WorldWideScience

Sample records for thermoelectric material development

  1. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...... of thermoelectric power generation technology lie in the high cost and low efficiency of thermoelectric systems. Scalable and practical applications, including commercialization based on the currently used materials are subject to environmental and cost issues, and thus are difficult to be realized. Metal oxides......, followed by the use of spark plasma sintering (SPS) processing with different conditions such as sintering temperatures, applied pressures and ramping rates. With characterization of the microstructure, bulk density and thermoelectric transport properties, Ca3Co4O9+δ synthesized by sol–gel reaction...

  2. Development in Zn4Sb-based thermoelectric materials

    DEFF Research Database (Denmark)

    Yin, Hao

    or thermopower,  the electrical conductivity, the thermal conductivity and T the absolute temperature. The best thermoelectrics are heavily doped semiconductors with high thermoelectric power factors and low thermal conductivities, known as “Phonon Glasses Electrical Crystals”. Zn4Sb3 is one such material......-section. The following part reports the effect of nano-particles on the thermoelectric properties and thermal stability of Zn4Sb3. Though TiO2 nano particles have remarkably enhanced the stability, the thermoelectric performance of all the nano-composites deteriorates. Optimization of the content of the nano...

  3. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  4. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  5. Materials development for solar thermoelectric generators, SOLAR-TEP - 2007 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the Swiss Federal Laboratories for Materials Science and Technology EMPA in 2007 on Thermoelectric applications that are emerging as a potential technology that allows the conversion of heat into electric power. This energy conversion procedure uses the Seebeck effect to generate electricity without using moving parts or any chemical conversion. The Solar-TEP project is based on the idea of the potential use of concentrated solar heat as a source of energy for Solar Thermoelectric Generators (Solar-TEG). The development of novel functional materials with enhanced figures of merit, high temperature stability, and without harmful effects is commented on. The authors state that oxide ceramics can be used at high temperatures due to their chemical stability and their resistance to thermal oxidation in air. The advantages offered by thermoelectric modules based on oxide materials for the generation of power with increased temperature operating ranges are discussed. Additionally, thermoelectric oxide devices which can be realised on the basis of low-cost materials with low toxicity are discussed.

  6. Synthetic thermoelectric materials comprising phononic crystals

    Science.gov (United States)

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  7. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in

  8. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  9. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  10. A review of thermoelectric cooling: Materials, modeling and applications

    International Nuclear Information System (INIS)

    Zhao, Dongliang; Tan, Gang

    2014-01-01

    This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized

  11. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    . Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  12. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  13. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  14. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good ...

  15. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    Abstract. The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit Z = α2σ/λ, where α, σ and λ refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the ther- moelement material. However, there are other parameters which are fairly ...

  16. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  17. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  18. Thermoelectric materials and methods for synthesis thereof

    Science.gov (United States)

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  19. Organic thermoelectric materials for energy harvesting and temperature control

    Science.gov (United States)

    Russ, Boris; Glaudell, Anne; Urban, Jeffrey J.; Chabinyc, Michael L.; Segalman, Rachel A.

    2016-10-01

    Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic-inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.

  20. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects

    International Nuclear Information System (INIS)

    Aswal, Dinesh K.; Basu, Ranita; Singh, Ajay

    2016-01-01

    Graphical abstract: This review summarizes recent progress made on the fabrication of efficient thermoelectric power generators, including the scientific and technological challenges involved therein. - Highlights: • Issues with the development of efficient thermoelectric power generators are discussed. • High figure-of-merit p-/n-type materials and their highly conducting interface with metallic interconnect is necessary. • Present status of low, mid and high temperature thermoelectric materials and power generators is summarized. - Abstract: Thermoelectric generators (TEGs) are devices that convert temperature differences into electrical energy, which work on the thermoelectric phenomena known as Seebeck effect. The thermoelectric phenomena have widely been used for heating and cooling applications, however electric power generation has only been limited to niche applications e.g. thermoelectric power generators for space missions. TEG provides one of cleanest energy conversion method, which is noise-free, virtually maintenance free and can continuously produces power for several years under ambient conditions. In recent years, energy generation through thermoelectric harvesting has witnessed an increased interest for various applications, including tapping waste heat from the exhaust of vehicles, from industries, etc. The development of an efficient TEG requires the fulfillment of several factors, which includes availability of n- and p-type thermoelectric materials with high figure-of-merit (ZT), preparation of ohmic contacts between thermoelements and metallic interconnects and management of maximum heat transfer though the device. In this review, we present an overview on the various aspects of device development i.e. from synthesis of high ZT thermoelectric materials to issues & design aspects of the TEG. A discussion on the various strategies employed to improve ZT is described. It is shown that a ZT of >2 has widely been reported in literature, which

  1. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.

    Science.gov (United States)

    Zhang, Qian; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2014-10-29

    The abundance of solar thermal energy and the widespread demands for waste heat recovery make thermoelectric generators (TEGs) very attractive in harvesting low-cost energy resources. Meanwhile, thermoelectric refrigeration is promising for local cooling and niche applications. In this context there is currently a growing interest in developing organic thermoelectric materials which are flexible, cost-effective, eco-friendly and potentially energy-efficient. In particular, the past several years have witnessed remarkable progress in organic thermoelectric materials and devices. In this review, thermoelectric properties of conducting polymers and small molecules are summarized, with recent progresses in materials, measurements and devices highlighted. Prospects and suggestions for future research efforts are also presented. The organic thermoelectric materials are emerging candidates for green energy conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  3. Impact of novel thermoelectric materials on automotive applications

    Science.gov (United States)

    Brignone, Mauro; Ziggiotti, Alessandro

    2012-06-01

    Despite the fact that thermoelectric (TE) devices are compact, quiet, rugged, stable and very reliable, thermoelectrics have found only niche applications because they are also inefficient (less that 5% conversion efficiency is typical) and costly. The key to more widespread acceptance of thermoelectric is the development of materials that are capable of higher conversion efficiency, but other fundamental materials parameters play a role not less important to open to large applications and markets. In particular the automotive sector requires low materials density, materials made from widely-available pure elements with very large supply chains, non-toxicity of elements and potential compliance with REACH and RoHS obligations and low raw material cost combined with low manufacturing costs. The impact of novel TE materials on automotive application will be described focusing on promising nano magnesium silicide and skutterudites.

  4. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  5. Thermoelectric materials and devices made therewith

    International Nuclear Information System (INIS)

    Moore, D.E.

    1985-01-01

    The disclosed invention includes improved devices and materials for thermoelectric conversion, particularly for operation at temperatures of 300 0 C. and below. Disordered p-type semiconductor elements incorporate compound adjuvants of silver and lead to achieve enhanced ''figure of merit'' values and corresponding increased efficiencies of thermoelectric conversion. Similar results are obtained with disordered n-type elements by employing lowered selenium contents, preferably in combination with cuprous bromide. Improved conversion devices include powder pressed elements from one or both of these materials

  6. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  7. Recent Progress on PEDOT-Based Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Qingshuo Wei

    2015-02-01

    Full Text Available The thermoelectric properties of poly(3,4-ethylenedioxythiophene (PEDOT-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  8. Recent Progress on PEDOT-Based Thermoelectric Materials

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators. PMID:28787968

  9. Scalable Routes to Efficient Thermoelectric Materials

    OpenAIRE

    Feser, Joseph Patrick

    2010-01-01

    Thermoelectrics are solid-state materials with the ability to directly convert heat to electricity and visa versa. Despite their advantages in power density and reliability, state-of-the-art bulk alloy materials have not been efficient enough or inexpensive enough to be deployed widely. Newer nanostructured materials show significantly improved efficiencies and could overcome these long-standing problems. This dissertation studies the conditions that govern efficiency improvements in nanos...

  10. Role of material property gradient and anisotropy in thermoelectric materials

    International Nuclear Information System (INIS)

    Wang, X; Pan, E; Albrecht, J D

    2008-01-01

    It was recently discovered that inclusions, fatigue damage and other types of material imperfections and defects in metals can be nondestructively detected by noncontacting magnetic measurements that sense the thermoelectric currents produced by directional heating and cooling. Since detection of small defects in thermoelectric materials is ultimately limited by intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected, a thorough study is required on their impact on the nondestructive capability. Therefore, in this investigation the induced electric current densities and thermal fluxes are first derived for a steady line heat source in an inhomogeneous and anisotropic thermoelectric material. The exact closed-form solutions are obtained by converting the original problem into two inhomogeneous Helmholtz equations via eigenvalue/eigenvector separation. The material properties are assumed to vary exponentially in the same manner in an arbitrary direction. For the corresponding homogeneous but anisotropic material case, we also present an elegant formulation based on the complex variable method. It is shown that the induced magnetic fields can be expressed in a concise and exact closed form for a line heat source in an infinite homogeneous anisotropic material and in one of the two bonded anisotropic half-planes. Our numerical results demonstrate clearly that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields

  11. Energy harvesting using a thermoelectric material

    Science.gov (United States)

    Nersessian, Nersesse [Van Nuys, CA; Carman, Gregory P [Los Angeles, CA; Radousky, Harry B [San Leandro, CA

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  12. From phase-change materials to thermoelectrics?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthias N.; Rosenthal, Tobias; Oeckler, Oliver [Dept. of Chemistry, Ludwig Maximilian Univ. Munich (Germany); Stiewe, Christian [German Aerospace Center, Cologne (Germany)

    2010-07-01

    Metastable tellurides play an important role as phase-change materials in data storage media and non-volatile RAM devices. The corresponding crystalline phases with very simple basic structures are not stable as bulk materials at ambient conditions, however, for a broad range of compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-type high-temperature phases are characterized by a large number of vacancies randomly distributed over the cation position, which order as 2D vacancy layers upon cooling. Short-range order in quenched samples produces pronounced nanostructures by the formation of twin domains and finite intersecting vacancy layers. As phase-change materials are usually semimetals or small-bandgap semiconductors and efficient data storage requires low thermal conductivity, bulk materials with similar compositions and properties can be expected to exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have shown that germanium antimony tellurides with compositions close to those used as phase-change materials in rewritable Blu-Ray Discs, e.g. (GeTe){sub 12}Sb{sub 2}Te{sub 3}, exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 C if a nanodomain structure is induced by rapidly quenching the cubic high-temperature phase. Structural changes have been elucidated by X-ray diffraction and high-resolution electron microscopy. (orig.)

  13. Nano-materials Enabled Thermoelectricity from Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-13

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 206C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  14. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    on the electron and phonon transport was analyzed and discussed in detail. In order to solve the problems of high thermal conductivity without the deterioration of electrical conductivity by nanostructuring for conventional ZnO materials, the doped ZnCdO material was proposed as a new n-type oxide thermoelectric...... material. The material is sintered in air in order to maintain the oxygen stoichiometry and avoid the stability issues. The successful alloying of CdO with ZnO at a molar ratio of 1:9 resulted in a significant reduction of thermal conductivity up to 7-fold at room temperature. By careful selection......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  15. Noncontacting thermoelectric detection of material imperfections in metals

    Energy Technology Data Exchange (ETDEWEB)

    Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah

    2005-06-17

    This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.

  16. Thermoelectric materials evaluation program. Technical summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hinderman, J.D.

    1979-04-01

    Research progress on the thermoelectric materials evaluation program is reported covering the period January 1, 1976 to September 30, 1978. Topical reports are presented on (1) hot and cold end ..delta..T's, (2) hardware mobility, (3) p-leg sublimation suppression, (4) thermodynamic stability of p-legs, (5) n-leg material process improvements to reduce extraneous resistance, (6) n-leg cracking, (7) dynamic evaluation of converter, and (8) data base and degradation modes. Twenty attachments are included which present supporting drawings, specifications, procedures, and data. (WHK)

  17. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  18. Electrodeposition of zinc antimony alloy thermoelectric materials

    Science.gov (United States)

    Hairin, A. L. N.; Romainor, M. N.; Othman, R.; Daud, F. D. M.

    2018-01-01

    Zinc antimonite, Zn4Sb3 is a promising thermoelectric material because of its high thermoelectric performance and abundance of Zn and Sb in nature. Thus, in this study, samples of Zn-Sb alloy were prepared using electrodeposition method because of its simple experimental set-up, which also carried out in the room temperature. From the XRD results, all samples deposited exhibit Zn-Sb alloy compositions. The best results were S1 and S3 as they had dominant peaks that showed the crystal lattice of Zn4Sb3. From the SEM images, the surface morphology of Zn-Sb alloy deposited samples showed were all-irregular, course and rough structures. While, the atoms arrangement of the deposited samples were all flowery-like. Based on physical properties characterization, the best samples; S1 (0.1M ZnCl2-0.1M SbCl3, 100mA, 120min) and S3 (0.1M ZnCl2-0.1M SbCl3, 50mA, 120min), were selected and investigated their thermoelectric performances; electrical conductivity and Seebeck coefficient, to determine their power factor, PF. Heat capacity of the samples was also examined to relate it with thermal conductivity of Zn-Sb deposited samples. For thermoelectric performance, S1 obtained power factor of 1.37x10-7V/K. Ω.cm at 102°C with the Seebeck coefficient of 181μV/K. While as for S3, the power factor was 1.58x10-7V/K. Ω.cm with Seebeck coefficient of 113μV/K at 101°C. From DSC analysis, it showed that S3 obtained higher Cp than S1. Cp for S3 was 46.8093mJ/°C while S1 was 38.3722mJ/°C.

  19. A New Class of High Z Nanocrystalline and Textured Oxide-Based Thermoelectric Material, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high figure of merit (ZT) oxide-based thermoelectric materials. This will be accomplished by engineering a novel microstructure that will lead...

  20. Efficient Space Hardy Thermoelectric Materials with Broad Temperature Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this work is developing new thermoelectric materials for use in fabricating solid state cooling devices and electrical power generators, which are 200 to...

  1. Efficient Space Hardy Thermoelectric Materials with Broad Temperature Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this work is to develop new thermoelectric materials for use in fabricating solid state cooling devices and electrical power generators, which are 200 to...

  2. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala

    2014-11-25

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  3. Test system for thermoelectric modules and materials

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Jiří; Knížek, Karel; Švejda, V.; Horna, P.; Sikora, M.

    2014-01-01

    Roč. 43, č. 10 (2014), s. 3726-3732 ISSN 0361-5235 R&D Projects: GA ČR GA13-17538S Institutional support: RVO:68378271 Keywords : thermoelectric power module * automatic thermoelectric testing setup * heat flow measurement * power generation * heat recovery Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.798, year: 2014

  4. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    Science.gov (United States)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  5. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.

    2017-01-29

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  6. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  7. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  9. Efficient technique for computational design of thermoelectric materials

    Science.gov (United States)

    Núñez-Valdez, Maribel; Allahyari, Zahed; Fan, Tao; Oganov, Artem R.

    2018-01-01

    Efficient thermoelectric materials are highly desirable, and the quest for finding them has intensified as they could be promising alternatives to fossil energy sources. Here we present a general first-principles approach to predict, in multicomponent systems, efficient thermoelectric compounds. The method combines a robust evolutionary algorithm, a Pareto multiobjective optimization, density functional theory and a Boltzmann semi-classical calculation of thermoelectric efficiency. To test the performance and reliability of our overall framework, we use the well-known system Bi2Te3-Sb2Te3.

  10. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...

  11. Design, crystal growth, and physical properties of low-temperature thermoelectric materials

    Science.gov (United States)

    Fuccillo, Michael K.

    Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we

  12. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  13. Analysis of Advanced Thermoelectric Materials and Their Functional Limits

    Science.gov (United States)

    Kim, Hyun Jung

    2015-01-01

    The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit

  14. Nano-materials for enhanced thermoelectric efficiencies

    Science.gov (United States)

    Boukai, Akram

    2010-04-01

    Energy is the ultimate currency that drives the world economy. Without energy, the global economy would cease to function normally. Most of the world's energy comes from the burning of fossil fuels such as coal and oil. Unfortunately, these fossil fuels are limited and pollute the atmosphere. The rising costs and demand of energy products and the alarming rate of global warming have focused research efforts into alternative forms of renewable energy. Thermoelectrics are one class of renewable energy producing devices. Thermoelectrics operate by converting temperature differences into electrical power and vice versa. They find limited use due to their low efficiencies and high cost. This article will review the operation of thermoelectrics and their current state-of-the-art. It will also explore future promising research endeavors that aim to increase their efficiency.

  15. Oxide-based High Temperature Thermoelectric Generators - Development of Integrated Design Technique and Construction of a Thermoelectric Module

    DEFF Research Database (Denmark)

    Wijesooriyage, Waruna Dissanayaka

    development. This thesis is focused on development and optimization of thermoelectric generator (TEG) design techniques for high temperature (> 700 °C) applications. Some of the main targets of this optimization process are to achieve higher volumetric power density (VPD), and reduce the cost-per-Watt. Oxide......In the field of energy management, thermoelectrics are niche candidates for electrical generator devices. For decades, scientists have been focused on thermoelectric (TE) material development. Thus TE module design techniques are still in relatively virgin state when comparing to the TE material...... challenges identified in this project. Thus, the proposed TEG optimizations should address this challenge in an appropriate manner. The work has established a new TEG optimization strategy based on the existing well-known TEG design technique Reduced Current Approach (RCA). This extended version of RCA...

  16. Innovations in thermoelectric materials research: Compound agglomeration, testing and preselection

    Science.gov (United States)

    Lopez de Cardenas, Hugo Francisco Lopez

    Thermoelectric materials have the capacity to convert a temperature differential into electrical power and vice versa. They will represent the next revolution in alternative energies once their efficiencies are enhanced so they can complement other forms of green energies that depend on sources other than a temperature differential. Progress in materials science depends on the ability to discover new materials to eventually understand them and to finally improve their properties. The work presented here is aimed at dynamizing the screening of materials of thermoelectric interest. The results of this project will enable: theoretical preselection of thermoelectric compounds based on their bandgap and a rapid agglomeration method that does not require melting or sintering. A special interest will be given to Iodine-doped TiSe2 that generated extraordinary results and a new set of equations are proposed to accurately describe the dependence of the power factor and the figure of merit on the intrinsic properties of the materials.

  17. Express method for contactless measurement of parameters of thermoelectric materials

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2015-08-01

    Full Text Available The paper presents an original method for contactless express measurement of parameters of thermoelectric materials. The presence of a combination of AC and DC magnetic fields in the gap of the oscillating circuit, where the monitored sample of the thermoelectric material is located, leads — due to Ampere force — to delamination of geometric regions of the occurrence of half-cycles of Foucault current. This in turn causes the appearance of additional heat losses in the oscillating circuit caused by Peltier effect. Computer modeling of these processes with the use of the software package ComsolFenlab 3.3 allowed determining the nature and magnitude of the electric currents in oscillating circuit, the range of operating frequencies, and the ratio of amplitudes of the variable and fixed components of the magnetic field. These components eventually cause a certain temperature difference along the controlled sample, which difference is proportional to the thermoelectric figure of merit Z of the material. The basic expressions are obtained for determining the value of the Seebeck coefficient a, thermal conductivity ?, electrical conductivity ? and thermoelectric figure of merit Z. A description is given to the design of the device for contactless express measurement of parameters of thermoelectric materials based on Bi—Te—Se—Sb solid solutions. Its distinctive feature is the ability to determine the symmetric and asymmetric components of the electric conductivity of the material values. The actual error in parameter measurement in this case is 2%.

  18. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  19. Thermal investigation of nanostructured bulk thermoelectric materials with hierarchical structures: An effective medium approach

    Science.gov (United States)

    Hao, Qing; Zhao, Hongbo; Xiao, Yue; Xu, Dongchao

    2018-01-01

    In recent years, hierarchical structures have been intensively studied as an effective approach to tailor the electron and phonon transport inside a bulk material for thermoelectric applications. With atomic defects and nano- to micro-scale structures in a bulk material, the lattice thermal conductivity can be effectively suppressed across the whole phonon spectrum, while maintaining or somewhat enhancing the electrical properties. For general materials with superior electrical properties, high thermoelectric performance can be achieved using hierarchical structures to minimize the lattice thermal conductivity. Despite many encouraging experimental results, accurate lattice thermal conductivity predictions are still challenging for a bulk material with hierarchical structures. In this work, an effective medium formulation is developed for nanograined bulk materials with embedded nanostructures for frequency-dependent phonon transport analysis. This new formulation is validated with frequency-dependent phonon Monte Carlo simulations. For high-temperature thermoelectric applications, nanograined bulk ZnO with embedded GaN nanoparticles is studied with the formulation.

  20. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation

    Directory of Open Access Journals (Sweden)

    H. Julian Goldsmid

    2014-03-01

    Full Text Available Bismuth telluride and its alloys are widely used as materials for thermoelectric refrigeration. They are also the best materials for use in thermoelectric generators when the temperature of the heat source is moderate. The dimensionless figure of merit, ZT, usually rises with temperature, as long as there is only one type of charge carrier. Eventually, though, minority carrier conduction becomes significant and ZT decreases above a certain temperature. There is also the possibility of chemical decomposition due to the vaporization of tellurium. Here we discuss the likely temperature dependence of the thermoelectric parameters and the means by which the composition may be optimized for applications above room temperature. The results of these theoretical predictions are compared with the observed properties of bismuth telluride-based thermoelements at elevated temperatures. Compositional changes are suggested for materials that are destined for generator modules.

  1. Complex half-Heusler phases as high temperature thermoelectric materials

    Science.gov (United States)

    Culp, Slade Roland

    The potential of n-type MNiSn and p-type MCoSb (M=Ti, Zr, Hf) half-Heusler phases, as thermoelectric elements, for high temperature power generation applications is explored. Chapter 1 describes the background and theory behind the thermoelectric effects and physical characteristics common to promising thermoelectric materials. Chapter 2 is a review of half-Heusler alloys and their value as thermoelectric materials. In chapter 3, a description of material synthesis and thermoelectric properties characterization techniques is given. The effects of compositional changes on the thermoelectric properties of MNiSn alloys are studied and analyzed in chapter 4. In this system, Sb doping at the Sn site is shown to partially mitigate the compensated behavior observed in these materials, resulting in an increase of both the figure of merit, ZT, and the temperature at which ZT is maximized. The effects of alloying at the M and Ni sites, which modifies the band structure, resulting in changes in the electronic transport properties, and introduces phonon scattering centers, thereby decreasing the lattice thermal conductivity, are reported. In addition to the benefits of increased alloying at the M site, on the thermal conductivity and thermoelectric transport properties, chapter 5 also presents an examination of Sn substitution on the Sb sublattice of MCoSb. This substitution is shown to transition these materials from semimetals to robust n-type and p-type thermoelectric materials. The significant lack of p-type thermoelectric materials, which operated at temperature above 700°C, make these materials appealing for study. In chapter 6, the effect of alloy and boundary scattering on the high temperature lattice thermal conductivity is also studied and analyzed. Alloy scattering at high temperature is analyzed using the Klemens-Callaway model, while a model for boundary scattering from grains, is adapted from the work of Sharp, Poon, and Goldsmid. These models are found to be

  2. Synthesis and thermoelectric performance of a p-type Bi0.4Sb1.6Te3 material developed via mechanical alloying

    International Nuclear Information System (INIS)

    Jimenez, Sandra; Perez, Jose G.; Tritt, Terry M.; Zhu, Song; Sosa-Sanchez, Jose L.; Martinez-Juarez, Javier; López, Osvaldo

    2014-01-01

    Highlights: • This paper shows a Bi 1.6 Sb 0.4 Te 3 alloy prepared by MA-SPS process. • A ZT value of about 1.2–1.3 around 360 K was achieved for this compound. • The lower sintering process was carried out in a short time. • The resulting material has a very fine microstructure and high density. - Abstract: A p-type Bi 0.4 Sb 1.6 Te 3 thermoelectric compound was fabricated via mechanical alloying of bismuth, antimony and tellurium elemental powders as starting materials. The mechanically alloyed compositions were sintered through a spark-plasma sintering (SPS) process. The effect of the milling time was investigated. In order to characterize the powders obtained via mechanical alloying, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis were used. The morphological evolution was studied by scanning electron microscopy (SEM). Results showed that the p-type Bi 0.4 Sb 1.6 Te 3 compound was formed after 2 h of milling. Further, the variation of milling time showed that the synthesized phase was stable. All the powders exhibit the same morphology albeit with slight differences. Measurements of the electrical resistivity, Seebeck coefficient and thermal conductivity were performed in the temperature range 300–520 K for the SPS samples. The resulting thermoelectric figure of merit ZT reaches a maximum of 1.2 at 360 K for the p-type bulk material with a 5 h milling time. This study demonstrates the possibility of preparing thermoelectric materials of high performance and short processing time

  3. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    Thermoelectric materials offer solid state solution to convert waste heat into usable electric energy or to use electrical power for cooling with no movable parts and with no maintenance required. Thermoelectrics possess a large potential in an ever increasing concern with power management...... plasma direct synthesis, single target sputtering, co-deposition sputtering, pulsed laser deposition, melt-quench, and high pressure and high temperature. The resulting samples have been characterized using wealth of X-ray diffraction techniques to probe the atomic ordering on short- and long-range scale...

  4. Spin-configurations in thermoelectric MnCoGe materials

    Science.gov (United States)

    Hahn, Konstanze; Portavoce, Alain; Bertaina, Sylvain; Charai, Ahmed

    In the last decades, research for improved thermoelectric materials focused on the introduction of nanostructures. However, only modest enhancement of the thermoelectric efficiency could be achieved. For improved thermoelectric performance another approach is required. In this respect, temperature driven spin transport in magnetic materials offers great potential. The ternary Mn-Co-Ge, for example, shows interesting magnetocaloric and thermoelectric properties. Magnetic properties of ferromagnetic CoxMnyGe1-x-y thin films, for example, have been shown experimentally to vary with composition x and y, suggesting a possible tuning of the CoxMnyGe1-x-y properties to meet application's requirements. In this study, structural and magnetic transitions in MnGe-based materials with varying composition have been investigated using ab initio calculations. In particular, the effect of chemical composition on the stability of the hexagonal Ni2In-type and the orthorhombic TiNiSi-type structure has been examined focusing on their magnetic configurations. It has been found that compressive strain promotes the formation of the Ni2In-type structure which can be advantageous for the magnetostructural transition in thermomagnetic devices. The spin-Seebeck coefficient has been estimated for several magnetic configurations of such materials based on the Boltzmann transport. This work is financed by the A*MIDEX foundation.

  5. Advanced Low Temperature Thermoelectric Materials for Cryogenic Power Generation

    Data.gov (United States)

    National Aeronautics and Space Administration — The current state of the art thermoelectric materials for low temperatures for the past 50 years have been alloys based upon Bi2Te3 with ZT of 1.2 at 300 K.  These...

  6. Neutron Scattering Studies of Thermoelectric Materials for Automotive Applications

    Science.gov (United States)

    Yang, Jihui

    2010-03-01

    Solid-state thermoelectric (TE) technology uses electrons and holes as the working fluid for heat pumping and power generation, and has the virtues of no moving parts and high reliability. Advances in TE materials can lead to high thermal-to-electrical energy conversion efficiency and hence significant energy savings by generating electricity from waste heat. A good TE material should simultaneously possess high thermopower, low electrical resistivity, and low thermal conductivity. Most of the work in the past decade has been focused on lowering materials lattice thermal conductivity. Neutron diffraction and inelastic neutron scattering provide unique opportunities to understand the vibrational properties of thermoelectric materials. I will review some of our recent neutron studies on skutterudites, prospective high efficiency TE materials. Our studies have attempted to elucidate the crucial factors in these compounds relating to the filling-atom sublattices, particularly with respect to composition, nature of mixed fillers, dynamic disorder, phase coherence, and phonon scattering mechanisms.

  7. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.

    Science.gov (United States)

    Xie, Ming; Gruen, Dieter M

    2010-11-18

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  8. 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity.

    Science.gov (United States)

    He, Minhong; Zhao, Yan; Wang, Biao; Xi, Qing; Zhou, Jun; Liang, Ziqi

    2015-11-25

    Thermoelectric materials are prepared by developing 3D printing technology. The 3D fabricated Bi0.5 Sb1.5 Te3 samples exhibit amorphous characteristics and thus show an ultralow thermal conductivity of 0.2 W m(-1) K(-1) . 3D printing fabrication readily generates bulk thermoelectric samples of any shape, which is not the case with traditional hot-pressing and spark plasma sintering methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling of interface roughness in thermoelectric composite materials

    International Nuclear Information System (INIS)

    Gather, F; Heiliger, C; Klar, P J

    2011-01-01

    We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.

  10. On the calculation of Lorenz numbers for complex thermoelectric materials

    Science.gov (United States)

    Wang, Xufeng; Askarpour, Vahid; Maassen, Jesse; Lundstrom, Mark

    2018-02-01

    A first-principles informed approach to the calculation of Lorenz numbers for complex thermoelectric materials is presented and discussed. Example calculations illustrate the importance of using accurate band structures and energy-dependent scattering times. Results obtained by assuming that the scattering rate follows the density-of-states show that in the non-degenerate limit, Lorenz numbers below the commonly assumed lower limit of 2 (kB /q ) 2 can occur. The physical cause of low Lorenz numbers is explained by the shape of the transport distribution. The numerical and physical issues that need to be addressed in order to produce accurate calculations of the Lorenz number are identified. The results of this study provide a general method that should contribute to the interpretation of measurements of total thermal conductivity and to the search for materials with low Lorenz numbers, which may provide improved thermoelectric figures of merit, z T .

  11. A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Akmal Kamarudin

    2013-01-01

    Full Text Available Thermoelectricity, by converting heat energy directly into useable electricity, offers a promising technology to convert heat from solar energy and to recover waste heat from industrial sectors and automobile exhausts. In recent years, most of the efforts have been done on improving the thermoelectric efficiency using different approaches, that is, nanostructuring, doping, molecular rattling, and nanocomposite formation. The applications of thermoelectric polymers at low temperatures, especially conducting polymers, have shown various advantages such as easy and low cost of fabrication, light weight, and flexibility. In this review, we will focus on exploring new types of polymers and the effects of different structures, concentrations, and molecular weight on thermoelectric properties. Various strategies to improve the performance of thermoelectric materials will be discussed. In addition, a discussion on the fabrication of thermoelectric devices, especially suited to polymers, will also be given. Finally, we provide the challenge and the future of thermoelectric polymers, especially thermoelectric hybrid model.

