WorldWideScience

Sample records for thermoelectric material development

  1. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  2. Thermoelectric Materials

    Science.gov (United States)

    Gao, Peng; Berkun, Isil; Schmidt, Robert D.; Luzenski, Matthew F.; Lu, Xu; Bordon Sarac, Patricia; Case, Eldon D.; Hogan, Timothy P.

    2014-06-01

    Mg2(Si,Sn) compounds are promising candidate low-cost, lightweight, nontoxic thermoelectric materials made from abundant elements and are suited for power generation applications in the intermediate temperature range of 600 K to 800 K. Knowledge on the transport and mechanical properties of Mg2(Si,Sn) compounds is essential to the design of Mg2(Si,Sn)-based thermoelectric devices. In this work, such materials were synthesized using the molten-salt sealing method and were powder processed, followed by pulsed electric sintering densification. A set of Mg2.08Si0.4- x Sn0.6Sb x (0 ≤ x ≤ 0.072) compounds were investigated, and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si0.364Sn0.6Sb0.036. The high ZT is attributed to a high electrical conductivity in these samples, possibly caused by a magnesium deficiency in the final product. The mechanical response of the material to stresses is a function of the elastic moduli. The temperature-dependent Young's modulus, shear modulus, bulk modulus, Poisson's ratio, acoustic wave speeds, and acoustic Debye temperature of the undoped Mg2(Si,Sn) compounds were measured using resonant ultrasound spectroscopy from 295 K to 603 K. In addition, the hardness and fracture toughness were measured at room temperature.

  3. Development in Zn4Sb-based thermoelectric materials

    DEFF Research Database (Denmark)

    Yin, Hao

    or thermopower,  the electrical conductivity, the thermal conductivity and T the absolute temperature. The best thermoelectrics are heavily doped semiconductors with high thermoelectric power factors and low thermal conductivities, known as “Phonon Glasses Electrical Crystals”. Zn4Sb3 is one such material......-section. The following part reports the effect of nano-particles on the thermoelectric properties and thermal stability of Zn4Sb3. Though TiO2 nano particles have remarkably enhanced the stability, the thermoelectric performance of all the nano-composites deteriorates. Optimization of the content of the nano...

  4. Pathways for acceleration of development and commercialization of novel thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir; Heian, Ellen M.; Harris, Fred R.; Sootsman, Joseph; Kossakovski, Dmitri [ZT Plus, Azusa, CA (United States)

    2011-07-01

    Efficient and robust thermoelectric (TE) materials are the cornerstone of any future TE generator system implementation. Today, efforts at commercialization of TE materials often lack the rigor and speed necessary for market readiness of any new material. Here we present the requirements for optimizing a thermoelectric material through a defined development process. We discuss the optimization process, tools that assist in rapid evaluation of thermoelectric performance, and the reproducibility of samples when these methods are employed. The results from our case study demonstrate the feasibility of this approach to prepare reproducible commercial quantities of advanced thermoelectric materials. (orig.)

  5. Development of Perovskite-Type Materials for Thermoelectric Application

    Directory of Open Access Journals (Sweden)

    Tingjun Wu

    2018-06-01

    Full Text Available Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  6. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  7. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  8. Thermoelectricity: materials and applications

    International Nuclear Information System (INIS)

    Elberg, S.; Mathonnet, P.

    1975-01-01

    After a brief recall of the basic principles of thermoelectricity, the essential characteristics intervening in the different thermoelectric devices operating modes are defined. Properties of the materials the most used nowadays and performances of the apparatus that they allow to realize are indicated. Advantages and drawbacks of the principal applications in the form of electrical generators, refrigerators and heat pumps are pointed out [fr

  9. Development of Inexpensive, Efficient and Non-Toxic Thermoelectric Materials

    Science.gov (United States)

    Gali, Anand Pratik

    In the wake of the impending climate change challenges, it is highly necessary to reevaluate our energy utilization technologies and ensure their efficient operation. Fossil fuel powered power-plants account for the majority of the energy production in the United States. With an average efficiency not exceeding 40%, these fossil fuel power plants dissipate exorbitant amounts of wasted heat. One of the ways of making such energy conversion processes more efficient is by incorporating technologies that can harvest this scavenge heat. One of the ways of achieving this is by the use of thermoelectric (TE) materials, which utilize the Seebeck effect to convert thermal gradient into potential difference. Therefore, our research project focusses on development of TE materials, which are inexpensive, efficient, and non-toxic. Fe0.50V0.25Al0.25 is a narrow band-gap semiconductor, ideal for TE applications. Unlike the current market leader Bi0.4Te0.6, Fe0.50V0.25 Al0.25 contains earth abundant and non-toxic constituents making it viable for commercial production. Nevertheless, the TE efficiency, ZT, of Fe0.50V0.25Al0.25 is limited by its high thermal conductivity. Therefore, the goal of the current research is two-fold. Firstly, to design and fabricate apparatus for performing TE characterization on bulk materials. For this purpose, two sets of apparatus were designed and fabricated for measuring high temperature Seebeck coefficient and electrical resistivity. Secondly, to study the influence of doping on TE properties of Fe0.50V0.25Al0.25 alloy. In order to achieve this, vanadium in Fe0.50V0.25Al0.25 was substituted with dopants like Ti, Cr, Zr, W, Nb, Ta. This led to a 20 times improvement in ZT, from the baseline Fe0.50V0.25Al0.25, by effectively reducing the thermal conductivity and increasing the Seebeck coefficient.

  10. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  11. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  12. Methods of synthesizing thermoelectric materials

    Science.gov (United States)

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  13. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in the

  14. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  15. Effective thermal conductivity in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  16. A review of thermoelectric cooling: Materials, modeling and applications

    International Nuclear Information System (INIS)

    Zhao, Dongliang; Tan, Gang

    2014-01-01

    This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized

  17. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    . Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  18. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  19. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  20. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good ...

  1. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  2. Investigation of Nanophase Materials for Thermoelectric Applications

    National Research Council Canada - National Science Library

    Stokes, Kevin

    2004-01-01

    .... We have also made contributions to new, pressure-dependent thermoelectric transport measurement techniques and chemical techniques for creating ordered nanoparticle assemblies consisting of two different nanoparticle materials.

  3. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  4. NATO Advanced Research Workshop on New Materials for Thermoelectric Applications

    CERN Document Server

    Hewson, Alex

    2013-01-01

    Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.

  5. Solar-TEP - Development of materials for thermo-electric power generators; SOLAR-TEP - Materialentwicklung fuer solarthermoelektrische Stromerzeuger - Schlussbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Weidenkaff, A.

    2008-06-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the development of materials for thermo-electric power generators. Cobaltate phases are discussed as being suitable materials for thermoelectric applications at high temperatures. These potential thermoelectric materials are characterised with respect to their crystal structure, microstructure, composition, and thermal stability. The Seebeck coefficient, thermal conductivity and electrical resistivity of polycrystalline cobaltates with perovskite-type and layered-cobaltite structure are evaluated for a wide temperature range. The large Seebeck coefficient exhibited by both perovskite-type and layered cobaltite phases is analysed using the Heikes formula. The work is illustrated with results obtained for various materials in graphical form.

  6. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  7. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  8. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called ... However, there are other parameters which are fairly good indicators ... Whereas a final deciding factor reflecting on .... matter of a future work.

  9. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  10. Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields

    Science.gov (United States)

    Zhu, Hao; Xiao, Chong

    2018-06-01

    Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.

  11. Knudsen pump driven by a thermoelectric material

    International Nuclear Information System (INIS)

    Pharas, Kunal; McNamara, Shamus

    2010-01-01

    The first use of a thermoelectric material in the bidirectional operation of a gas pump using thermal transpiration has been demonstrated. The thermoelectric material maintains a higher temperature difference which favors thermal transpiration and thus increases the efficiency of gas pumping. Since the hot and cold sides of the thermoelectric material are reversible, the direction of the pump may be changed by reversing the electrical current direction. Two different pump designs are presented that illustrate some of the design tradeoffs. The pumps are characterized by measuring the pressure difference that may be generated and by measuring the flow rate in the forward and reverse directions. For a pump composed of a porous material with a pore size of 100 nm, a maximum flow rate of 0.74 cm 3 min −1 and a maximum pressure of 1.69 kPa are achieved

  12. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  13. Thermoelectric materials and devices made therewith

    International Nuclear Information System (INIS)

    Moore, D.E.

    1985-01-01

    The disclosed invention includes improved devices and materials for thermoelectric conversion, particularly for operation at temperatures of 300 0 C. and below. Disordered p-type semiconductor elements incorporate compound adjuvants of silver and lead to achieve enhanced ''figure of merit'' values and corresponding increased efficiencies of thermoelectric conversion. Similar results are obtained with disordered n-type elements by employing lowered selenium contents, preferably in combination with cuprous bromide. Improved conversion devices include powder pressed elements from one or both of these materials

  14. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  15. Design concepts for improved thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Slack, G A

    1997-07-01

    Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and cryptoclathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

  16. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses

  17. Energy harvesting using a thermoelectric material

    Science.gov (United States)

    Nersessian, Nersesse [Van Nuys, CA; Carman, Gregory P [Los Angeles, CA; Radousky, Harry B [San Leandro, CA

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  18. From phase-change materials to thermoelectrics?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthias N.; Rosenthal, Tobias; Oeckler, Oliver [Dept. of Chemistry, Ludwig Maximilian Univ. Munich (Germany); Stiewe, Christian [German Aerospace Center, Cologne (Germany)

    2010-07-01

    Metastable tellurides play an important role as phase-change materials in data storage media and non-volatile RAM devices. The corresponding crystalline phases with very simple basic structures are not stable as bulk materials at ambient conditions, however, for a broad range of compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-type high-temperature phases are characterized by a large number of vacancies randomly distributed over the cation position, which order as 2D vacancy layers upon cooling. Short-range order in quenched samples produces pronounced nanostructures by the formation of twin domains and finite intersecting vacancy layers. As phase-change materials are usually semimetals or small-bandgap semiconductors and efficient data storage requires low thermal conductivity, bulk materials with similar compositions and properties can be expected to exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have shown that germanium antimony tellurides with compositions close to those used as phase-change materials in rewritable Blu-Ray Discs, e.g. (GeTe){sub 12}Sb{sub 2}Te{sub 3}, exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 C if a nanodomain structure is induced by rapidly quenching the cubic high-temperature phase. Structural changes have been elucidated by X-ray diffraction and high-resolution electron microscopy. (orig.)

  19. Half-Heusler Alloys as Promising Thermoelectric Materials

    Science.gov (United States)

    Page, Alexander A.

    This thesis describes Ph.D. research on the half-Heusler class of thermoelectric materials. Half-Heusler alloys are a versatile class of materials that have been studied for use in photovoltaics, phase change memory, and thermoelectric power generation. With respect to thermoelectric power generation, new approaches were recently developed in order to improve the thermoelectric figure of merit, ZT, of half-Heusler alloys. Two of the strategies discussed in this work are adding excess Ni within MNiSn (M = Ti, Zr, or Hf) compounds to form full-Heusler nanostructures and using isoelectronic substitution of Ti, Zr, and Hf in MNiSn compounds to create microscale grain boundaries. This work uses computational simulations based on density functional theory, combined with the cluster expansion method, to predict the stable phases of pseudo-binary and pseudo-ternary composition systems. Statistical mechanics methods were used to calculate temperature-composition phase diagrams that relate the equilibrium phases. It is shown that full-Heusler nanostructures are predicted to remain stable even at high temperatures, and the microscale grain boundaries observed in (Ti,Zr,Hf)NiSn materials are found to be thermodynamically unstable at equilibrium. A new strategy of combining MNiSn materials with ZrNiPb has also recently emerged, and theoretical and experimental work show that a solid solution of the two materials is stable.

  20. Nano-materials Enabled Thermoelectricity from Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-13

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 206C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  1. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    of the dopants and dopant concentrations, a large power factor was obtainable. The sample with the composition of Zn0.9Cd0.1Sc0.01O obtained the highest zT ∼0.3 @1173 K, ~0.24 @1073K, and a good average zT which is better than the state-of-the-art n-type thermoelectric oxide materials. Meanwhile, Sc-doped Zn......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  2. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    OpenAIRE

    Lim Chong C.; Al-Kayiem Hussain H.; Sing Chin Y.

    2014-01-01

    Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material f...

  3. Thermoelectric materials - Compromising between high efficiency and materials abundance

    Energy Technology Data Exchange (ETDEWEB)

    Homm, G.; Klar, P.J. [I. Physikalisches Institut, Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2011-09-15

    In the context of CO{sub 2} neutral and regenerative energy production, the field of thermoelectrics has shifted more and more into the focus of scientific research in the last few years. Particularly a lot of research projects were started in the field of energy autarkic sensor technology and the so called energy harvesting, i.e. the recycling of otherwise lost energy. A potentially huge industrial branch for thermoelectric applications is the automotive industry with a main emphasis on generating electricity out of the waste heat of combustion engines with the help of thermoelectric generators or using Peltier cooling to replace conventional air conditioning in the passenger compartment. In addition, many niche applications are possible, e.g. as sensors for measuring the air pressure of tires etc. The applications of thermoelectric devices are very versatile. We analyse the potential of the state-of-the-art thermoelectric materials SiGe, PbTe, Bi{sub 2}Te{sub 3}, FeSi{sub 2} and potentially ZnO with respect to employment in four types of applications, classified by mobile vs stationary and specialized vs. mass application. The selection criteria comprise efficiency, materials availability, costs, environmental friendliness and toxicity. Based on these criteria, a decision matrix for choosing the appropriate material system for a specific application is defined. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  5. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    Science.gov (United States)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  6. Studies of bulk materials for thermoelectric cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J W; Nolas, G S; Volckmann, E H

    1997-07-01

    The authors discuss ongoing work in three areas of thermoelectric materials research: (1) broad band semiconductors featuring anion networks, (2) filled skutterudites, and (3) polycrystalline Bi-Sb alloys. Key results include: a preliminary evaluation of a previously untested ternary semiconductor, KSnSb; the first reported data in which Sn is used as a charge compensator in filled antimonide skutterudites; the finding that Sn doping does not effect polycrystalline Bi{sub 1{minus}x}Sb{sub x} as it does single crystal samples.

  7. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  8. Efficient Space Hardy Thermoelectric Materials with Broad Temperature Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this work is developing new thermoelectric materials for use in fabricating solid state cooling devices and electrical power generators, which are 200 to...

  9. Efficient Space Hardy Thermoelectric Materials with Broad Temperature Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this work is to develop new thermoelectric materials for use in fabricating solid state cooling devices and electrical power generators, which are 200 to...

  10. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  11. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala

    2014-11-25

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  12. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2014-01-01

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  13. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    Science.gov (United States)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  14. Americium-241 radioisotope thermoelectric generator development for space applications

    International Nuclear Information System (INIS)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal

    2013-01-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  15. Americium-241 radioisotope thermoelectric generator development for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal, E-mail: rma8@le.ac.uk [University of Leicester, (United Kingdom); and others

    2013-07-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  16. Advances in thermoelectric materials research: Looking back and moving forward.

    Science.gov (United States)

    He, Jian; Tritt, Terry M

    2017-09-29

    High-performance thermoelectric materials lie at the heart of thermoelectrics, the simplest technology applicable to direct thermal-to-electrical energy conversion. In its recent 60-year history, the field of thermoelectric materials research has stalled several times, but each time it was rejuvenated by new paradigms. This article reviews several potentially paradigm-changing mechanisms enabled by defects, size effects, critical phenomena, anharmonicity, and the spin degree of freedom. These mechanisms decouple the otherwise adversely interdependent physical quantities toward higher material performance. We also briefly discuss a number of promising materials, advanced material synthesis and preparation techniques, and new opportunities. The renewable energy landscape will be reshaped if the current trend in thermoelectric materials research is sustained into the foreseeable future. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Test system for thermoelectric modules and materials

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Jiří; Knížek, Karel; Švejda, V.; Horna, P.; Sikora, M.

    2014-01-01

    Roč. 43, č. 10 (2014), s. 3726-3732 ISSN 0361-5235 R&D Projects: GA ČR GA13-17538S Institutional support: RVO:68378271 Keywords : thermoelectric power module * automatic thermoelectric testing setup * heat flow measurement * power generation * heat recovery Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.798, year: 2014

  18. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.; Atoyo, Jonathan; Carnie, Matthew J.; Baran, Derya; Schroeder, Bob C.

    2017-01-01

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  19. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.

    2017-01-29

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  20. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  1. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  2. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficient technique for computational design of thermoelectric materials

    Science.gov (United States)

    Núñez-Valdez, Maribel; Allahyari, Zahed; Fan, Tao; Oganov, Artem R.

    2018-01-01

    Efficient thermoelectric materials are highly desirable, and the quest for finding them has intensified as they could be promising alternatives to fossil energy sources. Here we present a general first-principles approach to predict, in multicomponent systems, efficient thermoelectric compounds. The method combines a robust evolutionary algorithm, a Pareto multiobjective optimization, density functional theory and a Boltzmann semi-classical calculation of thermoelectric efficiency. To test the performance and reliability of our overall framework, we use the well-known system Bi2Te3-Sb2Te3.

  4. Computational studies of novel thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D J; Mazin, I I; Kim, S G; Nordstrom, L

    1997-07-01

    The thermoelectric properties of La-filled skutterdites and {beta}-Zn{sub 4}Sb{sub 3} are discussed from the point of view of their electronic structures. These are calculated from first principles within the local density approximation. The electronic structures are in turn used to determine transport related quantities, {beta}-Zn{sub 4}Sb{sub 3} is found to be metallic with a complex Fermi surface topology, which yields a non-trivial dependence of the Hall concentration on the band filling. Calculations of the variation with band filling are used to extract the carrier concentration from the experimental Hall number. At this band filling, which corresponds to 0.1 electrons per 22 atom unit cell, the authors calculate a Seebeck coefficient and temperature dependence in good agreement with the experimental value. The high Seebeck coefficients in a metallic material are remarkable, and arise because of the strong energy dependence of the Fermiology near the experimental band filling. Virtual crystal calculations for La(Fe,Co){sub 4}Sb{sub 12}. The valence band maximum occurs at the {Gamma} point and is due to a singly degenerate dispersive (Fe,Co)-Sb band, which by itself would not be favorable for TE. However, very flat transition metal derived bands occur in close proximity and become active as the doping level is increased, giving a non-trivial dependence of the properties on carrier concentration and explaining the favorable TE properties.

  5. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  6. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  7. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  8. Materials growth and characterization of thermoelectric and resistive switching devices

    Science.gov (United States)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of

  9. Express method for contactless measurement of parameters of thermoelectric materials

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2015-08-01

    Full Text Available The paper presents an original method for contactless express measurement of parameters of thermoelectric materials. The presence of a combination of AC and DC magnetic fields in the gap of the oscillating circuit, where the monitored sample of the thermoelectric material is located, leads — due to Ampere force — to delamination of geometric regions of the occurrence of half-cycles of Foucault current. This in turn causes the appearance of additional heat losses in the oscillating circuit caused by Peltier effect. Computer modeling of these processes with the use of the software package ComsolFenlab 3.3 allowed determining the nature and magnitude of the electric currents in oscillating circuit, the range of operating frequencies, and the ratio of amplitudes of the variable and fixed components of the magnetic field. These components eventually cause a certain temperature difference along the controlled sample, which difference is proportional to the thermoelectric figure of merit Z of the material. The basic expressions are obtained for determining the value of the Seebeck coefficient a, thermal conductivity ?, electrical conductivity ? and thermoelectric figure of merit Z. A description is given to the design of the device for contactless express measurement of parameters of thermoelectric materials based on Bi—Te—Se—Sb solid solutions. Its distinctive feature is the ability to determine the symmetric and asymmetric components of the electric conductivity of the material values. The actual error in parameter measurement in this case is 2%.

  10. Overview of industry interest in new thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Jr, H B

    1997-07-01

    The technology base for air conditioning, refrigeration, component cooling below ambient temperatures and power generation will be required to meet several new challenges. The main lines of these challenges will be presented in a way which relates them to the several new thermoelectric materials and materials engineering options being pursued by the research community. The potential benefits of thermoelectric devices are only partially met by enhancing the figure of merit ZT, the nature of the design challenge and the resulting systems approach are presented. The research and the industry are entering into a new era.

  11. Nanostructured Thermoelectric Oxide Materials for Effective Power Generation from Waste Heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. It is difficult to reclaim this heat due to the dispersed nature and relative smallness of its sources. Thermoelectric conversion can offer a very promising method to overcome these difficulties...... by converting heat directly into electricity. However, the requirements for this task place in the materials are not easily satisfied by the conventional thermoelectric materials. Not only they must possess a high thermoelectric performance, they should also be stable at high temperatures and be composed...... of nontoxic and low-cost elements, and must be able to be processed and shaped cheaply. Oxides are among the strongest candidate materials for this purpose, and recently they have been intensively investigated and developed [1-5]. In this report, the development progress of two state-of-the-art p-type Ca3Co4O...

  12. Electronic fitness function for screening semiconductors as thermoelectric materials

    International Nuclear Information System (INIS)

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Fan, Xiaofeng

    2017-01-01

    Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. The EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.

  13. Thinking Like a Chemist: Intuition in Thermoelectric Materials.

    Science.gov (United States)

    Zeier, Wolfgang G; Zevalkink, Alex; Gibbs, Zachary M; Hautier, Geoffroy; Kanatzidis, Mercouri G; Snyder, G Jeffrey

    2016-06-06

    The coupled transport properties required to create an efficient thermoelectric material necessitates a thorough understanding of the relationship between the chemistry and physics in a solid. We approach thermoelectric material design using the chemical intuition provided by molecular orbital diagrams, tight binding theory, and a classic understanding of bond strength. Concepts such as electronegativity, band width, orbital overlap, bond energy, and bond length are used to explain trends in electronic properties such as the magnitude and temperature dependence of band gap, carrier effective mass, and band degeneracy and convergence. The lattice thermal conductivity is discussed in relation to the crystal structure and bond strength, with emphasis on the importance of bond length. We provide an overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and thermoelectric performance of a p-type Bi0.4Sb1.6Te3 material developed via mechanical alloying

    International Nuclear Information System (INIS)

    Jimenez, Sandra; Perez, Jose G.; Tritt, Terry M.; Zhu, Song; Sosa-Sanchez, Jose L.; Martinez-Juarez, Javier; López, Osvaldo

    2014-01-01

    Highlights: • This paper shows a Bi 1.6 Sb 0.4 Te 3 alloy prepared by MA-SPS process. • A ZT value of about 1.2–1.3 around 360 K was achieved for this compound. • The lower sintering process was carried out in a short time. • The resulting material has a very fine microstructure and high density. - Abstract: A p-type Bi 0.4 Sb 1.6 Te 3 thermoelectric compound was fabricated via mechanical alloying of bismuth, antimony and tellurium elemental powders as starting materials. The mechanically alloyed compositions were sintered through a spark-plasma sintering (SPS) process. The effect of the milling time was investigated. In order to characterize the powders obtained via mechanical alloying, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis were used. The morphological evolution was studied by scanning electron microscopy (SEM). Results showed that the p-type Bi 0.4 Sb 1.6 Te 3 compound was formed after 2 h of milling. Further, the variation of milling time showed that the synthesized phase was stable. All the powders exhibit the same morphology albeit with slight differences. Measurements of the electrical resistivity, Seebeck coefficient and thermal conductivity were performed in the temperature range 300–520 K for the SPS samples. The resulting thermoelectric figure of merit ZT reaches a maximum of 1.2 at 360 K for the p-type bulk material with a 5 h milling time. This study demonstrates the possibility of preparing thermoelectric materials of high performance and short processing time

  15. Thermoelectric materials -- New directions and approaches. Materials Research Society symposium proceedings, Volume 478

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M; Kanatzidis, M G; Lyon, Jr, H B; Mahan, G D [eds.

    1997-07-01

    Thermoelectric materials are utilized in a wide variety of applications related to solid-state refrigeration or small-scale power generation. Thermoelectric cooling is an environmentally friendly method of small-scale cooling in specific applications such as cooling computer chips and laser diodes. Thermoelectric materials are used in a wide range of applications from beverage coolers to power generation for deep-space probes such as the Voyager missions. Over the past thirty years, alloys based on the Bi-Te systems {l{underscore}brace}(Bi{sub 1{minus}x}Sb{sub x}){sub 2} (Te{sub 1{minus}x}Se{sub x}){sub 3}{r{underscore}brace} and Si{sub 1{minus}x}Ge{sub x} systems have been extensively studied and optimized for their use as thermoelectric materials to perform a variety of solid-state thermoelectric refrigeration and power generation tasks. Despite this extensive investigation of the traditional thermoelectric materials, there is still a substantial need and room for improvement, and thus, entirely new classes of compounds will have to be investigated. Over the past two-to-three years, research in the field of thermoelectric materials has been undergoing a rapid rebirth. The enhanced interest in better thermoelectric materials has been driven by the need for much higher performance and new temperature regimes for thermoelectric devices in many applications. The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, ZT = ({alpha}{sup 2}{sigma}/{lambda})T, where {alpha} is the Seebeck coefficient, {sigma} the electrical conductivity and {lambda} the total thermal conductivity. The best thermoelectric materials have a value of ZT = 1. This ZT = 1 has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exits for why it can not be larger. The focus of the symposium is embodied in the title, Thermoelectric Materials: New Directions and Approaches. Many of the researchers in the

  16. Frequency-domain Harman technique for rapid characterization of bulk and thin film thermoelectric materials

    Science.gov (United States)

    Moran, Samuel

    Nanostructured thermoelectrics, often in the form of thin films, may potentially improve the generally poor efficiency of bulk thermoelectric power generators and coolers. In order to characterize the efficiency of these new materials it is necessary to measure their thermoelectric figure of merit, ZT. The only direct measurement of ZT is based on the Harman technique and relies on measuring the voltage drop across a sample subjected to a passing continuous current. Application of this technique to thin films is currently carried out as a time-domain measurement of the voltage as the thermal component decays after switching off an applied voltage. This work develops a technique for direct simultaneous measurement of figure of merit and Seebeck coefficient from the harmonic response of a thermoelectric material under alternating current excitation. A thermocouple mounted on the top surface measures voltage across the device as the frequency of the applied voltage is varied. A thermal model allows the sample thermal conductivity to also be determined and shows good agreement with measurements. This technique provides improved signal-to-noise ratio and accuracy compared to time-domain ZT measurements for comparable conditions while simultaneously measuring Seebeck coefficient. The technique is applied to both bulk and thin film thermoelectric samples.

