, but the role of other concurrent viral agents (such as metapneumovirus) identified in these patients requires further investigation.

  3. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  4. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada.

    Directory of Open Access Journals (Sweden)

    Janet Raboud

    Full Text Available BACKGROUND: In the 2003 Toronto SARS outbreak, SARS-CoV was transmitted in hospitals despite adherence to infection control procedures. Considerable controversy resulted regarding which procedures and behaviours were associated with the greatest risk of SARS-CoV transmission. METHODS: A retrospective cohort study was conducted to identify risk factors for transmission of SARS-CoV during intubation from laboratory confirmed SARS patients to HCWs involved in their care. All SARS patients requiring intubation during the Toronto outbreak were identified. All HCWs who provided care to intubated SARS patients during treatment or transportation and who entered a patient room or had direct patient contact from 24 hours before to 4 hours after intubation were eligible for this study. Data was collected on patients by chart review and on HCWs by interviewer-administered questionnaire. Generalized estimating equation (GEE logistic regression models and classification and regression trees (CART were used to identify risk factors for SARS transmission. RESULTS: 45 laboratory-confirmed intubated SARS patients were identified. Of the 697 HCWs involved in their care, 624 (90% participated in the study. SARS-CoV was transmitted to 26 HCWs from 7 patients; 21 HCWs were infected by 3 patients. In multivariate GEE logistic regression models, presence in the room during fiberoptic intubation (OR = 2.79, p = .004 or ECG (OR = 3.52, p = .002, unprotected eye contact with secretions (OR = 7.34, p = .001, patient APACHE II score > or = 20 (OR = 17.05, p = .009 and patient Pa0(2/Fi0(2 ratio < or = 59 (OR = 8.65, p = .001 were associated with increased risk of transmission of SARS-CoV. In CART analyses, the four covariates which explained the greatest amount of variation in SARS-CoV transmission were covariates representing individual patients. CONCLUSION: Close contact with the airway of severely ill patients and failure of infection control practices to prevent exposure

  5. SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna.

    Science.gov (United States)

    Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun

    2013-06-01

    Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.

  6. Soil Moisture Estimation in South-Eastern New Mexico Using High Resolution Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    A.K.M. Azad Hossain

    2016-01-01

    Full Text Available Soil moisture monitoring and characterization of the spatial and temporal variability of this hydrologic parameter at scales from small catchments to large river basins continues to receive much attention, reflecting its critical role in subsurface-land surface-atmospheric interactions and its importance to drought analysis, irrigation planning, crop yield forecasting, flood protection, and forest fire prevention. Synthetic Aperture Radar (SAR data acquired at different spatial resolutions have been successfully used to estimate soil moisture in different semi-arid areas of the world for many years. This research investigated the potential of linear multiple regressions and Artificial Neural Networks (ANN based models that incorporate different geophysical variables with Radarsat 1 SAR fine imagery and concurrently measured soil moisture measurements to estimate surface soil moisture in Nash Draw, NM. An artificial neural network based model with vegetation density, soil type, and elevation data as input in addition to radar backscatter values was found suitable to estimate surface soil moisture in this area with reasonable accuracy. This model was applied to a time series of SAR data acquired in 2006 to produce soil moisture data covering a normal wet season in the study site.

  7. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01