  12. Study for material analogs of FeSb2: Material design for thermoelectric materials

    Science.gov (United States)

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-01

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ˜30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

  13. Design, synthesis, and characterization of new materials for thermoelectric applications

    Science.gov (United States)

    Reynolds, Thomas Kent

    Currently, the best known material for thermoelectric refrigeration at room temperature is and alloy of Bi2Te3 and Sb 2Te3. This material has been the basis for room temperature thermoelectric cooling for over 40 years, but its low cooling efficiency (≈10% of Carnot Efficiency) has limited its adaptation to small-market specialty applications. Since Bi2Te3 and its alloys have been studied so extensively, it is doubtful that large improvements in efficiency can be made by further modifications of Bi2Te3 (ie. by changing doping or processing of the material). Therefore, this dissertation deals with the discovery and exploration of completely new systems of compounds. The most important parameter for characterizing the efficiency of a thermoelectric material is the dimensionless quantity ZT, where ZT = S2T/rhokappa. Here, S is the thermopower, T is the temperature, kappa is the thermal conductivity, and rho is the electrical resistivity. These variables are not independent of each other, and usually if one of the values is altered by changing composition or doping, the others change as well. Understanding these parameters in depth leads us to several guidelines for searching for better thermoelectric materials and these are discussed in the dissertation. The concept of obtaining highly symmetric crystal structures and also its relation to increasing the value of ZT is discussed. The synthesis of several new quaternary compounds by starting with highly symmetric tetrahedral anion building blocks is presented. While some of these compounds did in fact have high symmetry structures, none were suitable for further studies because they all had large bandgaps. Further systems we explored include heavy metal telluride compounds and compounds that have multiple ordered anions. These systems were chosen based on the concept of minimizing thermal conductivity. A brief chapter on skutterudite materials explores a few new compounds discovered in this highly researched area. The

  14. Tools to Study Interfaces for Superconducting, Thermoelectric, and Magnetic Materials at the University of Houston

    Science.gov (United States)

    2016-09-01

    AFRL-AFOSR-VA-TR-2016-0303 Tools to Study Interfaces for Superconducting,Thermoelectric, and Magnetic Materials Paul C. W. Chu UNIVERSITY OF HOUSTON...8/28/2014 - 8/27/2016 Title: Tools to Study Interfaces for Superconducting, Thermoelectric, and Magnetic Materials at the University of Houston...effort. Tools to Study Interfaces for Superconducting, Thermoelectric, and Magnetic Materials at the University of Houston Grant/Contract Number AFOSR

  15. Investigation of Nanophase Materials for Thermoelectric Applications

    National Research Council Canada - National Science Library

    Stokes, Kevin

    2004-01-01

    .... Watson Research Center. Our major accomplishments include the chemical synthesis of nanoparticles, nanorods and nanowires of lead chalcogenide, bismuth calcogenide and bismuth antimony materials...

  16. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm

    2017-01-19

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  17. Thermoelectric Materials Evaluation Program. Annual technical report for fiscal year 1979

    International Nuclear Information System (INIS)

    Hinderman, J.D.

    1979-10-01

    Optimization was initiated with respect to performance, operating temperatures, and thermoelectric properties of an N-type material based on rare earth (neodymium and gadolinium) selenide technology. Effort was expanded to experimentally describe the chemical, electrical and physical behavior of P-type thermoelectric material over a range of temperatures. Emphasis was changed in P-type material research from basic properties to sublimation suppression by wrapping, and to the understanding of contact resistance problems at the hot end. Analytical performance calculations were made as an aid in couple development. In the area of module development an evaluation of the reduction of bypass-heat loss was made and module M-22R was placed on test. Parts were fabricated for M23R. Data on long term operating characteristics, ingradient compatibility, and reliability of elements and couples was obtained

  18. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2010-01-01

    Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

  19. The Effects of Doping and Processing on the Thermoelectric Properties of Platinum Diantimonide Based Materials for Cryogenic Peltier Cooling Applications

    Science.gov (United States)

    Waldrop, Spencer Laine

    The study of thermoelectrics is nearly two centuries old. In that time a large number of applications have been discovered for these materials which are capable of transforming thermal energy into electricity or using electrical work to create a thermal gradient. Current use of thermoelectric materials is in very niche applications with contemporary focus being upon their capability to recover waste heat. A relatively undeveloped region for thermoelectric application is focused upon Peltier cooling at low temperatures. Materials based on bismuth telluride semiconductors have been the gold standard for close to room temperature applications for over sixty years. For applications below room temperature, semiconductors based on bismuth antimony reign supreme with few other possible materials. The cause of this diculty in developing new, higher performing materials is due to the interplay of the thermoelectric properties of these materials. The Seebeck coecient, which characterizes the phenomenon of the conversion of heat to electricity, the electrical conductivity, and the thermal conductivity are all interconnected properties of a material which must be optimized to generate a high performance thermoelectric material. While for above room temperature applications many advancements have been made in the creation of highly ecient thermoelectric materials, the below room temperature regime has been stymied by ill-suited properties, low operating temperatures, and a lack of research. The focus of this work has been to investigate and optimize the thermoelectric properties of platinum diantimonide, PtSb2, a nearly zero gap semiconductor. The electronic properties of PtSb2 are very favorable for cryogenic Peltier applications, as it exhibits good conductivity and large Seebeck coecient below 200 K. It is shown that both n- and p-type doping may be applied to this compound to further improve its electronic properties. Through both solid solution formation and processing

  20. On one possibility for application of new thermoelectric materials based on Ag2Te

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Parvanov, Svetlin; Vachkov, Valeri

    2011-01-01

    The thermoelectric characteristics of Ag 2 Te and Ag 1,84 Cd 0,08 Te (solid solution based on Ag 2 Te) are investigated and analyzed. The main thermoelectric characteristics of the solid solution: α=118 μV/K; σ = 2230 S/cm and = 2,45.10 -2 W/(cm.K) ensure coefficient of thermoelectric efficiency z = 1,27. 10-3 K -1 (at 300 ), which increases this of the Ag 2 Te. A composition for commutation material is developed, which connects the N- and the P-branches of a single thermo element (52 wt. % In + 48 wt. % Sn) with melting temperature of 390 K. The possibility for application of the Ag 1,84 Cd 0,08 Te solid solution as N-branch of a thermo element in combination with the solid solution Bi 0,5 Sb 1,5 Te 3 (P-branch) is investigated. The thermo element guarantees values of z from 0,71.10 -3 to 1,27.10 -3 K -1 in the temperature interval 250 - 350 . The maximum z value is registered at 300 K (z = 1,27.10 -3 K -1 ). Keywords: Silver telluride, Solid solutions, Thermoelectric properties, Thermo element

  1. Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities

    Science.gov (United States)

    Ohara, B.; Sitar, R.; Soares, J.; Novisoff, P.; Nunez-Perez, A.; Lee, H.

    2015-06-01

    The traditional approach to determine an optimum current for thermoelectric cooling assumes that a refrigeration chamber is insulated and has no thermal resistance to a thermoelectric module. As a result, minimum temperature occurs when Peltier cooling matches with parasitic heat transfer and Joule heating. In practical application, minimum temperature happens when heat addition from the environment is matched with heat extracted by a thermoelectric module, and the optimum current differs from that anticipated by the traditional approach. Hence, consideration for insulation and thermal resistances via thermoelectric module should be made to achieve desirable cooling performance/refrigeration temperature. This paper presents a modeling approach to determine the optimum current as well as the optimum geometry to power a small thermoelectric vaccine delivery system for developing communities under the World Health Organization requirements. The model is derived from three energy conservation equations for temperatures at both ends of the thermoelectric materials within a module, as well as the refrigeration chamber temperature. A prototype was built and demonstrated a minimum temperature of 3.4°C. With optimized module geometry, the system is estimated to reduce power consumption by over 50% while achieving twice the temperature difference.

  2. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.

    2009-04-01

    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  3. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  4. Analysis of thermoelectric energy conversion efficiency with linear and nonlinear temperature dependence in material properties

    International Nuclear Information System (INIS)

    Wee, Daehyun

    2011-01-01

    Highlights: → The effects of temperature dependent material properties on performance is studied. → The main simplification is to approximate the temperature profile with a linear one. → Accurate inclusion of the Thomson effect is essential to understand thermoelectrics. - Abstract: A novel approach to estimate energy conversion efficiency for a power-generating thermoelectric element, whose material properties possess both linear (first order) and nonlinear (second order) dependence on temperature, is developed by solving the differential equation governing its temperature distribution, which includes both the Joule heat and the Thomson effect. In order to obtain analytic expressions for power output and energy conversion efficiency, several steps of simplification are taken. Most notably, the material properties are evaluated with a linear temperature profile between the hot and cold ends. The model is further applied to a high-performance n-type half-Heusler alloy, matching the results of direct numerical analysis. The close correspondence between the proposed model and the numerical solution indeed proves that the approximations we have made are valid. The effect of linear and nonlinear components in the temperature dependence of material properties on the energy conversion efficiency is analyzed both qualitatively and quantitatively with the model. The results suggest that the accurate inclusion of the Thomson effect is essential to understand even the qualitative behavior of thermoelectric energy conversion.

  5. EXPERIMENTAL STUDIES THERMOELECTRIC SYSTEMS FOR SHORT-TERM STORAGE AND TRANSPORTATION OF BIOLOGICAL MATERIAL

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2013-01-01

    Full Text Available Described a schematic diagram of an experimental stand thermoelectric system for shortterm storage and transportation of biological material. The technique of the pilot study of the thermoelectric system. The results of the pilot study.

  6. Yb14MnSb11 as a High-Efficiency Thermoelectric Material

    Science.gov (United States)

    Snyder, G. Jeffrey; Gascoin, Franck; Brown, Shawna; Kauzlarich, Susan

    2009-01-01

    Yb14MnSb11 has been found to be wellsuited for use as a p-type thermoelectric material in applications that involve hotside temperatures in the approximate range of 1,200 to 1,300 K. The figure of merit that characterizes the thermal-to-electric power-conversion efficiency is greater for this material than for SiGe, which, until now, has been regarded as the state-of-the art high-temperature ptype thermoelectric material. Moreover, relative to SiGe, Yb14MnSb11 is better suited to incorporation into a segmented thermoelectric leg that includes the moderate-temperature p-type thermoelectric material CeFe4Sb12 and possibly other, lower-temperature p-type thermoelectric materials. Interest in Yb14MnSb11 as a candidate high-temperature thermoelectric material was prompted in part by its unique electronic properties and complex crystalline structure, which place it in a class somewhere between (1) a class of semiconducting valence compounds known in the art as Zintl compounds and (2) the class of intermetallic compounds. From the perspective of chemistry, this classification of Yb14MnSb11 provides a first indication of a potentially rich library of compounds, the thermoelectric properties of which can be easily optimized. The concepts of the thermoelectric figure of merit and the thermoelectric compatibility factor are discussed in Compatibility of Segments of Thermo - electric Generators (NPO-30798), which appears on page 55. The traditional thermoelectric figure of merit, Z, is defined by the equation Z = alpha sup 2/rho K, where alpha is the Seebeck coefficient, rho is the electrical resistivity, and k is the thermal conductivity.

  7. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    International Nuclear Information System (INIS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-01-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.

  8. THERMAL AND ELECTRIC FIELDS AT SPARK PLASMA SINTERING OF THERMOELECTRIC MATERIALS

    Directory of Open Access Journals (Sweden)

    L. P. Bulat

    2014-09-01

    Full Text Available Problem statement. Improvement of thermoelectric figure of merit is connected with the usage of nanostructured thermoelectric materials fabricated from powders by the spark plasma sintering (SPS method. Preservation of powder nanostructure during sintering is possible at optimum temperature modes of thermoelectrics fabrication. The choice of these modes becomes complicated because of anisotropic properties of semiconductor thermoelectric materials. The decision of the given problem by sintering process simulation demands the competent approach to the problem formulation, a correct specification of thermoelectric properties, the properties of materials forming working installation, and also corrects boundary conditions. The paper deals with the efficient model for sintering of thermoelectrics. Methods. Sintering process of the bismuth telluride thermoelectric material by means of SPS-511S installation is considered. Temperature dependences of electric and thermal conductivities of bismuth telluride, and also temperature dependences of installation elements materials are taken into account. It is shown that temperature distribution in the sample can be defined within the limits of a stationary problem. The simulation is carried out in the software product Comsol Multiphysics. Boundary conditions include convective heat exchange and also radiation under Stefan-Boltzmann law. Results. Computer simulation of electric and thermal processes at spark plasma sintering is carried out. Temperature and electric potential distributions in a sample are obtained at the sintering conditions. Determinative role of graphite compression mould in formation of the temperature field in samples is shown. The influence of geometrical sizes of a graphite compression mould on sintering conditions of nanostructured thermoelectrics is analyzed. Practical importance. The optimum sizes of a cylindrical compression mould for fabrication of volume homogeneous samples based on

  9. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  10. DEVELOPMENT OF VACUUM SUBLIMATION DRYERS USING THERMOELECTRIC MODULES

    Directory of Open Access Journals (Sweden)

    R. A. Barykin

    2014-01-01

    Full Text Available Summary. The main directions of use of freeze-dryed products and ingredients are revealed. The analysis of sales markets of freeze-dryed products is provided. It is shown that introduction of innovative production technologies will allow to develop dynamically not only to the large companies, but also small firms that will create prerequisites for growth of the Russian market of freeze-dryed products. Tendencies of development of the freeze-drying equipment are analysed. Relevance of development of energy saving freeze-dryers is proved The integrated approach to creation of competitive domestic technologies and the equipment for sublimation dehydration of thermolabile products consists in use of the effective combined remedies of a power supply, a process intensification, reduction of specific energy consumption and, as a result, decrease in product cost at achievement of high quality indicators. Advantages of thermoelectric modules as alternative direction to existing vapor-compression and absorbing refrigerating appliances are given. Researches of process of freeze-drying dehydration with use of thermoelectric modules are conducted. It is scientifically confirmed, that the thermoelectric module working at Peltier effect, promotes increase in refrigerating capacity due to use of the principle of the thermal pump. Options of use of thermoelectric modules in designs of dryers are offered. Optimum operating modes and number of modules in section are defined. Ways of increase of power efficiency of freeze-dryers with use of thermoelectric modules are specified. The received results will allow to make engineering calculations and design of progressive freeze-drying installations with various ways of a power supply.

  11. Combustion Synthesis of Thermoelectric Materials for Deep Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decades NASA has commonly used radioisotope thermoelectric generators (RTGs) as a power source for deep space missions. Recently, an RTG was also used...

  12. Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit

    KAUST Repository

    Sharma, S.

    2017-10-25

    We study the thermoelectric properties of As and Sb monolayers (arsenene and antimonene) using density-functional theory and the semiclassical Boltzmann transport approach. The materials show large band gaps combined with low lattice thermal conductivities. Specifically, the small phonon frequencies and group velocities of antimonene lead to an excellent thermoelectric response at room temperature. We show that n-type doping enhances the figure of merit.

  13. CuAlTe{sub 2}: A promising bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Gudelli, Vijay Kumar [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Telangana (India); Kanchana, V., E-mail: kanchana@iith.ac.in [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Telangana (India); Vaitheeswaran, G. [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana (India)

    2015-11-05

    Transport properties of Cu-based chalcopyrite materials are presented using the full potential linear augmented plane wave method and Boltzmann Semi-classical theory. All the studied compounds appear to be direct band gap semiconductors evaluated based on the Tran-Blaha modified Becke-Johnson potential. The heavy and light band combination found near the valence band maximum (VBM) drive these materials to possess good thermoelectric properties. Among the studied compounds, CuAlTe{sub 2} is found to be more promising, in comparison with CuGaTe{sub 2}, which is reported to be an efficient thermoelectric material with appreciable figure of merit. Another interesting fact about CuAlTe{sub 2} is the comparable thermoelectric properties possessed by both n- type and p-type carriers, which might attract good device applications and are explained in detail using the electronic structure calculations. - Highlights: • Band structure calculation of Cu(Al,Ga)Ch{sub 2} compounds with the TB-mBJ functional. • Mixed heavy-light bands near Fermi level might favour good thermoelectric properties. • Among the investigated compounds CuAlTe{sub 2} appears to be more promising. • Thermoelectric properties of CuAlTe{sub 2} are almost comparable with CuGaTe{sub 2}. • Both n,p-type thermoelectric properties of CuAlTe{sub 2} can attract device applications.

  14. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  15. Thermoelectricity for future sustainable energy technologies

    Science.gov (United States)

    Weidenkaff, Anke

    2017-07-01

    Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  16. Numerical Modeling of Thermoelectric Generators with Varing Material Properties in a Circuit Simulator

    DEFF Research Database (Denmark)

    Chen, Min; Rosendahl, Lasse; Condra, Thomas

    2009-01-01

    -compatible environment. This model of thermoelectric battery accounts for all temperature-dependent characteristics of the thermoelectric materials to include the nonlinear voltage, current, and electrothermal coupled effects. It is validated with simulation data from the recognized program ANSYS and experimental data......When a thermoelectric generator (TEG) and its external load circuitry are considered together as a system, the codesign and cooptimization of the electronics and the device are crucial in maximizing the system efficiency. In this paper, an accurate TEG model is proposed and implemented in a SPICE...... from a real thermoelectric device, respectively.Within a common circuit simulator, the model can be easily connected to various electrical models of applied loads to predict and optimize the system performance....

  17. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Directory of Open Access Journals (Sweden)

    Michael W. Gaultois

    2016-05-01

    Full Text Available The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er, which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  18. LaBiTe3: An unusual thermoelectric material

    KAUST Repository

    Singh, Nirpendra

    2014-06-18

    Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.

  19. Semiconductor Nanomaterial Development For Photovoltaic And Thermoelectric Applications

    OpenAIRE

    Chen, Liangliang

    2013-01-01

    Today's world is frequently going through fossil energy shortage and environmental consequences brought by the over-emission of greenhouse gas from burning fossil fuels. Therefore, it is urgent now more than ever to discover or develop clean and sustainable power generation approaches. Among various approaches, photovoltaics and thermoelectrics have been more and more attentive both in academia and industry. Photovoltaic power generators can significantly decrease carbon dioxide emission by d...

  20. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    International Nuclear Information System (INIS)

    King, D.A.

    1994-01-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan

  1. Design, Modeling and Optimization of Thermoelectrical Power Generation Devices

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania

    Thermoelectric generators (TEG) can convert waste heat that abounds in modern societies into electricity in an environmentally friendly and reliable manner. The development works mostly focused on thermoelectric materials required a significant amount of heat and mass transfer optimization...

  2. Hierarchical thermoelectrics : Crystal grain boundaries as scalable phonon scatterers

    NARCIS (Netherlands)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, PZ; Donadio, Davide; Leoni, Stefano

    2016-01-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier

  3. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  4. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

    Science.gov (United States)

    Oshima, Keisuke; Inoue, Junta; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki

    2017-05-01

    Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high "apparent" thermoelectric performance ( ZT ˜ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

  5. Developments in thermoelectrically cooled PIN and CZT detectors

    International Nuclear Information System (INIS)

    Redus, R.H.; Pantazis, J.A.; Huber, A.C.

    1998-01-01

    A compact, high-energy-resolution X-ray and gamma-ray spectroscopy system has been developed using thermoelectrically cooled detectors to combine excellent energy resolution and convenient operation. A Si PIN diode is used for low-energy X rays, while a Cd 1-x Zn x Te (CZT) detector is used for higher-energy photons. Cooling is totally transparent to the user, so the system operates as a room temperature system, although the detector itself is cooled for improved performance. The heart of the XR-100 is a hybrid package containing the thermoelectrically cooled detector and feedback components. The detectors are used with a charge-sensitive preamplifier and a seven-pole quasi-triangular shaper with active baseline restoration, pileup rejection, and rise-time discrimination

  6. Developments in Thermoelectrically Cooled Pin and CZT Detectors

    International Nuclear Information System (INIS)

    R. H. Redus; J. A. Pantazis; A. C. Huber

    1998-01-01

    A compact high-energy-resolution X-ray and gamma-ray spectroscopy system has been developed using thermoelectrically cooled detectors to combine excellent energy resolution and convenient operation. A Si PIN diode is used for low-energy X rays, while a Cd 1-x Zn x Te (CZT) detector is used for higher-energy photons. Cooling is totally transparent to the user, so the system operates as a room temperature system, although the detector itself is cooled for improved performance. The heart of the XR-100 is a hybrid package containing the thermoelectrically cooled detector and feedback components. The seven-pole quasi-triangular shaper with active baseline restoration, pileup rejection, and rise-time discrimination

  7. Thermoelectric power factor of nanocomposite materials from two-dimensional quantum transport simulations

    Science.gov (United States)

    Foster, Samuel; Thesberg, Mischa; Neophytou, Neophytos

    2017-11-01

    Nanocomposites are promising candidates for the next generation of thermoelectric materials since they exhibit extremely low thermal conductivities as a result of phonon scattering on the boundaries of the various material phases. The nanoinclusions, however, should not degrade the thermoelectric power factor, and ideally should increase it, so that benefits to the ZT figure of merit can be achieved. In this work we employ the nonequilibrium Green's function quantum transport method to calculate the electronic and thermoelectric coefficients of materials embedded with nanoinclusions. For computational effectiveness we consider two-dimensional nanoribbon geometries, however, the method includes the details of geometry, electron-phonon interactions, quantization, tunneling, and the ballistic to diffusive nature of transport, all combined in a unified approach. This makes it a convenient and accurate way to understand electronic and thermoelectric transport in nanomaterials, beyond semiclassical approximations, and beyond approximations that deal with the complexities of the geometry. We show that the presence of nanoinclusions within a matrix material offers opportunities for only weak energy filtering, significantly lower in comparison to superlattices, and thus only moderate power factor improvements. However, we describe how such nanocomposites can be optimized to limit degradation in the thermoelectric power factor and elaborate on the conditions that achieve the aforementioned mild improvements. Importantly, we show that under certain conditions, the power factor is independent of the density of nanoinclusions, meaning that materials with large nanoinclusion densities which provide very low thermal conductivities can also retain large power factors and result in large ZT figures of merit.

  8. Electronic structure and high thermoelectric properties of a new material Ba3Cu20Te13

    International Nuclear Information System (INIS)

    Yang, Gui; Wu, Jinghe; Zhang, Jing; Ma, Dongwei

    2016-01-01

    The electronic structure and high thermoelectric properties of Ba 3 Cu 20 Te 13 are studied using first principles calculations and the semiclassical Boltzmann theory. The coexistence of ionic and covalent bonding in Ba 3 Cu 20 Te 13 indicates that it is a Zintl phase compound. The calculated band structure shows that the compound is a semiconductor with an indirect band gap ∼0.45 eV, which is an appropriate band for the high thermoelectric performance. The transport calculations based on the electronic structure indicate that it exhibits relatively large Seebeck coefficients, high electrical conductivities, and high power factor. For Ba 3 Cu 20 Te 13 , the n-type doping may achieve a higher thermoelectric performance than that of p-type doping. It is worth noting that the thermoelectric parameters of Ba 3 Cu 20 Te 13 are comparable or larger than that of Ca 5 Al 2 Sb 6 , a typical Zintl compound representative with high thermoelectric performance. - Highlights: • The electronic structure and thermoelectric(TE) properties are firstly studied. • The heavy and light bands near the Fermi level benefit TE properties. • The comparison indicates Ba 3 Cu 20 Te 13 is a potential high TE material.

  9. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2017-05-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  10. Experimental and Theoretical Studies on Phonon Mean Free Path in Thermoelectric Materials

    Science.gov (United States)

    Chen, Gang

    2011-03-01

    Nanostructured thermoelectric materials have shown improved thermoelectric figure of merit due to reduced phonon thermal conductivity. To design nanostructures that effectively scatter phonons via interface and boundary scattering, it is important to know the phonon mean free path of thermoelectric materials in their bulk form. In this talk, we will present recent progress in experimental and theoretical investigation of phonon mean free path in thermoelectric materials. On the experimental side, we extend an optical pump-and-probe technique to measure contributions of phonons with different mean free paths to thermal conductivity via systematically changing the size of the heated regions. On the theoretical side, we apply first-principle calculations to extract anharmonic force constants, and compute the phonon relaxation time due to phonon-phonon scattering. We will present experimental and theoretical results obtained on silicon, half-heuslers, etc, and their implications to thermoelectric materials. This work is supported partially by S3TEC, a DOE BES funded EFRC, and by JSPS Excellent Young Researchers Overseas Visit Program.

  11. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-01-01

    The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials. PMID:28788193

  12. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  13. Thermoelectric materials evaluation program. Quarterly technical task report No. 46

    International Nuclear Information System (INIS)

    Hampl, E.F. Jr.

    1976-02-01

    This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables

  14. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...

  15. Thermoelectrics and its energy harvesting

    National Research Council Canada - National Science Library

    Rowe, David Michael

    2012-01-01

    .... It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material...

  16. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Department; Son, Jae Sung [Department; School; Dolzhnikov, Dmitriy S. [Department; Filatov, Alexander S. [Department; Hazarika, Abhijit [Department; Wang, Yuanyuan [Department; Hudson, Margaret H. [Department; Sun, Cheng-Jun [Advanced; Chattopadhyay, Soma [Physical; Talapin, Dmitri V. [Department; Center

    2017-07-27

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles soldered by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.

  17. Nanoscaled In2O3:Sn films as material for thermoelectric conversion ...

    Indian Academy of Sciences (India)

    new metal oxides of p-type conductivity, which are also in demand for thermoelectric module production, is less rel- evant, since such materials with the required value ..... ICT and Future Planning (MSIP) of Korea, and partly by the. National Research Foundation grants funded by the Korean. Government (Bank for Quantum ...

  18. High Performance, High Temperature Thermoelectrics

    Data.gov (United States)

    National Aeronautics and Space Administration — To address this technology need, it is proposed to develop an enhanced thermoelectric material with advantages that include ease of manufacture, low cost, low...

  19. Development of CCD Imaging System Using Thermoelectric Cooling Method

    Directory of Open Access Journals (Sweden)

    Youngsik Park

    2000-06-01

    Full Text Available We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E (768x512 pixels CCD chip,thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of -25deg. We employed an Uniblitz VS25S shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of -10deg, a linearity 99.9+/-0.1%, gain 4.24e-adu, and system noise is 25.3e- (rms. For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry (+/-0.01mag even though the CCD is not at 'conventional' cryogenic temperatures (140K. The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  20. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    Elefsiniotis, A; Becker, T; Kiziroglou, M E; Wright, S W; Toh, T T; Mitcheson, P D; Yeatman, E M; Schmid, U

    2013-01-01

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  1. Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material.

    Science.gov (United States)

    Dey, Abhijit; Hadavale, Sayali; Khan, Md Abdul Shafeeuulla; More, Priyesh; Khanna, Pawan K; Sikder, Arun Kanti; Chattopadhyay, Santanu

    2015-11-28

    An ecofriendly procedure for the synthesis of graphene-titanium dioxide nanocomposites (GTNC) has been developed by dispersing nano-titanium dioxide (TiO2) and graphene nanosheets (GNSs) in ethanol via ultrasonication followed by microwave irradiation. Such nanohybrids were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. We have also demonstrated the synthesis of highly conductive composites like poly(3,4-ethylenedioxythiophene)polystyrene sulphonate ( PSS)-GTNC, polyvinyl acetate (PVAc)-GTNC, PEDOT:PSS-graphene, and PVAc-graphene by ultrasonication followed by hot compaction towards their thermoelectric application. The filler (graphene, GTNC) concentration and polymer matrix were judiciously varied and optimized for the sake of high electrical conductivity and Seebeck coefficient which leads to a higher power factor (PF). The PVAc based composite with a composition of PVAc (20%) and GTNC (80%) was found to be the most promising material with an electrical conductivity of 2.6 × 10(4) S m(-1) and a Seebeck coefficient of -42 μV K(-1) at room temperature (RT). As a result, the PF reaches 47 μW m(-1) K(-2) at RT which is approximately 37 times, 5 times and 3 times higher than that for the PVAc-graphene based composite, the PSS-GTNC based composite and the PSS-graphene based composite respectively. The origin of the thermoelectric performance of the GTNC composite seems to be from the synergistic effect of graphene nanosheets and TiO2 nanoparticles. The composite shows a large power factor value without using any conducting polymer.

  2. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  3. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  4. Development of a Thermoelectric Module Suitable for Vehicles and Based on CoSb3 Manufactured Close to Production

    Science.gov (United States)

    Klein Altstedde, Mirko; Sottong, Reinhard; Freitag, Oliver; Kober, Martin; Dreißigacker, Volker; Zabrocki, Knud; Szabo, Patric

    2015-06-01

    Despite the ongoing electrification of vehicle propulsion systems, vehicles with combustion engines will continue to bear the brunt of passenger services worldwide for the next few decades. As a result, the German Aerospace Center Institute of Vehicle Concepts, the Institute of Materials Research and the Institute of Technical Thermodynamics have focused on utilising the exhaust heat of internal combustion engines by means of thermoelectric generators (TEGs). Their primary goal is the development of cost-efficient TEGs with long-term stability and maximised energy yield. In addition to the overall TEG system design, the development of long-term stable, efficient thermoelectric modules (TEMs) for high-temperature applications is a great challenge. This paper presents the results of internal development work and reveals an expedient module design for use in TEGs suitable for vehicles. The TEM requirements identified, which were obtained by means of experiments on the test vehicle and test bench, are described first. Doped semiconductor materials were produced and characterised by production methods capable of being scaled up in order to represent series application. The results in terms of thermoelectric properties (Seebeck coefficient, electrical conductivity and thermal conductivity) were used for the simulative design of a thermoelectric module using a constant-property model and with the aid of FEM calculations. Thermomechanical calculations of material stability were carried out in addition to the TEM's thermodynamic and thermoelectric design. The film sequence within the module represented a special challenge. Multilayer films facilitated adaptation of the thermal and mechanical properties of plasma-sprayed films. A joint which dispenses with solder additives was also possible using multilayer films. The research resulted in a functionally-optimised module design, which was enhanced for use in motor vehicles using process flexibility and close

  5. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  6. MoS2 nanoribbons as promising thermoelectric materials

    Science.gov (United States)

    Fan, D. D.; Liu, H. J.; Cheng, L.; Jiang, P. H.; Shi, J.; Tang, X. F.

    2014-09-01

    The thermoelectric properties of MoS2 armchair nanoribbons with different width are studied by using first-principles calculations and Boltzmann transport theory, where the relaxation time is predicted from deformation potential theory. Due to the dangling bonds at the armchair edge, there is obvious structure reconstruction of the nanoribbons which plays an important role in governing the electronic and transport properties. The investigated armchair nanoribbons are found to be semiconducting with indirect gaps, which exhibit interesting width-dependent oscillation behavior. The smaller gap of nanoribbon with width N = 4 (Here, N represents the number of dimer lines or zigzag chains across the ribbon width) leads to a much larger electrical conductivity at 300 K, which outweighs the relatively larger electronic thermal conductivity when compared with those of N = 5, 6. As a result, the ZT values can be optimized to 3.4 (p-type) and 2.5 (n-type) at room temperature, which significantly exceed the performance of most laboratory results reported in the literature.

  7. MoS{sub 2} nanoribbons as promising thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Fan, D. D.; Liu, H. J., E-mail: phlhj@whu.edu.cn; Cheng, L.; Jiang, P. H.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, X. F. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2014-09-29

    The thermoelectric properties of MoS{sub 2} armchair nanoribbons with different width are studied by using first-principles calculations and Boltzmann transport theory, where the relaxation time is predicted from deformation potential theory. Due to the dangling bonds at the armchair edge, there is obvious structure reconstruction of the nanoribbons which plays an important role in governing the electronic and transport properties. The investigated armchair nanoribbons are found to be semiconducting with indirect gaps, which exhibit interesting width-dependent oscillation behavior. The smaller gap of nanoribbon with width N = 4 (Here, N represents the number of dimer lines or zigzag chains across the ribbon width) leads to a much larger electrical conductivity at 300 K, which outweighs the relatively larger electronic thermal conductivity when compared with those of N = 5, 6. As a result, the ZT values can be optimized to 3.4 (p-type) and 2.5 (n-type) at room temperature, which significantly exceed the performance of most laboratory results reported in the literature.

  8. High Efficiency, Easy-to-Manufacture Engineered Nanomaterials for Thermoelectric Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR program, high thermoelectric figure-of-merit (ZT) nanocrystal quantum dot (NQD) thermoelectric (TE) materials will be developed that have...

  9. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  10. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

    Science.gov (United States)

    Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke

    2017-05-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  11. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of health-monitoring elements.