  17. Modeling of interface roughness in thermoelectric composite materials

    International Nuclear Information System (INIS)

    Gather, F; Heiliger, C; Klar, P J

    2011-01-01

    We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.

  18. Study for material analogs of FeSb2: Material design for thermoelectric materials

    Science.gov (United States)

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-01

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ˜30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

  19. On the calculation of Lorenz numbers for complex thermoelectric materials

    Science.gov (United States)

    Wang, Xufeng; Askarpour, Vahid; Maassen, Jesse; Lundstrom, Mark

    2018-02-01

    A first-principles informed approach to the calculation of Lorenz numbers for complex thermoelectric materials is presented and discussed. Example calculations illustrate the importance of using accurate band structures and energy-dependent scattering times. Results obtained by assuming that the scattering rate follows the density-of-states show that in the non-degenerate limit, Lorenz numbers below the commonly assumed lower limit of 2 (kB /q ) 2 can occur. The physical cause of low Lorenz numbers is explained by the shape of the transport distribution. The numerical and physical issues that need to be addressed in order to produce accurate calculations of the Lorenz number are identified. The results of this study provide a general method that should contribute to the interpretation of measurements of total thermal conductivity and to the search for materials with low Lorenz numbers, which may provide improved thermoelectric figures of merit, z T .

  20. A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods

    Science.gov (United States)

    Kamarudin, Muhammad Akmal; Sahamir, Shahrir Razey; Datta, Robi Shankar; Long, Bui Duc; Mohd Sabri, Mohd Faizul; Mohd Said, Suhana

    2013-01-01

    Thermoelectricity, by converting heat energy directly into useable electricity, offers a promising technology to convert heat from solar energy and to recover waste heat from industrial sectors and automobile exhausts. In recent years, most of the efforts have been done on improving the thermoelectric efficiency using different approaches, that is, nanostructuring, doping, molecular rattling, and nanocomposite formation. The applications of thermoelectric polymers at low temperatures, especially conducting polymers, have shown various advantages such as easy and low cost of fabrication, light weight, and flexibility. In this review, we will focus on exploring new types of polymers and the effects of different structures, concentrations, and molecular weight on thermoelectric properties. Various strategies to improve the performance of thermoelectric materials will be discussed. In addition, a discussion on the fabrication of thermoelectric devices, especially suited to polymers, will also be given. Finally, we provide the challenge and the future of thermoelectric polymers, especially thermoelectric hybrid model. PMID:24324378

  1. Selection and evaluation of materials for thermoelectric applications II

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J W

    1997-07-01

    In good thermoelectrics phonons have short mean free paths, and charge carriers have long ones. The other requirements are a multivalley band structure and a band gap greater than 0.1 eV for the 200 to 300 K temperature range. The author discusses the use of solid state physics and chemistry concepts, along with atomic and crystal structure data, to select the new materials most likely to meet these criteria.

  2. Mechanical properties of BixSb2−xTe3 nanostructured thermoelectric material

    International Nuclear Information System (INIS)

    Li, G; Gadelrab, K R; Souier, T; Chiesa, M; Potapov, P L; Chen, G

    2012-01-01

    Research on thermoelectric (TE) materials has been focused on their transport properties in order to maximize their overall performance. Mechanical properties, which are crucial for system reliability, are often overlooked. The recent development of a new class of high-performance, low-dimension thermoelectric materials calls for a better understanding of their mechanical behavior to achieve the desired system reliability. In the present study we investigate the mechanical behavior of nanostructure bulk TE material p-type Bi x Sb 2−x Te 3 by means of nanoindentation and 3D finite element analysis. The Young’s modulus of the material was estimated by the Oliver–Pharr (OP) method and by means of numerically assisted nanoindentation analysis yielding comparable values about 40 GPa. Enhanced hardness and yield strength can be predicted for this nanostructured material. Microstructure is studied and correlation with mechanical properties is discussed. (paper)

  3. Tools to Study Interfaces for Superconducting, Thermoelectric, and Magnetic Materials at the University of Houston

    Science.gov (United States)

    2016-09-01

    AFRL-AFOSR-VA-TR-2016-0303 Tools to Study Interfaces for Superconducting ,Thermoelectric, and Magnetic Materials Paul C. W. Chu UNIVERSITY OF HOUSTON...8/28/2014 - 8/27/2016 Title: Tools to Study Interfaces for Superconducting , Thermoelectric, and Magnetic Materials at the University of Houston...effort. Tools to Study Interfaces for Superconducting , Thermoelectric, and Magnetic Materials at the University of Houston Grant/Contract Number AFOSR

  4. Investigation of Nanophase Materials for Thermoelectric Applications

    National Research Council Canada - National Science Library

    Stokes, Kevin

    2004-01-01

    .... Watson Research Center. Our major accomplishments include the chemical synthesis of nanoparticles, nanorods and nanowires of lead chalcogenide, bismuth calcogenide and bismuth antimony materials...

  5. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm

    2017-01-19

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  6. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm; Chen, Renkun; He, Jr-Hau; Lee, Jaeho; Razeeb, Kafil M.

    2017-01-01

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  7. Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria

    Science.gov (United States)

    Fan, Xiaofeng

    For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and

  8. Avoided crossing of rattler modes in thermoelectric materials

    DEFF Research Database (Denmark)

    Christensen, Mogens; Abrahamsen, Asger Bech; Christensen, Niels Bech

    2008-01-01

    thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the 'phonon glass-electron crystal' concept and may be realized in host-guest systems. The guest entities are believed to have independent oscillations......, so-called rattler modes, which scatter the acoustic phonons and reduce the thermal conductivity. We have investigated the phonon dispersion relation in the phonon glass-electron crystal material Ba8Ga16Ge30 using neutron triple-axis spectroscopy. The results disclose unambiguously the theoretically...

  9. Thermoelectric Materials Evaluation Program. Annual technical report for fiscal year 1979

    International Nuclear Information System (INIS)

    Hinderman, J.D.

    1979-10-01

    Optimization was initiated with respect to performance, operating temperatures, and thermoelectric properties of an N-type material based on rare earth (neodymium and gadolinium) selenide technology. Effort was expanded to experimentally describe the chemical, electrical and physical behavior of P-type thermoelectric material over a range of temperatures. Emphasis was changed in P-type material research from basic properties to sublimation suppression by wrapping, and to the understanding of contact resistance problems at the hot end. Analytical performance calculations were made as an aid in couple development. In the area of module development an evaluation of the reduction of bypass-heat loss was made and module M-22R was placed on test. Parts were fabricated for M23R. Data on long term operating characteristics, ingradient compatibility, and reliability of elements and couples was obtained

  10. Advanced thermoelectric materials and systems for automotive applications in the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, D T

    1997-07-01

    A combination of environmental, economic, and technological drivers has led to a reassessment of the potential for using thermoelectric devices in several automotive applications. In order for this technology to achieve its ultimate potential, new materials with enhanced thermoelectric properties are required. Experimental results on the fundamental physical properties of some new thermoelectric materials, including filled skutterudites and 1-1-1 intermetallic semiconductors, are presented.

  11. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2010-01-01

    Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

  12. The Effects of Doping and Processing on the Thermoelectric Properties of Platinum Diantimonide Based Materials for Cryogenic Peltier Cooling Applications

    Science.gov (United States)

    Waldrop, Spencer Laine

    The study of thermoelectrics is nearly two centuries old. In that time a large number of applications have been discovered for these materials which are capable of transforming thermal energy into electricity or using electrical work to create a thermal gradient. Current use of thermoelectric materials is in very niche applications with contemporary focus being upon their capability to recover waste heat. A relatively undeveloped region for thermoelectric application is focused upon Peltier cooling at low temperatures. Materials based on bismuth telluride semiconductors have been the gold standard for close to room temperature applications for over sixty years. For applications below room temperature, semiconductors based on bismuth antimony reign supreme with few other possible materials. The cause of this diculty in developing new, higher performing materials is due to the interplay of the thermoelectric properties of these materials. The Seebeck coecient, which characterizes the phenomenon of the conversion of heat to electricity, the electrical conductivity, and the thermal conductivity are all interconnected properties of a material which must be optimized to generate a high performance thermoelectric material. While for above room temperature applications many advancements have been made in the creation of highly ecient thermoelectric materials, the below room temperature regime has been stymied by ill-suited properties, low operating temperatures, and a lack of research. The focus of this work has been to investigate and optimize the thermoelectric properties of platinum diantimonide, PtSb2, a nearly zero gap semiconductor. The electronic properties of PtSb2 are very favorable for cryogenic Peltier applications, as it exhibits good conductivity and large Seebeck coecient below 200 K. It is shown that both n- and p-type doping may be applied to this compound to further improve its electronic properties. Through both solid solution formation and processing

  13. On one possibility for application of new thermoelectric materials based on Ag2Te

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Parvanov, Svetlin; Vachkov, Valeri

    2011-01-01

    The thermoelectric characteristics of Ag 2 Te and Ag 1,84 Cd 0,08 Te (solid solution based on Ag 2 Te) are investigated and analyzed. The main thermoelectric characteristics of the solid solution: α=118 μV/K; σ = 2230 S/cm and = 2,45.10 -2 W/(cm.K) ensure coefficient of thermoelectric efficiency z = 1,27. 10-3 K -1 (at 300 ), which increases this of the Ag 2 Te. A composition for commutation material is developed, which connects the N- and the P-branches of a single thermo element (52 wt. % In + 48 wt. % Sn) with melting temperature of 390 K. The possibility for application of the Ag 1,84 Cd 0,08 Te solid solution as N-branch of a thermo element in combination with the solid solution Bi 0,5 Sb 1,5 Te 3 (P-branch) is investigated. The thermo element guarantees values of z from 0,71.10 -3 to 1,27.10 -3 K -1 in the temperature interval 250 - 350 . The maximum z value is registered at 300 K (z = 1,27.10 -3 K -1 ). Keywords: Silver telluride, Solid solutions, Thermoelectric properties, Thermo element

  14. Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities

    Science.gov (United States)

    Ohara, B.; Sitar, R.; Soares, J.; Novisoff, P.; Nunez-Perez, A.; Lee, H.

    2015-06-01

    The traditional approach to determine an optimum current for thermoelectric cooling assumes that a refrigeration chamber is insulated and has no thermal resistance to a thermoelectric module. As a result, minimum temperature occurs when Peltier cooling matches with parasitic heat transfer and Joule heating. In practical application, minimum temperature happens when heat addition from the environment is matched with heat extracted by a thermoelectric module, and the optimum current differs from that anticipated by the traditional approach. Hence, consideration for insulation and thermal resistances via thermoelectric module should be made to achieve desirable cooling performance/refrigeration temperature. This paper presents a modeling approach to determine the optimum current as well as the optimum geometry to power a small thermoelectric vaccine delivery system for developing communities under the World Health Organization requirements. The model is derived from three energy conservation equations for temperatures at both ends of the thermoelectric materials within a module, as well as the refrigeration chamber temperature. A prototype was built and demonstrated a minimum temperature of 3.4°C. With optimized module geometry, the system is estimated to reduce power consumption by over 50% while achieving twice the temperature difference.

  15. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  16. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.

    2009-04-01

    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  17. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  18. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Niraj Kumar; Bathula, Sivaiah; Gahtori, Bhasker [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tyagi, Kriti [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Acdemy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (NPL) Campus, New Delhi (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-05-25

    Tin selenide (SnSe) based thermoelectric materials are being explored for making inexpensive and efficient thermoelectric devices with improved thermoelectric efficiency. As both Sn and Se are earth abundant and relatively inexpensive and these alloys do not involve toxic materials, such as lead and expensive tellurium. Hence, in the present study, we have synthesized SnSe doped with 2 at% of aluminium (Al), lead (Pb), indium (In) and copper (Cu) individually, which is not reported in literature. Out of these, Cu doped SnSe resulted in enhancement of figure-of-merit (zT) of ∼0.7 ± 0.02 at 773 K, synthesized employing conventional fusion method followed by spark plasma sintering. This enhancement in zT is ∼16% over the existing state-of-the-art value for p-type SnSe alloy doped with expensive Ag. This enhancement in ZT is primarily due to the presence of Cu{sub 2}Se second phase associated with intrinsic nanostructure formation of SnSe. This enhancement has been corroborated with the microstructural characterization using field emission scanning electron microscopy and X-ray diffraction studies. Also, Cu doped SnSe exhibited a higher value of carrier concentration in comparison to other samples doped with Al, Pb and In. Further, the compatibility factor of Cu doped SnSe alloys exhibited value of 1.62 V{sup −1} at 773 K and it is suitable to segment with most of the novel TE materials for obtaining the higher thermoelectric efficiencies. - Highlights: • Tin selenide (SnSe) doped with non-toxic and inexpensive dopants. • Synthesized highly dense SnSe employing Spark plasma sintering. • Enhanced thermoelectric compatibility factor of SnSe. • Enhanced thermoelectric performance of SnSe doped with Copper.

  19. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    Science.gov (United States)

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan

    2017-09-01

    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  20. Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications

    International Nuclear Information System (INIS)

    Wang, W S; Magnin, W; Wang, N; Hayes, M; O'Flynn, B; O'Mathuna, C

    2011-01-01

    The trend towards smart building and modern manufacturing demands ubiquitous sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential for such applications. This paper describes bulk material based thermoelectric generator (TEG) design and implementation for WSN. A 20cm 2 Bi 0.5 Sb 1.5 Te 3 based TEG was created with optimized configuration and generates 2.7mW in typical condition. A novel load matching method is used to maximize the power output. The implemented power management module delivers 651μW to WSN in 50 deg. C. With average power consumption of Tyndall WSN measured at 72μW, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

  1. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    , and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...

  2. Yb14MnSb11 as a High-Efficiency Thermoelectric Material

    Science.gov (United States)

    Snyder, G. Jeffrey; Gascoin, Franck; Brown, Shawna; Kauzlarich, Susan

    2009-01-01

    Yb14MnSb11 has been found to be wellsuited for use as a p-type thermoelectric material in applications that involve hotside temperatures in the approximate range of 1,200 to 1,300 K. The figure of merit that characterizes the thermal-to-electric power-conversion efficiency is greater for this material than for SiGe, which, until now, has been regarded as the state-of-the art high-temperature ptype thermoelectric material. Moreover, relative to SiGe, Yb14MnSb11 is better suited to incorporation into a segmented thermoelectric leg that includes the moderate-temperature p-type thermoelectric material CeFe4Sb12 and possibly other, lower-temperature p-type thermoelectric materials. Interest in Yb14MnSb11 as a candidate high-temperature thermoelectric material was prompted in part by its unique electronic properties and complex crystalline structure, which place it in a class somewhere between (1) a class of semiconducting valence compounds known in the art as Zintl compounds and (2) the class of intermetallic compounds. From the perspective of chemistry, this classification of Yb14MnSb11 provides a first indication of a potentially rich library of compounds, the thermoelectric properties of which can be easily optimized. The concepts of the thermoelectric figure of merit and the thermoelectric compatibility factor are discussed in Compatibility of Segments of Thermo - electric Generators (NPO-30798), which appears on page 55. The traditional thermoelectric figure of merit, Z, is defined by the equation Z = alpha sup 2/rho K, where alpha is the Seebeck coefficient, rho is the electrical resistivity, and k is the thermal conductivity.

  3. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  4. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    Science.gov (United States)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (˜20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of

  5. Development of thermoelectric generators for electrification of isolated rural homes

    Energy Technology Data Exchange (ETDEWEB)

    Rinalde, G.F.; Taglialavore, E.; Gortari, S. [CNEA (National Atomic Energy Commission), Centro Atomico Bariloche, 8400 Bariloche (Argentina); Juanico, L.E. [Conicet (National Scientific and Technologic Research Council), Centro Atomico Bariloche, 8400 Bariloche (Argentina); Molina, M.G. [CONICET and Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, 5400, San Juan (Argentina)

    2010-06-15

    This work presents the experimental development of the first two prototypes of thermoelectric generators intended for initial electrification of rural isolated homes. The microcontroller system designed for these devices is oriented to develop a ''plug and play'' generator that is able to work on firewood home stoves without specialized supervision. (author)

  6. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    International Nuclear Information System (INIS)

    Borisyuk, P.V.; Krasavin, A.V.; Tkalya, E.V.; Lebedinskii, Yu.Yu.; Vasiliev, O.S.; Yakovlev, V.P.; Kozlova, T.I.; Fetisov, V.V.

    2016-01-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters’ tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  7. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    International Nuclear Information System (INIS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-01-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.

  8. Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit

    KAUST Repository

    Sharma, S.; Sarath Kumar, S. R.; Schwingenschlö gl, Udo

    2017-01-01

    We study the thermoelectric properties of As and Sb monolayers (arsenene and antimonene) using density-functional theory and the semiclassical Boltzmann transport approach. The materials show large band gaps combined with low lattice thermal

  9. Development and Analysis of Hybrid Thermoelectric Refrigerator Systems

    Science.gov (United States)

    Saifizi, M.; Zakaria, M. S.; Yaacob, Sazali; Wan, Khairunizam

    2018-03-01

    Thermoelectric module (TEM) is a type of solid-state devices which has the capability to maintain the accuracy of small temperature variation application. In this study, a hybrid thermoelectric refrigerator system is introduced by utilizing TEMs; direct and air to air thermoelectric heat pump to cool down and maintain low temperature for vaccines storage. Two different materials which are aluminum and stainless steel are used as container in hybrid thermoelectric refrigerator (HTER) configuration to investigate the response of every system in transient and steady state mode. A proper temperature sensor calibration technique is implemented to make certain real time data acquisition of the systems are not affected very much from the noise generated. From step response analysis, it is indicated that HTER I (aluminum) has rapid settling time from transient to steady state than HTER II (stainless steel) since aluminum has better thermal conductivity as compared to stainless steel. It is found that HTER I is better in cooling capability with the same input current instead of HTER II which required a longer time to achieve steady state mode. Besides, in Pseudo Random Binary Sequence (PRBS) response analysis injected to both systems shows HTER I is very sensitive to current input as the sequence length of HTER I is shorter than HTER II. However both systems depict the varying temperature in the range of 4 oC due to differences in thermal conductivity of container.

  10. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  11. DEVELOPMENT OF VACUUM SUBLIMATION DRYERS USING THERMOELECTRIC MODULES

    Directory of Open Access Journals (Sweden)

    R. A. Barykin

    2014-01-01

    Full Text Available Summary. The main directions of use of freeze-dryed products and ingredients are revealed. The analysis of sales markets of freeze-dryed products is provided. It is shown that introduction of innovative production technologies will allow to develop dynamically not only to the large companies, but also small firms that will create prerequisites for growth of the Russian market of freeze-dryed products. Tendencies of development of the freeze-drying equipment are analysed. Relevance of development of energy saving freeze-dryers is proved The integrated approach to creation of competitive domestic technologies and the equipment for sublimation dehydration of thermolabile products consists in use of the effective combined remedies of a power supply, a process intensification, reduction of specific energy consumption and, as a result, decrease in product cost at achievement of high quality indicators. Advantages of thermoelectric modules as alternative direction to existing vapor-compression and absorbing refrigerating appliances are given. Researches of process of freeze-drying dehydration with use of thermoelectric modules are conducted. It is scientifically confirmed, that the thermoelectric module working at Peltier effect, promotes increase in refrigerating capacity due to use of the principle of the thermal pump. Options of use of thermoelectric modules in designs of dryers are offered. Optimum operating modes and number of modules in section are defined. Ways of increase of power efficiency of freeze-dryers with use of thermoelectric modules are specified. The received results will allow to make engineering calculations and design of progressive freeze-drying installations with various ways of a power supply.

  12. Thermoelectric and mechanical properties of spark plasma sintered Cu3SbSe3 and Cu3SbSe4: Promising thermoelectric materials

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay

    2014-12-01

    We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ˜1.2 as compared to 0.2 V-1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  13. Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit

    KAUST Repository

    Sharma, S.

    2017-10-25

    We study the thermoelectric properties of As and Sb monolayers (arsenene and antimonene) using density-functional theory and the semiclassical Boltzmann transport approach. The materials show large band gaps combined with low lattice thermal conductivities. Specifically, the small phonon frequencies and group velocities of antimonene lead to an excellent thermoelectric response at room temperature. We show that n-type doping enhances the figure of merit.

  14. CuAlTe{sub 2}: A promising bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Gudelli, Vijay Kumar [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Telangana (India); Kanchana, V., E-mail: kanchana@iith.ac.in [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502 205, Telangana (India); Vaitheeswaran, G. [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana (India)

    2015-11-05

    Transport properties of Cu-based chalcopyrite materials are presented using the full potential linear augmented plane wave method and Boltzmann Semi-classical theory. All the studied compounds appear to be direct band gap semiconductors evaluated based on the Tran-Blaha modified Becke-Johnson potential. The heavy and light band combination found near the valence band maximum (VBM) drive these materials to possess good thermoelectric properties. Among the studied compounds, CuAlTe{sub 2} is found to be more promising, in comparison with CuGaTe{sub 2}, which is reported to be an efficient thermoelectric material with appreciable figure of merit. Another interesting fact about CuAlTe{sub 2} is the comparable thermoelectric properties possessed by both n- type and p-type carriers, which might attract good device applications and are explained in detail using the electronic structure calculations. - Highlights: • Band structure calculation of Cu(Al,Ga)Ch{sub 2} compounds with the TB-mBJ functional. • Mixed heavy-light bands near Fermi level might favour good thermoelectric properties. • Among the investigated compounds CuAlTe{sub 2} appears to be more promising. • Thermoelectric properties of CuAlTe{sub 2} are almost comparable with CuGaTe{sub 2}. • Both n,p-type thermoelectric properties of CuAlTe{sub 2} can attract device applications.

  15. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material

    International Nuclear Information System (INIS)

    Guo, Donglin; Hu, Chenguo; Zhang, Cuiling

    2013-01-01

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi 2 S 3 depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value. ► By doping and temperature tuning, Bi 2 S 3 is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi 2 S 3 are investigated. The electron and hole effective mass of Bi 2 S 3 is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi 2 S 3 crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi 2 S 3 , the optimal doping concentration is found in the range of (1.0–5.0) × 10 19 cm −3 , in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant

  16. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  17. Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials

    Science.gov (United States)

    Lee, Yu Seong; Kim, Suk Jun; Kim, Byeong Geun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2017-05-01

    Metallic glass (MG) can be a candidate for an alternative brazing material of high-temperature thermoelectric modules, since we can expect both a lower brazing temperature and a high operating temperature for the junction from the MG brazers. Another advantage of MG powders is their outstanding oxidation resistance, namely, high-temperature durability in atmosphere. We fabricated three compositions of Al-based MGs—Al-Y-Ni, Al-Y-Ni-Co, and Al-Y-Ni-Co-La—by using the melt spinning process, and their T gs were 273°C, 264°C, and 249°C, respectively. The electrical resistivity of the Al-Y-Ni MG ribbon dropped significantly after annealing at 300°C. The electrical resistivity of crystallized Al-Y-Ni reduced down to 0.03 mΩ cm, which is an order of magnitude lower than that of the amorphous one. After the MG ribbons were pulverized to sub-100 μm, the average particle size was about 400 μm.

  18. The thermoelectric process

    Energy Technology Data Exchange (ETDEWEB)

    Vining, C B

    1997-07-01

    The efficiency of thermoelectric technology today is limited by the properties of available thermoelectric materials and a wide variety of new approaches to developing better materials have recently been suggested. The key goal is to find a material with a large ZT, the dimensionless thermoelectric figure of merit. However, if an analogy is drawn between thermoelectric technology and gas-cycle engines then selecting different materials for the thermoelements is analogous to selecting a different working gas for the mechanical engine. And an attempt to improve ZT is analogous to an attempt to improve certain thermodynamic properties of the working-gas. An alternative approach is to focus on the thermoelectric process itself (rather than on ZT), which is analogous to considering alternate cycles such as Stirling vs. Brayton vs. Rankine etc., rather than merely considering alternative gases. Focusing on the process is a radically different approach compared to previous studies focusing on ZT. Aspects of the thermoelectric process and alternative approaches to efficient thermoelectric conversion are discussed.

  19. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Science.gov (United States)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  20. Hierarchical thermoelectrics : Crystal grain boundaries as scalable phonon scatterers

    NARCIS (Netherlands)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, PZ; Donadio, Davide; Leoni, Stefano

    2016-01-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier

  1. LaBiTe3: An unusual thermoelectric material

    KAUST Repository

    Singh, Nirpendra

    2014-06-18

    Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.

  2. LaBiTe3: An unusual thermoelectric material

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.