  12. Fabrication of Miniature Thermoelectric Generators Using Bulk Materials

    Science.gov (United States)

    Joo, Sung-Jae; Ryu, Byungki; Min, Bok-Ki; Lee, Ji-Eun; Kim, Bong-Seo; Park, Su-Dong; Lee, Hee-Woong

    2016-07-01

    Miniature thermoelectric modules (TEMs) are required for micro power generation as well as local cooling, and they should have small size and high performance. However, conventional bulk TEMs generally have in-plane dimensions of a few centimeters, and empty space between the legs for electrical isolation makes efficient miniaturization difficult. In this study, a miniature TEM with footprint of about 0.35 cm2 and leg height of 0.97 mm was fabricated by reducing the dimensions of the legs and attaching them together to form a closely packed assembly, without using microelectromechanical processes. First, Bi0.4Sb1.6Te3 (BST) and Bi2Te2.7Se0.3 (BTS) ingots were made by ball milling and spark plasma sintering, and the ingots were cut into thin plates. These BST and BTS plates were then attached alternately using polyimide tapes, and the attached plates were sliced vertically to produce thin sheets. This process was repeated once again to make chessboard-like assemblies having 20 p- n pairs in an area of 0.35 cm2, and electrical contacts were formed by Ni sputtering and Ag paste coating. Finally, thermally conductive silicone pads (~500 μm) were attached on both sides of the assembly using electrically insulating interface thermal tapes (˜180 μm). The maximum output power ( P max) from the miniature module was about 28 μW and 2.0 mW for temperature difference (Δ T) of 5.6°C and 50.5°C, respectively. Reducing the contact resistance was considered to be the key to increase the output power.

  13. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  14. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Assayidatul Laila

    2014-09-01

    Full Text Available The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  15. METHODS AND TECHNIQUE FOR THERMOPOWER AND ELECTRICAL CONDUCTIVITY MEASUREMENTS OF THERMOELECTRIC MATERIALS AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    A. T. Burkov

    2015-02-01

    Full Text Available The principles and methods of thermopower and electrical conductivity measurements at high temperatures (100 – 1000 K are reviewed. These two properties define the so-called power factor of thermoelect ric materials. Moreover, in combination with thermal conductivity they give the efficiency of thermoelectric conversion. In spite of a principal obtained by different groups and hinders a realistic estimate of the potential thermoelectric efficiency of new materials. The lack of a commonly accepted reference material for thermopower exaggerates the problem. Therefore, it is very important to have a clear understanding of the capabilities and limitations of the measuring methods and set-ups. The review article deals with the definitions of the thermoelectric parameters and principles of their experimental determination. The metrological characteristics of the state-of-the-art experimental set-ups for high temperature measurements are analyzed. simplicity of the measurement methods of these properties, their practical realization is rather complicated, especially at high temperatures. This leads to large uncertainties in determination of the properties, complicates comparison of the results

  16. Design of a Thermoelectric Material Using the CALPHAD Technique: Thermodynamic Reassessment of the Al-Sb-Zn System

    Science.gov (United States)

    Wang, Wei; Yang, Lili; Wang, Nan; Zhang, Haifeng; Jia, Yanping

    2018-01-01

    The β-Sb3Zn4 intermetallic compound, one of the most promising thermoelectric materials in the mid-1990s, has attracted much interest due to its high thermoelectric performance in the intermediate temperature range. To improve the thermoelectric properties of the compound β-Sb3Zn4, Al doping is an effective method. Therefore, accurate theoretical analysis of the Al-Sb-Zn system is essential for the design of such thermoelectric materials. In this work, the Al-Sb-Zn system was reassessed by means of the calculation of phase diagram (CALPHAD) technique. A set of self-consistent thermodynamic parameters was obtained and can be used to extrapolate to related high-order systems. Some phase equilibria and thermochemical properties can be predicted using the present thermodynamic description.

  17. A MODIFIED VAN DER PAUW SETUP FOR MEASURING THE RESISTIVITY AND THERMOPOWER OF THERMOELECTRIC MATERIALS OF VARYING THICKNESSES

    KAUST Repository

    HITCHCOCK, DALE

    2013-10-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified. © World Scientific Publishing Company.

  18. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  19. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  20. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.

    2015-02-01

    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  1. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  2. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    Science.gov (United States)

    2014-02-27

    Applied Physics, (10 2009): 74509. doi: 10.1063/1.3236635 E. M. Levin, B. A. Cook, J. L. Harringa, S. L. Bud’ko, R. Venkatasubramanian, K. Schmidt- Rohr ...2010, Portland, OR. 3) Levin, L. M.; Hu, Y.-Y.; Cook, B. A.; Harringa, J. L.; Schmidt- Rohr , K.; Kanatzidis, M. G. , New insights into high...and K. Schmidt- Rohr , “Analysis of Ce- and Yb-doped TAGS-85 Thermoelectric Material with Enhanced Figure-of-Merit, Advanced Functional Material (in

  3. Size effects in thermoelectric cobaltate heterostructures

    NARCIS (Netherlands)

    Brinks, Peter

    2014-01-01

    Thermoelectric energy conversion is a promising method to convert (waste) heat into useful electrical energy. To improve the efficiency of this process, which is currently limited, materials with improved thermoelectric performance are required. The performance indicator for thermoelectric materials

  4. Materials development

    International Nuclear Information System (INIS)

    McCoy, H.E.

    1976-01-01

    The main thrust of the materials program is the development of a structural material for the MSBR primary circuit which has adequate resistance to embrittlement by neutron irradiation and to shallow intergranular attack by fission product penetration. A modified Hastelloy N containing 2 percent Ti has good resistance to irradiation embrittlement; however, it remains to be shown that the alloy has sufficient resistance to shallow intergranular cracking. Numerous laboratory tests are in progress to answer this important question. Laboratory programs to study Hastelloy N--salt--tellurium interactions are being established, including the development of methods for exposing test materials under simulated reactor operating conditions. The procurement of products from two commercial heats (8000 and 10,000 lb) of 2 percent Ti--modified Hastelloy N continued. All products except seamless tubing were received, and much experience was gained in the fabrication of the new alloy. The work on chemical processing materials is concentrated on graphite. Capsule tests are in progress to study possible chemical interactions between graphite and bismuth-lithium solutions and to evaluate the mechanical intrusion of these solutions into the graphite

  5. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    Science.gov (United States)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10-7 m2 s-1 and k  =  2.2 W m-1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  -554 μV K-1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  -570 μV K-1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  6. Avoided crossing of rattler modes in thermoelectric materials

    DEFF Research Database (Denmark)

    Christensen, Mogens; Abrahamsen, Asger Bech; Christensen, Niels Bech

    2008-01-01

    Engineering of materials with specific physical properties has recently focused on the effect of nano-sized 'guest domains' in a 'host matrix' that enable tuning of electrical, mechanical, photo-optical or thermal properties. A low thermal conductivity is a prerequisite for obtaining effective...

  7. Assessment of Lead Chalcogenide Nanostructures as Possible Thermoelectric Materials

    OpenAIRE

    Gabriel, Stefanie

    2013-01-01

    The assembly of nanostructures into “multi”-dimensional materials is one of the main topics occurring in nanoscience today. It is now possible to produce high quality nanostructures reproducibly but for their further application larger structures that are easier to handle are required. Nevertheless during their assembly their nanometer size and accompanying properties must be maintained. This challenge was addressed in this work. Lead chalcogenides have been chosen as an example system becaus...

  8. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K

    Science.gov (United States)

    Martin, Joshua; Nolas, George S.

    2016-01-01

    We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials.

  9. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    International Nuclear Information System (INIS)

    Heyman, J. N.; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D.; Coates, N. E.; Urban, J. J.

    2014-01-01

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires

  10. Thermoelectric properties of PbSe₀.₅Te₀.₅: x (PbI₂) with endotaxial nanostructures: a promising n-type thermoelectric material.

    Science.gov (United States)

    Rawat, P K; Paul, B; Banerji, P

    2013-05-31

    In the present investigation, we report on the thermoelectric properties of PbSe₀.₅Te₀.₅: x (PbI₂) from room temperature to 625 K. High-resolution transmission electron micrographs of the samples reveal endotaxial nanostructures embedded in a PbSe₀.₅Te₀.₅ matrix. The combined effect of mass fluctuation and nanostructures reduces the thermal conductivity to a great extent compared to PbTe and PbSe, without affecting the carrier mobility. As a result, a thermoelectric figure of merit with a value of 1.5 is achieved at 625 K. This value is significantly higher than that of the available state-of-the-art n-type materials.

  11. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Ranjbar, Ali Akbar; Rezaniakolaei, Alireza

    2017-01-01

    experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source...... of the second stage TEGs. In the second stage, five smaller TEG modules are installed around the PCM with individual heat sinks for cooling with natural convection. In order to have a comparison between a common TEG system and the proposed two-stage TEG system, a one-stage thermoelectric generator with forced...

  12. semiconducting nanostructures: morphology and thermoelectric properties

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  13. Extrapolation of Transport Properties and Figure of Merit of a Thermoelectric Material

    Directory of Open Access Journals (Sweden)

    H. Julian Goldsmid

    2015-06-01

    Full Text Available The accurate determination of the thermoelectric properties of a material becomes increasingly difficult as the temperature rises. However, it is the properties at elevated temperatures that are important if thermoelectric generator efficiency is to be improved. It is shown that the dimensionless figure of merit, ZT, might be expected to rise with temperature for a given material provided that minority carrier conduction can be avoided. It is, of course, also necessary that the material should remain stable over the whole operating range. We show that the prediction of high temperature properties in the extrinsic region is possible if the temperature dependence of carrier mobility and lattice thermal conductivity are known. Also, we show how the undesirable effects arising from mixed or intrinsic conduction can be calculated from the energy gap and the relative mobilities of the electrons and the positive holes. The processes involved are discussed in general terms and are illustrated for different systems. These comprise the bismuth telluride alloys, silicon-germanium alloys, magnesium-silicon-tin and higher manganese silicide.

  14. Highly Efficient Multilayer Thermoelectric Devices

    Science.gov (United States)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  15. Alkaline earth lead and tin compounds Ae2 Pb, Ae2 Sn, Ae =Ca,Sr,Ba, as thermoelectric materials

    Science.gov (United States)

    Parker, David; Singh, David

    2014-03-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  16. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  17. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  18. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  19. Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications

    Science.gov (United States)

    Nguyen, Phi-Khanh

    The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths. In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the

  20. Designing, building, and testing a solar thermoelectric generation, STEG, for energy delivery to remote residential areas in developing regions

    Science.gov (United States)

    Moumouni, Yacouba

    New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators can be a cost-effective alternative to photovoltaics for a remote residential household power supply. A complete solar thermoelectric energy harvesting system is presented for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with LTspice simulator software via thermal-to-electrical analogy schemes. Valuable data in conjunction with two novel LTspice circuits were obtained, showing the achievability of analyzing transient heat transfer with the Spice simulator. Hence, the proposed study begins with a comprehensive method of extracting thermal parameters that appear in thermoelectric modules. A step-by-step procedure was developed and followed to succinctly extract parameters, such as the Seebeck coefficient, electrical conductivity, thermal resistance, and thermal conductivity needed to model the system. Data extracted from datasheet, material properties, and geometries were successfully utilized to compute the thermal capacities and resistances necessary to perform the analogy. In addition, temperature variations of the intrinsic internal parameters were accounted for in this process for accuracy purposes. The steps that it takes to simulate any thermo-electrical system with the LTspice simulator are thoroughly explained in this work. As a consequence, an improved Spice model for a thermoelectric generator is proposed. Experimental results were compiled in the form of a lookup table and then fed into the Spice simulator using the piecewise linear (PWL) command in order to validate the model. Experimental results show that a temperature differential of 13.43°C was achievable whereas the simulation indicates

  1. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  2. Probing the Subtle Structure Modifications of Thermoelectric Materials by Variable Temperature Total Scattering

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    in air. PDF measurements were performed on data collected from ex situ annealed BGG samples. This ex situ study (to be submitted), reveals that the seemingly subtle change in the clathrate structure and the emergence of a significant amorphous phase observed from PXRD data is likely to be the result...... of modifications in the cage configuration, but further data analysis is necessary to identify the specific features of the cages that are affected. Although the thermal stability of thermoelectric materials has been highlighted as a critical bottleneck in their commercialization, the aim of this work...... is to understand how we may stabilize TE materials through a thorough understanding of their high temperature structure reorientations and decomposition mechanisms....

  3. DEVELOPMENT OF THE ENERGY EFFICIENT THERMOELECTRIC HEAT PUMP OF SPIRAL TYPE

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2016-01-01

    Full Text Available Abstract. The necessity to intensify the process of heat transfer in the heat pump is justified. The possibility of heat pumps using for liquid cooling in the engine pipe is shown. The new heat pump design of spiral type with LED ring semiconductor structures, powered by magnetic induction is proposed. The efficiency of LED ring semiconductor structures that operate at low temperatures due to the difference in the levels of energy charges in p- and n-regions isrevealed.The mathematical model for the electrical and thermal parameters calculating of energy-efficient thermoelectric heat pump of the spiral type is developed. The diagram of coolant temperature dependence at the outlet of energy-efficient thermoelectric heat pump of spiral type on the supply current is built. The efficiency of spiral type thermoelectric heat pump application for cooling of the internal combustion engine is proven. 

  4. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  5. Microstructure and chemical data of the thermoelectric ZnSb material after joining to metallic electrodes and heat treatment

    Directory of Open Access Journals (Sweden)

    Safdar Abbas Malik

    2017-12-01

    Full Text Available The data presented in this article are related to the research article entitled: “Solder free joining as a highly effective method for making contact between thermoelectric materials and metallic electrodes” (Malik et al., 2017 [1]. This article presents microstructure obtained by scanning electron microscopy (SEM and chemical analysis by energy dispersive X-ray spectroscopy (EDX point measurements of the thermoelectric ZnSb legs after joining to metallic electrodes using solder (Zn-2Al and free-soldering methods.

  6. Performance and stress analysis of oxide thermoelectric module architecture designed for maximum power output

    DEFF Research Database (Denmark)

    Wijesekara, Waruna; Rosendahl, Lasse; Wu, NingYu

    Oxide thermoelectric materials are promising candidates for energy harvesting from mid to high temperature heat sources. In this work, the oxide thermoelectric materials and the final design of the high temperature thermoelectric module were developed. Also, prototypes of oxide thermoelectric gen...... and simulation results were validated. In addition, the thermal stress and the thermal expansion of the thermoelectric uni-couple were studied in this work....... generator were built for high temperature applications. This paper specifically discusses the thermoelectric module design and the prototype validations of the design. Here p type calcium cobalt oxide and n type aluminum doped ZnO were developed as the oxide thermoelectric materials. Hot side and cold side...

  7. Materials design and development of functional materials for industry

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-01-01

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success

  8. Microstructure and chemical data of the thermoelectric ZnSb material after joining to metallic electrodes and heat treatment

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2017-01-01

    The data presented in this article are related to the research article entitled: “Solder free joining as a highly effective method for making contact between thermoelectric materials and metallic electrodes” (Malik et al., 2017) [1]. This article presents microstructure obtained by scanning...

  9. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  10. Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Zhang, Qian; Chen, Gang

    2018-02-27

    A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 .mu.V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionless figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 .mu.V/K at any temperature.

  11. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  12. Biphasic thermoelectric materials derived from the half-Heusler/full-Heusler system Ti-Ni-Sn

    Science.gov (United States)

    Douglas, Jason Everett

    Among the possible avenues for increasing the efficiency of global energy usage, thermoelectrics are an exciting, solid-state option. Thermoelectric materials, which convert an internal temperature gradient into a voltage and vice versa, have found applications in refrigeration as well as power generation from waste heat. TiNiSn, a semiconductor of the half-Heusler (hH) crystal structure, is of particular interest due to its very favorable electronic transport properties, conductivity (sigma) and Seebeck coefficient ( S), at relevant temperature regimes (between 600 K and 900 K). Unfortunately, its overall efficiency is hampered by a comparatively high thermal conductivity (kappa). In the design of thermoelectric materials, a number of approaches have been taken to increase the thermoelectric figure of merit, ZT = ( S2sigma/kappa)T, where T is temperature. In this work we examine how microstructure can be used to alter these thermoelectric propertiesin a biphasic Ti-Ni-Sn materials containing full-Heusler (fH) TiNi2Sn embedded within hH thermoelectric TiNiSn. We explored a wide range of Ni compositions in TiNi1+xSn--from stoichiometric TiNiSn to high Heusler volume fraction, TiNi1.25Sn--materials prepared by levitation induction melting followed by annealing. Phase distributions and microstructure were characterized using synchrotron x-ray diffraction and optical and electron microscopy. In a sample of the nominal composition TiNi1.15Sn, a significant decrease in thermal conductivity (about 30%) is observed for the biphasic material despite the metallic second-phase particles existing at the micrometer scale; a 50% increase in the electrical conductivity is also measured. These result in a maximum figure of merit, ZT, of 0.44 at 800 K, which is 25% greater than is observed for the x = 0 sample. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as

  13. Fabrication of Mg2Si thermoelectric materials by mechanical alloying and spark-plasma sintering process.

    Science.gov (United States)

    Lee, Chung-Hyo; Lee, Seong-Hee; Chun, Sung-Yong; Lee, Sang-Jin

    2006-11-01

    A mixture of pure Mg and Si powders with an atomic ratio 2:1 has been subjected to mechanical alloying (MA) at room temperature to prepare the Mg2Si thermoelectric material. Mg2Si intermetallic compound with a grain size of 50 nm can be obtained by MA of Mg66.7Si33.3 powders for 60 hours and subsequently annealed at 620 degrees C. Consolidation of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800-900 degrees C under 50 MPa. The shrinkage of consolidated samples during SPS was significant at about 250 degrees and 620 degrees C. X-ray diffraction data shows that the SPS compact from 60 h MA powders consolidated up to 800 degrees C consists of only nanocrystalline Mg2Si compound with a grain size of 100 nm.

  14. High figure-of-merit macro-structured thermoelectric materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric devices are critical to multiple NASA missions for power conversion with radioisotope sources. At present, commercially available TE devices typically...

  15. Design of a novel concentrating photovoltaic–thermoelectric system incorporated with phase change materials

    International Nuclear Information System (INIS)

    Cui, Tengfei; Xuan, Yimin; Li, Qiang

    2016-01-01

    Highlights: • A novel photovoltaic–thermoelectric system integrated with phase change materials is proposed. • The theoretical model of the PV–PCM–TE system is established to study its feasibility. • The PV–PCM–TE system is proved to be superior to single PV cells and PV–TE systems. • The influence parameters of the PV–PCM–TE system are investigated. - Abstract: Since the solar irradiance within a day is varying, the temperature of the photovoltaic–thermoelectric (PV–TE) system becomes fluctuant with the change of the incident solar irradiance, which exerts a significant influence on the efficiency of the total system. In this paper, the phase change material (PCM) is introduced into the PV–TE system to construct a novel PV–PCM–TE hybrid system. The purposes of applying PCM are to mitigate the temperature fluctuations of the PV cell and the TE modules and keep the hybrid PV–TE system operating under a fixed operating condition. A theoretical model of evaluating the efficiency of the concentrating PV–PCM–TE hybrid system is presented. The feasibility of the PV–PCM–TE system with four types of PV cells, c-Si, CIGS, single-junction GaAs, and GaInP/InGaAs/Ge (III–V), are investigated. The optimum operating conditions which indicate that the PV–PCM–TE system has the highest total efficiency are discussed to determine the melting temperatures of PCMs. A series of structure parameters are designed to obtain the optimized parameters for the PV–PCM–TE system, and the influences of these parameters on the PV–PCM–TE system are investigated. The results indicate that the performance of the PV–PCM–TE system is superior to single PV cells and/or PV–TE systems.

  16. The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials

    Science.gov (United States)

    Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.

    2017-11-01

    Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1‑x RE x SnO3 (RE  =  La and Sr) materials with x  =  0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1‑x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1‑x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.

  17. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  18. In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei, E-mail: renfei@temple.edu, E-mail: kean@ornl.gov; Qian, Bosen [Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122 (United States); Schmidt, Robert; Case, Eldon D. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 (United States); Keum, Jong K.; Littrell, Ken C.; An, Ke, E-mail: renfei@temple.edu, E-mail: kean@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2016-08-22

    Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated that there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger one remained unchanged. This study demonstrated that in situ neutron techniques are effective means to obtain quantitative information on temperature-dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.

  19. In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material

    Science.gov (United States)

    Ren, Fei; Schmidt, Robert; Keum, Jong K.; Qian, Bosen; Case, Eldon D.; Littrell, Ken C.; An, Ke

    2016-08-01

    Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated that there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger one remained unchanged. This study demonstrated that in situ neutron techniques are effective means to obtain quantitative information on temperature-dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.

  20. In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material

    International Nuclear Information System (INIS)

    Ren, Fei; Qian, Bosen; Schmidt, Robert; Case, Eldon D.; Keum, Jong K.; Littrell, Ken C.; An, Ke

    2016-01-01

    Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated that there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger one remained unchanged. This study demonstrated that in situ neutron techniques are effective means to obtain quantitative information on temperature-dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.

  1. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  2. Thermoelectric Materials 1998 - The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications. Symposium Held November 30-December 3, 1998, Boston, Massachusetts. Volume 545

    National Research Council Canada - National Science Library

    Tritt, Terry M

    1998-01-01

    .... Over the past 30 years, alloys based on the Bi-Te compounds (refrigeration) (Bi(1-x)Sbx)2 (Te(1-x)Sex)3 and Si(1-x)Gex compounds (power generation) have been extensively studied and optimized for their use as thermoelectric materials...

  3. Development and construction of a thermoelectric active facade module

    Directory of Open Access Journals (Sweden)

    Marıa Ibanez-Puy

    2015-06-01

    Full Text Available In order to fulfil the current challenges for the European building sector, building design has diverged into two alternative directions: active technologies and passive design strategies. In the last few years, advanced and responsive building envelope components have represented a promising answer to these challenges. This paper presents the design and construction process of a project that aims to design, build and control the energy performance of an industrial-scale modular active ventilated facade prototype with a new Themoelectric Peltier System (TPS. The TPS is a thermoelectric HVAC heat pump system designed to be located in the building envelope and providing a high comfort level. Trying to optimize the energy performance of the traditional ventilated opaque facade, and make more efficient the energy performance of the TPS, the concept of adaptability has been applied to ventilated opaque facades. The essential research theme is to control the natural phenomena that take place inside the ventilated air cavity of the facade: taking advantage when heat dissipation is needed, and avoiding it when heat losses are not welcome. In order to quantify the previous statements, some facade prototypes are being built in Pamplona (Spain and their energy performance is going to be analyzed during a year.  

  4. Relationship between the merit factor of thermoelectric materials and the air conditioning unit of urban electric cars

    International Nuclear Information System (INIS)

    Buffet, J.

    1994-01-01

    The main benefit of electric cars is to reduce air pollution in cities that is thus desirable to equip them with non polluting air conditioning units and this rules out frigorific compressors operating with CFC. The planned replacement of CFC by HFC is at best an interim solution. The best solution is certainly to use thermoelectric air conditioning units, which are inherently pollution-free. However, these have a fairly low COPF when compared to traditional compressor units. We study the relationship between the cooling of the interior of urban electric cars and the merit factor of the thermoelectric material in their Peltier unit. This should help provide concrete target properties of future T E materials. copyright 1995 American Institute of Physics

  5. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Meng, Jing-Hui; Wang, Xiao-Dong; Chen, Wei-Hsin

    2016-01-01

    Highlights: • A new model for automobile exhaust thermoelectric generator system is proposed. • Based on the system reliability, the counter flow cooling pattern is recommended. • There exists an optimal thermoelectric unit number to maximize system output power. • Better performance is predicted with less thermoelectric materials consumption. - Abstract: This work develops a multiphysics thermoelectric generator model for automobile exhaust waste heat recovery, in which the exhaust heat source and water-cooling heat sink are actually modeled. Special emphasis is put on the non-uniformity of temperature difference across thermoelectric units along the streamwise direction, which may affect the performance of exhaust thermoelectric generator systems significantly. The main findings are: (1) The counter flow cooling pattern is recommended, although it cannot elevate the overall output power as compared with the parallel flow counterpart, it reduces the temperature non-uniformity effectively, and hence ensures the system reliability. (2) The temperature non-uniformity strikingly deteriorates the output power of thermoelectric unit along the streamwise direction; meanwhile, an additional lateral heat conduction effect exists within the exhaust channel wall, the both mechanisms leads to that the maximum output power of the system is not enhanced but is actually reduced when too many thermoelectric units are adopted. (3) When the exhaust channel length is fixed, the maximum output power of the system can be elevated by increasing the thermoelectric unit number but keeping thermoelectric unit spacing unchanged. This means that the system performance can be improved under the condition of less thermoelectric materials consumption.

  6. Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale.

    Science.gov (United States)

    Mohanraman, Rajeshkumar; Lan, Tian-Wey; Hsiung, Te-Chih; Amada, Dedi; Lee, Ping-Chung; Ou, Min-Nan; Chen, Yang-Yuan

    2015-01-01

    Thermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement.

  7. Intermediate Valence Tuning and Seebeck Coefficient Optimization in Yb-based Low-Temperature Thermoelectric Materials

    Science.gov (United States)

    Lehr, Gloria; Morelli, Donald; Jin, Hyungyu; Heremans, Joseph

    2014-03-01

    Several Yb-based intermediate valence compounds have unique thermoelectric properties at low temperatures. These materials are interesting to study for niche applications such as cryogenic Peltier cooling of infrared sensors on satellites. Elements of different sizes, which form isostructural compounds, are used to form solid solutions creating a chemical pressure (smaller atoms - Sc) or relaxation (larger atoms - La) to alter the volume of the unit cell and thereby manipulate the average Yb valence. Magnetic susceptibility measurements show a strong correlation between the Seebeck coefficient and the ratio of trivalent to divalent Yb in these compounds. Two different Yb-based solid solution systems, Yb1-xScxAl2 and Yb1-xLaxCu2Si2, demonstrate that the concentration of Yb can be used to tune both the magnitude of the Seebeck coefficient as well as the temperature at which its absolute maximum occurs. This work is supported by Michigan State University and AFOSR-MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533.

  8. Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3

    Science.gov (United States)

    Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo

    2018-03-01

    We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.

  9. Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying

    DEFF Research Database (Denmark)

    Tureson, Nina; Van Nong, Ngo; Fournier, Daniele

    2017-01-01

    ) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of −45 μV/K and a power factor of 6 × 10−4 W/m K2 at 750 K. Estimated from room temperature Hall measurements, all...... samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.......5 W m−1 K−1) down to a minimum value of 2.2 Wm−1 K−1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of ∼5 due to the mass contrast in ScN, which increases the phonon scattering in the material....

  10. Thermoelectric power generation system optimization studies

    Science.gov (United States)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  11. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies

    International Nuclear Information System (INIS)

    Vian, J.G.; Astrain, D.

    2009-01-01

    A domestic refrigerator with three compartments has been developed: refrigerator compartment, at 4 deg. C (vapor compression cooling system); freezer compartment, at -22 deg. C (vapor compression cooling system); and a new super-conservation compartment, at 0 deg. C (thermoelectric cooling system). The thermoelectric system designed for the super-conservation compartment eliminates the oscillation of its temperature due to the start and stop compressor cycles, obtaining a constant temperature and thus, a better preservation of the food. For the design and optimization of this application, a computational model, based in the numerical method of finite differences, has been developed. This model allows to simulate the complete hybrid refrigerator (vapor compression-thermoelectricity). The accuracy of the model has been experimentally checked, with a maximum error of 1.2 deg. C for temperature values, and 8% for electric power consumption. By simulations with the computational model, the design of the refrigerator has been optimized, obtaining a final prototype highly competitive, by the features on food preservation and power consumption: 1.15 kW h per day (48.1 W) for an ambient temperature of 25 deg. C. According to European rules, this power consumption value means that this new refrigerator could be included on energy efficiency class B.

  12. Synthesis of SnTe/AgSbSe2 nanocomposite as a promising lead-free thermoelectric material

    Directory of Open Access Journals (Sweden)

    Jun He

    2016-06-01

    Full Text Available A series of SnTe-AgSbSe2 composites were synthesized by a zone-melting method. The nanostructure of the composites was determined by the high resolution transmission electron microscope. The results show that the lattice thermal conductivity is decreased to ∼0.6 W/m·K at 820 K due to the intense scattering of phonon. Also, the carrier concentration increases with AgSbSe2 amounts, and a large effective mass of ∼ 4m0 at room temperature appears at a high carrier concentration of ∼2 × 1021/cm3. A relatively high thermoelectric figure of merit ZT of 0.92 at 820 K is obtained by composition optimization. It is indicated that the SnTe-AgSbSe2 composite should be a promising thermoelectric material.

  13. Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception

    Science.gov (United States)

    Uysal, Fatih; Kilinc, Enes; Kurt, Huseyin; Celik, Erdal; Dugenci, Muharrem; Sagiroglu, Selami

    2017-08-01

    Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit ( ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.

  14. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

  15. Molecular dynamics simulations of the lattice thermal conductivity of thermoelectric material CuInTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong (Hong Kong); Liu, H.J., E-mail: phlhj@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cheng, L.; Zhang, J.; Jiang, P.H.; Liang, J.H.; Fan, D.D.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-05-10

    Highlights: • A simple but effective Morse potential is constructed to accurately describe the interatomic interactions of CuInTe{sub 2}. • The lattice thermal conductivity of CuInTe{sub 2} predicted by MD agrees well with those measured experimentally, as well as those calculated from phonon BTE. • Introducing Cd impurity or Cu vacancy can effectively reduce the lattice thermal conductivity of CuInTe{sub 2} and thus further enhance its thermoelectric performance. - Abstract: The lattice thermal conductivity of thermoelectric material CuInTe{sub 2} is predicted using classical molecular dynamics simulations, where a simple but effective Morse-type interatomic potential is constructed by fitting first-principles total energy calculations. In a broad temperature range from 300 to 900 K, our simulated results agree well with those measured experimentally, as well as those obtained from phonon Boltzmann transport equation. By introducing the Cd impurity or Cu vacancy, the thermal conductivity of CuInTe{sub 2} can be effectively reduced to further enhance the thermoelectric performance of this chalcopyrite compound.

  16. Progress Status of Skutterudite-Based Segmented Thermoelectric Technology Development

    Science.gov (United States)

    Caillat, T.; Sakamoto, J.; Lara, L.; Jewell, A.; Kisor, A.

    2004-01-01

    Young's modulus, bulk density, fracture strength, and fracture toughness of alpha silicon carbide manufactured by extrusion and by isopressing were measured at room and elevated temperature in order to determine material feasibility as augers for the Tile Overlay Repair attachment. The measured properties of extruded and isopressed materials differ significantly, with the extruded material exhibiting marked strength anisotropy and lower density. The measurements were made between July and September 2006 at Glenn Research Center (GRC), in order to obtain design data for use in structural and thermal mathematical models.

  17. Study of thermal stability of Cu{sub 2}Se thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Bohra, Anil, E-mail: anilbohra786@gmail.com; Bhatt, Ranu; Bhattacharya, Shovit; Basu, Ranita; Singh, Ajay; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, B.A.R.C., Trombay, Mumbai – 400085 (India); Ahmad, Sajid [Nuclear Research Laboratory, Astrophysical Sciences Division, B.A.R.C., Zakura, Srinagar– 190006 (India)

    2016-05-23

    Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu{sub 2}Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu{sub 2}Se phase in bare pellet which transforms to pure α-Cu{sub 2}Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed in EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu{sub 2}Se phase.

  18. Preparation of n-type Bi{sub 2}Te{sub 3} thermoelectric materials by non-contact dispenser printing combined with selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Keping; Yan, Yonggao; Zhang, Jian; Mao, Yu; Xie, Hongyao; Zhang, Qingjie; Tang, Xinfeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei (China); Yang, Jihui [Department of Materials Science and Engineering, University of Washington, Seattle, WA (United States); Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, MI (United States)

    2017-06-15

    The manufacturing cost has been a bottle neck for broader applications of thermoelectric (TE) modules. We have developed a rapid, facile, and low cost method that combines non-contact dispenser printing with selective laser melting (SLM) and we demonstrate it on n-type Bi{sub 2}Te{sub 3}-based materials. Using this approach, single phase n-type Bi{sub 2}Te{sub 2.7}Se{sub 0.3} thin layers with the Seebeck coefficient of -152 μV K{sup -1} at 300 K have been prepared. Assembling such thin layers on top of each other, the performance of thus prepared bulk sample is comparable to Bi{sub 2}Te{sub 3}-based materials fabricated by the conventional techniques. Dispenser printing combined with SLM is a promising manufacturing process for TE materials. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Surface Disordered Ge–Si Core–Shell Nanowires as Efficient Thermoelectric Materials

    DEFF Research Database (Denmark)

    Markussen, Troels

    2012-01-01

    Ge–Si core–shell nanowires with surface disorder are shown to be very promising candidates for thermoelectric applications. In atomistic calculations we find that surface roughness decreases the phonon thermal conductance significantly. On the contrary, the hole states are confined to the Ge core...... and are thereby shielded from the surface disorder, resulting in large electronic conductance values even in the presence of surface disorder. This decoupling of the electronic and phonon transport is very favorable for thermoelectric purposes, giving rise to promising room temperature figure of merits ZT > 2...

  20. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  1. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems....... The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between...... experimental results and model forecasts was obtained and the system was able to maintain the load at more than 33 K below the oil well temperature. Results of this study support topology optimizationas a powerful design tool for thermal design of thermoelectric systems....

  2. Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: findings from theory and simulation

    Science.gov (United States)

    Neophytou, Neophytos

    2015-04-01

    Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as κ l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations.

  3. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    gradients. It has previously been shown that a large functionally graded thermoelectric single crystal can be synthesized by the Czochralski method (1). Utilizing element gradients inherent to the Czochralski process we have synthesized a Ge1-xSix:B crystal with a continuously varying x, band gap...

  4. Nanostructured Thermoelectric Oxide Materials for Effective Power Generation from Waste Heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. It is difficult to reclaim this heat due to the dispersed nature and relative smallness of its sources. Thermoelectric conversion can offer a very promising method to overcome these difficulti...

  5. Cost Efficient Manufacturing of Silicide Thermoelectric Materials and Modules using RGS Technique

    NARCIS (Netherlands)

    Schönecker, A.; Kraaijveld, B.; van Til, A. E.; Böttger, A. J.; Brinks, P.; Huijben, M.; den Heijer, Martin

    2015-01-01

    Thermoelectric (TE) power generation presents a promising and attractive way to convert high temperature waste heat into electricity. However in many situations, such as in industrial waste heat recovery, the market is looking for affordable solutions, while the search for efficient and stable

  6. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    Science.gov (United States)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  7. Investigations on an oriented cooling design for thermoelectric cogenerations

    International Nuclear Information System (INIS)

    Zheng, X F; Yan, Y Y; Liu, C X

    2012-01-01

    In thermoelectric application, it is widely known that the material limitation has still been the chief barrier of lifting its application to a higher level. Continuous efforts are extensively being made in developing novel material structures and constructions for thermoelectric modules with higher conversion efficiency. However, the overall system efficiency, which is one of the major parameters that most of the engineer and users care about, is not only ruled by the properties of applied thermoelectric materials, but also decided by the design of heat exchangers used on both sides of thermoelectric modules. Focusing on the cooling capacity and hydraulic characteristics of heat exchanger, this paper introduces an oriented cooling method for the domestic thermoelectric cogeneration, which delivers system efficiency up to 80%. This purpose-oriented cooling plate is designed for thermoelectric cogeneration for the residential houses installed with boiler or other heating facilities with a considerable amount of unused heat. The design enables Thermoelectric Cogeneration System (TCS) to be flexibly integrated into the existing hydraulic system. The mathematical model for the cooling plate has been established for a well understanding at the theoretical level. The performance of cooling plate has been investigated in a series of experimental studies which have been conducted under different coolant inlet velocity and temperature. The economic operating zone in which a good system performance could be achieved has been discussed and identified for the current configuration.

  8. Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor

    DEFF Research Database (Denmark)

    Qing, Shaowei; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    elements thickness and thermoelectric module row number in a proper range can significantly enhance thermoelectric generator performance. The maximum output power can reach 0.2 μW/cm2, which indicates the proposed design is promising for supplying human body sensors. In addition, the basic optimal design......Flexible thermoelectric generator became an attractive technology for its wide use especially for curved surfaces applications. This study proposes design of a flexible thermoelectric generator, which is part of a sensor and supplies required electrical power for human body application....... The thermoelectric generator module has ink-based thermoelements which are made of nano-carbon bismuth telluride materials. Flexible fins conduct the body heat to the thermoelectric uni-couples, extended fins exchange the heat from the cold side of the thermoelectric generator to the ambient. A fully developed one...

  9. Development and experimental validation of a thermoelectric test bench for laboratory lessons

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez

    2013-12-01

    Full Text Available The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor compression and absorption refrigeration, and power generation systems such as gas turbine and steam turbine. Another type of cooling and generation less studied within the engineering curriculum, having a great interest, it is cooling and thermal generation based on Peltier and Seebeck effects. The theoretical concepts are useful, but students have difficulties understanding the physical meaning of their possible applications. Providing students with tools to test and apply the theory in real applications, will lead to a better understanding of the subject. Engineers must have strong theoretical, computational and also experimental skills. A prototype test bench has been built and experimentally validated to perform practical lessons of thermoelectric generation and refrigeration. Using this prototype students learn the most effective way of cooling systems and thermal power generation as well as basic concepts associated with thermoelectricity. It has been proven that students learn the process of data acquisition, and the technology used in thermoelectric devices. These practical lessons are implemented for a 60 people group of students in the development of subject of Thermodynamic including in the Degree in Engineering in Industrial Technologies of Public University of Navarra. Normal 0 21 false false false ES X-NONE X-NONE Normal 0 21 false false false ES X-NONE X-NONE Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  10. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  11. Thermoelectric properties of high electron concentration materials under large temperature gradients

    International Nuclear Information System (INIS)

    Bulat, L.P.; Stefansky, V.A.

    1994-01-01

    Theoretical methods of investigating of transport properties in solids under large temperature gradients are grounded. The nonlinear and non-local expressions for current density and heat flow are obtained with degenerated of current carriers gas. A number of new effects with large temperature gradients have been tested. Use of large temperature gradients leads to the increasing of the thermoelectric figure of merit. copyright 1995 American Institute of Physics

  12. Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis

    DEFF Research Database (Denmark)

    Tafti, Mohsen Y.; Ballikaya, Sedat; Khachatourian, Adrine Malek

    2016-01-01

    A facile and high yield synthesis route was developed for the fabrication of bulk nanostructured copper selenide (Cu2Se) with high thermoelectric efficiency. Starting from readily available precursor materials and by means of rapid and energy-efficient microwave-assisted thermolysis, nanopowders...... synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications....

  13. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  14. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  15. Design of a thermoelectric generator with fast transient respose

    OpenAIRE

    Fisac, Miguel; Villasevil Marco, Francisco Javier; López Martínez, Antonio Miguel

    2015-01-01

    Thermoelectric modules are currently used both in Peltier cooling and in Seebeck mode for electricity generation. The developments experienced in both cases depend essentially on two factors: the thermoelectric properties of the materials that form these elements (mainly semiconductors), and the external structure of the semiconductors. Figure of Merit Z is currently the best way of measuring the efficiency of semiconductors, as it relates to the intrinsic parameters of the semico...

  16. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  17. Thermoelectric power conversion in space

    International Nuclear Information System (INIS)

    Awaya, H.I.; Ewell, R.; Nesmith, B.; Vandersande, J.

    1990-01-01

    This paper discusses how thermoelectric power conversion systems have a broad potential for applicability to a large number of different classes of space missions. As research continues on thermoelectric materials, the potential for significantly improved performance is good. With research also occurring in the power conversion field to improve configurations and specific designs, thermoelectric power conversion continues to show great promise for near- and long-term space missions. The next generation of radioisotope thermoelectric generators will use a radiatively heated multicouple that incorporates 20 individual couples within a single cell

  18. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  19. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  1. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  2. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  3. Structural, chemical, and thermoelectric properties of Bi2Te3 Peltier materials. Bulk, thin films, and superlattices

    International Nuclear Information System (INIS)

    Peranio, Nicola

    2008-01-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi 2 Te 3 and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi 2 (Te 0.91 Se 0.09 ) 3 and p-type (Bi 0.26 Sb 0.74 ) 1.98 (Te 0.99 Se 0.01 ) 3.02 bulk materials synthesised by the Bridgman technique. (II) Bi 2 Te 3 thin films and Bi 2 Te 3 /Bi 2 (Te 0.88 Se 0.12 ) 3 superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF 2 substrates with periods of δ-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to and an amplitude of about 10 pm and (ii) a wave vector parallel to {1,0,10} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  4. Materials development for TESOL

    CERN Document Server

    Mishan, Freda

    2015-01-01

    Materials development has become much more important in the field of TESOL in the last twenty years: modules on materials development are now commonplace on MA TESOL courses around the world. The overall aim of the book is to introduce readers to a wide range of theoretical and practical issues in materials development to enable them to make informed and principled choices in the selection, evaluation, adaptation and production of materials. The book aims to show how these choices need to be informed by an awareness of culture, context and purpose.

  5. Analysis of Microstructure Using Thermoelectric Diagnostics for Non-Destructive Evaluation of Materials

    Science.gov (United States)

    Park, Y. D.; Kaydanov, V. I.; Mishra, B.; Olson, D. L.

    2005-04-01

    Measurements of Thermoelectric power (TEP) were used to evaluate microstructural analysis in HSLA steel weldments and retained austenite volume fraction for TRIP steel. First, the measurements of TEP for weld microstructure across weldment have shown good correlation with hardness profile. The different TEP values indicated that changes in weld microstructure can be correlated with TEP values measured. Second, it was demonstrated that retained austenite volume fraction were well correlated to TEP measurements for transformation induced plasticity (TRIP) steels. The results suggest that TEP measurements can be correlated to retained austenite volume fraction for TRIP steels, which do not have same chemical composition and thermal heat treatment processes. The retained austenite volume fraction also was measured by X-ray diffraction (XRD) method. With the introduction of these advanced TEP coefficient measurement techniques, the welding and steel industry will be using analytical tools similar to those instruments applied in the semiconductor industry.

  6. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  7. La 1-x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties.

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M; Cantarero, Andrés

    2014-01-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  8. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho, E-mail: dfungaro@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb, {sup 232}Th and {sup 40}K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg{sup -1} for {sup 238}U, 180 Bq kg{sup -1} for {sup 226}Ra, 27 Bq kg{sup -1} for {sup 228}Ra, 28 Bq kg{sup -1} for {sup 232}Th and 192 Bq kg{sup -1} for {sup 40}K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg{sup -1} for {sup 238}U, from 484 to 1086 Bq kg{sup -1} for {sup 226}Ra, from 291 to 1891 Bq kg{sup -1} for {sup 210}Pb, from 67 to 111 Bq kg{sup -1} for {sup 228}Ra, from 80 to 87 Bq{sup -1} for {sup 232}Th and from 489 to 718 Bq kg{sup -1} for {sup 40}K. Similar ranges were observed for zeolites. The activity concentration of {sup 238}U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  9. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  10. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2016-01-01

    This book is a comprehensive introduction to all aspects of thermoelectric energy conversion. It covers both theory and practice. The book is timely as it refers to the many improvements that have come about in the last few years through the use of nanostructures. The concept of semiconductor thermoelements led to major advances during the second half of the twentieth century, making Peltier refrigeration a widely used technique. The latest materials herald thermoelectric generation as the preferred technique for exploiting low-grade heat. The book shows how progress has been made by increasing the thermal resistivity of the lattice until it is almost as large as it is for glass. It points the way towards the attainment of similar improvements in the electronic parameters. It does not neglect practical considerations, such as the desirability of making thermocouples from inexpensive and environmentally acceptable materials. The second edition was extended to also include recent advances in thermoelectric ener...

  11. Numerical Examination of the Performance of a Thermoelectric Cooler with Peltier Heating and Cooling

    Science.gov (United States)

    Kim, Chang Nyung; Kim, Jeongho

    2015-10-01

    There has recently been much progress in the development of materials with higher thermoelectric performance, leading to the design of thermoelectric devices for generation of electricity and for heating or cooling. Local heating can be achieved by current flow through an electric resistance, and local heating and cooling can be performed by Peltier heating and cooling. In this study, we developed computer software that can be used to predict the Seebeck and Peltier effects for thermoelectric devices. The temperature, electric potential, heat flow, electric current, and coefficient of performance were determined, with the objective of investigating the Peltier effect in a thermoelectric device. In addition to Peltier heating and cooling, Joule and Thomson heating were quantitatively evaluated for the thermoelectric device.

  12. Structural and thermoelectric properties of pure and La, Y doped HoMnO3 for their use as alternative energy materials

    Science.gov (United States)

    Khan, Banaras; Rahnamaye Aliabad, H. A.; Razghandi, N.; Maqbool, M.; Jalali Asadabadi, S.; Ahmad, Iftikhar

    2015-02-01

    HoMnO3 and its La and Y doped compounds Ho0.67La0.33MnO3 and Ho0.67Y 0.33MnO3 are investigated for their structural and thermoelectric transport properties. Small bandgaps of these compounds, as investigated by first principles calculations, make them suitable for application in thermoelectric devices. It is found that the bandgap of pure HoMnO3 increases with La and Y dopants. Thermoelectric parameters such as Seebeck coefficient, electric conductivity and thermal conductivity are calculated and their dependences on chemical potential are reported. Electrical conductivity is found to be of the order of 1020 1/m Ω s, and thermal conductivity of the order of 1015 W/mKs for all these alloys. HoMnO3 in pure form and in the presence of La and Y dopants is very suitable for thermoelectric devices and as alternative energy materials.

  13. Fabrication of MnSi1.73 thermoelectric material by mechanical alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2011-02-01

    The effect of mechanical alloying (MA) on the formation of MnSi1.73 thermoelectric compound was investigated. Due to the observed larger loss of Si relative to Mn during MA, the starting composition of Mn-Si was modified to MnSi1.83 and MnSi1.88. Sintering was performed in a spark plasma sintering (SPS) machine up to 600-800 degrees C under 50 MPa. The single phase MnSi1.73 has been obtained by MA of MnSi1.88 mixture powders for 200 h. It is also found that the grain size of MnSi1.73 compound analyzed by Hall plot method is reduced to 40 nm after 200 h of milling. Additionally, X-ray diffraction data shows that the SPS compact from 200 h MA powders consolidated at 600 degrees C consists of only nanocrystalline MnSi1.73 compound with a grain size of 90 nm.

  14. Enhanced low-temperature thermoelectrical properties of BiTeCl grown by topotactic method

    International Nuclear Information System (INIS)

    Jacimovic, J.; Mettan, X.; Pisoni, A.; Gaal, R.; Katrych, S.; Demko, L.; Akrap, A.; Forro, L.; Berger, H.; Bugnon, P.; Magrez, A.

    2014-01-01

    We developed a topotactic strategy to grow BiTeCl single crystals. Structural characterization by means of X-ray diffraction was performed, and the high crystallinity of the material was proven. Measurements of the thermoelectrical coefficients electrical resistivity, thermoelectric power and thermal conductivity show an enhanced room temperature power factor of 20 μW cm −1 K −2 . The high value of the figure of merit (ZT = 0.17) confirms that BiTeCl is a promising material for engineering in thermoelectric applications at low temperature

  15. Thermoelectric Products

    Science.gov (United States)

    1988-01-01

    Instead of bulky coils and compressors used in conventional refrigeration systems, UST design engineers drew on thermo-electric technology. UST's precision temperature chambers (PTC's) feature small thermoelectric modules that measure not much more than 1 square inch and operate on unique phenomenon of heat exchange. When electric current flows through specialized metallic crystals, heat is produced; when current direction is reversed cooling is produced.

  16. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  17. Development of a thermoelectric one-man cooler for use by NASA astronauts

    International Nuclear Information System (INIS)

    Heenan, P.; Mathiprakasam, B.; DeMott, D.

    1994-01-01

    This paper presents the development of a one-man thermoelectric (TE) cooling unit designed for use by NASA astronauts while they are wearing a protective suit during the launch and reentry phases of space shuttle missions. The unit was designed to provide a low-cooling level of 340 Btu/hour in a 75 degree F environment and a high-cooling level of 480 Btu/hour in a 95 degree F environment. The unit has an envelope 8 inches wide by 11 inches high by 4.5 inches deep. The TE unit was designed to optimize space and power consumption while providing adequate cooling. The operation of the TE cooling unit requires ∼1.2 amps of 28 VDC power in the low power mode and ∼3.0 amps of 28 VDC power in the high power mode. Two of these units have flown on several shuttle missions this year and are scheduled for continued use on future missions. The response to the TE unit's performance has been very positive from the shuttle crew. Additional units are being fabricated to keep the shuttle crew members cooled while final development is under way. copyright 1995 American Institute of Physics

  18. High Performance Thermoelectric Materials Using Solution Phase Synthesis of Narrow Bandgap Core/Shell Quantum Dots Deposited Into Colloidal Crystal Thin Films

    National Research Council Canada - National Science Library

    2005-01-01

    Thermoelectrics is the science and technology associated with thermoelectric converters, that is, the generation of electrical power based on the Seebeck effect and refrigeration by the Peltier effect...

  19. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  20. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process

    Science.gov (United States)

    Kuroki, Takashi; Murai, Ryota; Makino, Kazuya; Nagano, Kouji; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi

    2015-06-01

    In Japan, integrated steelworks have greatly lowered their energy use over the past few decades through investment in energy-efficient processes and facilities, maintaining the highest energy efficiency in the world. However, in view of energy security, the steelmaking industry is strongly required to develop new technologies for further energy saving. Waste heat recovery can be one of the key technologies to meet this requirement. To recover waste heat, particularly radiant heat from steel products which has not been used efficiently yet, thermoelectric generation (TEG) is one of the most effective technologies, being able to convert heat directly into electric power. JFE Steel Corporation (JFE) implemented a 10-kW-class grid-connected TEG system for JFE's continuous casting line with KELK Ltd. (KELK), and started verification tests to generate electric power using radiant heat from continuous casting slab at the end of fiscal year 2012. The TEG system has 56 TEG units, each containing 16 TEG modules. This paper describes the performance and durability of the TEG system, which has been investigated under various operating conditions at the continuous casting line.

  1. Flexible thermoelectric device to harvest waste heat from the laptop

    Science.gov (United States)

    Salhi, Imane; Belhora, Fouad; Hajjaji, Abdelowahed; Jay, Jacques; Boughaleb, Yahia

    2017-05-01

    Recovering waste heat from integrated circuits of a laptop using thermoelectricity effects seems to be an appropriate process to enhance its efficiency. Thermoelectricity, as an energy harvesting process, helps to gain on both sides: financially as it reduces the energy consumption and environmentally as it minimizes the carbon footprint. This paper presents a flexible thermoelectric generator module which is developed to harvest waste heat of the laptop to power up some external loads. First, a theoretical analysis of the system is provided where both thermal and electrical models are exposed. Second, an estimation of the power density harvested by only one thermoelectric leg is given. This estimation can reach 0.01 µW/cm2 and it is confirmed by a numerical simulation based on the finite element method. Afterwards, this power density is improved to become 0.4 µW/cm2 by adding a heat sink in the cold side showing that the thermal resistances of the air and of the heat sink play a crucial role in transferring the temperature gradient to the thermoelectric (TE) material. Finally, it is indicated that the power harvested can be enough to power up portion of the circuitry or other important micro-accessories by using numerous thermoelectric modules.

  2. Some issues of history and prospects of thermoelectricity

    Science.gov (United States)

    Anatychuk, L.

    2012-06-01

    This work analyzes the approaches that had led to the discovery of thermoelectricity and a generalized approach in the description of thermoelectric power conversion based on the induction of thermoelectric currents. Possibilities of thermal generators contribution to "green" technologies, in particular, to waste heat recovery from heat engines are analyzed. Tellurium problem and the ways of tackling it are considered. Attention is focused on the efficiency of computer methods for designing thermoelectric devices. The outlook for progress of thermoelectricity in measuring technique is considered. The information on the organizations and specialists in thermoelectricity is provided. The necessity of purposeful training specialists in thermoelectricity for its more successful development is emphasized.

  3. Structure and Thermoelectric Properties of Te-Ag-Ge-Sb (TAGS) Materials Obtained by Reduction of Melted Oxide Substrates

    Science.gov (United States)

    Kusz, B.; Miruszewski, T.; Bochentyn, B.; Łapiński, M.; Karczewski, J.

    2016-02-01

    Ge0.77Ag0.1Sb0.13Te1 alloy was fabricated by a novel two-step route. Firstly, oxide reagents were melted at high temperature and quenched into pellets. The pellets were milled to powder and then reduced in hydrogen at various temperatures for various periods of time. Energy-dispersive x-ray analysis indicated the possibility of successful fabrication of stoichiometric thermoelectric materials from the Te-Ag-Ge-Sb system. The electrical conductivity and Seebeck coefficient have been determined over the temperature range from 20°C to 340°C in argon atmosphere. It was also shown that, for most of the fabricated samples, the crystallite size as well as electrical parameters such as the electrical conductivity, Seebeck coefficient, and figure of merit ( ZT) increased with increasing reduction time. The highest value of ZT (˜1.0 at 340°C) was obtained for samples reduced in hydrogen atmosphere at 400°C for 20 h and 40 h.

  4. Designer thermal switches: the effect of the contact material on instantaneous thermoelectric transport through a strongly interacting quantum dot

    Science.gov (United States)

    Goker, A.; Gedik, E.

    2013-09-01

    We investigate the effect of contact material on the instantaneous thermoelectric response of a quantum dot pushed suddenly into the Kondo regime via a gate voltage using time dependent non-crossing approximation and linear response Onsager relations. We utilize graphene and metal contacts for this purpose. Instantaneous thermopower displays sinusoidal oscillations whose frequency is proportional to the energy separation between the van Hove singularity in the contact density of states and the Fermi level for both cases, regardless of the asymmetry factor at the onset of the Kondo timescale. The amplitude of the oscillations increases with decreasing temperature, saturating around the Kondo temperature. We also calculate the instantaneous figure of merit and show that the oscillations taking place at temperatures above the Kondo temperature are enhanced more than the ones occurring at lower temperatures due to the violation of the Wiedemann-Franz law. Graphene emerges as a more promising electrode candidate than ordinary metals in single electron devices since it can minimize these oscillations.

  5. UV curable materials development

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.G.

    1996-12-01

    Adhesives, coatings, and inks were selected for evaluation based on literature search and possible production applications. A differential photocalorimeter was used to measure degree of cure and allow prediction of optimum processing conditions. UV cure equipment were characterized and the ability to size equipment to specific materials cure needs established. Adhesion tests procedures were developed for the adhesives and solvent resistance testing procedures developed for the coatings and inks.

  6. Evaluation of the f-electron rare-earth copper telluride GdCu1+xTe2 as a thermoelectric material

    Science.gov (United States)

    Vaney, J. B.; Benson, E.; Michiue, Y.; Mori, T.

    2017-11-01

    Chalcogenide compounds of composition ABX2 (with A, B, representing metal elements, X as the chalcogenide) have recently been attracting attention as thermoelectric materials. Possible magnetic enhancement of the thermoelectric properties has been proposed for electron-doped chalcopyrite CuFeS2 which exhibits large power factors at room temperature. Promising ZT values close to 1 have been reported for TmAgTe2 or YCuTe2 due to very low thermal conductivities ( 0.25 show very low thermal conductivities (0.64 W m-1 K-1 above 500 K for x = 0.25), which, together with a Seebeck coefficient above 0.2 mV K-1, allows to reach a moderate ZT value near 0.2 at 540 K. We also discuss the dependence with the Cu excess content of the transport properties and the lack of effect of the magnetic moment of Gd on the Seebeck coefficient.

  7. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    -cost n-type material, Te-doped Mg3Sb1.5Bi0.5, that exhibits a very high figure of merit zT ranging from 0.56 to 1.65 at 300-725 K. Using combined theoretical prediction and experimental validation, we show that the high thermoelectric performance originates from the significantly enhanced power factor...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  8. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Science.gov (United States)

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  9. Reliability-oriented design of thermoelectric cooling devices

    OpenAIRE

    ZAIKOV VLADIMIR PETROVYCH; MESCHERYAKOV VLADIMIR IVANOVYCH; ZHURAVLOV YURII IVANOVYCH

    2015-01-01

    This paper studies the design route of high reliability thermoelectric cooling devices. The influence of different combinations of original thermoelectric materials at the same and different efficiency thereof is analyzed.

  10. Strain-induced bi-thermoelectricity in tapered carbon nanotubes

    Science.gov (United States)

    Algharagholy, L. A. A.; Pope, T.; Lambert, C. J.

    2018-03-01

    We show that carbon-based nanostructured materials are a novel testbed for controlling thermoelectricity and have the potential to underpin the development of new cost-effective environmentally-friendly thermoelectric materials. In single-molecule junctions, it is known that transport resonances associated with the discrete molecular levels play a key role in the thermoelectric performance, but such resonances have not been exploited in carbon nanotubes (CNTs). Here we study junctions formed from tapered CNTs and demonstrate that such structures possess transport resonances near the Fermi level, whose energetic location can be varied by applying strain, resulting in an ability to tune the sign of their Seebeck coefficient. These results reveal that tapered CNTs form a new class of bi-thermoelectric materials, exhibiting both positive and negative thermopower. This ability to change the sign of the Seebeck coefficient allows the thermovoltage in carbon-based thermoelectric devices to be boosted by placing CNTs with alternating-sign Seebeck coefficients in tandem.

  11. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  12. A Model for Predicting Thermoelectric Properties of Bi2Te3

    Science.gov (United States)

    Lee, Seungwon; VonAllmen, Paul

    2009-01-01

    A parameterized orthogonal tight-binding mathematical model of the quantum electronic structure of the bismuth telluride molecule has been devised for use in conjunction with a semiclassical transport model in predicting the thermoelectric properties of doped bismuth telluride. This model is expected to be useful in designing and analyzing Bi2Te3 thermoelectric devices, including ones that contain such nano - structures as quantum wells and wires. In addition, the understanding gained in the use of this model can be expected to lead to the development of better models that could be useful for developing other thermoelectric materials and devices having enhanced thermoelectric properties. Bi2Te3 is one of the best bulk thermoelectric materials and is widely used in commercial thermoelectric devices. Most prior theoretical studies of the thermoelectric properties of Bi2Te3 have involved either continuum models or ab-initio models. Continuum models are computationally very efficient, but do not account for atomic-level effects. Ab-initio models are atomistic by definition, but do not scale well in that computation times increase excessively with increasing numbers of atoms. The present tight-binding model bridges the gap between the well-scalable but non-atomistic continuum models and the atomistic but poorly scalable ab-initio models: The present tight-binding model is atomistic, yet also computationally efficient because of the reduced (relative to an ab-initio model) number of basis orbitals and flexible parameterization of the Hamiltonian.

  13. High Volume Manufacturing of NanoEngineered High ZT Thermoelectrics for Multiple Energy Generation Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SMI has teamed with a leading thermoelectric (TE) research group in order to optimize and convert high-performance TE materials developed in laboratory-scale into...

  14. Zintl Phases for Thermoelectric Applications

    Science.gov (United States)

    Snyder, G. Jeffrey (Inventor); Toberer, Eric (Inventor); Zevalkink, Alex (Inventor)

    2014-01-01

    The inventors demonstrate herein that various Zintl compounds can be useful as thermoelectric materials for a variety of applications. Specifically, the utility of Ca3AlSb3, Ca5Al2Sb6, Ca5In2Sb6, Ca5Ga2Sb6, is described herein. Carrier concentration control via doping has also been demonstrated, resulting in considerably improved thermoelectric performance in the various systems described herein.

  15. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  16. Production of Magnesium-Based Thermoelectric-Sheet Materials for Efficient Energy Harvesting

    National Research Council Canada - National Science Library

    Aizawa, Tatsuhiko

    2008-01-01

    In the first-year of projects related to MURI-program, Mg-Si-Ge-Sn system is found to be a suitable TE-material target for improvement of specific figure-of-merit to be used as the candidate energy harvesting material...

  17. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  18. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  19. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  20. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  1. Nanoscaled In2O3: Sn films as material for thermoelectric ...

    Indian Academy of Sciences (India)

    Author Affiliations. G KOROTCENKOV1 V BRINZARI2 B K CHO1. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea; Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova ...

  2. Nanoscaled In2O3:Sn films as material for thermoelectric conversion ...

    Indian Academy of Sciences (India)

    ICT and Future Planning (MSIP) of Korea, and partly by the. National Research Foundation grants funded by the Korean. Government (Bank for Quantum Electronic Materials Nos. 2011-0028736 and 2013-K000315). References. [1] Date A, Date A, Dixon C and Akbarzadeh A 2014 Renew. Sust. Energ. Rev. 33 371.

  3. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    Science.gov (United States)

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm-1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m-1 K-2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  4. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment.

    Science.gov (United States)

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Cho, Song Yun

    2016-01-05

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and tellurium- PSS (Te- PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PSS and Te- PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm(-1), respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m(-1) K(-2), respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te- PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  5. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  6. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    Science.gov (United States)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  7. Thermal and thermoelectric properties of graphene.

    Science.gov (United States)

    Xu, Yong; Li, Zuanyi; Duan, Wenhui

    2014-06-12

    The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lunar Base Thermoelectric Power Station Study

    International Nuclear Information System (INIS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt and Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of

  9. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  10. Thermoelectric efficiency of nanowires in contact

    Science.gov (United States)

    Akguc, Gursoy B.

    2018-02-01

    Divergence of density of state near Fermi level at low dimensional systems helps to increase efficiency of thermoelectric materials. It is shown here two contacting nanowires in the middle results in electron conduction resonances that enhance the efficiency of overall thermoelectric output of the system. A non-linear response approach as well as efficiency at max power are necessary ingredients for the analysis.

  11. Precipitation of Ag2Te in the thermoelectric material AgSbTe2

    International Nuclear Information System (INIS)

    Sugar, Joshua D.; Medlin, Douglas L.

    2009-01-01

    The microstructure of AgSbTe 2 , prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag 22 Sb 28 Te 50 , and silver telluride, Ag 2 Te. Ag 2 Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe 2 phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag 2 Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag 2 Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag 2 Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  12. Proposal for a phase-coherent thermoelectric transistor

    Science.gov (United States)

    Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

    2014-08-01

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ˜45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit.

  13. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  14. Green materials for sustainable development

    Science.gov (United States)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  15. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  16. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  17. New Method for Investigation of Dynamic Parameters of Thermoelectric Modules

    OpenAIRE

    AHISKA, Raşit

    2014-01-01

    Precise calculation of parameters of thermoelectric modules and thermoelectric devices under operating conditions by present methods is very difficult. In this study, a new method is developed to calculate all parameters of thermoelectric modules. This new method makes it possible to determine the dynamic parameters of a real thermoelectric module operated under different working regimes. Measurement of thermoemf created by an operating module is the basis of this new method. An un...

  18. RESOURCE MATERIALS DEVELOPMENT IN ENVIRONMENTAL ...

    African Journals Online (AJOL)

    design and development of resource materials, describes the way in which ... teaching and learning practices, resource materials and other ... As such they offer potential for educational transformation from within the educational arena. Policy, curriculum and materials development decisions are often made without enough ...