  3. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  4. Research Progress on AgSbTe2-based Thermoelectric Materials

    Institute of Scientific and Technical Information of China (English)

    CAO Qigao; MA Guang; JIA Zhihua; ZHENG Jing; LI Jin

    2012-01-01

    Thermoelectric power generation represents a class of energy conversion technology,which has been used in power supply of aeronautic and astronautic exploring missions,now showing notable advantages to harvest the widely distributed waste heat and convert the abundant solar energy into electricity at lower cost than Si-based photovoltaic technology.Thermoelectric dimensionless figure of merit ZT plays a key role in the conversion efficiency from thermal to electrical energy.Low thermal conductivity and large Seebeck coefficient make the AgSbTe2 compound a very promising candidate for high efficiency p-type thermoelectric applications.The AgSbTe2-based thermoelectric system has been repeatedly studied as prospective thermoelectric materials.In this review,we firstly clarify some fundamental tradeoffs dictating the ZT value through the relationship ZT =S2σT/κ.We also pay special attentions to the recent advances in AgSbTe2-based thermoelectric materials.Finally,we provide an outlook of new directions in this filed.

  5. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    International Nuclear Information System (INIS)

    King, D.A.

    1994-01-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan

  6. On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials

    Directory of Open Access Journals (Sweden)

    Michael Schwall

    2018-04-01

    Full Text Available Half-Heusler compounds have been in focus as potential materials for thermoelectric energy conversion in the mid-temperature range, e.g., as in automotive or industrial waste heat recovery, for more than ten years now. Because of their mechanical and thermal stability, these compounds are advantageous for common thermoelectric materials such as Bi 2 Te 3 , SiGe, clathrates or filled skutterudites. A further advantage lies in the tunability of Heusler compounds, allowing one to avoid expensive and toxic elements. Half-Heusler compounds usually exhibit a high electrical conductivity σ , resulting in high power factors. The main drawback of half-Heusler compounds is their high lattice thermal conductivity. Here, we present a detailed study of the phase separation in an n-type Heusler materials system, showing that the Ti x Zr y Hf z NiSn system is not a solid solution. We also show that this phase separation is key to the thermoelectric high efficiency of n-type Heusler materials. These results strongly underline the importance of phase separation as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands of a thermoelectric converter.

  7. Development and optimization of a stove-powered thermoelectric generator

    Science.gov (United States)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  8. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo

    2018-01-01

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high

  9. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  10. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    Science.gov (United States)

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  11. Electrical properties and figures of merit for new chalcogenide-based thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, J L; Hogan, T P; Brazis, P W; Kannewurf, C R; Chung, D Y; Kanatzidis, M G

    1997-07-01

    New Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi{sub 4}Te{sub 6} have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of {approx}+110 {micro}V/K at room temperature. A second compound, {beta}-K{sub 2}Bi{sub 8}Se{sub 13} shows lower conductivity {approx}240 S/cm, but a larger n-type thermopower {approx}{minus}200 {micro}V/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi{sub 2}Te{sub 3}. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi{sub 4}Te{sub 6} reaches ZT {approx} 0.32 at 260 K and for {beta}-K{sub 2}Bi{sub 8}Se{sub 13} ZT {approx} 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.

  12. Thermoelectric materials evaluation program. Quarterly technical task report No. 46

    International Nuclear Information System (INIS)

    Hampl, E.F. Jr.

    1976-02-01

    This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables

  13. Thermoelectrics and its energy harvesting

    National Research Council Canada - National Science Library

    Rowe, David Michael

    2012-01-01

    .... It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material...

  14. Soft Chemistry, Coloring and Polytypism in Filled Tetrahedral Semiconductors: Toward Enhanced Thermoelectric and Battery Materials.

    Science.gov (United States)

    White, Miles A; Medina-Gonzalez, Alan M; Vela, Javier

    2018-03-12

    Filled tetrahedral semiconductors are a rich family of compounds with tunable electronic structure, making them ideal for applications in thermoelectrics, photovoltaics, and battery anodes. Furthermore, these materials crystallize in a plethora of related structures that are very close in energy, giving rise to polytypism through the manipulation of synthetic parameters. This Minireview highlights recent advances in the solution-phase synthesis and nanostructuring of these materials. These methods enable the synthesis of metastable phases and polytypes that were previously unobtainable. Additionally, samples synthesized in solution phase have enhanced thermoelectric performance due to their decreased grain size. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh

    2018-04-20

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.

  16. High efficiency semimetal/semiconductor nanocomposite thermoelectric materials

    International Nuclear Information System (INIS)

    Zide, J. M. O.; Bahk, J.-H.; Zeng, G.; Bowers, J. E.; Singh, R.; Zebarjadi, M.; Bian, Z. X.; Shakouri, A.; Lu, H.; Gossard, A. C.; Feser, J. P.; Xu, D.; Singer, S. L.; Majumdar, A.

    2010-01-01

    Rare-earth impurities in III-V semiconductors are known to self-assemble into semimetallic nanoparticles which have been shown to reduce lattice thermal conductivity without harming electronic properties. Here, we show that adjusting the band alignment between ErAs and In 0.53 Ga 0.47-X Al X As allows energy-dependent scattering of carriers that can be used to increase thermoelectric power factor. Films of various Al concentrations were grown by molecular beam epitaxy, and thermoelectric properties were characterized. We observe concurrent increases in electrical conductivity and Seebeck coefficient with increasing temperatures, demonstrating energy-dependent scattering. We report the first simultaneous power factor enhancement and thermal conductivity reduction in a nanoparticle-based system, resulting in a high figure of merit, ZT=1.33 at 800 K.

  17. High Temperature Thermoelectric Materials for Waste Heat Regeneration

    Science.gov (United States)

    2013-01-01

    ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE High Temperature...National Aeronautics and Space Administration’s (NASA) deep space explorations, which use radioisotope thermoelectric generators (RTGs) to produce...their octahedral voids (shown in figure 10a) with large rare- earth atoms to reduce their lattice conductivity (20). Ions can also be inserted to

  18. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Department; Son, Jae Sung [Department; School; Dolzhnikov, Dmitriy S. [Department; Filatov, Alexander S. [Department; Hazarika, Abhijit [Department; Wang, Yuanyuan [Department; Hudson, Margaret H. [Department; Sun, Cheng-Jun [Advanced; Chattopadhyay, Soma [Physical; Talapin, Dmitri V. [Department; Center

    2017-07-27

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles soldered by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.

  19. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Science.gov (United States)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  20. Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Rezaniakolaei, Alireza; Ranjbar, A.A.

    2018-01-01

    In most thermoelectric systems the thermal boundary conditions are transient, and thermal manage-ment of the system is critical to improve electrical performance of the system. In this study, effect of using phase change materials (PCM) to control the hot and cold side temperatures...

  1. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-01-01

    opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure

  2. Metallization for Yb14MnSb11-Based Thermoelectric Materials

    Science.gov (United States)

    Firdosy, Samad; Li, Billy Chun-Yip; Ravi, Vilupanur; Sakamoto, Jeffrey; Caillat, Thierry; Ewell, Richard C.; Brandon, Erik J.

    2011-01-01

    Thermoelectric materials provide a means for converting heat into electrical power using a fully solid-state device. Power-generating devices (which include individual couples as well as multicouple modules) require the use of ntype and p-type thermoelectric materials, typically comprising highly doped narrow band-gap semiconductors which are connected to a heat collector and electrodes. To achieve greater device efficiency and greater specific power will require using new thermoelectric materials, in more complex combinations. One such material is the p-type compound semiconductor Yb14MnSb11 (YMS), which has been demonstrated to have one of the highest ZT values at 1,000 C, the desired operational temperature of many space-based radioisotope thermoelectric generators (RTGs). Despite the favorable attributes of the bulk YMS material, it must ultimately be incorporated into a power-generating device using a suitable joining technology. Typically, processes such as diffusion bonding and/or brazing are used to join thermoelectric materials to the heat collector and electrodes, with the goal of providing a stable, ohmic contact with high thermal conductivity at the required operating temperature. Since YMS is an inorganic compound featuring chemical bonds with a mixture of covalent and ionic character, simple metallurgical diffusion bonding is difficult to implement. Furthermore, the Sb within YMS readily reacts with most metals to form antimonide compounds with a wide range of stoichiometries. Although choosing metals that react to form high-melting-point antimonides could be employed to form a stable reaction bond, it is difficult to limit the reactivity of Sb in YMS such that the electrode is not completely consumed at an operating temperature of 1,000 C. Previous attempts to form suitable metallization layers resulted in poor bonding, complete consumption of the metallization layer or fracture within the YMS thermoelement (or leg).

  3. Bulk Thermoelectric Materials Reinforced with SiC Whiskers

    Science.gov (United States)

    Akao, Takahiro; Fujiwara, Yuya; Tarui, Yuki; Onda, Tetsuhiko; Chen, Zhong-Chun

    2014-06-01

    SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.

  4. Development of CCD Imaging System Using Thermoelectric Cooling Method

    Directory of Open Access Journals (Sweden)

    Youngsik Park

    2000-06-01

    Full Text Available We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E (768x512 pixels CCD chip,thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of -25deg. We employed an Uniblitz VS25S shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of -10deg, a linearity 99.9+/-0.1%, gain 4.24e-adu, and system noise is 25.3e- (rms. For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry (+/-0.01mag even though the CCD is not at 'conventional' cryogenic temperatures (140K. The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  5. Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft

    Science.gov (United States)

    Elefsiniotis, A.; Becker, Th.; Schmid, U.

    2014-06-01

    Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.

  6. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    Elefsiniotis, A; Becker, T; Kiziroglou, M E; Wright, S W; Toh, T T; Mitcheson, P D; Yeatman, E M; Schmid, U

    2013-01-01

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  7. Development of a New Generation of High-Temperature Thermoelectric Unicouples for Space Applications

    Science.gov (United States)

    Caillat, Thierry; Gogna, P.; Sakamoto, J.; Jewell, A.; Cheng, J.; Blair, R.; Fleurial, J. -P.; Ewell, R.

    2006-01-01

    RTG's have enabled surface and deep space missions since 1961: a) 26 flight missions without any RTG failures; and b) Mission durations in excess of 25 years. Future NASA missions require RTG s with high specific power and high efficiency, while retaining long life (> 14 years) and high reliability, (i.e. 6-8 W/kg, 10-15% efficiency). JPL in partnership with NASA-GRC, NASA-MSFC, DOE, Universities and Industry is developing advanced thermoelectric materials and converters to meet future NASA needs.

  8. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  9. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  10. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  11. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks

    Science.gov (United States)

    Kim, Fredrick; Kwon, Beomjin; Eom, Youngho; Lee, Ji Eun; Park, Sangmin; Jo, Seungki; Park, Sung Hoon; Kim, Bong-Seo; Im, Hye Jin; Lee, Min Ho; Min, Tae Sik; Kim, Kyung Tae; Chae, Han Gi; King, William P.; Son, Jae Sung

    2018-04-01

    Thermoelectric energy conversion offers a unique solution for generating electricity from waste heat. However, despite recent improvements in the efficiency of thermoelectric materials, the widespread application of thermoelectric generators has been hampered by challenges in fabricating thermoelectric materials with appropriate dimensions to perfectly fit heat sources. Herein, we report an extrusion-based three-dimensional printing method to produce thermoelectric materials with geometries suitable for heat sources. All-inorganic viscoelastic inks were synthesized using Sb2Te3 chalcogenidometallate ions as inorganic binders for Bi2Te3-based particles. Three-dimensional printed materials with various geometries showed homogenous thermoelectric properties, and their dimensionless figure-of-merit values of 0.9 (p-type) and 0.6 (n-type) were comparable to the bulk values. Conformal cylindrical thermoelectric generators made of 3D-printed half rings mounted on an alumina pipe were studied both experimentally and computationally. Simulations show that the power output of the conformal, shape-optimized generator is higher than that of conventional planar generators.

  12. Flexible screen printed thick film thermoelectric generator with reduced material resistivity

    International Nuclear Information System (INIS)

    Cao, Z; Koukharenko, E; Torah, R N; Tudor, J; Beeby, S P

    2014-01-01

    This work presents a flexible thick-film Bismuth Tellurium/Antimony Tellurium (BiTe/SbTe) thermoelectric generator (TEG) with reduced material resistivity fabricated by screen printing technology. Cold isostatic pressing (CIP) was introduced to lower the resistivity of the printed thermoelectric materials. The Seebeck coefficient (α) and the resistivity (ρ) of printed materials were measured as a function of applied pressure. A prototype TEG with 8 thermocouples was fabricated on flexible polyimide substrate. The dimension of a single printed element was 20 mm × 2 mm × 78.4 pm. The coiled-up prototype produced a voltage of 36.4 mV and a maximum power of 40.3 nW from a temperature gradient of 20 °C

  13. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device

    Science.gov (United States)

    Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi

    2015-05-01

    We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.

  14. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  15. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    , and linked with the physical properties. The materials crystallography approach, relating physical properties with a structural understating, has been applied in this thesis for two highly interesting materials systems, zinc antimonides and copper chalcogenides. Both of these systems are high profiled....... The preparation parameters used, have a large influence on the homogeneity of the products, and new electric phases were identified and studied for ZnSb. For the samples prepared by physical vapor deposition, the growth takes place under non-thermodynamic conditions, making it possible to access kinetically...... intensity X-ray radiation at large international facilities, making it possible to measure pair distribution function data directly on thin-film samples in a normal incident setup, termed tfPDF. The tfPDF method was demonstrated on the iron antimony system. tfPDF was developed even further to include...

  16. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    Science.gov (United States)

    Teehan, Sean

    thermoelectric performance. Within this study we theoretically and experimentally have developed correlations between each of these material parameters and its overall effect on thermoelectric performance.

  17. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Science.gov (United States)

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  18. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  19. Nano-Like Effects in Crystalline Thermoelectric Materials at High Temperatures

    Science.gov (United States)

    Korzhuev, M. A.; Katin, I. V.

    2013-05-01

    The mechanisms of improving the figure of merit Z and power parameter W of thermoelectric materials (TEMs) in the transitions λph→a and λe→a are considered (Here λph and λe are the mean free path of the phonons and electrons in the sample, and a is the inter atomic distance). It is shown that the same mechanisms are responsible for the growth of Z and W crystalline TEMs at high temperatures.

  20. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  1. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-01-01

    of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate

  2. Synthesis and characterization of nanometer sized thermoelectric lead-antimony-silver-tellurium compounds and related materials

    International Nuclear Information System (INIS)

    Petri, Denis

    2012-01-01

    The present dissertation deals with different variants of synthesis and processing of nanocrystalline composites of various thermoelectric compounds based on lead telluride including LAST-m (AgPb m SbTe m+2 ), LASTT-m-x (AgPb m-x Sn x SbTe m+2 ), LABST-m-x (AgPb m Sb 1-x Bi x Te m+2 ), doped LAST-m and (PbTe) m (M 15 2 Te 3 ) and the characterization thereof. A new route of manufacturing nanocrystalline composites was developed. The so called co-ball milling-route includes the synthesis of bi- or multinary compounds by conventional solid state melting methods followed by combined milling of appropriate amounts in a planetary ball mill; a process related to the widely used mechanical alloying of elemental powders. The as produced powders were shortly annealed for one hour and a.erwards compacted either at room temperature followed by pressureless sintering or combined application of high pressure and elevated temperatures via spark-plasma-sintering or short-term-sintering. The ball milling yielded micron-sized agglomerates consisting of crystallites with diameters ranging from 10 to 50 nm. These crystallites exhibited complicated internal nanostructures severe crystal defects as a consequence of the high energy processing. During short-term annealing some grain coarsening occured and the crystal defects partly healed, which was confirmed by TEM and HRTEM investigations as well as profile analysis of XRD powder pattern. Local EDX-analysis showed different compositions at every point as a consequence of synthesis and decomposition of the compounds. Measurements of thermopower, electrical and thermal conductivity were carried out and the values of the figure of merit ZT and the powerfactor were calculated. In general the compounds exhibited larger thermopower than corresponding bulk materials, which might be attributed to energy filtering of charge carriers at partly oxidized grain boundaries. Due to enhanced phonon scattering at grain boundarys, nanoscopic

  3. Performance and stress analysis of oxide thermoelectric module architecture designed for maximum power output

    DEFF Research Database (Denmark)

    Wijesekara, Waruna; Rosendahl, Lasse; Wu, NingYu

    Oxide thermoelectric materials are promising candidates for energy harvesting from mid to high temperature heat sources. In this work, the oxide thermoelectric materials and the final design of the high temperature thermoelectric module were developed. Also, prototypes of oxide thermoelectric...... of real thermoelectric uni-couples, the three-dimensional governing equations for the coupled heat transfer and thermoelectric effects were developed. Finite element simulations of this system were done using the COMSOL Multiphysics solver. Prototypes of the models were developed and the analytical...... generator were built for high temperature applications. This paper specifically discusses the thermoelectric module design and the prototype validations of the design. Here p type calcium cobalt oxide and n type aluminum doped ZnO were developed as the oxide thermoelectric materials. Hot side and cold side...

  4. A MODIFIED VAN DER PAUW SETUP FOR MEASURING THE RESISTIVITY AND THERMOPOWER OF THERMOELECTRIC MATERIALS OF VARYING THICKNESSES

    KAUST Repository

    HITCHCOCK, DALE

    2013-10-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified. © World Scientific Publishing Company.

  5. A MODIFIED VAN DER PAUW SETUP FOR MEASURING THE RESISTIVITY AND THERMOPOWER OF THERMOELECTRIC MATERIALS OF VARYING THICKNESSES

    KAUST Repository

    HITCHCOCK, DALE; WALDROP, SPENCER; WILLIAMS, JARED; TRITT, TERRY M.

    2013-01-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified. © World Scientific Publishing Company.

  6. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.

    2015-02-01

    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  7. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  8. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  9. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    International Nuclear Information System (INIS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-01-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper. (paper)

  10. Segmentation of low‐cost high efficiency oxide‐based thermoelectric materials

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Linderoth, Søren

    2015-01-01

    Thermoelectric (TE) oxide materials have attracted great interest in advanced renewable energy research owing to the fact that they consist of abundant elements, can be manufactured by low-cost processing, sustain high temperatures, be robust and provide long lifetime. However, the low conversion...... efficiency of TE oxides has been a major drawback limiting these materials to broaden applications. In this work, theoretical calculations are used to predict how segmentation of oxide and semimetal materials, utilizing the benefits of both types of materials, can provide high efficiency, high temperature...... oxide-based segmented legs. The materials for segmentation are selected by their compatibility factors and their conversion efficiency versus material cost, i.e., “efficiency ratio”. Numerical modelling results showed that conversion efficiency could reach values of more than 10% for unicouples using...

  11. Thermoelectric transport properties of BaBiTe{sub 3}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn

    2017-05-15

    BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is also reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.

  12. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  13. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    International Nuclear Information System (INIS)

    Heyman, J. N.; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D.; Coates, N. E.; Urban, J. J.

    2014-01-01

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires

  14. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, J. N., E-mail: heyman@macalester.edu; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D. [Physics Department, Macalester College, St. Paul, Minnesota 55105 (United States); Coates, N. E.; Urban, J. J. [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-04-07

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires.

  15. Thermoelectric properties of PbSe₀.₅Te₀.₅: x (PbI₂) with endotaxial nanostructures: a promising n-type thermoelectric material.

    Science.gov (United States)

    Rawat, P K; Paul, B; Banerji, P

    2013-05-31

    In the present investigation, we report on the thermoelectric properties of PbSe₀.₅Te₀.₅: x (PbI₂) from room temperature to 625 K. High-resolution transmission electron micrographs of the samples reveal endotaxial nanostructures embedded in a PbSe₀.₅Te₀.₅ matrix. The combined effect of mass fluctuation and nanostructures reduces the thermal conductivity to a great extent compared to PbTe and PbSe, without affecting the carrier mobility. As a result, a thermoelectric figure of merit with a value of 1.5 is achieved at 625 K. This value is significantly higher than that of the available state-of-the-art n-type materials.

  16. Thermoelectric properties of Al doped Mg{sub 2}Si material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder, E-mail: kulwindercmp@gmail.com; Kumar, Ranjan [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Rani, Anita [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India)

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  17. semiconducting nanostructures: morphology and thermoelectric properties

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  18. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  19. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  20. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  1. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Science.gov (United States)

    Parker, David; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610

  2. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  3. Materials design and development of functional materials for industry

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-01-01

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success

  4. Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications

    Science.gov (United States)

    Nguyen, Phi-Khanh

    The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths. In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the

  5. Lead Telluride Doped with Au as a Very Promising Material for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Pantelija M. Nikolic

    2015-01-01

    Full Text Available PbTe single crystals doped with monovalent Au or Cu were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for all samples and plasma minima were registered. These experimental spectra were numerically analyzed and optical parameters were calculated. All the samples of PbTe doped with Au or Cu were of the “n” type. The properties of these compositions were analyzed and compared with PbTe containing other dopants. The samples of PbTe doped with only 3.3 at% Au were the best among the PbTe + Au samples having the lowest plasma frequency and the highest mobility of free carriers-electrons, while PbTe doped with Cu was the opposite. Samples with the lowest Cu concentration of 0.23 at% Cu had the best properties. Thermal diffusivity and electronic transport properties of the same PbTe doped samples were also investigated using a photoacoustic (PA method with the transmission detection configuration. The results obtained with the far infrared and photoacoustic characterization of PbTe doped samples were compared and discussed. Both methods confirmed that when PbTe was doped with 3.3 at% Au, thermoelectric and electrical properties of this doped semiconductor were both significantly improved, so Au as a dopant in PbTe could be used as a new high quality thermoelectric material.

  6. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  7. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  8. Thermoelectric generators: A review of applications

    International Nuclear Information System (INIS)

    Champier, Daniel

    2017-01-01

    Highlights: • This paper reviews the state of the art of thermoelectric generators. • The latest thermoelectric modules are introduced. • Waste heat recovery in transport and industry with thermoelectric generators. • Domestic and industrial applications of thermoelectric generators. • Thermoelectric generators in space, micro-generation and solar conversion. - Abstract: In past centuries, men have mainly looked to increase their production of energy in order to develop their industry, means of transport and quality of life. Since the recent energy crisis, researchers and industrials have looked mainly to manage energy in a better way, especially by increasing energy system efficiency. This context explains the growing interest for thermoelectric generators. Today, thermoelectric generators allow lost thermal energy to be recovered, energy to be produced in extreme environments, electric power to be generated in remote areas and microsensors to be powered. Direct solar thermal energy can also be used to produce electricity. This review begins with the basic principles of thermoelectricity and a presentation of existing and future materials. Design and optimization of generators are addressed. Finally in this paper, we developed an exhaustive presentation of thermoelectric generation applications covering electricity generation in extreme environments, waste heat recovery in transport and industry, domestic production in developing and developed countries, micro-generation for sensors and microelectronics and solar thermoelectric generators. Many recent applications are presented, as well as the future applications which are currently being studied in research laboratories or in industry. The main purpose of this paper is to clearly demonstrate that, almost anywhere in industry or in domestic uses, it is worth checking whether a TEG can be added whenever heat is moving from a hot source to a cold source.

  9. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  10. Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials

    Science.gov (United States)

    Ren, Zhifeng; Zhang, Qian; Chen, Gang

    2018-02-27

    A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 .mu.V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionless figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 .mu.V/K at any temperature.

  11. Design, modeling and utilization of thermoelectrical materials and devices in energy systems

    DEFF Research Database (Denmark)

    Chen, Min

    Thermoelectric generators can convert waste heat that abounds in modern societies into electricity in an environmentally-friendly and reliable manner, and many applications of thermoelectric devices can be envisaged. The research of this PhD dissertation focuses thermoelectric generator modeling...... at a device level as well as its applications in energy systems. The purpose is to introduce the use of thermoelectric generator into energy systems, and to indicate the impact of implementing thermoelectric generator on the design and operation of energy systems. For this purpose, this dissertation produces...... numerical models as versatile simulation tools to identify speci c optimum design criteria for thermoelectric generators used in various associated thermal and electrical systems, so that the generation performance can be improved due to the optimum system design....

  12. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  13. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  14. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  15. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  16. Powder metallurgical processing of functionally graded p-Pb1-x Sn x Te materials for thermoelectric applications

    International Nuclear Information System (INIS)

    Gelbstein, Y.; Dashevsky, Z.; Dariel, M.P.

    2007-01-01

    Lead tin telluride-based compounds are p-type materials for thermoelectric applications, in the 50-600 deg. C temperature range. The electronic transport properties of PbTe and Pb 1- x Sn x Te materials are strongly dependent on the processing approach. Powder metallurgy is a suitable approach for the preparation of Functionally graded materials (FGMs) but its effects on the electronic properties have to be carefully checked. Powder metallurgical processing may introduce atomic defects and local strains into the material and, thereby, alter the carrier concentration. Such material may be in non-equilibrium conditions at the operating temperature with unstable thermoelectric properties. This effect can be reduced and eliminated by appropriate annealing procedures. In FGMs, annealing up to the stabilization of the thermoelectric properties is mandatory for achieving the desired carrier concentration profile along the sample. The design procedures of the FGMs, as well as the annealing effects on cold compacted and sintered Pb 1- x Sn x Te samples are described in details

  17. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  18. Development and construction of a thermoelectric active facade module

    Directory of Open Access Journals (Sweden)

    Marıa Ibanez-Puy

    2015-06-01

    Full Text Available In order to fulfil the current challenges for the European building sector, building design has diverged into two alternative directions: active technologies and passive design strategies. In the last few years, advanced and responsive building envelope components have represented a promising answer to these challenges. This paper presents the design and construction process of a project that aims to design, build and control the energy performance of an industrial-scale modular active ventilated facade prototype with a new Themoelectric Peltier System (TPS. The TPS is a thermoelectric HVAC heat pump system designed to be located in the building envelope and providing a high comfort level. Trying to optimize the energy performance of the traditional ventilated opaque facade, and make more efficient the energy performance of the TPS, the concept of adaptability has been applied to ventilated opaque facades. The essential research theme is to control the natural phenomena that take place inside the ventilated air cavity of the facade: taking advantage when heat dissipation is needed, and avoiding it when heat losses are not welcome. In order to quantify the previous statements, some facade prototypes are being built in Pamplona (Spain and their energy performance is going to be analyzed during a year.  

  19. Relationship between the merit factor of thermoelectric materials and the air conditioning unit of urban electric cars

    International Nuclear Information System (INIS)

    Buffet, J.

    1994-01-01

    The main benefit of electric cars is to reduce air pollution in cities that is thus desirable to equip them with non polluting air conditioning units and this rules out frigorific compressors operating with CFC. The planned replacement of CFC by HFC is at best an interim solution. The best solution is certainly to use thermoelectric air conditioning units, which are inherently pollution-free. However, these have a fairly low COPF when compared to traditional compressor units. We study the relationship between the cooling of the interior of urban electric cars and the merit factor of the thermoelectric material in their Peltier unit. This should help provide concrete target properties of future T E materials. copyright 1995 American Institute of Physics

  20. Development of a heat exchanger for the cold side of a thermoelectric module

    Energy Technology Data Exchange (ETDEWEB)

    Vian, J.G.; Astrain, D. [Department of Mechanical Engineering, Universidad Publica de Navarra, UPNA, 31006 Pamplona (Spain)

    2008-08-15

    A heat exchanger for the cold side of Peltier pellets in thermoelectric refrigeration, based on the principle of a thermosyphon with phase change and capillary action has been developed. This device improves the thermal resistance between the cold side of a Peltier pellet and the refrigerated ambient by 37% (from 0.513 of the finned heat sink, to 0.323 K/W). Analytic calculations and experimental optimisation of the TPM have been carried out by building and testing several prototypes. It also has been experimentally proved that the COP of thermoelectric refrigerators can be improved up to 32% (from 0.297 to 0.393) by incorporating the developed device. (author)

  1. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  2. Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3

    Science.gov (United States)

    Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo

    2018-03-01

    We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.

  3. Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying

    DEFF Research Database (Denmark)

    Tureson, Nina; Van Nong, Ngo; Fournier, Daniele

    2017-01-01

    ) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of −45 μV/K and a power factor of 6 × 10−4 W/m K2 at 750 K. Estimated from room temperature Hall measurements, all...... samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.......5 W m−1 K−1) down to a minimum value of 2.2 Wm−1 K−1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of ∼5 due to the mass contrast in ScN, which increases the phonon scattering in the material....

  4. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    Science.gov (United States)

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-01-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524

  5. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies

    International Nuclear Information System (INIS)

    Vian, J.G.; Astrain, D.

    2009-01-01

    A domestic refrigerator with three compartments has been developed: refrigerator compartment, at 4 deg. C (vapor compression cooling system); freezer compartment, at -22 deg. C (vapor compression cooling system); and a new super-conservation compartment, at 0 deg. C (thermoelectric cooling system). The thermoelectric system designed for the super-conservation compartment eliminates the oscillation of its temperature due to the start and stop compressor cycles, obtaining a constant temperature and thus, a better preservation of the food. For the design and optimization of this application, a computational model, based in the numerical method of finite differences, has been developed. This model allows to simulate the complete hybrid refrigerator (vapor compression-thermoelectricity). The accuracy of the model has been experimentally checked, with a maximum error of 1.2 deg. C for temperature values, and 8% for electric power consumption. By simulations with the computational model, the design of the refrigerator has been optimized, obtaining a final prototype highly competitive, by the features on food preservation and power consumption: 1.15 kW h per day (48.1 W) for an ambient temperature of 25 deg. C. According to European rules, this power consumption value means that this new refrigerator could be included on energy efficiency class B.

  6. Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception

    Science.gov (United States)

    Uysal, Fatih; Kilinc, Enes; Kurt, Huseyin; Celik, Erdal; Dugenci, Muharrem; Sagiroglu, Selami

    2017-08-01

    Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit ( ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.

  7. Multiscale Modelling of Electronic and Thermal Transport : Thermoelectrics, Turbostratic 2D Materials and Diamond/c-BN HEMT

    Science.gov (United States)

    Narendra, Namita

    Multiscale modelling has become necessary with the advent of low dimensional devices as well as use of heterostructures which necessitates atomistic treatment of the interfaces. Multiscale methodology is able to capture the quantum mechanical atomistic details while enabling the simulation of micro-scale structures at the same time. In this thesis, multiscale modelling has been applied to study transport in thermoelectrics, turbostratic 2D MoS2/WS 2 heterostructure and diamond/c-BN high mobility electron transistor (HEMT). The possibility of enhanced thermoelectric properties through nanostructuring is investigated theoretically in a p-type Bi2Te3/Sb 2Te3 heterostructure. A multi-scale modeling approach is adopted to account for the atomistic characteristics of the interface as well as the carrier/phonon transport properties in the larger scales. The calculations clearly illustrate the desired impact of carrier energy filtering at the potential barrier by locally boosting the power factor over a sizable distance in the well region. Further, the phonon transport analysis illustrates a considerable reduction in the thermal conductivity at the heterointerface. Both effects are expected to provide an effective means to engineer higher zT in this material system. Next, power factor enhancement through resonant doping is explored in Bi2Te3 based on a detailed first-principles study. Of the dopant atoms investigated, it is found that the formation of resonant states may be achieved with In, Po and Na, leading potentially to significant increase in the thermoelectric efficiency at room temperature. While doping with Po forms twin resonant state peaks in the valence and conduction bands, the incorporation of Na or In results in the resonant states close to the valence band edge. Further analysis reveals the origin of these resonant states. Transport calculations are also carried out to estimate the anticipated level of enhancement. Next, in-plane and cross-plane transport

  8. Thermoelectric and mechanical properties of spark plasma sintered Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}: Promising thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, Materials Physics and Engineering, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2014-12-29

    We report the synthesis of thermoelectric compounds, Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu{sub 3}SbSe{sub 4} exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu{sub 3}SbSe{sub 3}, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu{sub 3}SbSe{sub 4} was found to be ∼1.2 as compared to 0.2 V{sup −1} for Cu{sub 3}SbSe{sub 3} at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  9. Compliant Interfacial Layers in Thermoelectric Devices

    Science.gov (United States)

    Firdosy, Samad A. (Inventor); Li, Billy Chun-Yip (Inventor); Ravi, Vilupanur A. (Inventor); Fleurial, Jean-Pierre (Inventor); Caillat, Thierry (Inventor); Anjunyan, Harut (Inventor)

    2017-01-01

    A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.

  10. Microstructure-lattice thermal conductivity correlation in nanostructured PbTe{sub 0.7}S{sub 0.3} thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiaqing [Department of Materials Science and Engineering, Northwestern University Evanston, IL (United States); Department of Chemistry, Northwestern University Evanston, IL (United States); Girard, Steven N [Department of Chemistry, Northwestern University Evanston, IL (United States); Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University Evanston, IL (United States); Materials Science Division Argonne, National Laboratory Argonne, IL (United States); Dravid, Vinayak P [Department of Materials Science and Engineering, Northwestern University Evanston, IL (United States)

    2010-03-09

    The reduction of thermal conductivity, and a comprehensive understanding of the microstructural constituents that cause this reduction, represent some of the important challenges for the further development of thermoelectric materials with improved figure of merit. Model PbTe-based thermoelectric materials that exhibit very low lattice thermal conductivity have been chosen for this microstructure-thermal conductivity correlation study. The nominal PbTe{sub 0.7}S{sub 0.3} composition spinodally decomposes into two phases: PbTe and PbS. Orderly misfit dislocations, incomplete relaxed strain, and structure-modulated contrast rather than composition-modulated contrast are observed at the boundaries between the two phases. Furthermore, the samples also contain regularly shaped nanometer-scale precipitates. The theoretical calculations of the lattice thermal conductivity of the PbTe{sub 0.7}S{sub 0.3} material, based on transmission electron microscopy observations, closely aligns with experimental measurements of the thermal conductivity of a very low value, {proportional_to}0.8 W m{sup -1} K{sup -1} at room temperature, approximately 35% and 30% of the value of the lattice thermal conductivity of either PbTe and PbS, respectively. It is shown that phase boundaries, interfacial dislocations, and nanometer-scale precipitates play an important role in enhancing phonon scattering and, therefore, in reducing the lattice thermal conductivity. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    Schmitz, Andreas

    2013-01-01

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb 1-x Ca x Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties

  12. Molecular dynamics simulations of the lattice thermal conductivity of thermoelectric material CuInTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong (Hong Kong); Liu, H.J., E-mail: phlhj@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cheng, L.; Zhang, J.; Jiang, P.H.; Liang, J.H.; Fan, D.D.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-05-10

    Highlights: • A simple but effective Morse potential is constructed to accurately describe the interatomic interactions of CuInTe{sub 2}. • The lattice thermal conductivity of CuInTe{sub 2} predicted by MD agrees well with those measured experimentally, as well as those calculated from phonon BTE. • Introducing Cd impurity or Cu vacancy can effectively reduce the lattice thermal conductivity of CuInTe{sub 2} and thus further enhance its thermoelectric performance. - Abstract: The lattice thermal conductivity of thermoelectric material CuInTe{sub 2} is predicted using classical molecular dynamics simulations, where a simple but effective Morse-type interatomic potential is constructed by fitting first-principles total energy calculations. In a broad temperature range from 300 to 900 K, our simulated results agree well with those measured experimentally, as well as those obtained from phonon Boltzmann transport equation. By introducing the Cd impurity or Cu vacancy, the thermal conductivity of CuInTe{sub 2} can be effectively reduced to further enhance the thermoelectric performance of this chalcopyrite compound.

  13. Opto-thermoelectric nanotweezers

    Science.gov (United States)

    Lin, Linhan; Wang, Mingsong; Peng, Xiaolei; Lissek, Emanuel N.; Mao, Zhangming; Scarabelli, Leonardo; Adkins, Emily; Coskun, Sahin; Unalan, Husnu Emrah; Korgel, Brian A.; Liz-Marzán, Luis M.; Florin, Ernst-Ludwig; Zheng, Yuebing

    2018-04-01

    Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.

  14. Preparation of n-type Bi{sub 2}Te{sub 3} thermoelectric materials by non-contact dispenser printing combined with selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Keping; Yan, Yonggao; Zhang, Jian; Mao, Yu; Xie, Hongyao; Zhang, Qingjie; Tang, Xinfeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei (China); Yang, Jihui [Department of Materials Science and Engineering, University of Washington, Seattle, WA (United States); Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, MI (United States)

    2017-06-15

    The manufacturing cost has been a bottle neck for broader applications of thermoelectric (TE) modules. We have developed a rapid, facile, and low cost method that combines non-contact dispenser printing with selective laser melting (SLM) and we demonstrate it on n-type Bi{sub 2}Te{sub 3}-based materials. Using this approach, single phase n-type Bi{sub 2}Te{sub 2.7}Se{sub 0.3} thin layers with the Seebeck coefficient of -152 μV K{sup -1} at 300 K have been prepared. Assembling such thin layers on top of each other, the performance of thus prepared bulk sample is comparable to Bi{sub 2}Te{sub 3}-based materials fabricated by the conventional techniques. Dispenser printing combined with SLM is a promising manufacturing process for TE materials. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  16. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    Science.gov (United States)

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is

  17. Potential thermoelectric material open framework Si24 from a first-principles study

    International Nuclear Information System (INIS)

    Ouyang, Tao; Zhang, Pei; Xiao, Huaping; Tang, Chao; Li, Jin; He, Chaoyu; Zhong, Jianxin

    2017-01-01

    Open framework Si 24 is a new synthesis cage-like silicon allotrope with a quasi-direct bandgap and predicted to exhibit outstanding adsorption efficiency, foreshowing the potential applications in the photovoltaic community. In this paper, the thermoelectric property of such new Si structures is investigated by combining first-principles calculation and semiclassical Boltzmann transport theory. The calculations show that the Si 24 possesses a superb Seebeck coefficient, and obviously anisotropic electronic conductivity. Owing to more energy extremums existing in the conduction band region, the power factor of Si 24 in the n-type doping is always better than that in p-type samples. Anisotropic phonon transport property is observed as well in Si 24 with average lattice thermal conductivity of 45.35 W m −1 K −1 at room temperature. Based on the electron relaxation time estimated from the experiment, the thermoelectric figure of merit of Si 24 is found to be as high as 0.69 (n-type doping at 700 K) and 0.51 (p-type doping at 700 K) along the xx crystal direction, which is about two orders of magnitude larger than that of diamond Si ( d -Si). The findings presented in this work shed light on the thermoelectric performance of Si 24 and qualify that such new Si allotrope is a promising platform for achieving the recombination of photovoltaic and thermoelectric technologies together. (paper)

  18. Numerical Modeling of Thermoelectric Generators with Varing Material Properties in a Circuit Simulator

    DEFF Research Database (Denmark)

    Chen, Min; Rosendahl, Lasse; Condra, Thomas

    2009-01-01

    When a thermoelectric generator (TEG) and its external load circuitry are considered together as a system, the codesign and cooptimization of the electronics and the device are crucial in maximizing the system efficiency. In this paper, an accurate TEG model is proposed and implemented in a SPICE...

  19. Electronic structure and high thermoelectric properties of a new material Ba{sub 3}Cu{sub 20}Te{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui, E-mail: kuiziyang@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China); Wu, Jinghe [Department of Physics and Electronic Engineering, Henan Institute of Education, Zhengzhou, 450046 (China); Zhang, Jing; Ma, Dongwei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China)

    2016-09-05

    The electronic structure and high thermoelectric properties of Ba{sub 3}Cu{sub 20}Te{sub 13} are studied using first principles calculations and the semiclassical Boltzmann theory. The coexistence of ionic and covalent bonding in Ba{sub 3}Cu{sub 20}Te{sub 13} indicates that it is a Zintl phase compound. The calculated band structure shows that the compound is a semiconductor with an indirect band gap ∼0.45 eV, which is an appropriate band for the high thermoelectric performance. The transport calculations based on the electronic structure indicate that it exhibits relatively large Seebeck coefficients, high electrical conductivities, and high power factor. For Ba{sub 3}Cu{sub 20}Te{sub 13}, the n-type doping may achieve a higher thermoelectric performance than that of p-type doping. It is worth noting that the thermoelectric parameters of Ba{sub 3}Cu{sub 20}Te{sub 13} are comparable or larger than that of Ca{sub 5}Al{sub 2}Sb{sub 6}, a typical Zintl compound representative with high thermoelectric performance. - Highlights: • The electronic structure and thermoelectric(TE) properties are firstly studied. • The heavy and light bands near the Fermi level benefit TE properties. • The comparison indicates Ba{sub 3}Cu{sub 20}Te{sub 13} is a potential high TE material.

  20. Development of a 0.1 kW thermoelectric power generator for military applications

    International Nuclear Information System (INIS)

    Menchen, W.R.

    1986-01-01

    A man-portable thermoelectric power source is being developed for the U.S. Army. Initially used as a dedicated power supply for the XM-21 Chemical Agent Alarm System, the set can also meet a variety of general purpose user requirements. Development of a thermoelectric power conversion device is being undertaken by the U.S. Army LABCOM Electronics Technology and Devices Laboratory to fill a need for a generator that is silent, lightweight, multi-fueled and reliable. The 0.1 kW Power Generator is rectangular in configuration and consists of a power module, electronic control assembly and fuel delivery system housed within a tubular structural frame. The generator operates on military fuels ranging from kerosene to diesel oil. Multi-fuel capability is achieved using an ultrasonic atomizer and regenerative burner developed specifically for this application. This paper provides the first public presentation of results achieved during the Advanced Development Phase of the 0.1 kW Power Generator. The development process is briefly traced with emphasis on a description of the system and test results obtained to date

  1. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    Science.gov (United States)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  2. Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor

    DEFF Research Database (Denmark)

    Qing, Shaowei; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    Flexible thermoelectric generator became an attractive technology for its wide use especially for curved surfaces applications. This study proposes design of a flexible thermoelectric generator, which is part of a sensor and supplies required electrical power for human body application...... elements thickness and thermoelectric module row number in a proper range can significantly enhance thermoelectric generator performance. The maximum output power can reach 0.2 μW/cm2, which indicates the proposed design is promising for supplying human body sensors. In addition, the basic optimal design....... The thermoelectric generator module has ink-based thermoelements which are made of nano-carbon bismuth telluride materials. Flexible fins conduct the body heat to the thermoelectric uni-couples, extended fins exchange the heat from the cold side of the thermoelectric generator to the ambient. A fully developed one...

  3. Development and experimental validation of a thermoelectric test bench for laboratory lessons

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez

    2013-12-01

    Full Text Available The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor compression and absorption refrigeration, and power generation systems such as gas turbine and steam turbine. Another type of cooling and generation less studied within the engineering curriculum, having a great interest, it is cooling and thermal generation based on Peltier and Seebeck effects. The theoretical concepts are useful, but students have difficulties understanding the physical meaning of their possible applications. Providing students with tools to test and apply the theory in real applications, will lead to a better understanding of the subject. Engineers must have strong theoretical, computational and also experimental skills. A prototype test bench has been built and experimentally validated to perform practical lessons of thermoelectric generation and refrigeration. Using this prototype students learn the most effective way of cooling systems and thermal power generation as well as basic concepts associated with thermoelectricity. It has been proven that students learn the process of data acquisition, and the technology used in thermoelectric devices. These practical lessons are implemented for a 60 people group of students in the development of subject of Thermodynamic including in the Degree in Engineering in Industrial Technologies of Public University of Navarra. Normal 0 21 false false false ES X-NONE X-NONE Normal 0 21 false false false ES X-NONE X-NONE Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  4. A 3D TCAD simulation of a thermoelectric module configured for thermoelectric power generation, cooling and heating

    Science.gov (United States)

    Gould, C. A.; Shammas, N. Y. A.; Grainger, S.; Taylor, I.; Simpson, K.

    2012-06-01

    This paper documents the 3D modeling and simulation of a three couple thermoelectric module using the Synopsys Technology Computer Aided Design (TCAD) semiconductor simulation software. Simulation results are presented for thermoelectric power generation, cooling and heating, and successfully demonstrate the basic thermoelectric principles. The 3D TCAD simulation model of a three couple thermoelectric module can be used in the future to evaluate different thermoelectric materials, device structures, and improve the efficiency and performance of thermoelectric modules.

  5. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  6. Thermoelectric properties of high electron concentration materials under large temperature gradients

    International Nuclear Information System (INIS)

    Bulat, L.P.; Stefansky, V.A.

    1994-01-01

    Theoretical methods of investigating of transport properties in solids under large temperature gradients are grounded. The nonlinear and non-local expressions for current density and heat flow are obtained with degenerated of current carriers gas. A number of new effects with large temperature gradients have been tested. Use of large temperature gradients leads to the increasing of the thermoelectric figure of merit. copyright 1995 American Institute of Physics

  7. Expanding the reduced-current approach for thermoelectric generators to achieve higher volumetric power density

    DEFF Research Database (Denmark)

    Wijesooriyage, Waruna Dissanayaka; Rosendahl, Lasse

    2015-01-01

    Thermoelectrics are candidate niche electrical generator devices for energy management. At present, scientists are more focused on thermoelectric (TE) material development, but the TE module design procedure is still in a relatively virgin state. One of the most well-known methods is the reduced ...

  8. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  9. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    Directory of Open Access Journals (Sweden)

    Goupil Christophe

    2016-01-01

    Full Text Available Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant’s electrophysiological response. therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  10. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  11. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  12. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  13. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  14. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-Based Thermoelectric Materials

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Borup, Kasper

    2018-01-01

    n-type Mg3Sb1.5Bi0.5 has recently been discovered to be a promising thermoelectric material, yet the effective n-type dopants are mainly limited to the chalcogens. This may be attributed to the limited chemical insight into the effects from different n-type dopants. By comparing the effects of di...

  15. Materials development for TESOL

    CERN Document Server

    Mishan, Freda

    2015-01-01

    Materials development has become much more important in the field of TESOL in the last twenty years: modules on materials development are now commonplace on MA TESOL courses around the world. The overall aim of the book is to introduce readers to a wide range of theoretical and practical issues in materials development to enable them to make informed and principled choices in the selection, evaluation, adaptation and production of materials. The book aims to show how these choices need to be informed by an awareness of culture, context and purpose.

  16. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  17. Thermoelectric properties of low-dimensional clathrates from first principles

    Science.gov (United States)

    Kasinathan, Deepa; Rosner, Helge

    2011-03-01

    Type-I inorganic clathrates are host-guest structures with the guest atoms trapped in the framework of the host structure. From a thermoelectric point of view, they are interesting because they are semiconductors with adjustable bandgaps. Investigations in the past decade have shown that type-I clathrates X8 Ga 16 Ge 30 (X = Ba, Sr, Eu) may have the unusual property of ``phonon glass-electron crystal'' for good thermoelectric materials. Among the known clathrates, Ba 8 Ga 16 Ge 30 has the highest figure of merit (ZT~1). To enable a more widespread usage of thermoelectric technology power generation and heating/cooling applications, ZT of at least 2-3 is required. Two different research approaches have been proposed for developing next generation thermoelectric materials: one investigating new families of advanced bulk materials, and the other studying low-dimensional materials. In our work, we concentrate on understanding the thermoelectric properties of the nanostructured Ba-based clathrates. We use semi-classical Boltzmann transport equations to calculate the various thermoelectric properties as a function of reduced dimensions. We observe that there exists a delicate balance between the electrical conductivity and the electronic part of the thermal conductivity in reduced dimensions. Insights from these results can directly be used to control particle size in nanostructuring experiments.

  18. Thermoelectric generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1978-01-01

    The main components of a thermoelectric generator are housed in an evacuated cylindrical vessel. In the middle of it there is the radioactive heat source, e.g. 90 Sr or 238 Pu, enclosed by a gamma radiation shield. This one is surrounded by a heat-insulating screen from getter material or indicidual sheets of titanium. In the bottom of the screen there are arranged several thermocouples on a circle. The thermocouples themselves are contained within casings sealed gas-tight and filled with an inert gas, e.g. argon. By separating the internal space of the generator vessel from the thermocouple casings, made of e.g. n- respectively p-doped lead telluride cylinders, for both the optimal gas state may be obtained. (DG) [de

  19. Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials

    Science.gov (United States)

    Song, Shaowei; Mao, Jun; Shuai, Jing; Zhu, Hangtian; Ren, Zhensong; Saparamadu, Udara; Tang, Zhongjia; Wang, Bo; Ren, Zhifeng

    2018-02-01

    The recent discovery of a high thermoelectric figure of merit (ZT) in an n-type Mg3Sb2-based Zintl phase triggered an intense research effort to pursue even higher ZT. Based on our previous report on Mg3.1Nb0.1Sb1.5Bi0.49Te0.01, we report here that partial texturing in the (001) plane is achieved by double hot pressing, which is further confirmed by the rocking curves of the (002) plane. The textured samples of Mg3.1Nb0.1Sb1.5Bi0.49Te0.01 show a much better average performance in the (00l) plane. Hall mobility is significantly improved to ˜105 cm2 V-1 s-1 at room temperature in the (00l) plane due to texturing, resulting in higher electrical conductivity, a higher power factor of ˜18 μW cm-1 K-2 at room temperature, and also higher average ZT. This work shows that texturing is good for higher thermoelectric performance, suggesting that single crystals of n-type Mg3Sb2-based Zintl compounds are worth pursuing.

  1. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  2. Lattice distortions in TlInSe{sub 2} thermoelectric material studied by X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Shinya; Stellhorn, Jens Ruediger [Department of Physics, Kumamoto University, Kumamoto (Japan); Ikemoto, Hiroyuki [Department of Physics, University of Toyama, Toyama (Japan); Mimura, Kojiro [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Wakita, Kazuki [Faculty of Engineering, Chiba Institute of Technology, Narashino (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2018-01-15

    Tl L{sub II} and In K X-ray absorption fine structure (XAFS) measurements were performed on a TlInSe{sub 2} thermoelectric material in the temperature range of 25-300 K including the incommensurate-commensurate phase transition temperature of about 135 K. Most of the bond lengths obtained from the present XAFS measurements are in good agreement with existing X-ray diffraction data at room temperature, while only the Tl-Tl correlation shows inconsistent values indicating the commensurate properties of the Tl chains expected from the thermodynamic properties. The present XAFS data clearly support positional fluctuations of the Tl atoms found in three-dimensional atomic images reconstructed from X-ray fluorescence holography. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  4. Structural, chemical, and thermoelectric properties of Bi2Te3 Peltier materials. Bulk, thin films, and superlattices

    International Nuclear Information System (INIS)

    Peranio, Nicola

    2008-01-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi 2 Te 3 and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi 2 (Te 0.91 Se 0.09 ) 3 and p-type (Bi 0.26 Sb 0.74 ) 1.98 (Te 0.99 Se 0.01 ) 3.02 bulk materials synthesised by the Bridgman technique. (II) Bi 2 Te 3 thin films and Bi 2 Te 3 /Bi 2 (Te 0.88 Se 0.12 ) 3 superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF 2 substrates with periods of δ-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to and an amplitude of about 10 pm and (ii) a wave vector parallel to {1,0,10} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  5. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

    Science.gov (United States)

    He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

  6. La 1-x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties.

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M; Cantarero, Andrés

    2014-01-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  7. Probing the Subtle Structure Modifications of Thermoelectric Materials by Variable Temperature Total Scattering

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    The complex host-guest structure of Type-I inorganic clathrates has been studied fervently within the CMC based on their low thermal conductivity and promising thermoelectric Figure of Merit (zT). We have recently been focused on understanding unusual features in the high temperature diffraction...... data collected over a number of years on Ba8Ga16Ge30 (BGG), where numerous samples have been prepared in-house using various synthesis methods. This led to a comprehensive thermal stability study of clathrate powders, where PXRD revealed amorphous components in the samples treated at high temperature...... in air. PDF measurements were performed on data collected from ex situ annealed BGG samples. This ex situ study (to be submitted), reveals that the seemingly subtle change in the clathrate structure and the emergence of a significant amorphous phase observed from PXRD data is likely to be the result...