  19. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  20. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations

    International Nuclear Information System (INIS)

    Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.

    2016-01-01

    Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.

  1. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  2. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Abstract. Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by ...

  3. Technical and economic analysis of thermoelectric modules with macroporous thermoelectric elements

    International Nuclear Information System (INIS)

    Ngwa Ngondi, Anne Flora; Lee, Hohyun; Wee, Daehyun

    2017-01-01

    Highlights: • Macroporous thermoelectric elements decrease the thermal conductance of the module. • The lower thermal conductance increases the temperature difference across the module. • The larger temperature difference across the module improves the performance. • Porosity also reduces the amount of raw materials, resulting in economic benefits. - Abstract: Limited heat transfer between thermoelectric modules and external heat reservoirs reduces the temperature difference imposed on thermoelectric materials, which reduces the power output of thermoelectric generators. In this study, the addition of macroscopic pores into thermoelectric materials is proposed as one way for resolving the issue. A semi-empirical model that relates the conductivities to the level of porosity is used for modeling the effect of porosity. The maximum power and other relevant parameters are compared between the generators with and without porosity at a realistic condition. An analytic model for evaluating economic performance is utilized to study the economic benefits of the implementation of porosity in thermoelectric elements. We demonstrate that the use of macroporous thermoelectric elements can effectively decrease the thermal conductance of the thermoelectric module, resulting in improved performance. The amount of raw materials needed to produce thermoeletric modules can be reduced simultaneously, resulting in economic benefits.

  4. Thermoelectric heat sink modeling and optimization

    International Nuclear Information System (INIS)

    Buist, R.J.; Nagy, M.J.

    1994-01-01

    Proper design and optimization of a thermoelectric heat sinks has been neglected somewhat in the design of the thermoelectric cooling systems. TE Technology, Inc. has developed a model over a period of 30 hears. The use and application of this model through optimizing heat sink performance is presented

  5. NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    L. V. Bochkov

    2014-07-01

    Full Text Available The urgency of thermoelectric energy conversion is proved. Perspectives of nanostructures usage as thermoelectric materials are shown. The authors have systematized and generalized the methods and investigation results of bulk nanostructure thermoelectrics based on Bi-Sb-Te solid solutions. Ways of nanoparticles fabrication and their subsequent sintering into a bulk sample, results of structure study of the received materials are shown by methods of electronic microscopy and X-ray spectroscopy, results of mechanical properties investigation. Methods of manufacturing suggested with the authors’ participation and properties of thermoelectric nanocomposites, fabricated with addition of fullerene, thermally split graphite, graphene and molybdenum disulphide are discussed. Methods for prevention of recrystallization, measurement methods of thermoelectric properties of studied nanothermoelectrics are considered, including electric and thermal conductivities, thermoemf and the figure of merit. Factors that influence on thermoelectric figure of merit, including the tunneling of carriers through interfaces between nanograins, the additional phonon scattering on nanograin borders and the energy filtration of carriers through barriers have been theoretically investigated. Mechanisms and ways for improvement of the figure of merit are determined. Experimental confirmation for thermoelectric figure of merit increase is received. Physical mechanisms of thermoelectric figure of merit increase are shown by perceptivity of nanostructures utilization. The growth of thermoelectric figure of merit means an expansion of areas for rational application of thermoelectric energy generation and thermoelectric cooling.

  6. Review on Polymers for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Gómez, Clara M; Cantarero, Andrés

    2014-09-18

    In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  7. Review on Polymers for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Mario Culebras

    2014-09-01

    Full Text Available In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3–4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  8. Materials issues in cask development

    International Nuclear Information System (INIS)

    Chapman, R.L.; Sorensen, K.B.

    1987-01-01

    This paper identifies potential new materials as a function of their use in the cask. To the extent that identified materials are not yet qualified for their intended application, this paper identifies probable technical issues and development efforts that may be required to qualify the materials for use in transportation casks. 1 tab

  9. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks.

    Science.gov (United States)

    Ortega, Silvia; Ibáñez, Maria; Liu, Yu; Zhang, Yu; Kovalenko, Maksym V; Cadavid, Doris; Cabot, Andreu

    2017-06-19

    The conversion of thermal energy to electricity and vice versa by means of solid state thermoelectric devices is extremely appealing. However, its cost-effectiveness is seriously hampered by the relatively high production cost and low efficiency of current thermoelectric materials and devices. To overcome present challenges and enable a successful deployment of thermoelectric systems in their wide application range, materials with significantly improved performance need to be developed. Nanostructuration can help in several ways to reach the very particular group of properties required to achieve high thermoelectric performances. Nanodomains inserted within a crystalline matrix can provide large charge carrier concentrations without strongly influencing their mobility, thus allowing to reach very high electrical conductivities. Nanostructured materials contain numerous grain boundaries that efficiently scatter mid- and long-wavelength phonons thus reducing the thermal conductivity. Furthermore, nanocrystalline domains can enhance the Seebeck coefficient by modifying the density of states and/or providing type- and energy-dependent charge carrier scattering. All these advantages can only be reached when engineering a complex type of material, nanocomposites, with exquisite control over structural and chemical parameters at multiple length scales. Since current conventional nanomaterial production technologies lack such level of control, alternative strategies need to be developed and adjusted to the specifics of the field. A particularly suitable approach to produce nanocomposites with unique level of control over their structural and compositional parameters is their bottom-up engineering from solution-processed nanoparticles. In this work, we review the state-of-the-art of this technology applied to the thermoelectric field, including the synthesis of nanoparticles of suitable materials with precisely engineered composition and surface chemistry, their combination

  10. Development of insulating substrates for multilayer thermoelectric devices; Elaboration d'elements de support dans des dispositifs thermoelectriques multicouches

    Energy Technology Data Exchange (ETDEWEB)

    Kadiebu Kandolo, St.

    2005-10-15

    The design and fabrication of a high performance thermoelectric generator based on ceramic technology is envisaged. The system consists of n and p-type semi-conducting layers deposited on a thermally insulating dielectric substrate. The present work is devoted to the choice and preparation of the material for the substrate. The desired characteristics for a low thermal conductivity are an amorphous solid with a porous microstructure. Two raw materials were selected as candidates. The first is a clay, made of layered minerals for which de-hydroxylation at 600 deg. C leads to a disordered structure and the second is diatomite, a material constituted of amorphous silica with and inherent natural porosity inside plate like grains. Sintering the clay at 800 deg. C yields a material with thermal conductivity of 0.21 W/m.K at room temperature increasing to 0.26 W/m.K at 600 deg. C. In an attempt to decrease the thermal conductivity, the clay was mixed with fine amorphous silica or zircon. The zircon based mixture was the most effective giving a thermal conductivity of 0.19 W/m.K which remains constant with temperature. In addition to a low thermal conductivity, diatomite presents another interesting advantage. First, tape casting was used to obtain porous layers yielding a thermal conductivity as low as 0.08 W/m.K at room temperature. Then it was found that under certain preparation conditions, the tape cast diatomite formed with a thin dense layer at the surface. This facilitates deposition of the active semi-conductor layer by avoiding loss from penetration through the open porosity of the substrate. (author)

  11. A design method of thermoelectric cooler

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.J.; Chin, C.J.; Duang, C.L. [National Taiwan University, Taipei (Taiwan). Dept. of Mechanical Engineering

    2000-05-01

    A system design method of thermoelectric cooler is developed in the present study. The design calculation utilizes the performance curve of the thermoelectric module that is determined experimentally. An automatic test apparatus was designed and built to illustrate the testing. The performance test results of the module are used to determine the physical properties and derive an empirical relation for the performance of thermoelectric module. These results are then used in the system analysis of a thermoelectric cooler using a thermal network model. The thermal resistance of heat sink is chosen as one of the key parameters in the design of a thermoelectric cooler. The system simulation shows that there exists a cheapest heat sink for the design of a thermoelectric cooler. It is also shown that the system simulation coincides with experimental data of a thermoelectric cooler using an air-cooled heat sink with thermal resistance 0.2515{sup o}C/W. An optimal design of thermoelectric cooler at the conditions of optimal COP is also studied. The optimal design can be made either on the basis of the maximum value of the optimal cooling capacity, or on the basis of the best heat sink technology available. (author)

  12. Enhancement of Thermoelectric Behavior of La0.5Co4Sb12- x Te x Skutterudite Materials

    Science.gov (United States)

    Said, Suhana Mohd; Bashir, Mohamed Bashir Ali; Sabri, Mohd Faizul Mohd; Miyazaki, Yuzuru; Shnawah, Dhafer Abdul Ameer; Hakeem, Abbas Saeed; Shimada, Masanori; Bakare, Akolade Idris; Ghazali, Nik Nazri Nik; Elsheikh, Mohamed Hamid

    2017-06-01

    In this work, the effects of Te doping on the microstructure and thermoelectric properties of the partially filled skutterudite La0.5Co4Sb12 compounds have been examined. La0.5Co4Sb12- x Te x skutterudite compounds were synthesized by a combination of the mechanical alloying technique and spark plasma sintering processing, which resulted in partial substitution of Te atoms in Sb sites. The XRD results showed that all the Te-doped bulk samples were composed of a major phase of the Co4Sb12 skutterudite with a small amount of CoSb2 and Sb as the secondary phases. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300 K to 800 K (27 °C to 527 °C). With the La0.5Co4Sb11.7Te0.3 sample, the highest absolute Seebeck coefficient of 300 μV/K was obtained at 404 K (131 °C) and the lowest lattice thermal conductivity of 2 W/mK was achieved at 501 K (228 °C). Moreover, the minimum electrical resistivity of 19.7 μΩm was recorded at 501 K (228 °C) for La0.5Co4Sb11.5Te0.5 sample. The effect of the secondary phases was negligible for the electrical resistivity, and between 0.5 to 1.6 pct for the thermal conductivity. Thus, the highest figure of merit, ZT = 0.47, was obtained at 792 K (519 °C) for La0.5Co4Sb11.5Te0.5 sample due to a significant reduction in electrical resistivity and a moderate increase in the absolute Seebeck coefficient.

  13. Thermoelectric effects in graphene nanostructures.

    Science.gov (United States)

    Dollfus, Philippe; Hung Nguyen, Viet; Saint-Martin, Jérôme

    2015-04-10

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  14. Thermoelectric performance enhancement of SrTiO3 by Pr doping

    KAUST Repository

    Kahaly, M. Upadhyay

    2014-01-01

    We investigate Pr doping at the Sr site as a possible route to enhance the thermoelectric behavior of SrTiO3-based materials, using first principles calculations in full-potential density functional theory. The effects of the Pr dopant on the local electronic structure and resulting transport properties are compared to common Nb doping. We demonstrate a substantial enhancement of the thermoelectric figure of merit and develop an explanation for the positive effects, which opens new ways for materials optimization by substitutional doping at the perovskite B site. © 2014 the Partner Organisations.

  15. Fabrication of Multilayer-Type Mn-Si Thermoelectric Device

    Science.gov (United States)

    Kajitani, T.; Ueno, T.; Miyazaki, Y.; Hayashi, K.; Fujiwara, T.; Ihara, R.; Nakamura, T.; Takakura, M.

    2014-06-01

    This research aims to develop a direct-contact manganese silicon p/ n multilayer-type thermoelectric power generation block. p-type MnSi1.74 and n-type Mn0.7Fe0.3Si1.68 ball-milled powders with diameter of about 10 μm or less were mixed with polyvinyl butyl alcohol diluted with methylbenzene at pigment volume concentration of approximately 70%. The doctor-blade method produced 45- μm-thick p- and n-type pigment plates. The insulator, i.e., powdered glass, was mixed with cellulose to form insulator slurry. Lamination of manganese silicide pigment layers and screen-printed insulator layers was carried out to fabricate multilayer direct-contact thermoelectric devices. Hot pressing and spark plasma sintering were carried out at 450°C and 900°C, respectively. Four to 30 thermoelectric (TE) p/ n pairs were fabricated in a 10 mm × 10 mm × 10 mm sintered TE block. The maximum output was 11.7 mW/cm2 at a temperature difference between 20°C and 700°C, which was about 1/85 of the ideal power generation estimated from the thermoelectric data of the bulk MnSi1.74 and Mn0.7Fe0.3Si1.68 materials. A power generation test using an engine test bench was also carried out.

  16. CFD modeling of thermoelectric generators in automotive EGR-coolers

    Science.gov (United States)

    Högblom, Olle; Andersson, Ronnie

    2012-06-01

    A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.

  17. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous

  18. Developing test materials for dyscalculia

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Bent, Lindhardt,

    Aims, requirements and context for the development of test materials for dyscalculia are analyzed. The test materials are to be used for Grade 4 pupils in Danish primary schools. Preliminary results are presented from focus group interview with adolescents and adults, who see themselves as being...

  19. Silicon Germanium Quantum Well Thermoelectrics

    Science.gov (United States)

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  20. How to develop new materials

    International Nuclear Information System (INIS)

    Brewer, Leo

    2000-01-01

    The Manhattan Project required a large amount of innovative work to develop new techniques and new materials. A review of such activities could be useful for future developments of the actinides. It is important to work out techniques for handling radioactive waste. I will review the activities dealing with the development of plutonium containment that could serve as a guide for future needs

  1. High temperature experimental characterization of microscale thermoelectric effects

    Science.gov (United States)

    Favaloro, Tela

    Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High

  2. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  3. Modular isotopic thermoelectric generator

    International Nuclear Information System (INIS)

    Schock, A.

    1981-01-01

    A short history of the 10 Radioisotope Thermoelectric Generators (RTG) thus far flown in space, and design and fabrication of a new generation RTG for coupling with the General Purpose Heat Source is presented. The new RTG is modular and can be expanded in 24 W steps to whatever power levels are desired, requiring only modification of the cooling fin dimensions. Each module contains four Pu-238O 2 fuel pellets and eight elements, and failure of any module requires only replacement of that unit, without disturbing the others. 5% GaP added to the SiGe thermoelectric material has lowered thermal conductivity and raised efficiency from 0.083 to 0.105 hot junctions are at 1000 C, cold at 300 C. Details of the module design and fabrication, the hot shoe, housing, fins, all components and assembly procedures are presented. The modules are designed for initial use on the Solar Polar mission and the Galileo probe, and it is noted that the iridium cladding around the heat source pellets will withstand a planetary crash without breaching. Each module weighs 59.87 lb, has a power density of 4.71 W/lb, and is designed for a seven year mission life

  4. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  5. Fabrication of a Micro Cooler using Thermoelectric Thin Film

    International Nuclear Information System (INIS)

    Han, S. W.; Choi, H. J.; Kim, D. H.; Kim, W. J.; Kim, B. I.; Kim, K. M.

    2007-01-01

    In general a ThermoElectric Cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using Bi2Te3 (N type) and Bi0.5Sb1.5Te3 (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current

  6. Thermoelectric energy system

    International Nuclear Information System (INIS)

    Peck, R.

    1980-01-01

    A thermoelectric energy system is described comprising: (A) at least first and second separated electrodes, said electrodes including copper; (B) a liquid electrolyte comprising a source of copper ions and a material for complexing the ions, the complexing material being selected from the group consisting of one or a combination of a source of tartrate, a source of ethylenediaminetetraacetic acid,a source of gluconate, lactic acid, malic acid, citric acid, oxalic acid, and a source of silicon dioxide, the electrolyte being disposed between and in contact with the electrodes to provide a metal ion conduction path which extends substantially the entire distance between the electrodes; (C) an electric circuit connected to the electrodes for removal of electrical energy from the system; and (D) means for establishing a temperature gradient within said electrolyte whereby the average temperature of one of said electrodes will be greater than that of the other of said electrodes to thereby produce a voltage across the electrodes

  7. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  8. EFFECTIVE SOLUTIONS FOR THERMOELECTRIC HEAT TRANSFORMERS USING HEAT CONVERTERS

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Objectives. The present article is based on the examination of the causes of thermodynamic heat loss in thermoelectric heat transformers. It is shown that the external loss in a real system is comparable to the internal loss in thermoelements at the present stage of thermoelectric engineering instrument development. External technical losses are attributed to the irreversibility of processes in system elements. These are determined by their technical resolution and can be lowered by means of specific approaches to design and construction. Methods. Examples of effective technical solutions for thermoelectric units of the "air-to-air" and "air-to-liquid" types, in which external losses are minimised due to the application of heat exchangers based on two-phase thermosyphons of special configuration, are given. For air coolers with a classic all-metal fin design based on the sensitivity analysis method, the dependence of the thermoelectric unit efficiency on the heat exchanger characteristics was calculated. Results. As a result, calculations of the dependence of cooling unit refrigeration capacity on the energy transformation ratio, power transfer coefficient, energy conversion efficiency (ECE and the relative energetic efficiency of ECE were performed based on the characteristic of the heat exchanger air passage geometry. There is a dependence relationship between the thermoelectric conversion cooling unit refrigeration capacity and transformation ratio within the function of material and thickness of the ribs on the intercostal distance and on the height of the air heat exchanger channel. Conclusion. Examples of the proposed effective thermal circuit technical solutions are based on thermoelectricheat transformers with heat flow direction change and with heat exchangers, which are based on two-phase thermosyphons. Classical solutions of all-metal heat exchangers can also be optimised on the basis of the sensitivity analysis methodology. 

  9. Design and Optimization of Effective Segmented Thermoelectric Generator for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan

    Au5.3Ge40.7/PbTe-SrTe with n-leg Bi2Te3/PbTe/SiGe. The results could provide a guideline to develop high efficiency segmented thermoelectric generators. Based on these theoretical results, segmentation of half-Heusler alloys and Bi2Te3 materials was selected for further study. Firstly, the joining...

  10. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  11. A holistic 3D finite element simulation model for thermoelectric power generator element

    International Nuclear Information System (INIS)

    Wu, Guangxi; Yu, Xiong

    2014-01-01

    Highlights: • Development of a holistic simulation model for the thermoelectric energy harvester. • Account for delta Seebeck coefficient and carrier charge densities variations. • Solution of thermo-electric coupling problem with finite element method. • Model capable of predicting phenomena not captured by traditional models. • A simulation tool for design of innovative TEM materials and structures. - Abstract: Harvesting the thermal energy stored in the ambient environment provides a potential sustainable energy source. Thermoelectric power generators have advantages of having no moving parts, being durable, and light-weighted. These unique features are advantageous for many applications (i.e., carry-on medical devices, embedded infrastructure sensors, aerospace, transportation, etc.). To ensure the efficient applications of thermoelectric energy harvesting system, the behaviors of such systems need to be fully understood. Finite element simulations provide important tools for such purpose. Although modeling the performance of thermoelectric modules has been conducted by many researchers, due to the complexity in solving the coupled problem, the influences of the effective Seebeck coefficient and carrier density variations on the performance of thermoelectric system are generally neglected. This results in an overestimation of the power generator performance under strong-ionization temperature region. This paper presents an advanced simulation model for thermoelectric elements that considers the effects of both factors. The mathematical basis of this model is firstly presented. Finite element simulations are then implemented on a thermoelectric power generator unit. The characteristics of the thermoelectric power generator and their relationship to its performance are discussed under different working temperature regions. The internal physics processes of the TEM harvester are analyzed from the results of computational simulations. The new model

  12. Thermoelectric properties of silver doped PbTe

    International Nuclear Information System (INIS)

    Borisova, L.D.; Dimitrova, S.K.

    1980-01-01

    In order to find the efficiency of silver as an acceptor impurity in PbTe, the thermoelectric characteristics (thermoelectric power, electric conductivity, total thermal conductivity, and thermoelectric efficiency) of p-type PbTe with an addition of 0.3 and 0.5 mol% of Ag or Ag 2 Te were studied in the temperature range 300 to 750 K. The results of the study show in a definite way the advantages of the Ag-doped PbTe samples as thermoelectric materials with p-type conductivity as compared with the undoped samples

  13. Laser assisted hybrid additive manufacturing of thermoelectric modules

    Science.gov (United States)

    Zhang, Tao; Tewolde, Mahder; Longtin, Jon P.; Hwang, David J.

    2017-02-01

    Thermoelectric generators (TEGs) are an attractive means to produce electricity, particular from waste heat applications. However, TEGs are almost exclusively manufactured as flat, rigid modules of limited size and shape, and therefore an appropriate mounting for intimate contact of TEGs modules onto arbitrary surfaces represents a significant challenge. In this study, we introduce laser assisted additive manufacturing method to produce multi-layered thermoelectric generator device directly on flat and non-flat surfaces for waste heat recovery. The laser assisted processing spans from laser scribing of thermal sprayed thin films, curing of dispensed thermoelectric inks and selective laser sintering to functionalize thermoelectric materials.

  14. Emergence of thermoelectricity in Half Heusler topological semimetals with strain

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder, E-mail: kulwinderphysics@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Dhiman, Shobhna [Department of Applied Sciences, PEC University of Technology, Chandigarh 160012 (India); Kumar, Ranjan [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2017-01-30

    The band structure and thermoelectric properties of Half Heusler topological materials XPtBi (X = Sc,Y, Lu) have been investigated using density functional theory and semi-classical Boltzmann equations. At 5% strain, the band gap opens in all the materials but maximum band opens in LuPtBi and acts as thermoelectric materials. We have calculated the Seebeck coefficient, electrical conductivity, electronic thermal conductivity and lattice thermal conductivity of these materials. Thermoelectric properties at high temperature and lattice thermal conductivity of these materials are studied first time in this work. The thermoelectric performance of LuPtBi is high because of low lattice thermal conductivity as compared to ScPtBi and YPtBi. - Highlights: • LuPtBi is good thermoelectric material as compared to ScPtBi and YPtBi. • These materials open band gap at 5% strain. • Thermoelectric properties and lattice thermal conductivity of these materials are studied first time in this report. • These materials serve as thermoelectric materials at 5% strain.

  15. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  16. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  17. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  18. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  19. Transient Thermoelectric Solution Employing Green's Functions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.

  20. Preparation and optimization of thermoelectric properties of Bi2Te3 based alloys using the waste particles as raw materials from the cutting process of the zone melting crystal rods

    Science.gov (United States)

    Xiang, Qiusheng; Fan, Xi'an; Han, Xuewu; Zhang, Chengcheng; Hu, Jie; Feng, Bo; Jiang, Chengpeng; Li, Guangqiang; Li, Yawei; He, Zhu

    2017-12-01

    The p-type Bi2Te3 alloys were prepared using the waste particles from the cutting process of the zone melting crystal rods as the main raw materials by impurity removal process including washing, carbon monoxide reduction and vacuum metallurgical process. The thermoelectric properties of the Bi2Te3 based bulk materials were optimized by component adjustment, second smelting and resistance pressing sintering (RPS) process. All evidences confirmed that most of impurities from the line cutting process and the oxidation such as Sb2O3, Bi2O3 and Bi2Te4O11 could be removed by carbon monoxide reduction and vacuum metallurgical process adopted in this work, and the recycling yield was higher than 97%. Appropriate component adjustment treatment was used to optimize the carrier content and corresponding thermoelectric properties. Lastly, a Bi0.36Sb1.64Te3 bulk was obtained and its power factor (PF) could reach 4.24 mW m-1 K-2 at 300 K and the average PF value was over 3.2 mW m-1 K-2 from 300 K to 470 K, which was equivalent with the thermoelectric performance of the zone melting products from high purity elements Bi, Te and Sb. It was worth mentioning that the recovery process introduced here was a simple, low-cost, high recovery rate and green recycling technology.

  1. Thermoelectric Performance of Na-Doped GeSe

    NARCIS (Netherlands)

    Shaabani, Laaya; Aminorroaya-Yamini, Sima; Byrnes, Jacob; Akbar Nezhad, Ali; Blake, Graeme R

    2017-01-01

    Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized

  2. Thermoelectric converter for SP-100 space reactor power system

    International Nuclear Information System (INIS)

    Terrill, W.R.; Haley, V.F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested. The manufacturing plan showed that the chosen materials and processes are compatible with today's production techniques, that the production volume can readily be achieved and that the costs are reasonable

  3. Multiscale Design of Nanostructured Thermoelectric Coolers: Effects of Contact Resistances

    Science.gov (United States)

    Sharmin, Afsana; Rashid, Mohammad; Gaddipati, Vamsi; Sadeque, Abu; Ahmed, Shaikh

    2015-06-01

    Our objective is to develop a multiscale simulator for thermoelectric cooler devices, in which the material parameters are obtained atomistically using a combination of molecular dynamics and tight-binding simulations and then used in the system level design. After benchmarking the simulator against a recent experimental work, we carry out a detailed numerical investigation of the performance of Bi2Te3 nanowire-based thermoelectric devices for hot-spot cooling. The results suggest that active hotspot cooling of as much as 23°C with a high heat flux is achievable using such low-dimensionality structures. However, it has been observed that thermal and electrical contact resistances, which are quite large in nanostructures, play a critical role in determining the cooling range and lead to significant performance degradation that must be addressed before these devices can be deployed in such applications.

  4. Intermetallic Reactions during the Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectric Material with Cu Electrodes Using a Sn Interlayer

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Chuang

    2016-04-01

    Full Text Available The intermetallic compounds formed during the diffusion soldering of a Bi2Te2.55Se0.45 thermoelectric material with a Cu electrode are investigated. For this bonding process, Bi2Te2.55Se0.45 was pre-coated with a 1 μm Sn thin film on the thermoelectric element and pre-heated at 250 °C for 3 min before being electroplated with a Ni barrier layer and a Ag reaction layer. The pre-treated thermoelectric element was bonded with a Ag-coated Cu electrode using a 4 μm Sn interlayer at temperatures between 250 and 325 °C. The results indicated that a multi-layer of Bi–Te–Se/Sn–Te–Se–Bi/Ni3Sn4 phases formed at the Bi2Te2.55Se0.45/Ni interface, ensuring sound cohesion between the Bi2Te2.55Se0.45 thermoelectric material and Ni barrier. The molten Sn interlayer reacted rapidly with both Ag reaction layers to form an Ag3Sn intermetallic layer until it was completely exhausted and the Ag/Sn/Ag sandwich transformed into a Ag/Ag3Sn/Ag joint. Satisfactory shear strengths ranging from 19.3 and 21.8 MPa were achieved in Bi2Te2.55Se0.45/Cu joints bonded at 250 to 300 °C for 5 to 30 min, dropping to values of about 11 MPa for 60 min, bonding at 275 and 300 °C. In addition, poor strengths of about 7 MPa resulted from bonding at a higher temperature of 325 °C for 5 to 60 min.

  5. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  6. Advanced baffle materials technology development

    Science.gov (United States)

    Johnson, E. A.; Vonbenken, C. J.; Halverson, W. D.; Evans, R. D.; Wollam, J. S.

    1991-10-01

    Optical sensors for strategic defense will require optical baffles to achieve adequate off-axis stray light rejection and pointing accuracy. Baffle materials must maintain their optical performance after exposure to both operational and threat environments. In addition, baffle materials must not introduce contamination which would compromise the system signal-to-noise performance or impair system mission readiness. Critical examination of failure mechanisms in current baffle materials are quite fragile and contribute to system contamination problems. Spire has developed technology to texture the substrate directly, thereby, removing minute, fragile interfaces subject to mechanical failure. This program has demonstrated that ion beam texturing produces extremely dark surfaces which are immune to damage from ordinary handling. This technology allows control of surface texture feature size and hence the optical wavelength at which the surface absorbs. The USAMTL/Spire program has produced dramatic improvements in the reflectance of ion beam textured aluminum without compromising mechanical hardness. In simulated launch vibration tests, this material produced no detectable contamination on adjacent catcher plates.

  7. Solar Thermoelectricity via Advanced Latent Heat Storage

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  8. Towards high efficiency segmented thermoelectric unicouples

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan; Christensen, Dennis Valbjørn; Snyder, Gerald Jeffrey

    2014-01-01

    of the theoretical efficiency of the best performing unicouples designed from segmenting the state-of-the-art TE materials. The efficiencies are evaluated using a 1D numerical model which includes all thermoelectric effects, heat conduction, Joule effects and temperature dependent material properties, but neglects...

  9. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Science.gov (United States)

    Jood, Priyanka; Ohta, Michihiro

    2015-01-01

    Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor. PMID:28787992

  10. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  11. Study of 5f electron based filled skutterudite compound EuFe{sub 4}Sb{sub 12}, a thermoelectric (TE) material: FP-LAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, A., E-mail: amitshan2009@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India); Rai, D.P., E-mail: dibyaprakashrai@gmail.com [Beijing Computational Science Research Center, 3 Heqing Road, Beijing 100084 (China); Khenata, R. [Laboratoire de Physique Quantique et de Modlisation Mathmatique (LPQ3M), Dpartement de Technologie, Universit de Mascara, 29000 Mascara (Algeria); Maibam, J. [Department of Physics, Assam University, Silchar 788011 (India); Sandeep, E-mail: sndp.chettri@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India); Thapa, R.K., E-mail: r.k.thapa@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India)

    2015-01-15

    Highlights: • The compound EuFe{sub 4}Sb{sub 12} shows a semi-metallic behavior with pseudo gap. • The inherent dense band near E{sub F} facilitate the charge carriers. • The magnetic moment within LSDA and mBJ are underestimated. • The inclusion of onsite Coulomb repulsion (U) in LSDA has improved the result. • The results obtained from LSDA + U are consistent with the experimental data. - Abstract: We have studied the elastic, electronic and magnetic properties along with the thermoelectric properties of an undoped filled skutterudite EuFe{sub 4}Sb{sub 12} using full-potential linearized augmented plane wave (FP-LAPW) method. The LSDA, LSDA + U and a new exchange-correlation functional called modified Becke Johnson (mBJ) potential based on density functional theory (DFT) were used for studying material properties. The Eu-f and Fe-d are strongly correlated elements thus the inclusion of Coulomb repulsion (U) expected to give an exact ground state properties. The exchange-splitting of Eu-4f states were analyzed to explain the ferromagnetic behavior of EuFe{sub 4}Sb{sub 12} (half-metallic behavior). The numerical values of isotropic elastic parameters and related properties are estimated in the framework of the Voigt–Reuss–Hill approximation. The calculation of thermal transport properties at various temperature shows the high value of Seebeck coefficient and figure of merit (ZT) = 0.25 at room temperature in consistent to the experimental results.

  12. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  13. Metal-Semiconductor Nanocomposites for High Efficiency Thermoelectric Power Generation

    Science.gov (United States)

    2013-12-07

    will be able to measure the thermoelectric properties on these p-type antimonide thermoelectric materials up to a higher temperature therefore a...energy-dependent carrier scattering without the inherent disadvantages of aluminum containing materials. In previous years of the program...DOE and from NASA in order to commercialize their antimonide MOCVD reactor. Structured Material Industries, Inc. grew all of the rare-earth InGaSb

  14. In-situ TEM studies of nanostructured thermoelectric materials: An application to Mg-doped Zn4Sb3 alloy

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Le, Hung Thanh; Ngo, Nong Van

    2018-01-01

    material have been dynamically captured as a function of temperature from 300 K to 573 K. On heating, we have observed clearly precipitation and growth of a Zn-rich secondary phase as nanoinclusions in the matrix of primary Zn4Sb3 phase. Elemental mapping by STEM-EDX spectroscopy reveals enrichment of Zn...