  8. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  9. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    International Nuclear Information System (INIS)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho

    2017-01-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine 238 U, 226 Ra, 228 Ra, 210 Pb, 232 Th and 40 K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg -1 for 238 U, 180 Bq kg -1 for 226 Ra, 27 Bq kg -1 for 228 Ra, 28 Bq kg -1 for 232 Th and 192 Bq kg -1 for 40 K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg -1 for 238 U, from 484 to 1086 Bq kg -1 for 226 Ra, from 291 to 1891 Bq kg -1 for 210 Pb, from 67 to 111 Bq kg -1 for 228 Ra, from 80 to 87 Bq -1 for 232 Th and from 489 to 718 Bq kg -1 for 40 K. Similar ranges were observed for zeolites. The activity concentration of 238 U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  10. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho, E-mail: dfungaro@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb, {sup 232}Th and {sup 40}K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg{sup -1} for {sup 238}U, 180 Bq kg{sup -1} for {sup 226}Ra, 27 Bq kg{sup -1} for {sup 228}Ra, 28 Bq kg{sup -1} for {sup 232}Th and 192 Bq kg{sup -1} for {sup 40}K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg{sup -1} for {sup 238}U, from 484 to 1086 Bq kg{sup -1} for {sup 226}Ra, from 291 to 1891 Bq kg{sup -1} for {sup 210}Pb, from 67 to 111 Bq kg{sup -1} for {sup 228}Ra, from 80 to 87 Bq{sup -1} for {sup 232}Th and from 489 to 718 Bq kg{sup -1} for {sup 40}K. Similar ranges were observed for zeolites. The activity concentration of {sup 238}U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  11. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system

    International Nuclear Information System (INIS)

    Al-Madhhachi, Hayder; Min, Gao

    2017-01-01

    Highlights: • New distillation process using thermoelectric to assist evaporation/condensation. • Novel thermoelectric distillation system with reduced specific energy consumption. • Freshwater production by thermoelectrically assisted evaporation and condensation. - Abstract: An efficient thermoelectric distillation system has been designed and constructed for production of drinkable water. The unique design of this system is to use the heat from hot side of the thermoelectric module for water evaporation and the cold side for vapour condensation simultaneously. This novel design significantly reduces energy consumption and improves the system performance. The results of experiments show that the average water production is 28.5 mL/h with a specific energy consumption of 0.00114 kW h/mL in an evaporation chamber filled with 10 × 10 × 30 mm"3 of water. This is significantly lower than the energy consumption required by other existing thermoelectric distillation systems. The results also show that a maximum temperature difference between the hot and cold side of the thermoelectric module is 42.3 °C, which led to temperature increases of 26.4 °C and 8.4 °C in water and vapour, respectively.

  12. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  13. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2016-01-01

    This book is a comprehensive introduction to all aspects of thermoelectric energy conversion. It covers both theory and practice. The book is timely as it refers to the many improvements that have come about in the last few years through the use of nanostructures. The concept of semiconductor thermoelements led to major advances during the second half of the twentieth century, making Peltier refrigeration a widely used technique. The latest materials herald thermoelectric generation as the preferred technique for exploiting low-grade heat. The book shows how progress has been made by increasing the thermal resistivity of the lattice until it is almost as large as it is for glass. It points the way towards the attainment of similar improvements in the electronic parameters. It does not neglect practical considerations, such as the desirability of making thermocouples from inexpensive and environmentally acceptable materials. The second edition was extended to also include recent advances in thermoelectric ener...

  14. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Thermoelectric energy recovery system for automobile; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Jidoshayo netsuden energy kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project aims to develop a system for recovering heat from the thermal energy of automobile exhaust in the form of electric energy. Skutterudite based thermoelectric materials for high temperature use and existing thermoelectric materials for low/middle temperature use were improved in performance, and a dimensionless thermoelectric performance index of ZT=1 was attained. Advanced processes were applied for improvement on the performance of existing thermoelectric materials. In the effort to develop technologies for the mass production of thermoelectric materials for high temperature use, a material manufacturing process was established for manufacturing materials excellent in thermoelectric and mechanical properties using a method for mass-producing sinterable materials by gas atomization and a large discharge plasma sintering process capable of treating large specimens. In the effort to improve automobile power generation modules in performance and to establish element technologies for their manufacture, technologies were developed involving thermoelectric materials and electrodes, bonding of different thermoelectric materials, bonding of heat conducting electrical insulators and electrodes, and high efficiency segment type power generation modules. A high performance automobile exhaust gas heat exchanger was developed. A Co-Sb based thermoelectric module and a Bi-Te based module were combined and the package was tested aboard automobiles, when a maximum power output of 83W was achieved. It is necessary to review module arrangement. (NEDO)

  15. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Enhanced low-temperature thermoelectrical properties of BiTeCl grown by topotactic method

    International Nuclear Information System (INIS)

    Jacimovic, J.; Mettan, X.; Pisoni, A.; Gaal, R.; Katrych, S.; Demko, L.; Akrap, A.; Forro, L.; Berger, H.; Bugnon, P.; Magrez, A.

    2014-01-01

    We developed a topotactic strategy to grow BiTeCl single crystals. Structural characterization by means of X-ray diffraction was performed, and the high crystallinity of the material was proven. Measurements of the thermoelectrical coefficients electrical resistivity, thermoelectric power and thermal conductivity show an enhanced room temperature power factor of 20 μW cm −1 K −2 . The high value of the figure of merit (ZT = 0.17) confirms that BiTeCl is a promising material for engineering in thermoelectric applications at low temperature

  17. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  18. UV curable materials development

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.G.

    1996-12-01

    Adhesives, coatings, and inks were selected for evaluation based on literature search and possible production applications. A differential photocalorimeter was used to measure degree of cure and allow prediction of optimum processing conditions. UV cure equipment were characterized and the ability to size equipment to specific materials cure needs established. Adhesion tests procedures were developed for the adhesives and solvent resistance testing procedures developed for the coatings and inks.

  19. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay; Wu, Albert T.; Wei, Pei-chun; Chen, Sinn-wen

    2018-01-01

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module

  20. Hydro-climatic conditions and thermoelectric electricity generation – Part I: Development of models

    International Nuclear Information System (INIS)

    Koch, Hagen; Vögele, Stefan

    2013-01-01

    In recent years there have been several heat waves affecting the use of thermoelectric power plants, e.g. in Europe and the U.S. In this paper the linkage between hydro-climatic conditions and possible electricity generation restrictions is described. The coupling of hydrological models and a power plant model is presented. In this approach each power plant is considered separately with its technical specifications. Also environmental regulations, e.g. permissible rise in the cooling water temperature, are considered for the respective power plant. The hydrological models developed to simulate river runoff and water temperature are also site specific. The approach presented is applied to Krümmel nuclear power plant in Germany. Analysed are the uncertainties with regard to electricity generation restrictions on account of climatic developments and corresponding higher water temperatures and low flows. Overall, increased water temperatures and declining river runoff lead to more frequent and more severe generation restrictions. It is concluded that the site-specific approach is necessary to reliably simulate power plants water demand, river runoff and water temperature. Using a simulation time step of one day, electricity generation restrictions are significantly higher than for simulations at monthly time step. - Highlights: • An approach to assess climate effects on electricity generation is presented. • Site specific models for power plants, water temperature and discharge are used. • Monthly and daily simulation time-steps give different results. • Climate change effects on generation depend on cooling system and climate scenario

  1. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jennifer E [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Case, Eldon D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Khabir, Kristen N; Stewart, Ryan C [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Wu, Chun-I; Hogan, Timothy P [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Timm, Edward J [Mechanical Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Girard, Steven N; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States)

    2010-06-15

    Two-phase PbTe-PbS materials, in which PbS is a nanostructured phase, are promising thermoelectric materials for the direct conversion of heat energy into electricity. In this study, a Vickers indentation mean hardness of 1.18 {+-} 0.09 GPa was measured for hot pressed specimens Pb{sub 0.95}Sn{sub 0.05}Te-PbS 8% while the mean hardness of cast specimens was 0.68 {+-} 0.07 GPa. The mean fracture toughness of the not pressed specimens was estimated as 0.35 {+-} 0.04 MPa m{sup 1/2} via Vickers indentation. Resonant Ultrasound Spectroscopy (RUS) measurements on hot pressed specimens gave mean values of Young's modulus, shear modulus and Poisson's ratio of 53.1 GPa, 21.4 GPa and 0.245, respectively while for the cast specimens the Young's and shear moduli were about 10% lower than for the hot pressed, with a mean value of Poisson's ratio of 0.245. The differences between the hardness and elastic moduli values for the cast and hot pressed specimens are discussed.

  2. High Performance Thermoelectric Materials Using Solution Phase Synthesis of Narrow Bandgap Core/Shell Quantum Dots Deposited Into Colloidal Crystal Thin Films

    National Research Council Canada - National Science Library

    2005-01-01

    Thermoelectrics is the science and technology associated with thermoelectric converters, that is, the generation of electrical power based on the Seebeck effect and refrigeration by the Peltier effect...

  3. Thermoelectrode for thermoelectric converter

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Bondarciuc, Nicolae; Ghitu, Dumitru; Nikolaeva, Albina; Konopko, Leonid; Turcan, Ana

    2008-01-01

    The invention relates to the electronic engneering and can be used for manufacturing of thermoelectrodes for thermoelectric converters. The thermoelectrode is made of semiconductor anisotropic material in the form of thread in glass insulation. At the same timer, the thread is made of stannum-doped tellurium in the ratio of 0.1...3 at.%.

  4. Influence of light waves on the thermoelectric power under large magnetic field in III-V, ternary and quaternary materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, K.P. [Department of Electronic Science, The University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Bhattacharya, S. [Post Graduate Department of Computer Science, St. Xavier' s College, 30 Park Street, Kolkata 700 016 (India); Pahari, S. [Department of Administration, Jadavpur University, Kolkata 700 032 (India); De, D. [Department of Computer Science and Engineering, West Bengal University of Technology, B. F. 142, Sector I, Salt Lake, Kolkata 700 064 (India); Ghosh, S.; Mitra, M. [Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah 711 103 (India)

    2008-04-15

    We study theoretically the influence of light waves on the thermoelectric power under large magnetic field (TPM) for III-V, ternary and quaternary materials, whose unperturbed energy-band structures, are defined by the three-band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found by taking n-InAs, n-InSb, n-Hg{sub 1-x}Cd{sub x}Te and n-In{sub 1-x}Ga{sub x}As{sub y}P{sub 1-y} lattice matched to InP as examples that the TPM decreases with increase in electron concentration, and increases with increase in intensity and wavelength, respectively in various manners. The strong dependence of the TPM on both light intensity and wavelength reflects the direct signature of light waves that is in direct contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band-structure dependent and is significantly influenced by the presence of the different energy-band constants. The well-known result for the TPM for nondegenerate wide-gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have also suggested the experimental methods of determining the Einstein relation for the diffusivity:mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Ambient growth of highly oriented Cu{sub 2}S dendrites of superior thermoelectric behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mulla, Rafiq; Rabinal, M.K., E-mail: mkrabinal@yahoo.com

    2017-03-01

    Highlights: • A simple and ambient route to synthesize highly oriented dendrites of copper sulfide is proposed. • Remarkable enhancement is observed in Seebeck coefficient by room temperature, solution phase doping. • High thermoelectric power factor is observed at room temperature, indicating promising behaviour. - Abstract: Low-cost, non-toxic and efficient material is an urgent need for the thermoelectric energy conversion. Here, a rapid and ambient chemical route has been developed to grow dense and highly oriented dendrites of copper sulfide (Cu{sub 2}S) on copper substrate in a very simple approach, these films are uniform and covered with dense nanosheets. Room temperature solution doping of copper ions is carried out to improve thermoelectric performance. The Seebeck coefficient increased from ∼100 to 415 μV K{sup −1} with a slight decrease in electrical conductivity, this gives a high power factor (S{sup 2}σ) of about ∼400 μW m{sup −1} K{sup −2}. The improved thermoelectric properties in these films are accounted for resonant energy level doping and high phonon scattering. Such films with improved thermoelectric behaviour can be promising materials for energy conversion. The earth abundant, low cost, non toxic with a good thermoelectric property makes copper sulfide as a promising thermoelectric material for future applications.

  6. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Science.gov (United States)

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  7. Strain-induced bi-thermoelectricity in tapered carbon nanotubes

    Science.gov (United States)

    Algharagholy, L. A. A.; Pope, T.; Lambert, C. J.

    2018-03-01

    We show that carbon-based nanostructured materials are a novel testbed for controlling thermoelectricity and have the potential to underpin the development of new cost-effective environmentally-friendly thermoelectric materials. In single-molecule junctions, it is known that transport resonances associated with the discrete molecular levels play a key role in the thermoelectric performance, but such resonances have not been exploited in carbon nanotubes (CNTs). Here we study junctions formed from tapered CNTs and demonstrate that such structures possess transport resonances near the Fermi level, whose energetic location can be varied by applying strain, resulting in an ability to tune the sign of their Seebeck coefficient. These results reveal that tapered CNTs form a new class of bi-thermoelectric materials, exhibiting both positive and negative thermopower. This ability to change the sign of the Seebeck coefficient allows the thermovoltage in carbon-based thermoelectric devices to be boosted by placing CNTs with alternating-sign Seebeck coefficients in tandem.

  8. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  9. High Volume Manufacturing of NanoEngineered High ZT Thermoelectrics for Multiple Energy Generation Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SMI has teamed with a leading thermoelectric (TE) research group in order to optimize and convert high-performance TE materials developed in laboratory-scale into...

  10. Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials

    Science.gov (United States)

    Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.

    2016-08-16

    A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.

  11. Study of alternative materials to minimize erosion in heat exchanger tubes used in thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Arnt, A.B.C.; Paula, M.M. da S. Paula; Rocha, M.R. da; Angioletto, E.; Zanini, L.C.; Miranda, R.; Zanelatto, C.C. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil)], e-mails: anb@unesc.net, mms@unesc.net, marcio2r@terra.com.br, an@unesc.net, elucaslcz@yahoo.com.br, frdgmiranda@hotmail.com, gcrisrincao20@yahoo.com.br; Felippe, L. [Universidade do Extremo Sul Catarinense (UNESC), Capivari de Baixo, SC (Brazil)], e-mail: hlfelippe@tractebelenergia.com.br

    2007-07-01

    The machinery used in coal thermo electrical plants usually is submitted to erosive wear. The erosive wear occurs mainly in the metallic pipe set of heat exchangers due the flow of hot gases carrying erosive particles. Jaguar Ludicrous thermo electrical complex at Capivari de Baixo city holds seven power units, where two units use approximately 20 000 ASTM A178 heat pipes. The set is submitted to a semester maintenance schedule (preventive and corrective) where the damaged pipes are changed. So, in this work a set of erosive wear accelerated tests according ASTM G76 were performed in order to develop and specify materials and methods to diminish the erosive action caused by the combustion gases over the heat pipes. Specimens were coated with WC12Co and Cr{sub 3}C{sub 2}-25NiCr alloys using the HVOF technique and the coated specimens were tested at 450 deg C, the heat pipes working temperature. Silica was used as abrasive material at 30 deg and 45 deg impact angles, simulating a harder erosive condition than the real condition. The best performance coating at laboratory scale was later used in field condition. The results showed the coated specimen performance is better than the ASTM A178 alloy. The erosion resistance of the Cr{sub 3}C{sub 2}-25NiCr and WC12Co coatings is eight times higher than the uncoated alloy, and the coatings also presented a better corrosion resistance. This feature is important, because despite the erosive action the circulating gases also present a large amount of sulfur in their composition. Sulfur at lower temperatures forms H{sub 2}SO{sub 4}, causing intense corrosion of the pipes located at the heat exchangers colder parts. Based on the results and considering the coating costs the Cr{sub 3}C{sub 2}-25NiCr alloy was selected to coat a set of pipes mounted at the region of the heat exchanger with the most intense erosive wear. At the moment these coated tubes are in field operation and under observation regarding their performance in

  12. Production of Magnesium-Based Thermoelectric-Sheet Materials for Efficient Energy Harvesting

    National Research Council Canada - National Science Library

    Aizawa, Tatsuhiko

    2008-01-01

    In the first-year of projects related to MURI-program, Mg-Si-Ge-Sn system is found to be a suitable TE-material target for improvement of specific figure-of-merit to be used as the candidate energy harvesting material...

  13. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  14. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric

  15. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  16. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  17. Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material

    International Nuclear Information System (INIS)

    Parker, David; Singh, David J

    2012-01-01

    We analyze the thermoelectric behavior, using first principles and Boltzmann transport calculations, of very heavily electron-doped CrSi 2 and find that at temperatures of 900-1250 K and electron dopings of 1-4 × 10 21 cm -3 , thermopowers as large in magnitude as 200 μV K -1 may be found. Such high thermopowers at such high carrier concentrations are extremely rare, and suggest that excellent thermoelectric performance may be found in these ranges of temperature and doping. (paper)

  18. Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Mandrus, D; Sales, B C; Keppens, V [and others

    1997-07-01

    After a brief review of the transport and thermoelectric properties of filled skutterudite antimonides, the authors present resonant ultrasound, specific heat, and inelastic neutron scattering results that establish the existence of two low-energy vibrational modes in the filled skutterudite LaFe{sub 3}CoSb{sub 12}. It is likely that at least one of these modes represents the localized, incoherent vibrations of the La ion in an oversized atomic cage. These results support the usefulness of weakly bound, rattling ions for the improvement of thermoelectric performance.

  19. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Mateeva, N; Niculescu, H; Schlenoff, J; Testardi, L

    1997-07-01

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  20. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  1. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    Science.gov (United States)

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm-1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m-1 K-2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  2. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    Science.gov (United States)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  3. Green materials for sustainable development

    Science.gov (United States)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  4. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    Science.gov (United States)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  5. A Progress Report on X-Ray Diffraction Measurements on New Low-Thermal Conductivity Thermoelectric Materials

    Science.gov (United States)

    1999-04-01

    as the only moving parts and no environmentally unfriendly gases . Thermoelectric generators can also improve fuel efficiency by using the heat lost...Facolta di Chimica Industriale di Bologna, 24[4] (1966) 113-132. 11 — i at £ 73 U « ■ 2-Theta (deg) Figure 1. Calibration plot for SRM1976

  6. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  7. Development of magnetic materials

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.

    2000-01-01

    In the paper are presented both experimental and theoretical basic results of physics of magnetic materials. The special attention is given to a problem of creation of magnetic materials for recording and reproduction of the information. The influence of fundamental scientific results on process of creation of materials with the given properties and constriction of devices and facilities of new generation, and return influence of financing of scientific researches on process of discovering of new unknown fundamental properties of magnetic materials is considered. (author)

  8. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Ranjbar, Ali Akbar; Rezaniakolaei, Alireza

    2017-01-01

    this amount of voltage just for 2100 s. Therefore, the proposed design makes TEG systems more suitable for wireless sensor applications when the heat source does not provide steady thermal energy. In this study, four different patterns of thermal power applied to the TTEG system are considered. These patterns...... experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source...

  9. Lunar base thermoelectric power station study

    Science.gov (United States)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  10. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  11. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  12. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    Science.gov (United States)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  13. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  14. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  15. Precipitation of Ag2Te in the thermoelectric material AgSbTe2

    International Nuclear Information System (INIS)

    Sugar, Joshua D.; Medlin, Douglas L.

    2009-01-01

    The microstructure of AgSbTe 2 , prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag 22 Sb 28 Te 50 , and silver telluride, Ag 2 Te. Ag 2 Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe 2 phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag 2 Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag 2 Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag 2 Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  16. Proposal for a phase-coherent thermoelectric transistor

    International Nuclear Information System (INIS)

    Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

    2014-01-01

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ∼45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit

  17. Proposal for a phase-coherent thermoelectric transistor

    Energy Technology Data Exchange (ETDEWEB)

    Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Robinson, J. W. A., E-mail: jjr33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moodera, J. S. [Department of Physics and Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bergeret, F. S., E-mail: sebastian-bergeret@ehu.es [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2014-08-11

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ∼45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit.

  18. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  19. Development of a portable power system with meso-scale vortex combustor and thermo-electric device

    International Nuclear Information System (INIS)

    Shimokuri, D; Hara, T; Ishizuka, S

    2014-01-01

    In this study, a small scale power generation system with a meso-scale vortex combustor has been developed. The system was consisted of a couple of thermo-electric device and a heat medium. The medium was made of duralumin, 40 × 40 × 20 mm and 52 g weight, and the vortex combustion chamber of 7 mm inner diameter was embedded in it. It was found that a stable flame could be established in the narrow 7 mm channel even the mean axial velocity reached 1.2 m/s. And furthermore, the vortex flow significantly enhanced the heat transfer from the burned gas to combustion chamber, and as a result, the medium was heated to 300°C quickly (within 5 minutes) by the combustion of propane / air mixture for 145W input energy. The system could successfully generate 1.98 W (4.3 V and 0.46 A), which corresponded to the energy conversion rate of 0.7 % per unit thermo-electric device

  20. Renewable energy in focus: In5Se5Br, a solid material with promising thermoelectric properties for industrial applications

    International Nuclear Information System (INIS)

    Xhaxhiu, Kledi; Kvarnström, Carita; Damlin, Pia; Bente, Klaus

    2014-01-01

    Highlights: • In 5 Se 5 Br contains indium simultaneously in three different oxidation states. • Bulk sample of In 5 Se 5 Br shows n-type conductivity. • The Seebeck voltage increases linearly with the temperature difference increase. • In bulk In 5 Se 5 Br the resistivity oscillates between 2.6 MΩ and 23 MΩ. • DTA and HT-powder XRD data show incongruent melting of the compound. - Abstract: We obtained via solid state synthesis needle-shaped crystals of In 5 Se 5 Br crystallizing in the space group Pmn2 1 and containing indium simultaneously in three different oxidation states: In + , formal In 2+ and In 3+ . Bulk sample of In 5 Se 5 Br shows n-type conductivity and linear increase of Seebeck voltage with the temperature difference increase. Seebeck voltage of approx. 720 mV is recorded at a temperature difference of 80 K, corresponding to a Seebeck coefficient −8900 μV/K. A voltage increase up to 250 mV is recorded within 10 min upon application of a 27 K temperature difference between the contacts. On-off switching of the heating source unveils repeatable results. Linear I–U behavior with a resistivity of 2.32 × 10 11 Ω is observable for individual needles of In 5 Se 5 Br. In bulk In 5 Se 5 Br the resistivity oscillates between 2.6 MΩ and 23 MΩ. DTA and HT-powder XRD data show incongruent melting to InBr, InSe and In 2 Se 3 at 805 K. The ternary compound expands 1.02% along [0 1 0] showing a coefficient of thermal expansion α b = 2.3(4) × 10 −5 K −1 . Lower expansions of 0.6% and 0.16% along a and c axes corresponding to mean coefficients of thermal expansion of α a ¯ = 1.3(1) × 10 −5 K −1 , α c ¯ = 4.4(5) × 10 −6 K −1 are observed. Thin layer growing of In 5 Se 5 Br on glass substrate with targeted doping/substitutions can improve the sample conductivity, increase the Seebeck coefficient and lower the thermal conductivity making In 5 Se 5 Br a good alternative material for industrial thermoelectric applications

  1. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  2. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  3. New thinking on modeling of thermoelectric devices

    International Nuclear Information System (INIS)

    Zhang, T.

    2016-01-01

    Highlights: • New model was developed for performance calculation of thermoelectric devices. • The model takes into account the temperature-dependent material properties. • It takes into account the spatial-dependent heat flow rate in thermoelement. • It can take into account the heat and electricity losses at the junctions. • It can probe a broad range of parameters for module performance optimization. - Abstract: The performance of a thermoelectric power generation (TEPG) module and a device designed to convert engine exhaust heat directly into electricity was studied under different operating conditions using a proposed thermoelectric (TE) model in this work. The proposed model was obtained from the first law of thermodynamics, Ohm’s law, nonlinear analytical solution of thermoelectric transport equation, and a control volume that represents a typical TEPG module or device such that the temperature-dependent material properties of, the spatial-dependent heat flow rate through the TE element, and the interfacial electrical and thermal losses can be taken into account in the performance calculation. The performance of a typical TEPG module under a broad range of cold-side temperatures and the temperature differences between its hot-side and cold-side was calculated by the proposed model and the results agree very well with the existing model predictions. Comparison between the model predictions and the experimental results confirmed that reducing the interfacial electric resistance can enhance the module performance. The inter-dependence of the key thermal and TEPG system design and optimization parameters was examined for a real TEPG device using the proposed model and an optimal module fill factor of 0.35 was found within the given mass flow rates between 0.0154 and 0.052 kg/s of exhaust stream.

  4. Superatom Thermoelectric Materials

    Science.gov (United States)

    2012-07-30

    ΔT - array of fuel cooling paths - Heat capacity of fuel as heat sink - Air inlet drag limitations - Altitude - convection Power - No...rotating shaft - High electrical power requirements - Inlet air drag - Altitude – air breathing technologies • X-51 Waverider: Longest duration... deep vacuum deposition chamber •Used magnetron sputtering to deposit zinc and thermal evaporator to deposit C60 •Based on redox potentials of

  5. Materials issues in cask development

    International Nuclear Information System (INIS)

    Chapman, R.L.; Sorensen, K.B.

    1987-01-01

    This paper identifies potential new materials as a function of their use in the cask. To the extent that identified materials are not yet qualified for their intended application, this paper identifies probable technical issues and development efforts that may be required to qualify the materials for use in transportation casks. 1 tab

  6. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations

    International Nuclear Information System (INIS)

    Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.

    2016-01-01

    Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.

  7. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  8. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  9. NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    L. V. Bochkov

    2014-07-01

    Full Text Available The urgency of thermoelectric energy conversion is proved. Perspectives of nanostructures usage as thermoelectric materials are shown. The authors have systematized and generalized the methods and investigation results of bulk nanostructure thermoelectrics based on Bi-Sb-Te solid solutions. Ways of nanoparticles fabrication and their subsequent sintering into a bulk sample, results of structure study of the received materials are shown by methods of electronic microscopy and X-ray spectroscopy, results of mechanical properties investigation. Methods of manufacturing suggested with the authors’ participation and properties of thermoelectric nanocomposites, fabricated with addition of fullerene, thermally split graphite, graphene and molybdenum disulphide are discussed. Methods for prevention of recrystallization, measurement methods of thermoelectric properties of studied nanothermoelectrics are considered, including electric and thermal conductivities, thermoemf and the figure of merit. Factors that influence on thermoelectric figure of merit, including the tunneling of carriers through interfaces between nanograins, the additional phonon scattering on nanograin borders and the energy filtration of carriers through barriers have been theoretically investigated. Mechanisms and ways for improvement of the figure of merit are determined. Experimental confirmation for thermoelectric figure of merit increase is received. Physical mechanisms of thermoelectric figure of merit increase are shown by perceptivity of nanostructures utilization. The growth of thermoelectric figure of merit means an expansion of areas for rational application of thermoelectric energy generation and thermoelectric cooling.

  10. Review on Polymers for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Mario Culebras

    2014-09-01

    Full Text Available In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3–4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  11. Review on Polymers for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Gómez, Clara M; Cantarero, Andrés

    2014-09-18

    In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  12. The single-crystal multinary compound Cu2ZnSnS4 as an environmentally friendly high-performance thermoelectric material

    Science.gov (United States)

    Nagaoka, Akira; Masuda, Taizo; Yasui, Shintaro; Taniyama, Tomoyasu; Nose, Yoshitaro

    2018-05-01

    We investigated the thermoelectric properties of high-quality p-type Cu2ZnSnS4 single crystals. This material showed two advantages: low thermal conductivity because of lattice scattering caused by the easily formed Cu/Zn disordered structure, and high conductivity because of high doping from changes to the composition. All samples showed a thermal conductivity of 3.0 W m‑1 K‑1 at 300 K, and the Cu-poor sample showed a conductivity of 7.5 S/cm at 300 K because of the high density of shallow-acceptor Cu vacancies. The figure of merit of the Cu-poor Cu2ZnSnS4 reached 0.2 at 400 K, which is 1.4–45 times higher than those of related compounds.

  13. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  14. Developing test materials for dyscalculia

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Bent, Lindhardt,

    Aims, requirements and context for the development of test materials for dyscalculia are analyzed. The test materials are to be used for Grade 4 pupils in Danish primary schools. Preliminary results are presented from focus group interview with adolescents and adults, who see themselves as being...

  15. How to develop new materials

    International Nuclear Information System (INIS)

    Brewer, Leo

    2000-01-01

    The Manhattan Project required a large amount of innovative work to develop new techniques and new materials. A review of such activities could be useful for future developments of the actinides. It is important to work out techniques for handling radioactive waste. I will review the activities dealing with the development of plutonium containment that could serve as a guide for future needs

  16. Development of insulating substrates for multilayer thermoelectric devices; Elaboration d'elements de support dans des dispositifs thermoelectriques multicouches

    Energy Technology Data Exchange (ETDEWEB)

    Kadiebu Kandolo, St

    2005-10-15

    The design and fabrication of a high performance thermoelectric generator based on ceramic technology is envisaged. The system consists of n and p-type semi-conducting layers deposited on a thermally insulating dielectric substrate. The present work is devoted to the choice and preparation of the material for the substrate. The desired characteristics for a low thermal conductivity are an amorphous solid with a porous microstructure. Two raw materials were selected as candidates. The first is a clay, made of layered minerals for which de-hydroxylation at 600 deg. C leads to a disordered structure and the second is diatomite, a material constituted of amorphous silica with and inherent natural porosity inside plate like grains. Sintering the clay at 800 deg. C yields a material with thermal conductivity of 0.21 W/m.K at room temperature increasing to 0.26 W/m.K at 600 deg. C. In an attempt to decrease the thermal conductivity, the clay was mixed with fine amorphous silica or zircon. The zircon based mixture was the most effective giving a thermal conductivity of 0.19 W/m.K which remains constant with temperature. In addition to a low thermal conductivity, diatomite presents another interesting advantage. First, tape casting was used to obtain porous layers yielding a thermal conductivity as low as 0.08 W/m.K at room temperature. Then it was found that under certain preparation conditions, the tape cast diatomite formed with a thin dense layer at the surface. This facilitates deposition of the active semi-conductor layer by avoiding loss from penetration through the open porosity of the substrate. (author)

  17. Development of insulating substrates for multilayer thermoelectric devices; Elaboration d'elements de support dans des dispositifs thermoelectriques multicouches

    Energy Technology Data Exchange (ETDEWEB)

    Kadiebu Kandolo, St.

    2005-10-15

    The design and fabrication of a high performance thermoelectric generator based on ceramic technology is envisaged. The system consists of n and p-type semi-conducting layers deposited on a thermally insulating dielectric substrate. The present work is devoted to the choice and preparation of the material for the substrate. The desired characteristics for a low thermal conductivity are an amorphous solid with a porous microstructure. Two raw materials were selected as candidates. The first is a clay, made of layered minerals for which de-hydroxylation at 600 deg. C leads to a disordered structure and the second is diatomite, a material constituted of amorphous silica with and inherent natural porosity inside plate like grains. Sintering the clay at 800 deg. C yields a material with thermal conductivity of 0.21 W/m.K at room temperature increasing to 0.26 W/m.K at 600 deg. C. In an attempt to decrease the thermal conductivity, the clay was mixed with fine amorphous silica or zircon. The zircon based mixture was the most effective giving a thermal conductivity of 0.19 W/m.K which remains constant with temperature. In addition to a low thermal conductivity, diatomite presents another interesting advantage. First, tape casting was used to obtain porous layers yielding a thermal conductivity as low as 0.08 W/m.K at room temperature. Then it was found that under certain preparation conditions, the tape cast diatomite formed with a thin dense layer at the surface. This facilitates deposition of the active semi-conductor layer by avoiding loss from penetration through the open porosity of the substrate. (author)

  18. Materials issues in cask development

    International Nuclear Information System (INIS)

    Chapman, R.L.; Sorenson, K.B.

    1987-01-01

    The Department of Energy Office of Civilian Radioactive Waste Management (DOE-OCRWM) is chartered by Congress under the Nuclear Waste Policy Act (NWPA) to build a permanent repository for commercial spent nuclear fuel and to provide a supporting transportation system. The OCRWM-sponsored From-Reactor Cask Systems Acquisition Program is developing a family of casks suitable for transporting commercial spent fuel. Phase I of the program is in the process of procuring cask designs for further development and eventual licensing. New materials will probably be proposed for various components of the cask system. This paper identifies potential new materials as a function of their use in the cask (containment, shielding, etc). To the extent that the identified materials are new (not yet qualified for their intended application), this paper identifies probable technical issues and development efforts which may be required to qualify the materials for uses in transportation casks

  19. Thermoelectric performance enhancement of SrTiO3 by Pr doping

    KAUST Repository

    Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2014-01-01

    We investigate Pr doping at the Sr site as a possible route to enhance the thermoelectric behavior of SrTiO3-based materials, using first principles calculations in full-potential density functional theory. The effects of the Pr dopant on the local electronic structure and resulting transport properties are compared to common Nb doping. We demonstrate a substantial enhancement of the thermoelectric figure of merit and develop an explanation for the positive effects, which opens new ways for materials optimization by substitutional doping at the perovskite B site. © 2014 the Partner Organisations.

  20. High-Throughput Screening of Sulfide Thermoelectric Materials Using Electron Transport Calculations with OpenMX and BoltzTraP

    Science.gov (United States)

    Miyata, Masanobu; Ozaki, Taisuke; Takeuchi, Tsunehiro; Nishino, Shunsuke; Inukai, Manabu; Koyano, Mikio

    2018-06-01

    The electron transport properties of 809 sulfides have been investigated using density functional theory (DFT) calculations in the relaxation time approximation, and a material design rule established for high-performance sulfide thermoelectric (TE) materials. Benchmark electron transport calculations were performed for Cu12Sb4S13 and Cu26V2Ge6S32, revealing that the ratio of the scattering probability of electrons and phonons ( κ lat τ el -1 ) was constant at about 2 × 1014 W K-1 m-1 s-1. The calculated thermopower S dependence of the theoretical dimensionless figure of merit ZT DFT of the 809 sulfides showed a maximum at 140 μV K-1 to 170 μV K-1. Under the assumption of constant κ lat τ el -1 of 2 × 1014 W K-1 m-1 s-1 and constant group velocity v of electrons, a slope of the density of states of 8.6 states eV-2 to 10 states eV-2 is suitable for high- ZT sulfide TE materials. The Lorenz number L dependence of ZT DFT for the 809 sulfides showed a maximum at L of approximately 2.45 × 10-8 V2 K-2. This result demonstrates that the potential of high- ZT sulfide materials is highest when the electron thermal conductivity κ el of the symmetric band is equal to that of the asymmetric band.

  1. In operando study of high-performance thermoelectric materials for power generation: a case study of β-Zn4Sb3

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Ngo, Duc-The; Han, Li

    2017-01-01

    of the thermal conductivity and electrical resistivity, but it is also the failure mechanism for the leg under these conditions. The in operando study brings deep insight into the dynamic behavior of nanostructured TE materials for tailoring future TE materials and devices with higher efficiency and longer......To bring current thermoelectric (TE) materials achievement into a device for power generation, a full understanding of their dynamic behavior under operating conditions is needed. Here, an in operando study is conducted on the high-performance TE material β-Zn4Sb3 under large temperature gradient...... and thermal cycling via a new approach using in situ transmission electron microscopy combined with characterization of the TE properties. It is found that after 30 thermal cycles in a low-pressure helium atmosphere the TE performance of β-Zn4Sb3 is maintained with the figure of merit, zT, value of 1.4 at 718...

  2. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous

  3. Silicon Germanium Quantum Well Thermoelectrics

    Science.gov (United States)

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  4. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  5. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  6. Fabrication of a Micro Cooler using Thermoelectric Thin Film

    International Nuclear Information System (INIS)

    Han, S. W.; Choi, H. J.; Kim, D. H.; Kim, W. J.; Kim, B. I.; Kim, K. M.

    2007-01-01

    In general a ThermoElectric Cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using Bi2Te3 (N type) and Bi0.5Sb1.5Te3 (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current

  7. Thermoelectric properties of WSi{sub 2}–Si{sub x}Ge{sub 1−x} composites

    Energy Technology Data Exchange (ETDEWEB)

    Dynys, F.W.; Sayir, A. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Mackey, J., E-mail: jam151@zips.uakron.edu [Department of Mechanical Engineering, University of Akron, Akron, OH 44325 (United States); Sehirlioglu, A. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2014-08-01

    Highlights: • We explore a novel W/Si/Ge composite system for thermoelectric applications. • The influence of crucible selection on electrical properties is investigated. • Introduction of W can reduce the expensive Ge component of the alloy. - Abstract: Thermoelectric properties of the W/Si/Ge alloy system have been investigated with varying concentration levels of germanium and tungsten. The alloys were fabricated by directional solidification with the Bridgman method using boron nitride and fused silica crucibles. The effect of crucible contamination was investigated and found to result in doping the system to suitable levels for thermoelectric applications. The system has been demonstrated as a suitable high temperature p-type thermoelectric material exhibiting high power factors, >3000 μW/m K{sup 2}. Seebeck coefficients of the system are on the order of +300 μV/K and electrical conductivities of 2.8 × 10{sup 4} S/m at the optimum operating temperature. The best composition, 0.9 at% W/9.3 at% Ge, achieved a figure of merit comparable to RTG values over the temperature range of interest. The results suggest that W addition can reduce the use of expensive Ge component of the alloy. Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties. The material system was stable at the temperatures required for NASA’s radioisotope thermoelectric generators.

  8. A new class of materials with promising thermoelectric properties: MNiSn (M=Ti, Zr, Hf)

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, H; Ramirez, A P; Kaefer, W; Fess, K; Thurner, Ch; Kloc, Ch; Bucher, E

    1997-07-01

    TiNiSn, ZrNiSn and HfNiSn are members of a large group of intermetallic compounds which crystallize in the cubic MgAgAs-type structure. Polycrystalline samples of these compounds have been prepared and investigated for their thermoelectric properties. With thermopowers of about {minus}200 {micro}V/K and resistivities of a few m{Omega}cm, power factors S{sup 2}/{rho} as high as 38 {micro}W/K{sup 2}cm were obtained at 700 K. These remarkably high power factors are, however, accompanied by a thermal conductivity, solid solutions Zr{sub 1{minus}x}Hf{sub x}NiSn, Zr{sub 1{minus}x}Ti{sub x}NiSn, and Hf{prime}{sub 1{minus}x}Ti{sub x}NiSn were formed. The figure of merit of Zr{sub 0.5}Hf{sub 0.5}NiSn at 700 K (ZT = 0.41) exceeds the end members ZrNiSn (ZT = 0.26) and HfNiSn (ZT = 0.22).

  9. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  10. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  11. Thermoelectric skutterudite compositions and methods for producing the same

    Science.gov (United States)

    Ren, Zhifeng; Yang, Jian; Yan, Xiao; He, Qinyu; Chen, Gang; Hao, Qing

    2014-11-11

    Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.

  12. Thermoelectric SQUID method for the detection of segregations

    Science.gov (United States)

    Hinken, Johann H.; Tavrin, Yury

    2000-05-01

    Aero engine turbine discs are most critical parts. Material inhomogeneities can cause disc fractures during the flight with fatal air disasters. Nondestructive testing (NDT) of the discs in various machining steps is necessary and performed as well as possible. Conventional NDT methods, however, like eddy current testing and ultrasonic testing have unacceptable limits. For example, subsurface segregations often cannot be detected directly but only indirectly in such cases when cracks already have developed from them. This may be too late. A new NDT method, which we call the Thermoelectric SQUID Method, has been developed. It allows for the detection of metallic inclusions within non-ferromagnetic metallic base material. This paper describes the results of a feasibility study on aero engine turbine discs made from Inconel® 718. These contained segregations that had been detected before by anodic etching. With the Thermoelectric SQUID Method, these segregations were detected again, and further segregations below the surfaces have been found, which had not been detected before. For this new NDT method the disc material is quasi-transparent. The Thermoelectric SQUID Method is also useful to detect distributed and localized inhomogeneities in pure metals like niobium sheets for particle accelerators.

  13. Analysis of nanostructuring in high figure-of-merit Ag{sub 1-x}Pb{sub m}SbTe{sub 2+m} thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Bruce A; Harringa, Joel L [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University Ames, IA (United States); Kramer, Matthew J [Materials Science and Engineering, Iowa State University Ames, IA (United States); Han, Mi-Kyung [Department of Chemistry, Northwestern University Evanston, IL (United States); Chung, Duck-Young [Material Science Division, Argonne National Laboratory, IL (United States); Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University Evanston, IL (United States); Material Science Division, Argonne National Laboratory, IL (United States)

    2009-04-23

    Thermoelectric materials based on quaternary compounds Ag{sub 1-x}Pb{sub m}SbTe{sub 2+m} exhibit high dimensionless figure-of-merit values, ranging from 1.5 to 1.7 at 700 K. The primary factor contributing to the high figure of merit is a low lattice thermal conductivity, achieved through nanostructuring during melt solidification. As a consequence of nucleation and growth of a second phase, coherent nanoscale inclusions form throughout the material, which are believed to result in scattering of acoustic phonons while causing only minimal scattering of charge carriers. Here, characterization of the nanosized inclusions in Ag{sub 0.53}Pb{sub 18}Sb{sub 1.2}Te{sub 20} that shows a strong tendency for crystallographic orientation along the {l_brace}001{r_brace} planes, with a high degree of lattice strain at the interface, consistent with a coherent interfacial boundary is reported. The inclusions are enriched in Ag relative to the matrix, and seem to adopt a cubic, 96 atom per unit cell Ag{sub 2}Te phase based on the Ti{sub 2}Ni type structure. In-situ high-temperature synchrotron radiation diffraction studies indicated that the inclusions remain thermally stable to at least 800 K. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and Cu1 -xNix

    Science.gov (United States)

    Wiendlocha, Bartlomiej

    2018-05-01

    Electronic transport properties of thermoelectric materials containing resonant levels are discussed by analyzing the two best known examples: copper-nickel metallic alloy (Cu-Ni, constantan) and thallium-doped lead telluride (PbTe:Tl). As a contrasting example of a material with a nonresonant impurity, sodium-doped PbTe is considered. Theoretical calculations of the electronic structure, Bloch spectral functions, and energy-dependent electrical conductivity at T =0 K are done using the Korringa-Kohn-Rostoker method with the coherent potential approximation and the Kubo-Greenwood formalism. The effect of a resonance on the residual resistivity and electronic lifetimes in PbTe is analyzed. By using the full Fermi integrals, room-temperature thermopower is calculated, confirming its increase in PbTe:Tl versus PbTe:Na, due to the presence of the resonant level. In addition, our calculations support the self-compensation model, in which the experimentally observed reduction of carrier concentration in PbTe:Tl against the nominal one is explained by the presence of n -type Te vacancies.

  15. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  16. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  17. A holistic 3D finite element simulation model for thermoelectric power generator element

    International Nuclear Information System (INIS)

    Wu, Guangxi; Yu, Xiong

    2014-01-01

    Highlights: • Development of a holistic simulation model for the thermoelectric energy harvester. • Account for delta Seebeck coefficient and carrier charge densities variations. • Solution of thermo-electric coupling problem with finite element method. • Model capable of predicting phenomena not captured by traditional models. • A simulation tool for design of innovative TEM materials and structures. - Abstract: Harvesting the thermal energy stored in the ambient environment provides a potential sustainable energy source. Thermoelectric power generators have advantages of having no moving parts, being durable, and light-weighted. These unique features are advantageous for many applications (i.e., carry-on medical devices, embedded infrastructure sensors, aerospace, transportation, etc.). To ensure the efficient applications of thermoelectric energy harvesting system, the behaviors of such systems need to be fully understood. Finite element simulations provide important tools for such purpose. Although modeling the performance of thermoelectric modules has been conducted by many researchers, due to the complexity in solving the coupled problem, the influences of the effective Seebeck coefficient and carrier density variations on the performance of thermoelectric system are generally neglected. This results in an overestimation of the power generator performance under strong-ionization temperature region. This paper presents an advanced simulation model for thermoelectric elements that considers the effects of both factors. The mathematical basis of this model is firstly presented. Finite element simulations are then implemented on a thermoelectric power generator unit. The characteristics of the thermoelectric power generator and their relationship to its performance are discussed under different working temperature regions. The internal physics processes of the TEM harvester are analyzed from the results of computational simulations. The new model

  18. Laser assisted hybrid additive manufacturing of thermoelectric modules

    Science.gov (United States)

    Zhang, Tao; Tewolde, Mahder; Longtin, Jon P.; Hwang, David J.

    2017-02-01

    Thermoelectric generators (TEGs) are an attractive means to produce electricity, particular from waste heat applications. However, TEGs are almost exclusively manufactured as flat, rigid modules of limited size and shape, and therefore an appropriate mounting for intimate contact of TEGs modules onto arbitrary surfaces represents a significant challenge. In this study, we introduce laser assisted additive manufacturing method to produce multi-layered thermoelectric generator device directly on flat and non-flat surfaces for waste heat recovery. The laser assisted processing spans from laser scribing of thermal sprayed thin films, curing of dispensed thermoelectric inks and selective laser sintering to functionalize thermoelectric materials.

  19. Dynamic thermoelectricity in uniform bipolar semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Volovichev, I.N., E-mail: vin@ire.kharkov.ua

    2016-07-01

    The theory of the dynamic thermoelectric effect has been developed. The effect lies in an electric current flowing in a closed circuit that consists of a uniform bipolar semiconductor, in which a non-uniform temperature distribution in the form of the traveling wave is created. The calculations are performed for the one-dimensional model in the quasi-neutrality approximation. It was shown that the direct thermoelectric current prevails, despite the periodicity of the thermal excitation, the circuit homogeneity and the lack of rectifier properties of the semiconductor system. Several physical reasons underlining the dynamic thermoelectric effect are found. One of them is similar to the Dember photoelectric effect, its contribution to the current flowing is determined by the difference in the electron and hole mobilities, and is completely independent of the carrier Seebeck coefficients. The dependence of the thermoelectric short circuit current magnitude on the semiconductor parameters, as well as on the temperature wave amplitude, length and velocity is studied. It is shown that the magnitude of the thermoelectric current is proportional to the square of the temperature wave amplitude. The dependence of the thermoelectric short circuit current on the temperature wave length and velocity is the nonmonotonic function. The optimum values for the temperature wave length and velocity, at which the dynamic thermoelectric effect is the greatest, have been deduced. It is found that the thermoelectric short circuit current changes its direction with decreasing the temperature wave length under certain conditions. The prospects for the possible applications of the dynamic thermoelectric effect are also discussed.

  20. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  1. Effect of Thermal Cycling on Zinc Antimonide Thin Film Thermoelectric Characteristics

    DEFF Research Database (Denmark)

    Mirhosseini, M.; Rezania, A.; Rosendahl, L.

    2017-01-01

    In this study, performance and stability of zinc antimonide thin film thermoelectric sample is analyzed under transient thermal conditions. The thermoelectric materials are deposited on glass based substrate where the heat flow is parallel with the thermoelectric element length. The specimen...

  2. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Science.gov (United States)

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  4. In-Situ Survey System of Resistive and Thermoelectric Properties of Either Pure or Mixed Materials in Thin Films Evaporated Under Ultra High Vacuum

    Science.gov (United States)

    Lechevallier, L.; Le Huerou, J.-Y.; Richon, G.; Sarrau, J.-M.; Gouault, J.

    1995-04-01

    The study of thermoelectric and resistive in situ behaviours depending on temperature for thin films of either pure or composite materials obtained under ultra-high vacuum, is very interesting, since they can be used as strain gauges or superficial resistances. However, studies become particularly difficult when the measurements generate very low-level electrical signals. Indeed, these turn out to be hardly detectable because of the perturbations brought by the experimental environment. The apparatus described below allows for the measurement of resistance with a relative uncertainty of 2×10^{-4}, resistance variation with an absolute uncertainty of 2 mΩ and thermoelectric e.m.f. of about 2 μV. Films studied in the laboratory generally exhibit resistances lower than 100 Ω and resistance variations due to temperature variations of about a few ohms. So this device has sufficient technical characteristics for our studies. It can be connected to a PC, which allows for easy data collection and treatment. L'étude des comportements résistif et thermoélectrique in situ en fonction de la température de couches minces de matériaux simples ou composites obtenus en milieu raréfié s'avére intéressante en vue d'applications comme jauge de contrainte ou résistance superficielle mais particulièrement délicate lorsque les mesures donnent naissance à des signaux électriques de très faible amplitude. Ces derniers deviennent en effet difficilement décelables en raison des perturbations apportées par l'environnement expérimental. Le système qui est décrit ici permet de mesurer des résistances avec une certitude relative de 2×10^{-4} et d'apprécier des variations de résistance de 2 mΩ et des f.e.m. thermoélectriques de l'ordre de 2 μV. Les couches étudiées au laboratoire présentent généralement des résistances inférieures à 100 Ω et des variations de résistance dues aux variations de température de l'ordre de quelques Ω. Le dispositif de mesure

  5. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  6. Effect of current on the microstructure and performance of (Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric material via field activated and pressure assisted sintering

    International Nuclear Information System (INIS)

    Chen Ruixue; Meng Qingsen; Fan Wenhao; Wang Zhong

    2011-01-01

    (Bi 2 Te 3 ) 0.2 (Sb 2 Te 3 ) 0.8 thermoelectric material was sintered via a field activated and pressure assisted sintering (FAPAS) process. By applying different current intensity (0, 60, 320 A/cm 2 ) in the sintering process, the effects of electric current on the microstructure and thermoelectric performance were investigated. This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of (Bi 2 Te 3 ) 0.2 (Sb 2 Te 3 ) 0.8 samples. When the current intensity was raised to 320 A/cm 2 , the preferred orientation of grains was observed. Moreover, positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed. An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm 2 , respectively. (semiconductor materials)

  7. Preparation and optimization of thermoelectric properties of Bi2Te3 based alloys using the waste particles as raw materials from the cutting process of the zone melting crystal rods

    Science.gov (United States)

    Xiang, Qiusheng; Fan, Xi'an; Han, Xuewu; Zhang, Chengcheng; Hu, Jie; Feng, Bo; Jiang, Chengpeng; Li, Guangqiang; Li, Yawei; He, Zhu

    2017-12-01

    The p-type Bi2Te3 alloys were prepared using the waste particles from the cutting process of the zone melting crystal rods as the main raw materials by impurity removal process including washing, carbon monoxide reduction and vacuum metallurgical process. The thermoelectric properties of the Bi2Te3 based bulk materials were optimized by component adjustment, second smelting and resistance pressing sintering (RPS) process. All evidences confirmed that most of impurities from the line cutting process and the oxidation such as Sb2O3, Bi2O3 and Bi2Te4O11 could be removed by carbon monoxide reduction and vacuum metallurgical process adopted in this work, and the recycling yield was higher than 97%. Appropriate component adjustment treatment was used to optimize the carrier content and corresponding thermoelectric properties. Lastly, a Bi0.36Sb1.64Te3 bulk was obtained and its power factor (PF) could reach 4.24 mW m-1 K-2 at 300 K and the average PF value was over 3.2 mW m-1 K-2 from 300 K to 470 K, which was equivalent with the thermoelectric performance of the zone melting products from high purity elements Bi, Te and Sb. It was worth mentioning that the recovery process introduced here was a simple, low-cost, high recovery rate and green recycling technology.