  15. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    Directory of Open Access Journals (Sweden)

    S. H. Oh

    2007-12-01

    Full Text Available We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512, KAF-1602E (15367times;1024, KAF-3200E (2184×1472 made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  16. Thermoelectric Devices Advance Thermal Management

    Science.gov (United States)

    2007-01-01

    Thermoelectric (TE) devices heat, cool, and generate electricity when a temperature differential is provided between the two module faces. In cooperation with NASA, Chico, California-based United States Thermoelectric Consortium Inc. (USTC) built a gas emissions analyzer (GEA) for combustion research. The GEA precipitated hydrocarbon particles, preventing contamination that would hinder precise rocket fuel analysis. The USTC research and design team uses patent-pending dimple, pin-fin, microchannel and microjet structures to develop and design heat dissipation devices on the mini-scale level, which not only guarantee high performance of products, but also scale device size from 1 centimeter to 10 centimeters. USTC continues to integrate the benefits of TE devices in its current line of thermal management solutions and has found the accessibility of NASA technical research to be a valuable, sustainable resource that has continued to positively influence its product design and manufacturing

  17. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator

    International Nuclear Information System (INIS)

    Khattab, N.M.; El Shenawy, E.T.

    2006-01-01

    The possibility of using a solar thermoelectric generator (TEG) to drive a small thermoelectric cooler (TEC) is studied in the present work. The study includes the theory of both the TEG and the TEC, giving special consideration to determination of the number of TEG modules required to power the TEC to achieve the best performance of the TEG-TEC system all year round. Commercially available thermoelectric modules (TE) are used in the system. The TEG contains 49 thermocouples and the TEC contains 127 thermocouples. A simple arrangement of plane reflectors that are designed to receive maximum solar energy during noon time is used to heat the TEG. Performance tests are conducted to determine both the physical properties and the performance curves of the available TE modules. Also, empirical relations describing the performance of the TEG and TEC modules have been established. These relations are used to develop a mathematical model simulating the TEG-TEC system to predict its performance all year round under the actual climatic conditions of Cairo, Egypt (30 deg. N latitude). The model results are used to determine the number of TEG modules required to drive a single TEC module at maximum cooling capacity. The results show that five thermocouples of the TEG can drive one thermocouple of the TEC, which coincides with the previous theory of the TEG-TEC. This means that 10 of the used TEG modules are required to power the used TEC at optimum performance most times of the year

  18. The Prevalence of Standard Large Modules in Thermoelectric Applications

    Science.gov (United States)

    Sharp, J.; Bierschenk, J.

    2015-06-01

    The thermoelectric industry serves a broad range of applications using, mainly, a few standard module designs. This paper first briefly describes types of modules and two types of thermoelectric material used by the industry, after which the focus is on selected features of the standard designs and reasons for their prevalence. Whereas cost reduction and the need to maximize reliability drive the adoption of standard modules, other factors contribute to shaping the particular features of the standard thermoelectric cooling modules. These factors include the magnitude of heat loads, heat-sink performance, durability and performance expectations, and relative ease of manufacture. This discussion of the features and prevalence of standard modules relates to broader aspects of both the production and implementation of thermoelectric modules, and an estimate of current thermoelectric industry output is included.

  19. DEVELOPING LEARNING MATERIALS FOR SPECIFIC PURPOSES

    Directory of Open Access Journals (Sweden)

    Y. M. Harsono

    2007-01-01

    Full Text Available Abstract: Teaching/learning materials is one of the very crucial elements that has to exist to conduct teaching/learning activities. This paper describes teaching/learning materials development for ESP. The description includes the definition, the principles, the procedure, and the practical undertaking of the materials development with the case of developing learning materials for ESP.

  20. Experimental performance of a thermoelectric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, J.R.; Santos, L.P.; Silva, J.M.; Silva, R.E. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    It is known that reversible thermal and electrical effects can be detected in a circuit consisting on two similar semiconductor material having their junctions at different temperatures. This phenomenon, called Seebeck effect and Peltier effect, can be used to generate electric power and cooling. The Seebeck effect was first observed by the physician Thomas Johann Seebeck, in 1821, when he was studying thermoelectric phenomenon, and it consists in the production of an electric power between two semiconductors joint of semiconductor material, when they are submitted to different temperatures. The thermoelectric modules are made of several thermoelectric pairs made of semiconductors materials joined in series and sealed between two surfaces of ceramic, one covers the hot joins and the other covers the cold ones, through which a continuous current flows and, according to its way, one board becomes hot or cold, and the dissipated power is a function of the electric current flowing through the module. This research presents, initially, the theoretical equations which allow evaluating the thermoelectric modules' performance applied to electric power generation and the experimental results of this elements association. During tests there were used an electrical resistance as heat source, thermocouples to evaluate the temperatures in the thermoelectric module's heat and cold sides, thermo anemometers to measure the air speed and temperature measurements in the heat sink and a software to obtain, store and analyze the data. The main objective is to know the behavior of the most important design parameters that are the efficiency and the electric power generated by the thermoelectric system. (author)

  1. Ab initio study of thermoelectric properties of doped SnO2 superlattices

    International Nuclear Information System (INIS)

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-01-01

    Transparent conductive oxides, such as tin dioxide (SnO 2 ), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO 2 , as well as of Sb and Zn planar (or delta)-doped layers in SnO 2 forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO 2 SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO 2 -based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO 2 superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  2. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pdborges@gmail.com [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J. [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Scolfaro, L. [Department of Physics, Texas State University, 78666 San Marcos, TX (United States)

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  3. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting.

    Science.gov (United States)

    Liang, Daxin; Yang, Haoran; Finefrock, Scott W; Wu, Yue

    2012-04-11

    Recent efforts on the development of nanostructured thermoelectric materials from nanowires (Boukai, A. I.; et al. Nature 2008, 451, (7175), 168-171; Hochbaum, A. I.; et al. Nature 2008, 451, (7175), 163-167) and nanocrystals (Kim, W.; et al. Phys. Rev. Lett. 2006, 96, (4), 045901; Poudel, B.; et al. Science 2008, 320, (5876), 634-638; Scheele, M.; et al. Adv. Funct. Mater. 2009, 19, (21), 3476-3483; Wang, R. Y.; et al. Nano Lett. 2008, 8, (8), 2283-2288) show the comparable or superior performance to the bulk crystals possessing the same chemical compositions because of the dramatically reduced thermal conductivity due to phonon scattering at nanoscale surface and interface. Up to date, the majority of the thermoelectric devices made from these inorganic nanostructures are fabricated into rigid configuration. The explorations of truly flexible composite-based flexible thermoelectric devices (See, K. C.; et al. Nano Lett. 2010, 10, (11), 4664-4667) have thus far achieved much less progress, which in principle could significantly benefit the conversion of waste heat into electricity or the solid-state cooling by applying the devices to any kind of objects with any kind of shapes. Here we report an example using a scalable solution-phase deposition method to coat thermoelectric nanocrystals onto the surface of flexible glass fibers. Our investigation of the thermoelectric properties yields high performance comparable to the state of the art from the bulk crystals and proof-of-concept demonstration also suggests the potential of wrapping the thermoelectric fibers on the industrial pipes to improve the energy efficiency. © 2012 American Chemical Society

  4. Phase Transitions of Thermoelectric TAGS-85

    OpenAIRE

    Kumar, Anil; Vermeulen, Paul A.; Kooi, Bart J.; Rao, Jiancun; van Eijck, Lambert; Schwarzmueller, Stefan; Oeckler, Oliver; Blake, Graeme R.

    2017-01-01

    The alloys (GeTe)x(AgSbTe2)100–x, commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200–500 °C. They adopt a rhombohedrally distorted rocksalt structure at room temperature and are reported to undergo a reversible phase transition to a cubic structure at ∼250 °C. However, we show that, for the optimal x = 85 composition (TAGS-85), both the structural and thermoelectric properties are highl...

  5. Integration of Heat Exchangers with Thermoelectric Modules

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza

    2017-01-01

    thermally interdependent in the system designs. This chapter studies the effect of the heat exchangers design on system performance, and discusses the challenges through accurate analyses techniques while introducing proper cooling technologies. Proper design of a TEG system involves design optimization......Fundamentally, it is essential to have some basic components in a thermoelectric generator (TEG) system to be able to harvest energy. To achieve a high-performance system with overall efficiency close to conversion efficiency of thermoelectric materials, the components need to be considered...

  6. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  7. Towards a microbial thermoelectric cell.

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez-Barreiro

    Full Text Available Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC, in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250-600 mV was achieved with 1.7 L baker's yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices.

  8. High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric energy harvesting utilizes materials that generate an electrical current when subjected to a temperature gradient, or simply, a hot and cold source of...

  9. Carbon Nanotube Thermoelectric Coolers

    Science.gov (United States)

    2015-02-06

    inelastic electron-phonon and elastic electron-impurity scatterings. They are taken into account along with processes of the electron tunneling through...Another relevant activity in the course of the project was our work on quantization of the magneto - thermoelectric transport occurring when an external...heat flow into several fractions owing to the Lorentz force acting in the C/N-knot vicinity, thereby inducing the magneto -thermoelectric current in

  10. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    International Nuclear Information System (INIS)

    Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi; Irie, Hiroshi

    2014-01-01

    The addition of photo-controllable properties to tungsten trioxide (WO 3 ) is of interest for developing practical applications of WO 3 as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO 3 thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W 5+ ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO 3 could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σ increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO 3 after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ photo ) and photo-Seebeck effect (photo-Seebeck coefficient, S photo )) were also detected in response to visible-light irradiation of the colored WO 3 thin films. Under visible-light irradiation, σ photo and the absolute value of S photo increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W 5+ state) to the conduction band of WO 3 . Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO 3 thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  11. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  12. N-type thermoelectric recycled carbon fibre sheet with electrochemically deposited Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pang, E.J.X. [Division of Materials, Mechanics and Structures, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Pickering, S.J., E-mail: stephen.pickering@nottingham.ac.uk [Division of Materials, Mechanics and Structures, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Chan, A. [Division of Materials, Mechanics and Structures, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia); Wong, K.H. [Division of Materials, Mechanics and Structures, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Lau, P.L. [Division of Materials, Mechanics and Structures, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia)

    2012-09-15

    An N-type thermoelectric recycled carbon fibre sheet with bismuth telluride coating has been successfully synthesised through an electro-deposition technique. The Seebeck coefficient and electrical properties of the combined recycled carbon fibre sheet and bismuth telluride films are reported. Classification of the crystal structure, surface morphology and the elemental composition of the resulting deposits are methodically characterised by XRD, SEM and EDX. Cyclic voltammetry is also carried out in nitric acid solutions to investigate the right range of deposition potential. The synthesis N-type thermoelectric sheet has a highest attainable Seebeck coefficient of -54 {mu}V K{sup -1} and an electrical resistivity of 8.9 Multiplication-Sign 10{sup -5} Ohm-Sign m. The results show slight differences in morphologies and thermoelectric properties for the films deposited at varying deposition potential. The increase in thermoelectrical properties of the recycled carbon fibre is in line with the development of using coated recycled fibre for thermoelectrical applications. - Graphical abstract: SEM image of an N-type thermoelectric recycled carbon fibre sheet with Bi{sub 2}Te{sub 3} coatings. Highlights: Black-Right-Pointing-Pointer N-type thermoelectric sheet is synthesis through the electrodeposition of Bi{sub 2}Te{sub 3}. Black-Right-Pointing-Pointer Bi{sub 2}Te{sub 3} composition can be controlled by varying the deposition voltage. Black-Right-Pointing-Pointer Seebeck coefficient and electrical properties of the combined sheet were reported. Black-Right-Pointing-Pointer Material characterisations of the deposits are done using XRD, SEM and EDX.

  13. Precipitation of Ag{sub 2}Te in the thermoelectric material AgSbTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, Joshua D. [Materials Physics Department, Sandia National Laboratories, Livermore, CA (United States)], E-mail: jdsugar@sandia.gov; Medlin, Douglas L. [Materials Physics Department, Sandia National Laboratories, Livermore, CA (United States)

    2009-06-10

    The microstructure of AgSbTe{sub 2}, prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag{sub 22}Sb{sub 28}Te{sub 50}, and silver telluride, Ag{sub 2}Te. Ag{sub 2}Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe{sub 2} phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag{sub 2}Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag{sub 2}Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag{sub 2}Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  14. Nanocomposites with High Thermoelectric Figures of Merit

    Science.gov (United States)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  15. Compatibility of Segments of Thermoelectric Generators

    Science.gov (United States)

    Snyder, G. Jeffrey; Ursell, Tristan

    2009-01-01

    A method of calculating (usually for the purpose of maximizing) the power-conversion efficiency of a segmented thermoelectric generator is based on equations derived from the fundamental equations of thermoelectricity. Because it is directly traceable to first principles, the method provides physical explanations in addition to predictions of phenomena involved in segmentation. In comparison with the finite-element method used heretofore to predict (without being able to explain) the behavior of a segmented thermoelectric generator, this method is much simpler to implement in practice: in particular, the efficiency of a segmented thermoelectric generator can be estimated by evaluating equations using only hand-held calculator with this method. In addition, the method provides for determination of cascading ratios. The concept of cascading is illustrated in the figure and the definition of the cascading ratio is defined in the figure caption. An important aspect of the method is its approach to the issue of compatibility among segments, in combination with introduction of the concept of compatibility within a segment. Prior approaches involved the use of only averaged material properties. Two materials in direct contact could be examined for compatibility with each other, but there was no general framework for analysis of compatibility. The present method establishes such a framework. The mathematical derivation of the method begins with the definition of reduced efficiency of a thermoelectric generator as the ratio between (1) its thermal-to-electric power-conversion efficiency and (2) its Carnot efficiency (the maximum efficiency theoretically attainable, given its hot- and cold-side temperatures). The derivation involves calculation of the reduced efficiency of a model thermoelectric generator for which the hot-side temperature is only infinitesimally greater than the cold-side temperature. The derivation includes consideration of the ratio (u) between the

  16. Development of metallic fuel materials

    International Nuclear Information System (INIS)

    Kang, Young Ho; Lee, Chong Tak; Yang, Yeoung Seok; Kim, Ki Hwan; Hwang, Sung Chan; Joo, Keun Sik; Ann, Hyun Suk; Chang, Sae Jung.

    1997-09-01

    Through the control of melting and casting parameters, the sound and homogenous U-10wt.%Zr alloy could be fabricated. The yield and segregation of Zr elements were 85% and ±0.1wt.%, and the density of the alloy was about 16.6 g/cm 3 . The major phase were α-U and δ-UZr 2 . The microstructure showed the laminar structure with fiber morphology which was arranged alternatively with uranium and Zr-rich phase. This alloy will be used for KALIMER fuel material through developing the fabrication technology and the characteristics analysis. And electrorefining study was performed to separate uranium from uranium-neodymium and uranium-zirconium alloy by their different free energy for chloride formation. The liquid cadmium phase becomes the anode of the electrorefining cell. Uranium is electrolytically transported through a molten salt electrolyte to a low carbon steel cathode. The electrolyte is composed of KCl-LiCl eutectic and some UCl 3 , which are installed in the salt to facilitate the electrotransport of uranium. In pyrochemical process the reaction condition of chlorination and the maintenance its purity in preparing UCl 4 by chlorination of UO 2 is strongly dependent on the reaction temperature and time. (author).52 refs., 40 tabs., 129 figs

  17. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  18. Evaluative Review in Materials Development

    Science.gov (United States)

    Stoller, Fredricka L.; Horn, Bradley; Grabe, William; Robinson, Marin S.

    2006-01-01

    English for Academic Purposes (EAP) professionals know that initial efforts to produce or adapt materials generally require evaluative review and revision. A review process that solicits feedback from teacher and student users is critical because materials writers often find it difficult to envision the problems others may have with their…

  19. Synthesis and characterization of nanometer sized thermoelectric lead-antimony-silver-tellurium compounds and related materials; Synthese und Charakterisierung nanoskaliger Thermoelektrika der LAST (Lead-Antimony-Silver-Tellurium)-Familie und verwandter Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Denis

    2012-09-10

    The present dissertation deals with different variants of synthesis and processing of nanocrystalline composites of various thermoelectric compounds based on lead telluride including LAST-m (AgPb{sub m}SbTe{sub m+2}), LASTT-m-x (AgPb{sub m-x}Sn{sub x}SbTe{sub m+2}), LABST-m-x (AgPb{sub m}Sb{sub 1-x}Bi{sub x}Te{sub m+2}), doped LAST-m and (PbTe){sub m}(M{sup 15}{sub 2}Te{sub 3}) and the characterization thereof. A new route of manufacturing nanocrystalline composites was developed. The so called co-ball milling-route includes the synthesis of bi- or multinary compounds by conventional solid state melting methods followed by combined milling of appropriate amounts in a planetary ball mill; a process related to the widely used mechanical alloying of elemental powders. The as produced powders were shortly annealed for one hour and a.erwards compacted either at room temperature followed by pressureless sintering or combined application of high pressure and elevated temperatures via spark-plasma-sintering or short-term-sintering. The ball milling yielded micron-sized agglomerates consisting of crystallites with diameters ranging from 10 to 50 nm. These crystallites exhibited complicated internal nanostructures severe crystal defects as a consequence of the high energy processing. During short-term annealing some grain coarsening occured and the crystal defects partly healed, which was confirmed by TEM and HRTEM investigations as well as profile analysis of XRD powder pattern. Local EDX-analysis showed different compositions at every point as a consequence of synthesis and decomposition of the compounds. Measurements of thermopower, electrical and thermal conductivity were carried out and the values of the figure of merit ZT and the powerfactor were calculated. In general the compounds exhibited larger thermopower than corresponding bulk materials, which might be attributed to energy filtering of charge carriers at partly oxidized grain boundaries. Due to enhanced phonon

  20. Enhanced thermoelectric performance of rough silicon nanowires

    Science.gov (United States)

    Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz; Liang, Wenjie; Garnett, Erik C.; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-01-01

    Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT>1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT>1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  1. Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting

    OpenAIRE

    Yang, Haoran; Jauregui, Luis A.; Zhang, Genqiang; Chen, Yong P.; Wu, Yue

    2012-01-01

    Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase...

  2. Ballistic thermoelectric properties of nitrogenated holey graphene nanostructures

    Science.gov (United States)

    Cao, Wei; Xiao, Huaping; Ouyang, Tao; Zhong, Jianxin

    2017-11-01

    In this study, we theoretically investigate the ballistic thermoelectric performance of a new two-dimensional material, nitrogenated holey graphene (NHG), using nonequilibrium Green's function method. The calculations show that compared to graphene, such novel single atomic layer structure exhibits better thermoelectric performance. At room temperature, the stable hole (electron) thermoelectric figure of merit ( Z T ) could approach 0.75 (0.2) and 0.6 (0.2) for zigzag-edged (Z-NHGNRs) and armchair-edged NHGNRs (A-NHGNRs), respectively. To achieve better thermoelectric performance, the effect of geometric engineering (chevron-type nanoribbons and rhomboid quantum dot) on the electronic and phononic transport properties of Z-NHGNRs is further discussed. The results indicate that structure modulation is indeed a viable approach to enhance the thermoelectric properties (the figure of merit could exceed 1.5 and 1.3 for the chevron-type and rhomboid quantum dot system, respectively). On analyzing the transport properties, such improvement on the figure of merit is mainly attributed to the increased Seebeck coefficient and reduced thermal conductance (including both electronic and phononic contributions). Our findings presented in this paper qualify NHG as a promising thermoelectric material and provide theoretical guidance for fabricating the outstanding thermoelectric devices.

  3. Optimized Characterization of Thermoelectric Generators for Automotive Application

    Science.gov (United States)

    Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg

    2012-06-01

    New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.

  4. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  5. A MODEL OF EFL LISTENING MATERIALS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Mochamad Zaenuri

    2015-12-01

    Full Text Available In oral communication, listening skill is important because communication does not take place successfully if the message stated is not understood. To master the skill, learners should learn it. Therefore, good listening materials are needed. However, English teachers often find it difficult to teach listening skills because the listening materials are not adequately available. Besides, if the materials are available, they are not appropriate with the students’ needs and the curriculum. In that case, English teachers need to develop listening materials by themselves. For this, they should have knowledge of materials development. This paper presents ideas and tips for English teachers how to develop good and applicable listening materials.

  6. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    what like a heat engine, converting heat into electrical energy. The conversion efficiency of the device (ratio of electrical power generated to the heat absorbed at the hot junction) can be expressed in terms of the ..... independent calculation based on disorder scattering. 3. Results and discussion. Calculated values of δ for a ...

  7. Potency of Thermoelectric Generator for Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nandy Putra

    2010-10-01

    Full Text Available Thermoelectric Generator (TEG has been known as electricity generation for many years. If the temperature difference occurred between two difference semi conductor materials, the current will flow in the material and produced difference voltage. This principle is known as Seebeck effect that is the opposite of Peltier effect Thermoelectric Cooling (TEC. This research was conducted to test the potential of electric source from twelve peltier modules. Then, these thermoelectric generators were applied in hybrid car by using waste heat from the combustion engine. The experiment has been conducted with variations of peltier module arrangements (series and parallels and heater as heat source for the thermoelectric generator, with variations of heater voltage input (110V and 220V applied. The experimental result showed that twelve of peltier modules arranged in series and heater voltage of 220V generated power output of 8.11 Watts with average temperature difference of 42.82°C. This result shows that TEG has a bright prospect as alternative electric source.

  8. Segmented Thermoelectric Oxide-based Module

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Linderoth, Søren

    for a more stable high temperature material. In this study, thermoelectric properties from 300 to 1200 K of Ca0.9Y0.1Mn1-xFexO3 for 0 ≤ x ≤ 0.25 were systematically investigated in term of Y and Fe co-doping at the Ca- and Mn-sites, respectively. It was found that with increasing the content of Fe doping......, the Seebeck coefficient of Ca0.9Y0.1Mn1-xFexO3 tended to increase, while the tendency towards the electrical conductivity was more complicated. Thermal conductivity of the Fe-doped samples showed a lower value than that of the non-doped sample. The maximum dimensionless figure-of-merit, zT was found......Since 1990s, oxide thermoelectrics have been considered as promising thermoelectric (TE) materials due to their non-toxicity, low-cost, and chemical stability at high temperatures. Studied results show great potential for applications in thermoelectric power generator (TEG) at high temperature...

  9. Notes on Computational Methodology and Tools of Thermoelectric Energy Systems

    DEFF Research Database (Denmark)

    Chen, Min; Bach, Inger Palsgaard; Rosendahl, Lasse

    2007-01-01

    The SPICE model allows the concurrent simulation of thermoelectric devices and application electric sub-models. It is an important step to implement the thermoelectric modeling at the system level. In this paper, temperature dependent material properties in the SPICE model, temperature and heat f...... flow obtained by the code ANSYS Multiphysics and SPICE (Simulation Program with Integrated Circuit Emphasis), as well as some notes on the 3-D extension of the SPICE model are introduced.......The SPICE model allows the concurrent simulation of thermoelectric devices and application electric sub-models. It is an important step to implement the thermoelectric modeling at the system level. In this paper, temperature dependent material properties in the SPICE model, temperature and heat...

  10. Thermoelectrically cooled water trap

    Science.gov (United States)

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  11. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  12. Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN

    Science.gov (United States)

    Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.

    2018-02-01

    Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting

  13. Possible High Thermoelectric Power in Semiconducting Carbon Nanotubes ˜A Case Study of Doped One-Dimensional Semiconductors˜

    Science.gov (United States)

    Yamamoto, Takahiro; Fukuyama, Hidetoshi

    2018-02-01

    We have theoretically investigated the thermoelectric properties of impurity-doped one-dimensional semiconductors, focusing on nitrogen-substituted (N-substituted) carbon nanotubes (CNTs), using the Kubo formula combined with a self-consistent t-matrix approximation. N-substituted CNTs exhibit extremely high thermoelectric power factor (PF) values originating from a characteristic of one-dimensional materials where decrease in the carrier density increase both the electrical conductivity and the Seebeck coefficient in the low-N regime. The chemical potential dependence of the PF values of semiconducting CNTs has also been studied as a field-effect transistor and it turns out that the PF values show a noticeable maximum in the vicinity of the band edges. This result demonstrates that "band-edge engineering" will be crucial for solid development of high-performance thermoelectric materials.

  14. Thermoelectric Effects under Adiabatic Conditions

    Directory of Open Access Journals (Sweden)

    George Levy

    2013-10-01

    Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.

  15. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-Based Thermoelectric Materials

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Borup, Kasper

    2018-01-01

    of different chalcogen dopants Q (Q = S, Se, and Te) on thermoelectric properties, it is found that the chalcogen dopants Q become more efficient with decreasing electronegativity difference between Q and Mg, which is mainly due to the increasing carrier concentration and mobility. Using density functional...... theory calculations, it is shown that the improving carrier concentration originates from the increasing doping limit induced by the stabilizing extrinsic defect. Moreover, the increasing electron mobility with decreasing electronegativity difference between Q and Mg is attributed to the smaller...

  16. Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composites

    Science.gov (United States)

    Guilmeau, E.; Funahashi, R.; Mikami, M.; Chong, K.; Chateigner, D.

    2004-08-01

    The correlation between thermoelectric properties and texture strength is discussed within the framework of Ca3Co4O9 textured ceramics. Based on an innovative method of x-ray diffraction analysis, the distribution density (i.e., the degree of orientation) of composite material composed of Ca3Co4O9 powder and single crystals was determined. Electrical resistivity of the prepared composites was shown to be reduced with increasing single crystals weight ratios and, in parallel, was directly correlated to an improvement of grain alignment. The incorporated single crystals help the texture development of the powder via an enhanced stacking of grains and fulfill a role as bypasses of the grain boundaries. This letter highlights the value of quantitative texture analysis to explain the evolution of anisotropic physical properties, as demonstrated here concerning textured thermoelectric materials.

  17. Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module

    Czech Academy of Sciences Publication Activity Database

    Tomeš, P.; Robert, R.; Trottmann, M.; Bocher, L.; Aguirre, M.H.; Bitschi, A.; Hejtmánek, Jiří; Weidenkaff, A.

    2010-01-01

    Roč. 39, č. 9 (2010), 1696-1703 ISSN 0361-5235 Institutional research plan: CEZ:AV0Z10100521 Keywords : thermoelectric materials * perovskites * power generation * oxide ceramics * micro-IR camera measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.421, year: 2010

  18. Plenary lecture 1: thermoelectric technology as renewable energy source for power generation and heating & cooling systems

    OpenAIRE

    SHAMMAS, Noel

    2011-01-01

    This paper will review the latest research and current status of thermoelectric power generation, and will also demonstrate, using electronic design, semiconductor simulation and practical laboratory experimentation, the application of thermoelectric technology for use in energy harvesting and scavenging systems. Ongoing research and advances in thermoelectric materials and manufacturing techniques, enables the technology to make a greater contribution to address the growing requirement for l...

  19. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  20. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  1. Stretchable Helical Architecture Inorganic-Organic Hetero Thermoelectric Generator

    KAUST Repository

    Rojas, Jhonathan Prieto

    2016-10-26

    To achieve higher power output from a thermoelectric generator (TEG), one needs to maintain a larger temperature difference between hot and cold end. In that regard, a stretchable TEG can be interesting to adaptively control the temperature difference. Here we show, the development of simple yet versatile and highly stretchable thermoelectric generators (TEGs), by combining well-known inorganic thermoelectric materials Bismuth Telluride and Antimony Telluride (Bi2Te3 and Sb2Te3) with organic substrates (Off-Stoichiometry Thiol-Enes polymer platform – OSTE, polyimide or paper) and novel helical architecture (double-arm spirals) to achieve over 100% stretchability. First, an OSTE-based TEG design demonstrates higher open circuit voltage generation at 100% strain than at rest, although it exhibits high internal resistance and a relatively complex fabrication process. The second, simpler TEG design, achieves a significant resistance reduction and two different structural substrates (PI and paper) are compared. The paper-based TEG generates 17 nW (ΔT = 75 °C) at 60% strain, which represents more than twice the power generation while at rest (zero strain). On the other hand, polyimide produces more conductive TE films and higher power (~35 nW at ΔT = 75 °C) but due to its higher thermal conductivity, power does not increase at stretch. In conclusion, highly stretchable TEGs can lead to higher temperature gradients (thus higher power generation), given that thermal conductivity of the structural material is low enough. Furthermore, either horizontal or vertical displacement can be achieved with double-arm helical architecture, hence allowing to extend the device to any nearby and mobile heat sink for continuous, effectively higher power generation.

  2. Material Development and Meeting Learner's Need

    Science.gov (United States)

    Aydin, Abdullah

    2013-01-01

    In this study, the aim was to show that learners' needs can be met using simple and cheap materials that can be found everywhere in 9th to 11th grade Chemistry courses. To this end, materials were developed using simple everyday life materials for 9th to 11th grade Chemistry courses. In the research, the project method was employed. The study was…

  3. Nuclear Concrete Materials Database Phase I Development

    International Nuclear Information System (INIS)

    Ren, Weiju; Naus, Dan J.

    2012-01-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  4. Structural and thermoelectric characterization of Ba substituted LaCoO3 perovskite-type materials obtained by polymerized gel combustion method

    International Nuclear Information System (INIS)

    Kun, Robert; Populoh, Sascha; Karvonen, Lassi; Gumbert, Julia; Weidenkaff, Anke; Busse, Matthias

    2013-01-01

    Highlights: •Ba-substituted LaCoO 3 perovskites prepared by polymerized gel combustion method. •Φ affects the agglomeration grade, compacting, sintering behavior of the perovskites. •ZT-values reach maximum at 400–500 K temperature range. -- Abstract: Structural and thermoelectric transport properties of Ba 2+ containing lanthanum cobaltate (La 1−x Ba x CoO 3 ; x = 0.01, 0.03, 0.05) prepared by soft chemistry method were investigated and discussed. The influence of the fuel-to-oxidizer ratio (Φ) of the redox mixture on the powder microstructure was studied. The agglomeration grade of the nanocrystalline perovskite phases can be influenced due to initial composition of the redox mixture. Since the different burning characteristic of the polymerized gels results in different xerogel structures, the as-calcined single phase perovskite samples show different compacting and sintering behavior. The thermoelectric transport properties were measured in the 300–1300 K temperature range. It was found that the electrical and thermal conductivity of the sintered pellets show strong dependence on microstructure. In addition increasing Ba 2+ content in the samples results in lower thermal conductivity values (κ < 1.5 W/K m). The calculated dimensionless figure of merit (ZT) showed maximum value in the 400–500 K range

  5. Structural and thermoelectric characterization of Ba substituted LaCoO{sub 3} perovskite-type materials obtained by polymerized gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Kun, Robert, E-mail: robert.kun@uni-bremen.de [University of Bremen, FB 4, Near Net Shape Technologies, Wiener Str. 12, 28359 Bremen (Germany); Populoh, Sascha; Karvonen, Lassi [Solid State Chemistry and Catalysis, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Gumbert, Julia [University of Bremen, FB 4, Near Net Shape Technologies, Wiener Str. 12, 28359 Bremen (Germany); Weidenkaff, Anke [Solid State Chemistry and Catalysis, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Busse, Matthias [University of Bremen, FB 4, Near Net Shape Technologies, Wiener Str. 12, 28359 Bremen (Germany); Fraunhofer Institute for Manufacturing Technology and Applied Materials Research, IFAM, Wiener Str. 12, 28359 Bremen (Germany)

    2013-12-05

    Highlights: •Ba-substituted LaCoO{sub 3} perovskites prepared by polymerized gel combustion method. •Φ affects the agglomeration grade, compacting, sintering behavior of the perovskites. •ZT-values reach maximum at 400–500 K temperature range. -- Abstract: Structural and thermoelectric transport properties of Ba{sup 2+} containing lanthanum cobaltate (La{sub 1−x}Ba{sub x}CoO{sub 3}; x = 0.01, 0.03, 0.05) prepared by soft chemistry method were investigated and discussed. The influence of the fuel-to-oxidizer ratio (Φ) of the redox mixture on the powder microstructure was studied. The agglomeration grade of the nanocrystalline perovskite phases can be influenced due to initial composition of the redox mixture. Since the different burning characteristic of the polymerized gels results in different xerogel structures, the as-calcined single phase perovskite samples show different compacting and sintering behavior. The thermoelectric transport properties were measured in the 300–1300 K temperature range. It was found that the electrical and thermal conductivity of the sintered pellets show strong dependence on microstructure. In addition increasing Ba{sup 2+} content in the samples results in lower thermal conductivity values (κ < 1.5 W/K m). The calculated dimensionless figure of merit (ZT) showed maximum value in the 400–500 K range.