  8. An oxide-based thermoelectric generator: Transversal thermoelectric strip-device

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Töpfer, J.

    2015-07-01

    A special design of an oxide-based transversal thermoelectric device utilizing thermoelectric oxides in combination with a ceramic multilayer technology is proposed. Metal strips within the ceramic matrix replace the tilted stack of alternating layers used in artificial anisotropic transversal thermoelectric devices. Numerical three-dimensional simulations of both device types reveal better thermoelectric performance data for the device with metal stripes. A monolithic transversal strip-device based on the material combination La1.97Sr0.03CuO4/Ag6Pd1 was prepared and electrically characterized. A maximum power output of 4.0 mW was determined at ΔT = 225 K for the monolithic device. The observed results are in remarkable agreement with three-dimensional numerical simulations utilizing the transport parameters of the two materials and the geometry data of the device.

  9. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  10. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  11. Thermoelectric Performance of Na-Doped GeSe

    NARCIS (Netherlands)

    Shaabani, Laaya; Aminorroaya-Yamini, Sima; Byrnes, Jacob; Akbar Nezhad, Ali; Blake, Graeme R

    2017-01-01

    Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized

  12. The thermoelectric figure of merit of poor thermal conductors

    International Nuclear Information System (INIS)

    Dixon, A.J.

    1977-01-01

    Calculations are given to show that for low thermal conductivity materials the radiation losses at even moderate temperatures preclude the use of the Harman technique for measuring the thermoelectric figure of merit. Measurements on liquid Tl 66 Se 34 , which has suitable thermoelectric properties, confirm this. (author)

  13. Experimental Study of Thermoelectric Generator as Electrical Source of Impressed Current Cathodic Protection for Ship Hull

    Directory of Open Access Journals (Sweden)

    Adi Kurniawan

    2017-06-01

    Full Text Available Impressed Current Cathodic Protection (ICCP is a method to protect metallic material such as ship hull from corrosion by using electric current. In this research, a prototype of thermoelectric generator is developed in order to supply the ICCP system. This thermoelectric generator is planned to utilize the exhaust gas from main engine of the ship. Method carried in this research is assembling the prototype of thermoelectric generator followed by conducted experiment to observe the potential energy of the prototype. After that, the required number of thermoelectric generator is calculated to supply the ICCP system to protect the ship from corrosion. The object in this research is live fish carrier “Wellboat” which has 396.08 m2 wetted area. The required voltage and current to protect the ship from corrosion for three years are 16.67 Volt and 2.66 Ampere. Based on the experiment, a prototype of thermoelectric generator can generate 0.34 Ampere and 4.43 Volt, causing the need of 8 series and 4 parallels connection. It can be concluded that the corrosion rate on the ship hull can be decelerated by using impressed current cathodic protection method without needing additional cost or fuel consumption to produce electric energy.  

  14. Thermoelectric converter for SP-100 space reactor power system

    International Nuclear Information System (INIS)

    Terrill, W.R.; Haley, V.F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested. The manufacturing plan showed that the chosen materials and processes are compatible with today's production techniques, that the production volume can readily be achieved and that the costs are reasonable

  15. Low cost thermoelectric module

    Energy Technology Data Exchange (ETDEWEB)

    Kumpeerapun, T.; Hirunlabh, J. [King Mongkut Univ. of Technology, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Perpignan (France). Faculty of Sciences; Scherrer, H.; Dauscher, A.; Weber, S.; Jahed, H.M.; Lernoir, B.; Kosalathip, V. [Ecole des Mines, Nancy (France). Laboratoire de Physique des Materiaux; Khedari, J. [South-East Asia Univ., Bangkok (Thailand). Faculty of Engineering

    2006-07-01

    The properties of a bismuth-telluride-antimony (Bi{sub x}Sb{sub 2-8}Te{sub 3}) polycrystalline thermoelectric material prepared using a novel melting and hot pressing process were investigated. The aim of the study was to synthesize the materials without the need for doping. Materials were weighed and placed in a quartz tube, which was sealed under vacuum and heated in a rocking furnace from room temperature to 750 degrees C over a period of 1 hour. Temperatures were maintained at 750 degrees C for a further 2 hours. The sample was then removed from the furnace and suddenly quenched in water. The ingot was then crushed into a powder using an agate mortar and sieved. Samples exhibiting a cylindrical shape were reserved. Samples were then examined using scanning electron microscopy (SEM) to determine their morphology and homogeneity. A sample pellet was then prepared for thermal conductivity measurements at room temperature. the pellet was nickel-plated on both sides and stacked between circular copper disks with thermocouples. Data were collected when the system reached thermal equilibrium. The Seebeck coefficient was measured by applying a small temperature difference. Results showed that the process effectively transformed the base materials into an alloy. It was concluded that the hot pressing successfully synthesized the materials. 6 refs., 1 tab., 6 figs.

  16. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  17. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  18. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  19. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  20. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel

  1. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  2. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  3. Study of 5f electron based filled skutterudite compound EuFe{sub 4}Sb{sub 12}, a thermoelectric (TE) material: FP-LAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, A., E-mail: amitshan2009@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India); Rai, D.P., E-mail: dibyaprakashrai@gmail.com [Beijing Computational Science Research Center, 3 Heqing Road, Beijing 100084 (China); Khenata, R. [Laboratoire de Physique Quantique et de Modlisation Mathmatique (LPQ3M), Dpartement de Technologie, Universit de Mascara, 29000 Mascara (Algeria); Maibam, J. [Department of Physics, Assam University, Silchar 788011 (India); Sandeep, E-mail: sndp.chettri@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India); Thapa, R.K., E-mail: r.k.thapa@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India)

    2015-01-15

    Highlights: • The compound EuFe{sub 4}Sb{sub 12} shows a semi-metallic behavior with pseudo gap. • The inherent dense band near E{sub F} facilitate the charge carriers. • The magnetic moment within LSDA and mBJ are underestimated. • The inclusion of onsite Coulomb repulsion (U) in LSDA has improved the result. • The results obtained from LSDA + U are consistent with the experimental data. - Abstract: We have studied the elastic, electronic and magnetic properties along with the thermoelectric properties of an undoped filled skutterudite EuFe{sub 4}Sb{sub 12} using full-potential linearized augmented plane wave (FP-LAPW) method. The LSDA, LSDA + U and a new exchange-correlation functional called modified Becke Johnson (mBJ) potential based on density functional theory (DFT) were used for studying material properties. The Eu-f and Fe-d are strongly correlated elements thus the inclusion of Coulomb repulsion (U) expected to give an exact ground state properties. The exchange-splitting of Eu-4f states were analyzed to explain the ferromagnetic behavior of EuFe{sub 4}Sb{sub 12} (half-metallic behavior). The numerical values of isotropic elastic parameters and related properties are estimated in the framework of the Voigt–Reuss–Hill approximation. The calculation of thermal transport properties at various temperature shows the high value of Seebeck coefficient and figure of merit (ZT) = 0.25 at room temperature in consistent to the experimental results.

  4. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  5. In-situ TEM studies of nanostructured thermoelectric materials: An application to Mg-doped Zn4Sb3 alloy

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Le, Hung Thanh; Ngo, Nong Van

    2018-01-01

    material have been dynamically captured as a function of temperature from 300 K to 573 K. On heating, we have observed clearly precipitation and growth of a Zn-rich secondary phase as nanoinclusions in the matrix of primary Zn4Sb3 phase. Elemental mapping by STEM-EDX spectroscopy reveals enrichment of Zn...

  6. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    Directory of Open Access Journals (Sweden)

    S. H. Oh

    2007-12-01

    Full Text Available We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512, KAF-1602E (15367times;1024, KAF-3200E (2184×1472 made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  7. Development of metallic fuel materials

    International Nuclear Information System (INIS)

    Kang, Young Ho; Lee, Chong Tak; Yang, Yeoung Seok; Kim, Ki Hwan; Hwang, Sung Chan; Joo, Keun Sik; Ann, Hyun Suk; Chang, Sae Jung.

    1997-09-01

    Through the control of melting and casting parameters, the sound and homogenous U-10wt.%Zr alloy could be fabricated. The yield and segregation of Zr elements were 85% and ±0.1wt.%, and the density of the alloy was about 16.6 g/cm 3 . The major phase were α-U and δ-UZr 2 . The microstructure showed the laminar structure with fiber morphology which was arranged alternatively with uranium and Zr-rich phase. This alloy will be used for KALIMER fuel material through developing the fabrication technology and the characteristics analysis. And electrorefining study was performed to separate uranium from uranium-neodymium and uranium-zirconium alloy by their different free energy for chloride formation. The liquid cadmium phase becomes the anode of the electrorefining cell. Uranium is electrolytically transported through a molten salt electrolyte to a low carbon steel cathode. The electrolyte is composed of KCl-LiCl eutectic and some UCl 3 , which are installed in the salt to facilitate the electrotransport of uranium. In pyrochemical process the reaction condition of chlorination and the maintenance its purity in preparing UCl 4 by chlorination of UO 2 is strongly dependent on the reaction temperature and time. (author).52 refs., 40 tabs., 129 figs

  8. New developments in protective materials

    International Nuclear Information System (INIS)

    Mirick, W.

    1987-01-01

    Linemen who must work in close proximity to high voltage circuits utilize various types of protective equipment to minimize risks of injury due to electrical shock or other hazards. Tools are available which sometimes allow the linemen to work at a relatively safe distance from potential sources of danger. However, these tools may not be appropriate in all instances and, in fact, work often may be better conducted by hand using insulated clothing and accessories. Electrical insulating gloves and sleeves are presently worn by linemen for protection from electrical shock. In addition, insulating line hose, covers, and blankets are employed to cover high voltage sources when linemen are working in those areas. Leather gloves--protectors-- are worn over the rubber electrical insulating gloves to prevent cuts, punctures, or other physical injuries to the rubber glove. Deficiencies were perceived, however, with respect to protective equipment now available. Specific problems being experienced with insulating protective equipment were reported to be related to material characteristics such as flexibility, weight, ozone/corona resistance, hydraulic fluid resistance and stiffness, particularly at cold temperatures. Discussions between the Electric Power Research Institute (EPRI) and Battelle's Columbus Division (BCD) resulted a program to investigate the need for and the development of improved electrical insulating equipment for linemen. This article describes the program

  9. Evaluative Review in Materials Development

    Science.gov (United States)

    Stoller, Fredricka L.; Horn, Bradley; Grabe, William; Robinson, Marin S.

    2006-01-01

    English for Academic Purposes (EAP) professionals know that initial efforts to produce or adapt materials generally require evaluative review and revision. A review process that solicits feedback from teacher and student users is critical because materials writers often find it difficult to envision the problems others may have with their…

  10. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator

    International Nuclear Information System (INIS)

    Khattab, N.M.; El Shenawy, E.T.

    2006-01-01

    The possibility of using a solar thermoelectric generator (TEG) to drive a small thermoelectric cooler (TEC) is studied in the present work. The study includes the theory of both the TEG and the TEC, giving special consideration to determination of the number of TEG modules required to power the TEC to achieve the best performance of the TEG-TEC system all year round. Commercially available thermoelectric modules (TE) are used in the system. The TEG contains 49 thermocouples and the TEC contains 127 thermocouples. A simple arrangement of plane reflectors that are designed to receive maximum solar energy during noon time is used to heat the TEG. Performance tests are conducted to determine both the physical properties and the performance curves of the available TE modules. Also, empirical relations describing the performance of the TEG and TEC modules have been established. These relations are used to develop a mathematical model simulating the TEG-TEC system to predict its performance all year round under the actual climatic conditions of Cairo, Egypt (30 deg. N latitude). The model results are used to determine the number of TEG modules required to drive a single TEC module at maximum cooling capacity. The results show that five thermocouples of the TEG can drive one thermocouple of the TEC, which coincides with the previous theory of the TEG-TEC. This means that 10 of the used TEG modules are required to power the used TEC at optimum performance most times of the year

  11. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pdborges@gmail.com [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J. [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Scolfaro, L. [Department of Physics, Texas State University, 78666 San Marcos, TX (United States)

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  12. Ab initio study of thermoelectric properties of doped SnO_2 superlattices

    International Nuclear Information System (INIS)

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-01-01

    Transparent conductive oxides, such as tin dioxide (SnO_2), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO_2, as well as of Sb and Zn planar (or delta)-doped layers in SnO_2 forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO_2 SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO_2-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO_2 superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  13. High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric energy harvesting utilizes materials that generate an electrical current when subjected to a temperature gradient, or simply, a hot and cold source of...

  14. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  15. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  16. Precipitation of Ag{sub 2}Te in the thermoelectric material AgSbTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, Joshua D. [Materials Physics Department, Sandia National Laboratories, Livermore, CA (United States)], E-mail: jdsugar@sandia.gov; Medlin, Douglas L. [Materials Physics Department, Sandia National Laboratories, Livermore, CA (United States)

    2009-06-10

    The microstructure of AgSbTe{sub 2}, prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag{sub 22}Sb{sub 28}Te{sub 50}, and silver telluride, Ag{sub 2}Te. Ag{sub 2}Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe{sub 2} phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag{sub 2}Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag{sub 2}Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag{sub 2}Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  17. Thermoelectric transport in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T L; Broido, D A

    1997-07-01

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  18. Nanocomposites with High Thermoelectric Figures of Merit

    Science.gov (United States)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  19. A MODEL OF EFL LISTENING MATERIALS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Mochamad Zaenuri

    2015-12-01

    Full Text Available In oral communication, listening skill is important because communication does not take place successfully if the message stated is not understood. To master the skill, learners should learn it. Therefore, good listening materials are needed. However, English teachers often find it difficult to teach listening skills because the listening materials are not adequately available. Besides, if the materials are available, they are not appropriate with the students’ needs and the curriculum. In that case, English teachers need to develop listening materials by themselves. For this, they should have knowledge of materials development. This paper presents ideas and tips for English teachers how to develop good and applicable listening materials.

  20. Universal Majorana thermoelectric noise

    Science.gov (United States)

    Smirnov, Sergey

    2018-04-01

    Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling mechanisms to two contacts, one may achieve various situations where the electric current induced by an external bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even more exciting physics emerges when the system's electronic degrees freedom split to form Majorana fermions which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system's parameters, thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric signatures.

  1. Design and Optimization of Effective Segmented Thermoelectric Generator for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan

    ranges of 300 ‒ 700, and 900 – 1100 K are considered. The obtained results reveals that segmented thermoelectric generator comprising of Bi0.6Sb1.4Te3/Ba8Au5.3Ge40.7/PbTe-SrTe/SiGe as p-leg and either segmented Bi2Te3/PbTe/SiGe or Bi2Te3/Ba0.08La0.05Yb0.04Co4Sb12/La3Te4 as n-leg working in 300 – 1100 K...... been focused on material development, realizing high efficient thermoelectric generators from such well-developed materials is still limited. Moreover, no single thermoelectric material could withstand the wide temperature range required to boost efficiency of TEGs. By segmentation of different TE...... materials which operate optimally in each temperature range, this study aims at developing high performance segmented TEGs for medium-high (450 – 850 K) temperature application. The research is focused on the challenges in joining and minimizing the contact resistances between different TE materials...

  2. Compatibility of Segments of Thermoelectric Generators

    Science.gov (United States)

    Snyder, G. Jeffrey; Ursell, Tristan

    2009-01-01

    A method of calculating (usually for the purpose of maximizing) the power-conversion efficiency of a segmented thermoelectric generator is based on equations derived from the fundamental equations of thermoelectricity. Because it is directly traceable to first principles, the method provides physical explanations in addition to predictions of phenomena involved in segmentation. In comparison with the finite-element method used heretofore to predict (without being able to explain) the behavior of a segmented thermoelectric generator, this method is much simpler to implement in practice: in particular, the efficiency of a segmented thermoelectric generator can be estimated by evaluating equations using only hand-held calculator with this method. In addition, the method provides for determination of cascading ratios. The concept of cascading is illustrated in the figure and the definition of the cascading ratio is defined in the figure caption. An important aspect of the method is its approach to the issue of compatibility among segments, in combination with introduction of the concept of compatibility within a segment. Prior approaches involved the use of only averaged material properties. Two materials in direct contact could be examined for compatibility with each other, but there was no general framework for analysis of compatibility. The present method establishes such a framework. The mathematical derivation of the method begins with the definition of reduced efficiency of a thermoelectric generator as the ratio between (1) its thermal-to-electric power-conversion efficiency and (2) its Carnot efficiency (the maximum efficiency theoretically attainable, given its hot- and cold-side temperatures). The derivation involves calculation of the reduced efficiency of a model thermoelectric generator for which the hot-side temperature is only infinitesimally greater than the cold-side temperature. The derivation includes consideration of the ratio (u) between the

  3. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  4. Synthesis and characterization of nanometer sized thermoelectric lead-antimony-silver-tellurium compounds and related materials; Synthese und Charakterisierung nanoskaliger Thermoelektrika der LAST (Lead-Antimony-Silver-Tellurium)-Familie und verwandter Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Denis

    2012-09-10

    The present dissertation deals with different variants of synthesis and processing of nanocrystalline composites of various thermoelectric compounds based on lead telluride including LAST-m (AgPb{sub m}SbTe{sub m+2}), LASTT-m-x (AgPb{sub m-x}Sn{sub x}SbTe{sub m+2}), LABST-m-x (AgPb{sub m}Sb{sub 1-x}Bi{sub x}Te{sub m+2}), doped LAST-m and (PbTe){sub m}(M{sup 15}{sub 2}Te{sub 3}) and the characterization thereof. A new route of manufacturing nanocrystalline composites was developed. The so called co-ball milling-route includes the synthesis of bi- or multinary compounds by conventional solid state melting methods followed by combined milling of appropriate amounts in a planetary ball mill; a process related to the widely used mechanical alloying of elemental powders. The as produced powders were shortly annealed for one hour and a.erwards compacted either at room temperature followed by pressureless sintering or combined application of high pressure and elevated temperatures via spark-plasma-sintering or short-term-sintering. The ball milling yielded micron-sized agglomerates consisting of crystallites with diameters ranging from 10 to 50 nm. These crystallites exhibited complicated internal nanostructures severe crystal defects as a consequence of the high energy processing. During short-term annealing some grain coarsening occured and the crystal defects partly healed, which was confirmed by TEM and HRTEM investigations as well as profile analysis of XRD powder pattern. Local EDX-analysis showed different compositions at every point as a consequence of synthesis and decomposition of the compounds. Measurements of thermopower, electrical and thermal conductivity were carried out and the values of the figure of merit ZT and the powerfactor were calculated. In general the compounds exhibited larger thermopower than corresponding bulk materials, which might be attributed to energy filtering of charge carriers at partly oxidized grain boundaries. Due to enhanced phonon

  5. Searching for new thermoelectrics in chemically and structurally complex bismuth chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D Y; Hogan, T; Schindler, J; Iordanidis, L; Brazis, P; Kannewurf, C R; Chen, B; Uher, C; Kanatzidis, M G

    1997-07-01

    A solid state chemistry synthetic approach towards identifying new materials with potentially superior thermoelectric properties is presented. Materials with complex compositions and structures also have complex electronic structures which may give rise to high thermoelectric powers and at the same time possess low thermal conductivities. The structures and thermoelectric properties of several new promising compounds with K-Bi-Se, K-Bi-S, Ba-Bi-Te, Cs-Bi-Te, and Rb-bi-Te are reported.

  6. All dispenser printed flexible 3D structured thermoelectric generators

    Science.gov (United States)

    Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.

    2015-12-01

    This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.

  7. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  8. Optimized Characterization of Thermoelectric Generators for Automotive Application

    Science.gov (United States)

    Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg

    2012-06-01

    New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.

  9. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  10. Impact of the substrate on the efficiency of thin film thermoelectric technology

    International Nuclear Information System (INIS)

    Alvarez-Quintana, J.

    2015-01-01

    Thermoelectricity is one of the simplest technologies for thermal energy conversion. Moreover, because of their relatively low efficiency, bulk thermoelectric materials are generally used in environments where their solid state nature outweighs their poor efficiency. Nevertheless, low dimensional thermoelectric materials shed a light in order to achieve higher thermoelectric performance than their bulk counterparts via quantum and spatial confinement of energy carriers. The Thermoelectric figure of merit ZT is the basic criterion for estimating the performance of thermoelectric materials. In this work, by way of an extension of the Harman method to thin films onto substrate to evaluate ZT it is shown that the solely presence of a substrate affects significantly the intrinsic value of the ZT independently of the electrical and thermal nature of the substrate. Furthermore, the model unveils that as the thickness ratio between substrate and thin film increases, the parameter ZT sharply tends to zero; this effect opens a serious problem to overcome by the thin film thermoelectric technology, especially at nanoscale. In this sense, challenges in order to engineering planar thermoelectric devices at micro/nanoscale are properly identified. - Highlights: • Extended Harman method to evaluate ZT of thin films onto substrate is presented. • ZT of thermoelectric thin films is strongly affected by substrate's nature. • Thin dielectric substrates are desirable to hold ZT in in-plane configuration. • Film/substrate thickness ratio play important role on the device performance. • Challenges to engineering planar thermoelectric devices are properly identified

  11. Preparation by Poly(Acrylic Acid) Sol-Gel Method and Thermoelectric Properties of γ-Na x CoO2 Bulk Materials

    Science.gov (United States)

    Li, Xiaoyu; Zhang, Li; Tang, Xinfeng

    2017-11-01

    γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol-gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m-1 K-2 and dimensionless figure of merit ( ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m-1 K-2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.

  12. Potency of Thermoelectric Generator for Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nandy Putra

    2010-10-01

    Full Text Available Thermoelectric Generator (TEG has been known as electricity generation for many years. If the temperature difference occurred between two difference semi conductor materials, the current will flow in the material and produced difference voltage. This principle is known as Seebeck effect that is the opposite of Peltier effect Thermoelectric Cooling (TEC. This research was conducted to test the potential of electric source from twelve peltier modules. Then, these thermoelectric generators were applied in hybrid car by using waste heat from the combustion engine. The experiment has been conducted with variations of peltier module arrangements (series and parallels and heater as heat source for the thermoelectric generator, with variations of heater voltage input (110V and 220V applied. The experimental result showed that twelve of peltier modules arranged in series and heater voltage of 220V generated power output of 8.11 Watts with average temperature difference of 42.82°C. This result shows that TEG has a bright prospect as alternative electric source.

  13. High thermoelectric performance of graphite nanofibers.

    Science.gov (United States)

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2018-02-22

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high thermoelectric performance. This study unveils that the platelet form of GNFs in which graphite layers are perpendicular to the fiber axis can exhibit outstanding thermoelectric properties with a figure of merit ZT reaching 3.55 in a 0.5 nm diameter fiber and 1.1 in a 1.1 nm diameter one. Interestingly, by introducing 14 C isotope doping, ZT can even be enhanced up to more than 5, and more than 8 if we include the effect of finite phonon mean free path, which demonstrates the amazing thermoelectric potential of GNFs.

  14. RESOURCE MATERIALS DEVELOPMENT IN ENVIRONMENTAL ...

    African Journals Online (AJOL)

    the importance of linking environmental issues with educational ... the teacher's role and status, gender discrimination, ... school teachers are dedicated to their work and are ... been developed and shaped through critical reflection .... Ongoing literature reviews and deepening theoretical ... orientations to research stress the.

  15. Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs

    Science.gov (United States)

    Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh

    2017-04-01

    Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.

  16. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  17. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.

    Science.gov (United States)

    Bocher, L; Aguirre, M H; Logvinovich, D; Shkabko, A; Robert, R; Trottmann, M; Weidenkaff, A

    2008-09-15

    Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.

  18. High thermoelectric performance of graphite nanofibers

    OpenAIRE

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2017-01-01

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high ...

  19. Method of manufacturing a layer thermoelectric battery. Herstellungsverfahren fuer Schichtthermobatterien

    Energy Technology Data Exchange (ETDEWEB)

    Lidorenko, N.S.; Kolomoets, N.V.; Daschevsky, Z.M.; Granovsky, V.I.; Schemtschuschina, E.A.; Chernousov, L.N.; Schmidt, I.A.; Nikolaschina, L.A.; Gelfgat, D.M.; Sgibnev, I.V.