  6. Fiber optic signal amplifier using thermoelectric power generation

    Science.gov (United States)

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  7. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  8. Anomalous thermoelectricity in strained Bi2Te3 films

    Science.gov (United States)

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-01-01

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization. PMID:27600406

  9. Near-field three-terminal thermoelectric heat engine

    Science.gov (United States)

    Jiang, Jian-Hua; Imry, Yoseph

    2018-03-01

    We propose a near-field inelastic thermoelectric heat engine where quantum dots are used to effectively rectify the charge flow of photocarriers. The device converts near-field heat radiation into useful electrical power. Heat absorption and inelastic transport can be enhanced by introducing two continuous spectra separated by an energy gap. The thermoelectric transport properties of the heat engine are studied in the linear-response regime. Using a small band-gap semiconductor as the absorption material, we show that the device achieves very large thermopower and thermoelectric figure of merit, as well as considerable power factor. By analyzing thermal-photocarrier generation and conduction, we reveal that the Seebeck coefficient and the figure of merit have oscillatory dependence on the thickness of the vacuum gap. Meanwhile, the power factor, the charge, and thermal conductivity are significantly improved by near-field radiation. Conditions and guiding principles for powerful and efficient thermoelectric heat engines are discussed in details.

  10. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  11. Thermoelectric properties of currently available Au/Pt thermocouples related to the valid reference function

    Directory of Open Access Journals (Sweden)

    Edler F.

    2015-01-01

    Full Text Available Au/Pt thermocouples are considered to be an alternative to High Temperature Standard Platinum Resistance Thermometers (HTSPRTs for realizing temperatures according to the International Temperature Scale of 1990 (ITS-90 in the temperature range between aluminium (660.323 °C and silver (961.78 °C. The original aim of this work was to develop and to validate a new reference function for Au/Pt thermocouples which reflects the properties of presently commercially available Au and Pt wires. The thermoelectric properties of 16 Au/Pt thermocouples constructed at different National Metrological Institutes by using wires from different suppliers and 4 commercially available Au/Pt thermocouples were investigated. Most of them exhibit significant deviations from the current reference function of Au/Pt thermocouples caused by the poor performance of the Au-wires available. Thermoelectric homogeneity was investigated by measuring immersion profiles during freezes at the freezing point of silver and in liquid baths. The thermoelectric inhomogeneities were found to be one order of magnitude larger than those of Au/Pt thermocouples of the Standard Reference Material® (SRM® 1749. The improvement of the annealing procedure of the gold wires is a key process to achieve thermoelectric homogeneities in the order of only about (2–3 mK, sufficient to replace the impracticable HTSPRTs as interpolation instruments of the ITS-90. Comparison measurements of some of the Au/Pt thermocouples against a HTSPRT and an absolutely calibrated radiation thermometer were performed and exhibit agreements within the expanded measurement uncertainties. It has been found that the current reference function of Au/Pt thermocouples reflects adequately the thermoelectric properties of currently available Au/Pt thermocouples.

  12. Experimental and analytical study on thermoelectric self cooling of devices

    International Nuclear Information System (INIS)

    Martinez, A.; Astrain, D.; Rodriguez, A.

    2011-01-01

    This paper presents and studies the novel concept of thermoelectric self cooling, which can be introduced as the cooling and temperature control of a device using thermoelectric technology without electricity consumption. For this study, it is designed a device endowed with an internal heat source. Subsequently, a commonly used cooling system is attached to the device and the thermal performance is statistically assessed. Afterwards, it is developed and studied a thermoelectric self cooling system appropriate for the device. Experimental and analytical results show that the thermal resistance between the heat source and the environment reduced by 25-30% when the thermoelectric self cooling system is installed, and indicates the promising applicability of this technology to devices that generate large amounts of heat, such as electrical power converters, transformers and control systems. Likewise, it was statistically proved that the thermoelectric self cooling system leads to significant reductions in the temperature difference between the heat source and the environment, and, what is more, this reduction increases as the heat flow generated by the heat source increases, which makes evident the fact that thermoelectric self cooling systems work as temperature controllers. -- Highlights: → Novel concept of thermoelectric self cooling is presented and studied. → No extra electricity is needed. → Thermal resistance between the heat source and the environment reduces by 25-30%. → Increasing reduction in temperature difference between heat source and environment. → Great applicability to any device that generates heat and must be cooled.

  13. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  14. Materials Development for Language Learning and Teaching

    Science.gov (United States)

    Tomlinson, Brian

    2012-01-01

    This article reviews the literature on the relatively new field of materials development for language learning and teaching. It reports the origins and development of the field and then reviews the literature on the evaluation, adaptation, production and exploitation of learning materials. It also reviews the literature, first, on a number of…

  15. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  16. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  17. About the feasibilities of controlling the properties of thermoelectric energy converters using optical radiation

    Science.gov (United States)

    Kshevetsky, Oleg S.

    2018-01-01

    We represent evaluating analysis of the feasibilities for controlling the properties of thermoelectric energy converters using EM radiation in the regimes of cooling, heating, electromotive force generation, or electric current generation. Thus we investigate the influence of optical radiation both on electric conductivity and thermo-electromotive force coefficient of thermoelectric materials. We also discuss promising applications for controlling the properties of thermoelectric energy converters using EM radiation. We represent the results of experimental study of positionsensitive energy converters in the regimes of electromotive force generation and the electric current generation (in part, photo-thermoelectric position-sensitive temperature detectors), position-sensitive photo-thermoelectric energy converters in the regimes of cooling, heating, parallel photoelectric and thermoelectric conversion of sun-light optical radiation into electric power.

  18. Mechanical Alloying for Making Thermoelectric Compounds

    Science.gov (United States)

    Huang, Chen-Kuo; Fleurial, Jean-Pierre; Snyder, Jeffrey; Blair, Richard; May, Andrew

    2007-01-01

    An economical room-temperature mechanical alloying process has been shown to be an effective means of making a homogeneous powder that can be hot-pressed to synthesize a thermoelectric material having reproducible chemical composition. The synthesis of a given material consists of the room temperature thermomechanical-alloying process followed b y a hot-pressing process. Relative to synthesis of nominally the same material by a traditional process that includes hot melting, this s ynthesis is simpler and yields a material having superior thermoelect ric properties.

  19. Phase Transitions of Thermoelectric TAGS-85

    NARCIS (Netherlands)

    Kooi, Bart J.; Rao, Jiancun; van Eijck, L.; Schwarzmüller, Stefan; Oeckler, Oliver; Blake, Graeme R.

    2017-01-01

    The alloys (GeTe)x(AgSbTe2)100-x, commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200-500 °C. They adopt a rhombohedrally distorted rocksalt structure at

  20. Phase Transitions of Thermoelectric TAGS-85

    NARCIS (Netherlands)

    Kumar, Anil; Vermeulen, Paul A.; Kooi, Bart J.; Rao, Jiancun; van Eijck, Lambert; Schwarzmueller, Stefan; Oeckler, Oliver; Blake, Graeme R.

    2017-01-01

    The alloys (GeTe)x(AgSbTe2)100–x, commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200–500 °C. They adopt a rhombohedrally distorted rocksalt structure at room temperature and are reported to

  1. Electroforming of Bi(1-x)Sb(x) nanowires for high-efficiency micro-thermoelectric cooling devices on a chip.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Webb, Edmund Blackburn, III (,; ); Siegal, Michael P.; Yelton, William Graham

    2006-11-01

    Active cooling of electronic systems for space-based and terrestrial National Security missions has demanded use of Stirling, reverse-Brayton, closed Joule-Thompson, pulse tube and more elaborate refrigeration cycles. Such cryocoolers are large systems that are expensive, demand large powers, often contain moving parts and are difficult to integrate with electronic systems. On-chip, solid-state, active cooling would greatly enhance the capabilities of future systems by reducing the size, cost and inefficiencies compared to existing solutions. We proposed to develop the technology for a thermoelectric cooler capable of reaching 77K by replacing bulk thermoelectric materials with arrays of Bi{sub 1-x}Sb{sub x} nanowires. Furthermore, the Sandia-developed technique we will use to produce the oriented nanowires occurs at room temperature and can be applied directly to a silicon substrate. Key obstacles include (1) optimizing the Bi{sub 1-x}Sb{sub x} alloy composition for thermoelectric properties; (2) increasing wire aspect ratios to 3000:1; and (3) increasing the array density to {ge} 10{sup 9} wires/cm{sup 2}. The primary objective of this LDRD was to fabricate and test the thermoelectric properties of arrays of Bi{sub 1-x}Sb{sub x} nanowires. With this proof-of-concept data under our belts we are positioned to engage National Security systems customers to invest in the integration of on-chip thermoelectric coolers for future missions.

  2. Thermoelectric power of superionic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, S.M.

    1978-05-01

    A technique for the calculation of the thermoelectric power in many-particle systems exhibiting hopping conduction is presented. It is shown that the combination of thermopower and conductivity data provides very useful information about the microscopic nature of the ion hopping process in solid electrolytes. There are two main qualitative features of the transport data. In most systems the heat of transport (determined from the thermopower) and the activation energy for conduction are nearly equal, and in systems exhibiting lattice gas order--disorder transitions, these parameters may change across the phase boundary. An extended polaron lattice gas model is presented which is consistent with these features of the data and which allows a determination of the relative strengths of static barrier and polaron effects on the hopping. The results of the model suggest that polaron coupling is relatively small in most materials except for those based on organic halides.

  3. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay

    2018-02-21

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module and illustrate the inter-diffusions across the interface of constituent layers. For Bi2Te3-based module, soldering is the primary bonding method, giving rise to the investigations on the selections of solder, diffusion barrier layer and electrode. For mid-temperature PbTe-based TE module, hot-pressing or spark plasma sintering are alternative bonding approaches; the inter-diffusions between the diffusion barrier layer, electrode and TE substrate are addressed as well.

  4. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  5. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-15

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  6. Encapsulated Thermoelectric Modules for Advanced Thermoelectric Systems

    Science.gov (United States)

    Kambe, Mitsuru; Jinushi, Takahiro; Ishijima, Zenzo

    2014-06-01

    An encapsulated thermoelectric (TE) module consists of a vacuum-tight stainless-steel container in which an SiGe or BiTe TE module is encapsulated. This construction enables maximum performance and durability because: the thermal expansion mismatch between the hot and cold sides of the container can be accommodated by a sliding sheet in the container; the TE module inside is always kept in a vacuum environment, therefore no oxidation can occur; and the pressure difference between the inside and outside of the container reduces thermal contact resistance inside the container. Our encapsulated SiGe module features higher operating temperature—up to 650°C for both hot and cold sides. Other high-temperature modules and conventional BiTe modules, including both-sides and one-side skeleton types, have been encapsulated. Several variants of the encapsulated module are available. Encapsulated thermoelectric modules with integrated coolers contain cooling panels through which water can pass. If the module hot side is heated by a radiating heat source (radiation coupling) or convection of a hot gas or fluid (convection coupling), no pressing force on the module is necessary. It therefore features minimum contact resistance with the cooling duct, because no pressure is applied, maximum TE power, and minimum installation cost. Another, larger, variant is a quadruple flexible container in which four modules (each of maximum size 40 mm × 40 mm) are encapsulated. These encapsulated modules were used in a powder metallurgy furnace and were in use for more than 3000 h. Application to cryogenic temperatures simulating the liquid nitrogen gas vaporizer has been also attempted.

  7. Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-04-01

    Full Text Available I-doped Bi2Te3−xIx (x=0, 0.05, 0.1, 0.2 flower-like nanoparticles were synthesized by a hydrothermal method through a careful adjustment of the amount of ethylenediamine tetraacetic acid surfactant. The nanopowders of flower-like nanoparticles were hot-pressed into bulk pellets and the thermoelectric properties of the pellets were investigated. The results showed that I-doping decreased the electrical resistivity effectively, and the thermal conductivitives of the Bi2Te3−xIx bulk samples was lower because of the closer atomic mass of I compared to Te. As a result, a ZT value of 1.1 was attained at 448 K for the Bi2Te2.9I0.1 sample.

  8. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.

    2012-01-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed

  9. Material Development for Nuclear Fusion and Energy Development Using Actinoids

    OpenAIRE

    Kayano, Hideo

    1994-01-01

    In our Facilities. fundamental researches on nuclear fuels and reactor materials have been performed by making use of JMTR and JOYO. Authors outline original studies among them currently performed by having myself as the core. Research fields in progress are material developments for the nuclear fusion such as ferritic steel and V alloy and energy development using Actinoids. As the material development for practical nuclear fusion, we do those of low activation V alloys, ferritic steels and ...

  10. 120 watt thermoelectric generator

    Science.gov (United States)

    Marling, Daryl K.

    The Manpack, a 120-W portable liquid-fueled thermoelectric generator, consists of a thermoelectric converter, multiliquid fuel combustor, forced-air cooling, and electronic microprocessor control. The Manpack can operate continuously for 8 hours (with the operation capacity extendable by the use of an auxiliary fuel connection), has an operational range of -40 C to +50 C, and an adjustable output of 24 to 32 Vdc at 120 W minimum power. The Manpack's atomizer subsystem is able to handle all types of liquid fuel including gasoline and summer diesel. Any liquid can be atomized from 0 kg/h to 1.0 kg/h over the full temperature range of the generator.

  11. Fine Art of Thermoelectricity.

    Science.gov (United States)

    Brus, Viktor V; Gluba, Marc; Rappich, Jörg; Lang, Felix; Maryanchuk, Pavlo D; Nickel, Norbert H

    2018-02-07

    A detailed study of hitherto unknown electrical and thermoelectric properties of graphite pencil traces on paper was carried out by measuring the Hall and Seebeck effects. We show that the combination of pencil-drawn graphite and brush-painted poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films on regular office paper results in extremely simple, low-cost, and environmentally friendly thermoelectric power generators with promising output characteristics at low-temperature gradients. The working characteristics can be improved even further by incorporating n-type InSe flakes. The combination of pencil-drawn n-InSe:graphite nanocomposites and brush-painted PEDOT:PSS increases the power output by 1 order of magnitude.

  12. Thermoelectric device for treatment of radiculitis and spinal massage

    Science.gov (United States)

    Anatychuk, L. I.; Kobylyansky, R. R.

    2012-06-01

    Results of development of a thermoelectric device that enables controlled cyclic temperature impact on the damaged area of human organism are presented. Unlike the existing medical devices employing direct supply current for thermoelectric module, the present device controls supply current according to time dependence of temperature change assigned by doctor. It is established that such a device is an efficient means of therapy at herniation of intervertebral disks with marked radiculitis and tunicary syndromes, at meningitis, other spinal diseases and back traumas.

  13. Thermodynamic studies and maximum power point tracking in thermoelectric generator-thermoelectric cooler combined system

    Science.gov (United States)

    Manikandan, S.; Kaushik, S. C.

    2015-04-01

    Thermoelectric generator (TEG) operated thermoelectric cooler (TEC) is a highly compatible combination for low-cooling power application. The conventional TEG-TEC combined systems have low operating efficiency and low cooling power because maximum power output from the TEG is not fully utilized. This paper proposes and analyses the combined system with maximum power point tracking technique (MPPT) to maximize the cooling power and overall efficiency. This paper also presents the effect of TEG, TEC source temperature and the effect of heat transfer area in the performance of the combined system. The thermodynamic models of the combined system are developed in MATLAB simulink environment with temperature dependent material properties and analysed for variable operating temperatures. It has been found that, in the irreversible thermodynamic model of the combined system with MPPT, when the hot and cold side of TEG and TEC are kept at a temperature difference of 150 K and 10 K respectively, the power output of TEG increases from 20.49 W to 43.92 W, cooling power of TEC increases from 32.66 W to 46.51 W and the overall combined system efficiency increases from 2.606% to 4.375% respectively when compared with the irreversible combined system without MPPT. The characteristics improvements obtained by this practice in the combined system for the above mentioned operating conditions is also true for other range of operating temperatures. It is also been observed that the external irreversibilities decreases the cooling power and the overall system efficiency of the combined system by 36.49% and by 16.9% respectively.

  14. Investigation of Maximum Power Point Tracking for Thermoelectric Generators

    Science.gov (United States)

    Phillip, Navneesh; Maganga, Othman; Burnham, Keith J.; Ellis, Mark A.; Robinson, Simon; Dunn, Julian; Rouaud, Cedric

    2013-07-01

    In this paper, a thermoelectric generator (TEG) model is developed as a tool for investigating optimized maximum power point tracking (MPPT) algorithms for TEG systems within automotive exhaust heat energy recovery applications. The model comprises three main subsystems that make up the TEG system: the heat exchanger, thermoelectric material, and power conditioning unit (PCU). In this study, two MPPT algorithms known as the perturb and observe (P&O) algorithm and extremum seeking control (ESC) are investigated. A synchronous buck-boost converter is implemented as the preferred DC-DC converter topology, and together with the MPPT algorithm completes the PCU architecture. The process of developing the subsystems is discussed, and the advantage of using the MPPT controller is demonstrated. The simulation results demonstrate that the ESC algorithm implemented in combination with a synchronous buck-boost converter achieves favorable power outputs for TEG systems. The appropriateness is by virtue of greater responsiveness to changes in the system's thermal conditions and hence the electrical potential difference generated in comparison with the P&O algorithm. The MATLAB/Simulink environment is used for simulation of the TEG system and comparison of the investigated control strategies.

  15. Thermoelectric energy harvesting for a solid waste processing toilet

    Science.gov (United States)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  16. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.; Barr, H.N.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  17. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  18. Co-optimized design of microchannel heat exchangers and thermoelectric generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Yazawa, K.; Rosendahl, Lasse

    2013-01-01

    Designs of heat exchangers have mostly been disconnected to the performance of thermoelectric generator (TEG) systems. The development work, mostly focused on thermoelectric materials, required a significant amount of engineering parametric analysis. In this work, a micro plate-fin heat exchanger...... applied to a TEG is investigated and optimized to maximize the output power and the cost performance of generic TEG systems. The cost per performance is counted by a measure of price per power output ($/W). The channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG...... are theoretically optimized for a wide range of pumping power. In conjunction with effective numeric tests, the model discusses the optimum size of the system components’ dimensions at two area sizes of the substrate plate of heat exchanger. Results show that at every pumping power, there are particular values...

  19. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin

    2012-06-09

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  20. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power...

  1. DEVELOPMENT OF HUMIDITY MEASURER OF CUTTING MATERIALS

    Directory of Open Access Journals (Sweden)

    Litvinenko V.M.

    2017-12-01

    Full Text Available The meter of moisture content of bulk materials is developed, which is characterized by high reliability and relatively low cost. Due to the improvement of the analogue circuit, the average lifespan of the elements of the circuit diagram and the reliability of the device as a whole have been increased. Practical recommendations for the production of a developed device for controlling the moisture content of bulk materials are presented

  2. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  3. Thermoelectric harvesting of low temperature natural/waste heat

    Science.gov (United States)

    Rowe, David Michael

    2012-06-01

    Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.

  4. Technical considerations in materials management policy development

    International Nuclear Information System (INIS)

    Avci, H.; Goldberg, M.

    1996-01-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE's DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized

  5. DEVELOPING READING MATERIALS FOR PHYSICAL EDUCATION STUDENTS

    Directory of Open Access Journals (Sweden)

    Dina Ayu Puspita Wardani

    2017-02-01

    Full Text Available This present study intends to develop reading materials for physical education students’ of STKIP PGRI Jombang as an effort in improving students’ English ability especially on reading skill. The research and development procedures of this present study are obtained by adaptation the combination models of Borg and Gall (1983, Dick and Carey (2001 and Hyland (2003. It is adapted simplifier into four stages, those are: (1 need analysis; (2 developing material; (3 validation; (4 revisions. The material developed was based on the real field condition which is suited to the students’ and the lecturer’s need. It is also considered by the syllabus used by the lecturer. Penelitian ini bertujuan untuk mengembangkan materi reading untuk mahasiswa jurusan pendidikan jasmani dan kesehatan di STKIP PGRI Jombang sebagi salah satu usaha untuk meningkatkan kemampuan bahasa Inggris mahasiswa khususnya pada reading skill. Metode pengembangan yang digunakan dalam penelitian diadaptasi dari Borg and Gall (1983, Dick and Carey (2001 and Hyland (2003 yang dikombinasikan dan disederhanakan menjadi empat langkah, meliputi (1 analisis kebutuhan; (2 pengembangan materi; (3 validasi; (4 revisi. Materi yang dikembangkan disesuaikan dengan kebutuhan mahasiswa dan dosen. Pengembangan materi juga didasarkan pada silabus yang digunakan oleh dosen.

  6. Manipulation of charge transport in thermoelectrics

    Science.gov (United States)

    Zhang, Xinyue; Pei, Yanzhong

    2017-12-01

    While numerous improvements have been achieved in thermoelectric materials by reducing the lattice thermal conductivity (κL), electronic approaches for enhancement can be as effective, or even more. A key challenge is decoupling Seebeck coefficient (S) from electrical conductivity (σ). The first order approximation - a single parabolic band assumption with acoustic scattering - leads the thermoelectric power factor (S2σ) to be maximized at a constant reduced Fermi level (η 0.67) and therefore at a given S of 167 μV/K. This simplifies the challenge of maximization of σ at a constant η, leading to a large number of degenerate transport channels (band degeneracy, Nv) and a fast transportation of charges (carrier mobility, μ). In this paper, existing efforts on this issue are summarized and future prospectives are given.

  7. On Using Materiality in Information Systems Development

    DEFF Research Database (Denmark)

    Carugati, Andrea

    This research brief presents a discussion on the use of the concept of materiality and material knowing in information systems development (ISD). The discussion addresses some of the practical problems still plaguing ISD, augmenting existing ISD methodologies with contributions from systems theory...... and in particular the idea of inquiring systems. The discussion builds on different contemporary concepts that are rooted in the inquiring systems idea: the notion of stakeholders (designer, client, user and their interchanging roles), the notion boundary object and boundary spanners, and the notion of materiality...... as scaffold of knowledge. Through the example taken from a case study of a complex and innovative systems development we outline two design principles to be embedded in modular fashion in ISD processes: (1) whenever possible start ISD efforts by developing a graphical simulator of the material environment...

  8. Graphene Quantum Dots Embedded in Bi2Te3Nanosheets To Enhance Thermoelectric Performance.

    Science.gov (United States)

    Li, Shuankui; Fan, Tianju; Liu, Xuerui; Liu, Fusheng; Meng, Hong; Liu, Yidong; Pan, Feng

    2017-02-01

    Novel Bi 2 Te 3 /graphene quantum dots (Bi 2 Te 3 /GQDs) hybrid nanosheets with a unique structure that GQDs are homogeneously embedded in the Bi 2 Te 3 nanosheet matrix have been synthesized by a simple solution-based synthesis strategy. A significantly reduced thermal conductivity and enhanced powder factor are observed in the Bi 2 Te 3 /GQDs hybrid nanosheets, which is ascribed to the optimized thermoelectric transport properties of the Bi 2 Te 3 /GQDs interface. Furthermore, by varying the size of the GQDs, the thermoelectric performance of Bi 2 Te 3 /GQDs hybrid nanostructures could be further enhanced, which could be attributed to the optimization of the density and dispersion manner of the GQDs in the Bi 2 Te 3 matrix. A maximum ZT of 0.55 is obtained at 425 K for the Bi 2 Te 3 /GQDs-20 nm, which is higher than that of Bi 2 Te 3 without hybrid nanostrucure. This work provides insights for the structural design and synthesis of Bi 2 Te 3 -based hybrid thermoelectric materials, which will be important for future development of broadly functional material systems.

  9. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  10. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications

    International Nuclear Information System (INIS)

    Zhu, Lin; Tan, Hongbo; Yu, Jianlin

    2013-01-01

    Highlights: • Optimization of a thermoelectric cooler system is presented. • The total heat transfer area of heat exchangers is considered as a constraint. • The best performances are characterized by different optimal area allocation ratios. • Optimal area allocation ratios are mainly affected by hot side thermal conductance. - Abstract: In this paper, the theoretical analyses are conducted to explore the optimization problems of thermoelectric cooler (TEC) systems applied in electronic cooling. The study mainly focuses on the optimal heat exchanger configuration of a TEC system. The effects of total heat transfer area allocation ratio, thermal conductance of the TEC hot and cold side and TEM element material properties on the cooling performance of the TEC are investigated in detailed based on the developed mathematical model. The analysis results indicate that the highest coefficient of performance (COP), highest heat flux pumping capability of the TEC and lowest cold side temperature can be achieved by selecting an optimal heat transfer area allocation ratio. The optimal heat transfer area allocation ratio mainly depends on the relevant objective functions, the hot and cold side thermal conductance, total heat exchanger size and the TEM element material properties. These results reveal that the heat transfer area allocation ratio is an applicable characteristic of optimum design for TEC systems. It is hoped that the considerations and analysis results may provide guides for the design and application of practical thermoelectric cooler system in electronic cooling

  11. Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

    Science.gov (United States)

    Parekh, Bhaumik Kamlesh

    Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.

  12. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    Science.gov (United States)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  13. Thermoelectrics from silicon nanoparticles: the influence of native oxide

    Science.gov (United States)

    Petermann, Nils; Stötzel, Julia; Stein, Niklas; Kessler, Victor; Wiggers, Hartmut; Theissmann, Ralf; Schierning, Gabi; Schmechel, Roland

    2015-06-01

    Thermoelectric materials were synthesized by current-assisted sintering of doped silicon nanoparticles produced in a microwave-plasma reactor. Due to their affinity to oxygen, the nanoparticles start to oxidize when handled in air and even a thin surface layer of native silicon oxide leads to a significant increase in the oxide volume ratio. This results in a considerable incorporation of oxygen into the sintered pellets, thus affecting the thermoelectric performance. To investigate the necessity of inert handling of the raw materials, the thermoelectric transport properties of sintered nanocrystalline silicon samples were characterized with respect to their oxygen content. An innovative method allowing a quantitative silicon oxide analysis by means of electron microscopy was applied: the contrast between areas of high and low electrical conductivity was attributed to the silicon matrix and silicon oxide precipitates, respectively. Thermoelectric characterization revealed that both, electron mobility and thermal conductivity decrease with increasing silicon oxide content. A maximum figure of merit with zT = 0.45 at 950 °C was achieved for samples with a silicon oxide mass fraction of 9.5 and 21.4% while the sample with more than 25% of oxygen clearly indicates a negative impact of the oxygen on the electron mobility. Contribution to the Topical Issue "Silicon and Silicon-related Materials for Thermoelectricity", edited by Dario Narducci.

  14. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Directory of Open Access Journals (Sweden)

    Hector Carreon

    2017-05-01

    Full Text Available The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  15. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Science.gov (United States)

    Carreon, Hector

    2017-05-01

    The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  16. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  17. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kang, Phil Hyun; Choi, Jae Hak

    2010-04-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we carried out the radiation-based new research to apply long-term moisturizing effects and effective natural herbal extracts on the atopic wounds using gamma-ray irradiation. Also, we have developed the separator and the polymer gel electrolyte for lithium secondary battery by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology for TFT-LCD panel by radiation. In the 3rd project, we have developed the various radiation-based techniques for the surface modification of polymers and ceramics, biomolecules immobilization and patterning, prevention of biomolecule's non-specific adhesion, and surface modification of carbon nanotubes

  18. Development of new organic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Kang, Phil Hyun; Choi, Jae Hak

    2010-04-15

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we carried out the radiation-based new research to apply long-term moisturizing effects and effective natural herbal extracts on the atopic wounds using gamma-ray irradiation. Also, we have developed the separator and the polymer gel electrolyte for lithium secondary battery by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology for TFT-LCD panel by radiation. In the 3rd project, we have developed the various radiation-based techniques for the surface modification of polymers and ceramics, biomolecules immobilization and patterning, prevention of biomolecule's non-specific adhesion, and surface modification of carbon nanotubes

  19. The Development of Ojibway Language Materials.

    Science.gov (United States)

    Pheasant-Williams, Shirley

    2003-01-01

    Revitalization of the Nishinaabeg language started in 1998 with the development of language materials. A committee on Nishinaabemwin orthography advised on the development of the text and writing system. Teaching methods follow the four parts of Medicine Wheel teachings: spiritual, emotional, physical, and mental. An interactive hockey game and a…

  20. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    Science.gov (United States)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  1. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  2. Superconductivity and magnetism: Materials properties and developments

    International Nuclear Information System (INIS)

    Andersen, N.H.; Bay, N.; Grivel, J.C.

    2003-01-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T c superconductivity, magnetic superconductors, MgB 2 , CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  3. Quantum interference in thermoelectric molecular junctions: A toy model perspective

    Science.gov (United States)

    Nozaki, Daijiro; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

    2014-08-01

    Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

  4. Increasing the thermoelectric power factor of Ge17Sb2Te20 by adjusting the Ge/Sb ratio

    Science.gov (United States)

    Williams, Jared B.; Mather, Spencer P.; Page, Alexander; Uher, Ctirad; Morelli, Donald T.

    2017-07-01

    We have investigated the thermoelectric properties of Ge17Sb2Te20. This compound is a known phase change material with electronic properties that depend strongly on temperature. The thermoelectric properties of this compound can be tuned by altering the stoichiometry of Ge and Sb without the use of additional foreign elements during synthesis. This tuning results in a 26% increase in the thermoelectric power factor at 723 K. Based on a single parabolic band model we show that the pristine material is optimally doped, and thus, a reduction in the lattice thermal conductivity of pure Ge17Sb2Te20 should result in an enhanced thermoelectric figure of merit.

  5. DEVELOPING LISTENING MATERIALS FOR THE TENTH GRADERS

    Directory of Open Access Journals (Sweden)

    Muhammad Lukman Syafi’i

    2016-11-01

    Full Text Available The needs survey shows that English listening skill of the students in the tenth graders of Indonesian Islamic High School or Madrasah Aliyah is not well developed. Consequently, the listening instructional materials based on standard of content 2006 used in the classes need to be advanced. The researcher used only one try out of the product, second revision in this study was the seventh step of Borg and Gall model operational product revision. This was done based on the result of the try out, and the final product (the production of the new materials. The development used in this study consists of needs survey, developing the materials, experts and teacher‟s validation, revision, try out, second revision and the final product. The product is found acceptable for the tenth grade students.

  6. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  7. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  8. Performance and stress analysis of oxide thermoelectric module architecture designed for maximum power output

    DEFF Research Database (Denmark)

    Wijesekara, Waruna; Rosendahl, Lasse; Wu, NingYu

    of real thermoelectric uni-couples, the three-dimensional governing equations for the coupled heat transfer and thermoelectric effects were developed. Finite element simulations of this system were done using the COMSOL Multiphysics solver. Prototypes of the models were developed and the analytical...

  9. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  10. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.

    Science.gov (United States)

    Zhou, Si; Guo, Yu; Zhao, Jijun

    2016-04-21

    The thermoelectric properties of two-dimensional (2D) materials are of great interest for both fundamental science and device applications. Graphene oxide (GO), whose physical properties are highly tailorable by chemical and structural modifications, is a potential 2D thermoelectric material. In this report, we pattern nanoroads on GO sheets with epoxide functionalization, and investigate their ballistic thermoelectric transport properties based on density functional theory and the nonequilibrium Green's function method. These graphene oxide nanoroads (GONRDs) are all semiconductors with their band gaps tunable by the road width, edge orientation, and the structure of the GO matrix. These nanostructures show appreciable electrical conductance at certain doping levels and enhanced thermopower of 127-287 μV K(-1), yielding a power factor 4-22 times of the graphene value; meanwhile, the lattice thermal conductance is remarkably reduced to 15-22% of the graphene value; consequently, attaining the figure of merit of 0.05-0.75. Our theoretical results are not only helpful for understanding the thermoelectric properties of graphene and its derivatives, but also would guide the theoretical design and experimental fabrication of graphene-based thermoelectric devices of high performance.

  11. Semiconductor thermoelectric generators

    CERN Document Server

    Fahrner, Wolfgang R

    2009-01-01

    It is well-known that fossil fuels are being rapidly depleted, and that atomic power is rejected by many people. As a consequence, there is a strong trend towards alternative sources such as wind, photovoltaics, solar heat and biomass. Strangely enough, quite another power source is generally neglected: namely, the thermoelectric generator (a device which converts heat, i.e. thermal energy, directly into electrical energy). The reason for this neglect is probably the low conversion efficiency, which is of the order of a few percent at most. However, there are two arguments in favor of the ther

  12. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Hittman, F.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 2 claims, 4 drawing figures

  13. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Barr, H.N.

    1978-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 4 claims, 4 figures

  14. Helical thermoelectrics and refrigeration.

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2018-02-01

    The thermoelectric properties of a three-terminal quantum spin Hall (QSH) sample are examined. The inherent helicity of the QSH sample helps to generate a large charge power efficiently. Along with charge the system can be designed to work as a highly efficient spin heat engine too. The advantage of a helical over a chiral sample is that, while a multiterminal quantum Hall sample can only work as a quantum heat engine due to broken time reversal (TR) symmetry, a multiterminal QSH system can work effectively as both a charge or spin heat engine and as a charge or spin refrigerator as the TR symmetry is preserved.

  15. Helical thermoelectrics and refrigeration

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2018-02-01

    The thermoelectric properties of a three-terminal quantum spin Hall (QSH) sample are examined. The inherent helicity of the QSH sample helps to generate a large charge power efficiently. Along with charge the system can be designed to work as a highly efficient spin heat engine too. The advantage of a helical over a chiral sample is that, while a multiterminal quantum Hall sample can only work as a quantum heat engine due to broken time reversal (TR) symmetry, a multiterminal QSH system can work effectively as both a charge or spin heat engine and as a charge or spin refrigerator as the TR symmetry is preserved.

  16. Recent developments in hard magnetic materials

    International Nuclear Information System (INIS)

    Asti, G.

    1989-01-01

    Hard magnetic materials find ever-increasing uses in modern technology. Their importance is mainly in the domain of permanent magnets, but a variety of other applications is being offered to this class of materials, especially for what regards the areas of information storage, telecommunications and special electronic devices. These developments are connected to the emphasis that is more and more given to thin films having high magnetic anisotropy. The recent advancement in the field of hard magnetic materials is among the best examples where technology depends to a great extent upon the continuous progress in the scientific knowledge. The research activity is characterized by the introduction of new classes of materials and continuous improvements in the preparation techniques both for what regards industrial processing and method for obtaining high quality materials in form of crystals, films or amorphous specimens. In this respect a special place must be reserved to rare earth transition metal compounds, a class of materials that attracted enormeous attention after the discovery by Hoffer and Strnat in 1966 of the large uniaxial magnetocrystalline anisotropy of the compound YCo 5 . Beside the so called 1:5 phase, other compositions of technical importance are the 2:17 and the recently discovered Nd 2 Fe 14 B, which is a real new ternary phase having tetragonal crystal structure. Great efforts have been done to gain a better understanding of the magnetic anisotropy and its relationship to the coercivity is of leading importance for a further development in this important area of magnetism. (orig.)

  17. Paper-Based Origami Flexible and Foldable Thermoelectric Nanogenerator

    KAUST Repository

    Rojas, Jhonathan Prieto

    2016-11-12

    Paper has been an essential material in our daily life since ancient times. Its affordability, accessibility, adaptability, workability and its easiness of usage makes it an attractive structural material to develop many kind of technologies such as flexible electronics, energy storage and harvesting devices. Additionally, the scientific community has increased its interest on waste heat as an environmentally friendly energy source to support the increasing energy demand. Therefore, in this paper we described two affordable and flexible thermoelectric nanogenerators (TEGs) developed on paper substrates by the usage of simple micromachining and microfabrication techniques. Moreover, they exhibit mechanical stability and adaptability (through folding and cutting techniques) for a diverse set of scenarios where vertical or horizontal schemes can be conveniently used depending on the final application. The first TEG device, implemented on standard paper, generated a power of 0.5 nW (ΔT = 50 K). By changing the substrate to a tearless and extra-smooth polyester paper, the TEG performance was optimized achieving less internal resistance and a greater power of ~80 nW (ΔT = 75 K), at the cost of more rigidity in the substrate. This power represented over three times higher power production than the standard paper–based TEG with same dimensions, number of thermoelectric pairs and temperature difference. Another interesting aspect of paper based TEG is due to its foldability, one can control the temperature difference by unfolding (larger separation between hot and cold ends) and folding (smaller separation). Finally, one of the underlying objectives of this work is to spread the availability of essential technologies to the broad population by inclusion of everyday materials and simple processes.

  18. THERMOELECTRIC PROPERTIES OF HOT-PRESSED p-TYPE Mg2Si0.3Sn0.7 SOLID SOLUTION

    Directory of Open Access Journals (Sweden)

    G. N. Isachenko

    2014-05-01

    Full Text Available It is shown that thermoelectric energy conversion which gives the possibility for utilizing a low potential heat is one of the ways for adoption of energy-saving technologies; and semiconductor materials with p-type and n-type conductivities having high thermoelectric figure of merit are necessary for operation of thermoelectric generators. The paper deals with possibility of usage of the p-Mg2Si0.3Sn0.7 solid solution (with a nanostructured modification as a couple for the well studied thermoelectric material based on n-Mg2Si-Mg2Sn. A technological scheme for fabrication of heavily doped Mg2Si0.3Sn0.7 solid solution of p-type by hot pressing from nanopowder is developed. The given technology has made it possible to reduce duration of a homogeneous material fabrication and has improved its physical and chemical properties. The samples were made by three ways: direct fusion for polycrystals fabrication; hot pressing from microparticles; nanostructuring, i.e. hot pressing from nanoparticles. By X-ray diffraction it is shown that sizes of structural elements in the fabricated samples are about 40 nm. The probe technique is used for measurement of electric conductivity and Seebeck coefficient. The stationary absolute method is used for measurement of thermal conductivity. Thermoelectric figure of merit is defined by measured values of kinetic coefficients in the temperatures range of 77 – 800 K. It was demonstrated, that electric conductivity, Seebeck coefficient and the power factor do not depend practically on a way of solid solution preparation. Thermal conductivity of samples pressed from nanoparticles has appeared to be higher, than of samples, obtained by direct fusion; i.e. in this case nanostructuring has not led to increase of thermoelectric figure of merit. The conclusion is drawn, that polycrystalline semiconductor Mg2Si0.3Sn0.7 can be used as a p-branch for a thermoelectric generator though nanostructuring has not led to the figure of

  19. Effects of Synthesis and Processing on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    . The thermoelectric performance improvement observed for the solid-state and sol-gel reactions suggests that the particle sizes may be a predominant key parameter of the Ca3Co4O9+δ thermoelectric properties. Smaller particle size (500 nm) as produced in this study by sol-gel synthesis method with optimal SPS process...... conditions would be a better way to fabricate high performance thermoelectric material Ca3Co4O9+δ....

  20. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  1. Development of functional materials by using ultrafast laser pulses

    Science.gov (United States)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  2. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor

    International Nuclear Information System (INIS)

    Wang, Feng; Cao, Yiding; Wang, Guoqiang

    2015-01-01

    Thermoelectric (TE) generator converts heat to electric energy by thermoelectric material. However, heat removal on the cold side of the generator represents a serious challenge. To address this problem and for improved energy conversion, a thermoelectric generation process coupled with methanol steam reforming (SR) for hydrogen production is designed and analyzed in this paper. Experimental study on the cold spot character in a micro-reactor with monolayer catalyst bed is first carried out to understand the endothermic nature of the reforming as the thermoelectric cold side. A novel methanol steam reforming micro-reactor heated by waste heat or methanol catalytic combustion for hydrogen production coupled with a thermoelectric generation module is then simulated. Results show that the cold spot effect exists in the catalyst bed under all conditions, and the associated temperature difference first increases and then decreases with the inlet temperature. In the micro-reactor, the temperature difference between the reforming and heating channel outlets decreases rapidly with an increase in thermoelectric material's conductivity coefficient. However, methanol conversion at the reforming outlet is mainly affected by the reactor inlet temperature; while at the combustion outlet, it is mainly affected by the reactor inlet velocity. Due to the strong endothermic effect of the methanol steam reforming, heat supply of both kinds cannot balance the heat needed at reactor local areas, resulting in the cold spot at the reactor inlet. When the temperature difference between the thermoelectric module's hot and cold sides is 22 K, the generator can achieve an output voltage of 55 mV. The corresponding molar fraction of hydrogen can reach about 62.6%, which corresponds to methanol conversion rate of 72.6%. - Highlights: • Cold spot character of methanol steam reforming was studied through experiment. • Thermoelectric generation Coupling MSR process has been

  3. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective

    Directory of Open Access Journals (Sweden)

    Xiaoxuan Zhang

    2017-02-01

    Full Text Available A BiCuSeO system has been reported as a promising thermoelectric material and has attracted great attention in the thermoelectric community since 2010. Recently, several remarkable studies have been reported and the ZT of BiCuSeO was pushed to a higher level. It motivates us to systematically summarize the recent reports on the BiCuSeO system. In this short review, we start with several attempts to optimize thermoelectric properties of BiCuSeO. Then, we introduce several opinions to explore the origins of low thermal conductivity for BiCuSeO. Several approaches to enhance thermoelectric performance are also summarized, including modulation doping, introducing dual-vacancies, and dual-doping, etc. At last, we propose some possible strategies for enhancing thermoelectric performance of BiCuSeO in future research.

  4. Recent developments in hard magnetic bulk materials

    International Nuclear Information System (INIS)

    Fidler, Josef; Schrefl, Thomas; Hoefinger, Sabine; Hajduga, Maciej

    2004-01-01

    The importance of newly developed permanent magnetic materials in many electromechanical, magnetomechanical and electronic applications is attributed to the drastic improvement in microstructure related properties, such as the remanence, the magnetic energy density product and the coercive field. The influence of the microstructure on the magnetic properties of the magnets will be discussed, where special emphasis is laid on rare earth permanent magnets. Highest performance, anisotropic Nd-Fe-B magnets with J r >1.5 T (BH) max >450 kJm -3 and J H c > 750 kAm -1 , which are produced by the powder metallurgy route, show a strong influence of composition and processing parameters on the magnetic properties. The magnetic properties of Sm(Co,Cu,Fe,Zr) z sintered magnets, which are used nowadays for high temperature applications between 300 and 500 deg. C, are determined by the cellular precipitation microstructure, which is developed during a complex heat treatment and by the microchemistry. Special hard magnetic powder materials, such as Sm 2 Fe 17 N 3 and nanocrystalline, composite Nd 2 Fe 14 B /(α-Fe,Fe 3 B) materials have been developed especially for usage in bonded magnetic materials, which show the strongest annual increase in the production of permanent magnets. The phenomenon of the enhancement of remanence, occurring in single phase and composite Nd 2 Fe 14 B based magnets with isotropic grain alignment, is attributed to intergrain exchange interactions

  5. Semimetals and the problem of cryogenic thermoelectric cooling

    International Nuclear Information System (INIS)

    Bodiul, P.; Gitsu, D.; Konopko, L.; Nikolaeva, A.; Huber, T.

    2002-01-01

    Reviewed are some specific peculiarities of the electronic transport phenomena in bismuth and its alloys single crystals, the impurity states behaviour and the crystal sizes influence with the purpose to determine the convenient method for the improvement of the thermoelectric efficiency in these materials. High temperature superconductivity has open new possibilities for the development of the cryoelectronics. However, for their realisation, it is essential to obtain low temperatures (T c ∼ 5 mm at T = 4.2 K), and technological parameters, bismuth and its alloys are of a special interest for nanoelectronics. The given paper is a brief review of some specific peculiarities of galvano-thermomagnetic phenomena in the bismuth and its alloys single crystals, behaviour of impurity states and the influence of the crystal sizes. (authors)

  6. Material Requirements, Selection And Development for the Proposed JIMO SpacePower System

    International Nuclear Information System (INIS)

    Ring, P.J.; Sayre, E.D.

    2004-01-01

    NASA is proposing a major new nuclear Space initiative--The Jupiter Icy Moons Orbiter (JIMO). A mission such as this inevitably requires a significant power source both for propulsion and for on-board power. Three reactor concepts, liquid metal cooled, heat pipe cooled and gas cooled are being considered together with three power conversion systems Brayton (cycle), Thermoelectric and Stirling cycles, and possibly Photo voltaics for future systems. Regardless of the reactor system selected it is almost certain that high temperature (materials), refractory alloys, will be required. This paper revisits the material selection options, reviewing the rationale behind the SP-100 selection of Nb-1Zr as the major cladding and structural material and considers the alternatives and developments needed for the longer duty cycle of the JIMO power supply. A side glance is also taken at the basis behind the selection of Uranium nitride fuel over UO2 or UC and a brief discussion of the reason for the selection of Lithium as the liquid metal coolant for SP-100 over other liquid metals

  7. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    Science.gov (United States)

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  8. Development of tissue mimicking ultrasound phantom materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Sang Chul [Shinheung College, Uijeongbu (Korea, Republic of); Kong, Young Kun [Kyonggi University, Suwon (Korea, Republic of); Park, Ki Jung [Korea Food Drug Administration, Seoul (Korea, Republic of); Lee, Suk [Yonsei Medical Center, Seoul (Korea, Republic of)

    2003-06-15

    We carried out studies on develop of the ultrasound tissue mimicking materials (TMM) by synthesis of polymer urethane (C, CCR, TiO{sub 2}, tungsten, graphite, silver type). The major finding were as follows; (1) C type TMM was shown good homogeneity, penetration, gray scale like as liver tissue and propagated speed 1,540 m/s, attenuation 0.5 {approx} 0.7 dB/cm/MHz. (2) TiO{sub 2} type TMM was shown heterogeneous dot echo pattern. (3) Silver type TMM was appear good homogeneous echo pattern like as echo texture of thyroid gland. Therefor, C type TMM will be useful for ultrasound Q/A phantom materials and previous phantom materials.

  9. Analysis of a sandwich-type generator with self-heating thermoelectric elements

    International Nuclear Information System (INIS)

    Kim, Mikyung; Yang, Hyein; Wee, Daehyun

    2014-01-01

    Highlights: • A novel and unique type of thermoelectric generators is proposed. • Heat source is combined in thermoelectric elements, reducing heat transfer problems. • Embedding radioactive isotopes is proposed as a way to implement the new design. • Conversion efficiency and power density are estimated for the proposed design. - Abstract: A novel and unique design of thermoelectric generators, in which a heat source is combined with thermoelectric elements, is proposed. By placing heat-generating radioactive isotopes inside the thermoelectric elements, the heat transfer limitation between the generator and the heat source can be eliminated, ensuring simplicity. The inner electrode is sandwiched between identical thermoelectric elements, which naturally allows the inner core to act as the hot side. Analysis shows that conversion efficiency and power density increase as the heat density inside the thermoelectric elements increases and as the thermoelectric performance of the material improves. The theoretical maximum efficiency is shown to be 50%. However, realistic performance under practical constraint is much worse. In realistic cases, the efficiency would be about 3% at best. The power density of the proposed design exhibits a much more reasonable value as high as 3000 W/m 2 . Although the efficiency is low, the simplicity of the proposed design combined with its reasonable power density may result in some, albeit limited, potential applications. Further investigation must be performed in order to realize such potential

  10. Development of the Structural Materials Information Center

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.

    1990-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where data and information on the time variation of concrete and other structural material properties under the influence of pertinent environmental stressors and aging factors are being collected and assembled into a data base. This data base will be used to assist in the prediction of potential long-term deterioration of critical structural components in nuclear power plants and to establish limits on hostile environmental exposure for these structures and materials. Two complementary data base formats have been developed. The Structural Materials Handbook is an expandable, hard-copy reference document that contains complete sets of data and information for selected portland cement concrete, metallic reinforcement, prestressing tendon, and structural steel materials. Baseline data, reference properties and environmental information are presented in the handbook as tables, notes and graphs. The handbook, which will be published in four volumes, serves as the information source for the electronic data base. The Structural Materials Electronic Data Base is accessible by an IBM-compatible personal computer and provides an efficient means for searching the various data base files to locate materials with similar properties. Properties will be reported in the International System of Units (SI) and in customary units whenever possible. 7 refs., 3 figs., 4 tabs

  11. MEMS-based thermoelectric infrared sensors: A review

    Science.gov (United States)

    Xu, Dehui; Wang, Yuelin; Xiong, Bin; Li, Tie

    2017-12-01

    In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

  12. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    Science.gov (United States)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  13. Mg 2Si nanocomposite converted from diatomaceous earth as a potential thermoelectric nanomaterial

    Science.gov (United States)

    Szczech, Jeannine R.; Jin, Song

    2008-07-01

    With recent literature demonstrating enhancement of the thermoelectric performance of nanoscale materials relative to their corresponding bulk materials, methods to synthesize low-dimensional nanomaterials in large scale at low cost are needed. We demonstrate a method for preparing nanostructured dimagnesium silicide (Mg 2Si) thermoelectric materials that are nanocomposites with MgO by the reduction of diatomaceous earth (diatoms) using a gas-displacement solid state reaction with magnesium vapor. The resulting semiconducting Mg 2Si preserves the general morphology of the original diatoms and their nanosized grains at least down to the size of 30 nm. This reaction represents a possible method for the production of large quantities of low-cost nanoscale thermoelectric materials with potential for enhanced thermoelectric performance.

  14. High – temperature thermoelectric properties of Hg – doped CuInTe2

    Czech Academy of Sciences Publication Activity Database

    Kucek, V.; Drašar, Č.; Kašparová, J.; Plecháček, T.; Navrátil, Jiří; Vlček, Milan; Beneš, L.

    2015-01-01

    Roč. 118, č. 12 (2015), 125105-1 - 125105-7 ISSN 0021-8979 Institutional support: RVO:61389013 Keywords : thermoelectric materials * Hall coefficient * Seebeck coefficient Subject RIV: CA - Inorganic Chemistry Impact factor: 2.101, year: 2015

  15. High Coefficient of Performance HgCdTe And Metallic Superlattice-Based Thermoelectric Coolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of nanoscale superlattices (SLs) as the active elements of high efficiency thermoelectric coolers. Recent models predict that the...

  16. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  17. Thermoelectric detection and imaging of propagating graphene plasmons.

    Science.gov (United States)

    Lundeberg, Mark B; Gao, Yuanda; Woessner, Achim; Tan, Cheng; Alonso-González, Pablo; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Hillenbrand, Rainer; Koppens, Frank H L

    2017-02-01

    Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems, our device converts the natural decay product of the plasmon-electronic heat-directly into a voltage through the thermoelectric effect. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.

  18. Enhanced thermoelectric figure of merit in polycrystalline carbon nanostructures

    Science.gov (United States)

    Lehmann, Thomas; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-07-01

    Grain boundaries are commonly observed in carbon nanostructures, but their influence on thermal and electric properties is still not completely understood. Using a combined approach of density functional tight-binding theory and nonequilibrium Green functions we investigate electron and phonon transport in carbon-based systems. In this work, quantum transport and thermoelectric properties are summarized for graphene sheets, graphene nanoribbons, and carbon nanotubes with a variety of grain boundary types in a wide temperature range. Motivated by previous findings that disorder scatters phonons more effectively than electrons, a significant improvement in the thermoelectric performance for polycrystalline systems is expected. As the effect is marginally sensitive to the grain boundary type, we demonstrate that grain boundaries are a viable tool to greatly enhance the figure of merit, paving the way for the design of new thermoelectric materials.

  19. Thermoelectric micro converters for cooling and energy-scavenging systems

    International Nuclear Information System (INIS)

    Goncalves, L M; Couto, C; Correia, J H; Alpuim, P

    2008-01-01

    This paper describes the fabrication process of thermoelectric microconverters, based on n-type bismuth telluride (Bi 2 Te 3 ) and p-type antimony telluride (Sb 2 Te 3 ) thin films. The films are fabricated by thermal co-evaporation with thermoelectric properties comparable to those reported for the same materials in bulk form (used in conventional macro-scale Peltier modules). The absolute value of the Seebeck coefficient in the range of 150–250 µV K −1 and an in-plane electrical resistivity of 7–15 µΩ m were obtained. The influence of fabrication parameters on thermoelectric properties is reported. The films were patterned by photolithography and wet-etching techniques, using HNO 3 /HCl-based etchants. The influence of composition and concentration of etchants in the lithographic process is reported. A microcooler was fabricated

  20. and p- type Metal Oxide Compounds For Thermoelectric Device ...

    Indian Academy of Sciences (India)

    28

    the wasteful heat energy, such as direct solar energy, excess heat from the car engines etc. into productive electrical energy [2-5]. Thermoelectric materials work on the principles of Seebeck effect and Peltier effect [5]. Electric current flows when two dissimilar charge carrying semiconductors that are n-type and p-type ...

  1. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  2. and p-type metal oxide compounds for thermoelectric device ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... for energy harvesting [1]. Among these renewable energy sources, thermoelectric materials are gaining considerable attention as they can be useful in converting the wasteful heat energy, such as direct solar energy, excess heat from the car engines, etc. into productive electrical energy [2–5]. Thermo-.

  3. Exploratory Research on Radioisotope Thermoelectric Generators for Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Freis D.

    2017-01-01

    The new exploratory research project will be introduced together with an overview on the available facilities and capabilities of JRC in this domain. Alternative americium forms with potential improved stability versus the oxides are discussed and innovative thermoelectric materials based on actinides are introduced.

  4. Borehole Plugging-Materials Development Program

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1978-06-01

    This report discusses the background and first year's results of the grouting materials development program for plugging boreholes associated with the Nuclear Waste Isolation Pilot Plant. The grouts are to be pumpable, impermeable, and durable for many thousands of years. The work was done at the Concrete Laboratory of the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. The workability, strength, porosity, bonding, expansion, and permeability data are summarized and discussed. The work is continuing at WES

  5. Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting

    Science.gov (United States)

    Gomez, Miguel; Reid, Rachel; Ohara, Brandon; Lee, Hohyun

    2013-05-01

    Recent reports on enhanced thermoelectric figure of merits based on nanoscale effects have revived interest in potential applications of thermoelectric modules for waste heat recovery and distributed power generation. However, studies of optimized working conditions have not been thoroughly investigated. The majority of the previous studies on optimum load resistance for maximum power output or maximum efficiency assume temperatures at the ends of thermoelectric materials are known and constant. In reality, temperature should be determined by the energy conservation equations, which are functions of the load resistance, as well as the thermal resistances of the heat source, heat sink, and contact pads. This work exploits a numerical method to determine the actual temperature of thermoelectric materials, and optimum working conditions for thermoelectric energy harvesting are presented. The proposed model considers the effect of thermal resistances between a thermoelectric module and heat reservoirs, and the electrical current variation with respect to load resistance. The optimum condition for load resistance ratio was observed to occur at larger values than those obtained from traditional optimization work. Additionally, optimum geometry for a thermoelectric module is suggested for energy harvesting methods, where forced convection or oversized heat sinks cannot be used. Experimental results obtained from a commercial thermoelectric module are also presented to validate the proposed model. This work forms a basis to predict optimum working conditions in various thermoelectric energy harvesting applications.

  6. Materials development for HTGR heat exchangers

    International Nuclear Information System (INIS)

    Johnson, W.R.; Roberts, D.I.

    1983-01-01

    High-temperature, gas-cooled reactors (HTGR's) are uranium/thorium-fueled, graphite-moderated, helium-cooled systems capable of producing high-temperature primary coolant. Several variants of this system are under active development in the United States and worldwide. In one version, the primary coolant heat is transferred to steam generators producing 538 0 C/16.5 MPa steam for use in electricity generation or process heat applications. The materials and design technology for steam generators in this system are well developed, relying heavily upon prior experience with fossil-fired steam generators and the steam generators of the commercial HTGR's. The major work that remains to be done is to complete qualification of the materials and to respond to evolving rules pertinent to elevatedtemperature nuclear design and construction. Other versions of the HTGR generate much higher primary coolant gas temperatures (850 0 to 950 0 C) and exchange this heat, through intermediate heat exchangers (IHX's), to a secondary loop for higher temperature process heat applications. Although IHX's for these systems are typically pressure-balanced (low-stress) units, their design involves several challenges, including the potential interactions between structural materials and impurities present in the HTGR primary coolant. Considerable work is required to qualify materials for IHX applications, including detailed mechanical property characterization, determination of environmental influences on performance, provision of welding materials and procedures for producing joints of adequate strength and integrity, and provisions for wear protection. Some of the work currently under way addressing these issues is described

  7. Robot development for nuclear material processing

    International Nuclear Information System (INIS)

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs

  8. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  9. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  10. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  11. Developments in data storage materials perspective

    CERN Document Server

    Chong, Chong Tow

    2011-01-01

    "The book covers the recent developments in the field of materials for advancing recording technology by experts worldwide. Chapters that provide sufficient information on the fundamentals will be also included, so that the book can be followed by graduate students or a beginner in the field of magnetic recording. The book also would have a few chapters related to optical data storage. In addition to helping a graduate student to quickly grasp the subject, the book also will serve as a useful reference material for the advanced researcher. The field of materials science related to data storage applications (especially hard disk drives) is rapidly growing. Several innovations take place every year in order to keep the growth trend in the capacity of the hard disk drives. Moreover, magnetic recording is very complicated that it is quite difficult for new engineers and graduate students in the field of materials science or electrical engineering to grasp the subject with a good understanding. There are no compet...

  12. Constitutive Theory Developed for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  13. 'Speak out' - issues in participatory materials development

    Directory of Open Access Journals (Sweden)

    Zannie Bock

    2008-08-01

    Full Text Available This article outlines the development of a beginner English course called 'Speak Out' for adults in Adult Basic Education and Training classes in the early 1990s. The course uses an innovative roleplay methodology which builds on the experiences and language knowledge of the adult learners. It was conceptualised and developed within a participatory approach to adult learning and materials development. The article explores the tension between the ideals of the participatory approach and the constraints exerted by contextual and other factors. The article begins with an introduction of the context within which the materials were conceptualised, then offers a brief overview of the participatory approach, and then considers the following aspects of the 'Speak Out' course: the language learning methodology, issues of teacher competence and development, and lastly, the materials development process itself. Hierdie artikel beskryf die ontwikkeling van 'n beginnerskursus vir Engels, getitel 'Speak Out'. Dit is ontwerp vir volwassenes in klasse binne 'n Volwasse Basiese Onderrig en Opleiding-program in die vroee 1990s. Die kursus maak gebruik van innoverende rolspel as 'n metode wat spesifiek aansluit by die ervarings en taalkennis van volwasse leerders. Dit is gekonseptualiseer en ontwikkel as deel van 'n deelnemende benadering tot die opleiding van volwassenes en die ontwikkeling van hulpmiddels. Die artikel ondersoek die spanning tussen die ideale van 'n deelnemende benadering en die beperkinge wat opgele word deur kontekstuele en ander faktore. Die inleiding van die artikel gee 'n uiteensetting van die konteks waarbinne die hulpmiddels gekonseptualiseer is. Dan volg 'n kort oorsig oor die deelnemende benadering, en die volgende aspekte van die 'Speak Out'-kursus word oorweeg: die metodologie van taalaanleer, kwessies rondom onderwysers se vaardighede en ontwikkeling, en laastens, die proses van hulpmiddel-ontwikkeling self.

  14. Apparatus, System, and Method for On-Chip Thermoelectricity Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.

  15. Deployable Thermoelectric Metamaterial Energy Harvesting Monitoring System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will combine a novel asynchronous monitoring system with the first-of-its-kind thermoelectric metamaterial.  The thermoelectric prototype is constructed...

  16. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  17. Thermoelectric Properties of Two-Dimensional Molybdenum-based MXenes

    KAUST Repository

    Kim, Hyunho

    2017-07-05

    MXenes are an interesting class of 2D materials consisting of transition metal carbides and nitrides, which are currently a subject of extensive studies. Although there have been theoretical calculations estimating the thermoelectric properties of MXenes, no experimental measurements have been reported so far. In this report, three compositions of Mo-based MXenes (Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx) have been synthesized and processed into free-standing binder-free papers by vacuum-assisted filtration, and their electrical and thermoelectric properties are measured. Upon heating to 800 K, these MXene papers exhibit high conductivity and n-type Seebeck coefficient. The thermoelectric power reaches 3.09×10-4 W m-1 K-2 at 803 K for the Mo2TiC2Tx MXene. While the thermoelectric properties of MXenes do not reach that of the best materials, they exceed their parent ternary and quaternary layered carbides. Mo2TiC2Tx shows the highest electrical conductivity in combination with the largest Seebeck coefficient of the three 2D materials studied.

  18. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  19. Characteristic Evaluation on Cooling Performance of Thermoelectric Modules.

    Science.gov (United States)

    Seo, Sae Rom; Han, Seungwoo

    2015-10-01

    The aim of this work is to develop a performance evaluation system for thermoelectric cooling modules. We describe the design of such a system, composed of a vacuum chamber with a heat sink along with a metal block to measure the absorbed heat Qc. The system has a simpler structure than existing water-cooled or air-cooled systems. The temperature difference between the cold and hot sides of the thermoelectric module ΔT can be accurately measured without any effects due to convection, and the temperature equilibrium time is minimized compared to a water-cooled system. The evaluation system described here can be used to measure characteristic curves of Qc as a function of ΔT, as well as the current-voltage relations. High-performance thermoelectric systems can therefore be developed using optimal modules evaluated with this system.

  20. Cross-plane Thermoelectric and Thermionic Transport across Au/h-BN/Graphene Heterostructures.

    Science.gov (United States)

    Poudel, Nirakar; Liang, Shi-Jun; Choi, David; Hou, Bingya; Shen, Lang; Shi, Haotian; Ang, Lay Kee; Shi, Li; Cronin, Stephen

    2017-10-26

    The thermoelectric voltage generated at an atomically abrupt interface has not been studied exclusively because of the lack of established measurement tools and techniques. Atomically thin 2D materials provide an excellent platform for studying the thermoelectric transport at these interfaces. Here, we report a novel technique and device structure to probe the thermoelectric transport across Au/h-BN/graphene heterostructures. An indium tin oxide (ITO) transparent electrical heater is patterned on top of this heterostructure, enabling Raman spectroscopy and thermometry to be obtained from the graphene top electrode in situ under device operating conditions. Here, an AC voltage V(ω) is applied to the ITO heater and the thermoelectric voltage across the Au/h-BN/graphene heterostructure is measured at 2ω using a lock-in amplifier. We report the Seebeck coefficient for our thermoelectric structure to be -215 μV/K. The Au/graphene/h-BN heterostructures enable us to explore thermoelectric and thermal transport on nanometer length scales in a regime of extremely short length scales. The thermoelectric voltage generated at the graphene/h-BN interface is due to thermionic emission rather than bulk diffusive transport. As such, this should be thought of as an interfacial Seebeck coefficient rather than a Seebeck coefficient of the constituent materials.