    1980-08-21

    A method of manufacturing a layer thermoelectric battery is described, whereby a film of a thermoelectric semiconductor material which is an n-type stoichiometric solid solution containing Bi2Te3 and Sb2Te3 is deposited on a substrate. Then heating is effected so that adjacent arms of the film are at different temperatures, some at a temperature of not above 300/sup 0/C, and others at a temperature of not less than 350/sup 0/C.

  20. Notes on Computational Methodology and Tools of Thermoelectric Energy Systems

    DEFF Research Database (Denmark)

    Chen, Min; Bach, Inger Palsgaard; Rosendahl, Lasse

    2007-01-01

    The SPICE model allows the concurrent simulation of thermoelectric devices and application electric sub-models. It is an important step to implement the thermoelectric modeling at the system level. In this paper, temperature dependent material properties in the SPICE model, temperature and heat...... flow obtained by the code ANSYS Multiphysics and SPICE (Simulation Program with Integrated Circuit Emphasis), as well as some notes on the 3-D extension of the SPICE model are introduced....

  1. Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN

    Science.gov (United States)

    Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.

    2018-02-01

    Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting

  2. Possible High Thermoelectric Power in Semiconducting Carbon Nanotubes ˜A Case Study of Doped One-Dimensional Semiconductors˜

    Science.gov (United States)

    Yamamoto, Takahiro; Fukuyama, Hidetoshi

    2018-02-01

    We have theoretically investigated the thermoelectric properties of impurity-doped one-dimensional semiconductors, focusing on nitrogen-substituted (N-substituted) carbon nanotubes (CNTs), using the Kubo formula combined with a self-consistent t-matrix approximation. N-substituted CNTs exhibit extremely high thermoelectric power factor (PF) values originating from a characteristic of one-dimensional materials where decrease in the carrier density increase both the electrical conductivity and the Seebeck coefficient in the low-N regime. The chemical potential dependence of the PF values of semiconducting CNTs has also been studied as a field-effect transistor and it turns out that the PF values show a noticeable maximum in the vicinity of the band edges. This result demonstrates that "band-edge engineering" will be crucial for solid development of high-performance thermoelectric materials.

  3. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  4. Nanocrystals of the quaternary thermoelectric materials: AgPb{sub m}SbTe{sub m+2}(m=1-18): Phase-segregated or solid solutions?

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Indika U [Department of Chemistry, Northwestern University Evanston, IL (United States); Wu, Jinsong; Dravid, Vinayak P [Department of Materials Science and Engineering, Northwestern University Evanston, IL (United States); Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University Evanston, IL (United States); Material Science Division, Argonne National Laboratory Argonne, IL (United States)

    2008-10-02

    Facile synthesis of a series of thermoelectrically relevant AgPb{sub m}SbTe{sub m+2}(m=1-18) nanoparticles is carried out by using a colloidal synthetic route. As-synthesized nanocrystals are spherical in geometry and adopt a cubic NaCl-type structure. These quaternary nanocrystals behave as solid solutions at room temperature and tend to phase separate into AgSbTe{sub 2} and PbTe upon annealing at moderately high temperature. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module

    Czech Academy of Sciences Publication Activity Database

    Tomeš, P.; Robert, R.; Trottmann, M.; Bocher, L.; Aguirre, M.H.; Bitschi, A.; Hejtmánek, Jiří; Weidenkaff, A.

    2010-01-01

    Roč. 39, č. 9 (2010), 1696-1703 ISSN 0361-5235 Institutional research plan: CEZ:AV0Z10100521 Keywords : thermoelectric materials * perovskites * power generation * oxide ceramics * micro-IR camera measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.421, year: 2010

  6. Stretchable Helical Architecture Inorganic-Organic Hetero Thermoelectric Generator

    KAUST Repository

    Rojas, Jhonathan Prieto; Singh, Devendra; Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; Foulds, Ian G.; Hussain, Muhammad Mustafa

    2016-01-01

    To achieve higher power output from a thermoelectric generator (TEG), one needs to maintain a larger temperature difference between hot and cold end. In that regard, a stretchable TEG can be interesting to adaptively control the temperature difference. Here we show, the development of simple yet versatile and highly stretchable thermoelectric generators (TEGs), by combining well-known inorganic thermoelectric materials Bismuth Telluride and Antimony Telluride (Bi2Te3 and Sb2Te3) with organic substrates (Off-Stoichiometry Thiol-Enes polymer platform – OSTE, polyimide or paper) and novel helical architecture (double-arm spirals) to achieve over 100% stretchability. First, an OSTE-based TEG design demonstrates higher open circuit voltage generation at 100% strain than at rest, although it exhibits high internal resistance and a relatively complex fabrication process. The second, simpler TEG design, achieves a significant resistance reduction and two different structural substrates (PI and paper) are compared. The paper-based TEG generates 17 nW (ΔT = 75 °C) at 60% strain, which represents more than twice the power generation while at rest (zero strain). On the other hand, polyimide produces more conductive TE films and higher power (~35 nW at ΔT = 75 °C) but due to its higher thermal conductivity, power does not increase at stretch. In conclusion, highly stretchable TEGs can lead to higher temperature gradients (thus higher power generation), given that thermal conductivity of the structural material is low enough. Furthermore, either horizontal or vertical displacement can be achieved with double-arm helical architecture, hence allowing to extend the device to any nearby and mobile heat sink for continuous, effectively higher power generation.

  7. Stretchable Helical Architecture Inorganic-Organic Hetero Thermoelectric Generator

    KAUST Repository

    Rojas, Jhonathan Prieto

    2016-10-26

    To achieve higher power output from a thermoelectric generator (TEG), one needs to maintain a larger temperature difference between hot and cold end. In that regard, a stretchable TEG can be interesting to adaptively control the temperature difference. Here we show, the development of simple yet versatile and highly stretchable thermoelectric generators (TEGs), by combining well-known inorganic thermoelectric materials Bismuth Telluride and Antimony Telluride (Bi2Te3 and Sb2Te3) with organic substrates (Off-Stoichiometry Thiol-Enes polymer platform – OSTE, polyimide or paper) and novel helical architecture (double-arm spirals) to achieve over 100% stretchability. First, an OSTE-based TEG design demonstrates higher open circuit voltage generation at 100% strain than at rest, although it exhibits high internal resistance and a relatively complex fabrication process. The second, simpler TEG design, achieves a significant resistance reduction and two different structural substrates (PI and paper) are compared. The paper-based TEG generates 17 nW (ΔT = 75 °C) at 60% strain, which represents more than twice the power generation while at rest (zero strain). On the other hand, polyimide produces more conductive TE films and higher power (~35 nW at ΔT = 75 °C) but due to its higher thermal conductivity, power does not increase at stretch. In conclusion, highly stretchable TEGs can lead to higher temperature gradients (thus higher power generation), given that thermal conductivity of the structural material is low enough. Furthermore, either horizontal or vertical displacement can be achieved with double-arm helical architecture, hence allowing to extend the device to any nearby and mobile heat sink for continuous, effectively higher power generation.

  8. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  9. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  10. Thermoelectric Effects under Adiabatic Conditions

    Directory of Open Access Journals (Sweden)

    George Levy

    2013-10-01

    Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.

  11. Development situation of radiation curing materials

    International Nuclear Information System (INIS)

    He Songhua; Luo Junyi; Liu Zhen

    2010-01-01

    Due to fitting the '4E' principle, radiation curing technology, known as green technology, have shown its own superiority in many applications. It has been rapid developed in China and abroad in recent years, especially ultraviolet/electron beam (UV/EB) radiation curing technology. In order to let the researchers have a general understanding on the radiation curing materials and their development, in this paper a briefly introducing on the related radiation sources, chemical systems, curing mechanism, and the application, the common and difference of ultraviolet curing and electron beam curing has been made. A brief account of development of radiation-curable material in China and the outlook of the development of materials can be found in this paper. At last, we have proposed that the development of radiation curing technology will promote the development of the radiation curing material and benefit in the humanity. (authors)

  12. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  13. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  14. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  15. Electronic, phononic, and thermoelectric properties of graphyne sheets

    International Nuclear Information System (INIS)

    Sevinçli, Hâldun; Sevik, Cem

    2014-01-01

    Electron, phonon, and thermoelectric transport properties of α-, β-, γ-, and 6,6,12-graphyne sheets are compared and contrasted with those of graphene. α-, β-, and 6,6,12-graphynes, with direction dependent Dirac dispersions, have higher electronic transmittance than graphene. γ-graphyne also attains better electrical conduction than graphene except at its band gap. Vibrationally, graphene conducts heat much more efficiently than graphynes, a behavior beyond an atomic density differences explanation. Seebeck coefficients of the considered Dirac materials are similar but thermoelectric power factors decrease with increasing effective speeds of light. γ-graphyne yields the highest thermoelectric efficiency with a thermoelectric figure of merit as high as ZT = 0.45, almost an order of magnitude higher than that of graphene

  16. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  17. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  18. Thermoelectric properties of currently available Au/Pt thermocouples related to the valid reference function

    Directory of Open Access Journals (Sweden)

    Edler F.

    2015-01-01

    Full Text Available Au/Pt thermocouples are considered to be an alternative to High Temperature Standard Platinum Resistance Thermometers (HTSPRTs for realizing temperatures according to the International Temperature Scale of 1990 (ITS-90 in the temperature range between aluminium (660.323 °C and silver (961.78 °C. The original aim of this work was to develop and to validate a new reference function for Au/Pt thermocouples which reflects the properties of presently commercially available Au and Pt wires. The thermoelectric properties of 16 Au/Pt thermocouples constructed at different National Metrological Institutes by using wires from different suppliers and 4 commercially available Au/Pt thermocouples were investigated. Most of them exhibit significant deviations from the current reference function of Au/Pt thermocouples caused by the poor performance of the Au-wires available. Thermoelectric homogeneity was investigated by measuring immersion profiles during freezes at the freezing point of silver and in liquid baths. The thermoelectric inhomogeneities were found to be one order of magnitude larger than those of Au/Pt thermocouples of the Standard Reference Material® (SRM® 1749. The improvement of the annealing procedure of the gold wires is a key process to achieve thermoelectric homogeneities in the order of only about (2–3 mK, sufficient to replace the impracticable HTSPRTs as interpolation instruments of the ITS-90. Comparison measurements of some of the Au/Pt thermocouples against a HTSPRT and an absolutely calibrated radiation thermometer were performed and exhibit agreements within the expanded measurement uncertainties. It has been found that the current reference function of Au/Pt thermocouples reflects adequately the thermoelectric properties of currently available Au/Pt thermocouples.

  19. Development of new organic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.; and others

    2012-01-15

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed.

  20. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.

    2012-01-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed

  1. On Using Materiality in Information Systems Development

    DEFF Research Database (Denmark)

    Carugati, Andrea

    This research brief presents a discussion on the use of the concept of materiality and material knowing in information systems development (ISD). The discussion addresses some of the practical problems still plaguing ISD, augmenting existing ISD methodologies with contributions from systems theory...... as scaffold of knowledge. Through the example taken from a case study of a complex and innovative systems development we outline two design principles to be embedded in modular fashion in ISD processes: (1) whenever possible start ISD efforts by developing a graphical simulator of the material environment...

  2. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  3. Thermoelectric microgenerators. Current status and prospects of application

    Directory of Open Access Journals (Sweden)

    Strutynska L. T.

    2008-08-01

    Full Text Available Analysis of current status and prospects of using thermoelectric microgenerators, including organic-fueled ones, is performed. Developments of thermoelectric microgenerators presented in this review demonstrate that their increasingly wide use forms a separate, very important line of thermoelectricity – micropower generation with growing potential of practical applications for charging batteries, mobile phones, digital cameras and photocameras, power supply to small radio stations, other portable devices, including medical. The ways of increasing the efficiency of such devices and relevant lines of their wide use in practice are determined.

  4. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  5. Experimental and analytical study on thermoelectric self cooling of devices

    International Nuclear Information System (INIS)

    Martinez, A.; Astrain, D.; Rodriguez, A.

    2011-01-01

    This paper presents and studies the novel concept of thermoelectric self cooling, which can be introduced as the cooling and temperature control of a device using thermoelectric technology without electricity consumption. For this study, it is designed a device endowed with an internal heat source. Subsequently, a commonly used cooling system is attached to the device and the thermal performance is statistically assessed. Afterwards, it is developed and studied a thermoelectric self cooling system appropriate for the device. Experimental and analytical results show that the thermal resistance between the heat source and the environment reduced by 25-30% when the thermoelectric self cooling system is installed, and indicates the promising applicability of this technology to devices that generate large amounts of heat, such as electrical power converters, transformers and control systems. Likewise, it was statistically proved that the thermoelectric self cooling system leads to significant reductions in the temperature difference between the heat source and the environment, and, what is more, this reduction increases as the heat flow generated by the heat source increases, which makes evident the fact that thermoelectric self cooling systems work as temperature controllers. -- Highlights: → Novel concept of thermoelectric self cooling is presented and studied. → No extra electricity is needed. → Thermal resistance between the heat source and the environment reduces by 25-30%. → Increasing reduction in temperature difference between heat source and environment. → Great applicability to any device that generates heat and must be cooled.

  6. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  7. New evaluation parameter for wearable thermoelectric generators

    Science.gov (United States)

    Wijethunge, Dimuthu; Kim, Woochul

    2018-04-01

    Wearable devices constitute a key application area for thermoelectric devices. However, owing to new constraints in wearable applications, a few conventional device optimization techniques are not appropriate and material evaluation parameters, such as figure of merit (zT) and power factor (PF), tend to be inadequate. We illustrated the incompleteness of zT and PF by performing simulations and considering different thermoelectric materials. The results indicate a weak correlation between device performance and zT and PF. In this study, we propose a new evaluation parameter, zTwearable, which is better suited for wearable applications compared to conventional zT. Owing to size restrictions, gap filler based device optimization is extremely critical in wearable devices. With respect to the occasions in which gap fillers are used, expressions for power, effective thermal conductivity (keff), and optimum load electrical ratio (mopt) are derived. According to the new parameters, the thermal conductivity of the material has become much more critical now. The proposed new evaluation parameter, namely, zTwearable, is extremely useful in the selection of an appropriate thermoelectric material among various candidates prior to the commencement of the actual design process.

  8. Participatory Materials Development in Rural Zambia

    African Journals Online (AJOL)

    actors, and decision making and power relationships in a community context. ... the participatory materials development process in Chiawa was framed within ... enquiry that can help to improve the rationality and justice of practitioners' own ...

  9. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  10. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-07-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  11. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.

    Science.gov (United States)

    Kim, Suk Lae; Choi, Kyungwho; Tazebay, Abdullah; Yu, Choongho

    2014-03-25

    Thermoelectric energy conversion is very effective in capturing low-grade waste heat to supply electricity particularly to small devices such as sensors, wireless communication units, and wearable electronics. Conventional thermoelectric materials, however, are often inadequately brittle, expensive, toxic, and heavy. We developed both p- and n-type fabric-like flexible lightweight materials by functionalizing the large surfaces and junctions in carbon nanotube (CNT) mats. The poor thermopower and only p-type characteristics of typical CNTs have been converted into both p- and n-type with high thermopower. The changes in the electronic band diagrams of the CNTs were experimentally investigated, elucidating the carrier type and relatively large thermopower values. With our optimized device design to maximally utilize temperature gradients, an electrochromic glucose sensor was successfully operated without batteries or external power supplies, demonstrating self-powering capability. While our fundamental study provides a method of tailoring electronic transport properties, our device-level integration shows the feasibility of harvesting electrical energy by attaching the device to even curved surfaces like human bodies.

  12. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-04-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  13. Development of the structural materials information center

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.

    1990-01-01

    The U.S. Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where data and information on the time variation of concrete and other structural material properties under the influence of pertinent environmental stressors and aging factors are being collected and assembled into a database. This database will be used to assist in the prediction of potential long-term deterioration of critical structural components in nuclear power plants and to establish limits on hostile environmental exposure for these structures and materials. Two complementary database formats have been developed. The Structural Materials Handbook is an expandable, hard copy handbook that contains complete sets of data and information for selected portland cement concrete, metallic reinforcement, prestressing tendon, and structural steel materials. The Structural Materials Electronic Database is accessible by an IBM-compatible personal computer and provides an efficient means for searching the various database files to locate materials with similar properties. The database formats have been developed to accommodate data and information on the time-variation of concrete and other structural material properties. To date, the database includes information on concrete, reinforcement, prestressing, and structural steel materials

  14. Electroforming of Bi(1-x)Sb(x) nanowires for high-efficiency micro-thermoelectric cooling devices on a chip.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Webb, Edmund Blackburn, III (,; ); Siegal, Michael P.; Yelton, William Graham

    2006-11-01

    Active cooling of electronic systems for space-based and terrestrial National Security missions has demanded use of Stirling, reverse-Brayton, closed Joule-Thompson, pulse tube and more elaborate refrigeration cycles. Such cryocoolers are large systems that are expensive, demand large powers, often contain moving parts and are difficult to integrate with electronic systems. On-chip, solid-state, active cooling would greatly enhance the capabilities of future systems by reducing the size, cost and inefficiencies compared to existing solutions. We proposed to develop the technology for a thermoelectric cooler capable of reaching 77K by replacing bulk thermoelectric materials with arrays of Bi{sub 1-x}Sb{sub x} nanowires. Furthermore, the Sandia-developed technique we will use to produce the oriented nanowires occurs at room temperature and can be applied directly to a silicon substrate. Key obstacles include (1) optimizing the Bi{sub 1-x}Sb{sub x} alloy composition for thermoelectric properties; (2) increasing wire aspect ratios to 3000:1; and (3) increasing the array density to {ge} 10{sup 9} wires/cm{sup 2}. The primary objective of this LDRD was to fabricate and test the thermoelectric properties of arrays of Bi{sub 1-x}Sb{sub x} nanowires. With this proof-of-concept data under our belts we are positioned to engage National Security systems customers to invest in the integration of on-chip thermoelectric coolers for future missions.

  15. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  16. Technical considerations in materials management policy development

    International Nuclear Information System (INIS)

    Avci, H.; Goldberg, M.

    1996-01-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE's DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized

  17. Chemical analysis developments for fusion materials studies

    International Nuclear Information System (INIS)

    McCown, J.J.; Baldwin, D.L.; Keough, R.F.; Van der Cook, B.P.

    1985-04-01

    Several projects at Hanford under the management of the Westinghouse Hanford Company have involved research and development (R and D) on fusion materials. They include work on the Fusion Materials Irradiation Test Facility and its associated Experimental Lithium System; testing of irradiated lithium compounds as breeding materials; and testing of Li and Li-Pb alloy reactions with various atmospheres, concrete, and other reactor materials for fusion safety studies. In the course of these projects, a number of interesting and challenging analytical chemistry problems were encountered. They include sampling and analysis of lithium while adding and removing elements of interest; sampling, assaying and compound identification efforts on filters, aerosol particles and fire residues; development of dissolution and analysis techniques for measuring tritium and helium in lithium ceramics including oxides, aluminates, silicates and zirconates. An overview of the analytical chemistry development problems plus equipment and procedures used will be presented

  18. Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-04-01

    Full Text Available I-doped Bi2Te3−xIx (x=0, 0.05, 0.1, 0.2 flower-like nanoparticles were synthesized by a hydrothermal method through a careful adjustment of the amount of ethylenediamine tetraacetic acid surfactant. The nanopowders of flower-like nanoparticles were hot-pressed into bulk pellets and the thermoelectric properties of the pellets were investigated. The results showed that I-doping decreased the electrical resistivity effectively, and the thermal conductivitives of the Bi2Te3−xIx bulk samples was lower because of the closer atomic mass of I compared to Te. As a result, a ZT value of 1.1 was attained at 448 K for the Bi2Te2.9I0.1 sample.

  19. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay

    2018-02-21

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module and illustrate the inter-diffusions across the interface of constituent layers. For Bi2Te3-based module, soldering is the primary bonding method, giving rise to the investigations on the selections of solder, diffusion barrier layer and electrode. For mid-temperature PbTe-based TE module, hot-pressing or spark plasma sintering are alternative bonding approaches; the inter-diffusions between the diffusion barrier layer, electrode and TE substrate are addressed as well.

  20. European structural materials development for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, B. van der E-mail: vanderschaaf@nrg-nl.com; Ehrlich, K.; Fenici, P.; Tavassoli, A.A.; Victoria, M

    2000-09-01

    Leading long term considerations for choices in the European Long Term Technology programme are the high temperature mechanical- and compatibility properties of structural materials under neutron irradiation. The degrees of fabrication process freedom are closely investigated to allow the construction of complex shapes. Another important consideration is the activation behaviour of the structural material. The ideal solution is the recycling of the structural materials after a relatively short 'cooling' period. The structural materials development in Europe has three streams. The first serves the design and construction of ITER and is closely connected to the choice made: water cooled austenitic stainless steel. The second development stream is to support the design and construction of DEMO relevant blanket modules to be tested in ITER. The helium cooled pebble bed and the water cooled liquid lithium concept rely both on RAFM steel. The goal of the third stream is to investigate the potential of advanced materials for fusion power reactors beyond DEMO. The major contending materials: SiCSiC composites, vanadium, titanium and chromium alloys hold the promise of high operating temperatures, but RAFM has also a high temperature potential applying oxide dispersion strengthening. The development of materials for fusion power application requires a high flux 14 MeV neutron source to simulate the fusion power environment.

  1. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  2. The Development of Ojibway Language Materials.

    Science.gov (United States)

    Pheasant-Williams, Shirley

    2003-01-01

    Revitalization of the Nishinaabeg language started in 1998 with the development of language materials. A committee on Nishinaabemwin orthography advised on the development of the text and writing system. Teaching methods follow the four parts of Medicine Wheel teachings: spiritual, emotional, physical, and mental. An interactive hockey game and a…

  3. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  4. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kang, Phil Hyun; Choi, Jae Hak

    2010-04-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we carried out the radiation-based new research to apply long-term moisturizing effects and effective natural herbal extracts on the atopic wounds using gamma-ray irradiation. Also, we have developed the separator and the polymer gel electrolyte for lithium secondary battery by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology for TFT-LCD panel by radiation. In the 3rd project, we have developed the various radiation-based techniques for the surface modification of polymers and ceramics, biomolecules immobilization and patterning, prevention of biomolecule's non-specific adhesion, and surface modification of carbon nanotubes

  5. Thermoelectric properties of ternary phases of thallium-tin-tellurium system

    Energy Technology Data Exchange (ETDEWEB)

    Dichi, E. [Equipe materiaux et sante, faculte de pharmacie, universite Paris XI, 5, rue J.B, EA 401, Clement 92296 Chatenay-Malabry (France)], E-mail: emma.dichi@cep.u-psud.fr; Sghaier, M. [Equipe materiaux et sante, faculte de pharmacie, universite Paris XI, 5, rue J.B, EA 401, Clement 92296 Chatenay-Malabry (France); Kra, G. [Laboratoire de chimie minerale, universite de Cocody, 22, BP 582, Abidjan 22, Cote d' Ivoire (France)

    2008-06-30

    In this paper, we present the measurements of conductivity and of thermoelectric power. Measurements were taken for the temperature range of 100-330 K for the three ternary phases of Tl-Sn-Te system. The potential of these compounds as thermoelectric materials was studied.

  6. Heat shrink formation of a corrugated thin film thermoelectric generator

    International Nuclear Information System (INIS)

    Sun, Tianlei; Peavey, Jennifer L.; David Shelby, M.; Ferguson, Scott; O’Connor, Brendan T.

    2015-01-01

    Highlights: • Demonstrate and characterize a thermoelectric generator with a corrugated geometry. • Employ a novel heat shrink fabrication approach compatible with low-cost processing. • Use thermal impedance modeling to explore design potential. • Corrugated design shown to be advantageous for low heat-flux density applications. - Abstract: A thin film thermoelectric (TE) generator with a corrugated architecture is demonstrated formed using a heat-shrink fabrication approach. Fabrication of the corrugated TE structure consists of depositing thin film thermoelectric elements onto a planar non-shrink polyimide substrate that is then sandwiched between two uniaxial stretch-oriented co-polyester (PET) films. The heat shrink PET films are adhered to the polyimide in select locations, such that when the structure is placed in a high temperature environment, the outer films shrink resulting in a corrugated core film and thermoelectric elements spanning between the outer PET films. The module has a cross-plane heat transfer architecture similar to a conventional bulk TE module, but with heat transfer in the plane of the thin film thermoelectric elements, which assists in maintaining a significant temperature difference across the thermoelectric junctions. In this demonstration, Ag and Ni films are used as the thermoelectric elements and a Seebeck coefficient of 14 μV K −1 is measured with a maximum power output of 0.22 nW per couple at a temperature difference of 7.0 K. We then theoretically consider the performance of this device architecture with high performance thermoelectric materials in the heat sink limited regime. The results show that the heat-shrink approach is a simple fabrication method that may be advantageous in large-area, low power density applications. The fabrication method is also compatible with simple geometric modification to achieve various form factors and power densities to customize the TE generator for a range of applications

  7. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.; Becker, D.L.

    1996-01-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration close-quote s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. copyright 1996 American Institute of Physics

  8. Thermoelectric energy harvesting for a solid waste processing toilet

    Science.gov (United States)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  9. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined

  10. Co-optimized design of microchannel heat exchangers and thermoelectric generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Yazawa, K.; Rosendahl, Lasse

    2013-01-01

    Designs of heat exchangers have mostly been disconnected to the performance of thermoelectric generator (TEG) systems. The development work, mostly focused on thermoelectric materials, required a significant amount of engineering parametric analysis. In this work, a micro plate-fin heat exchanger...... applied to a TEG is investigated and optimized to maximize the output power and the cost performance of generic TEG systems. The cost per performance is counted by a measure of price per power output ($/W). The channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG...... are theoretically optimized for a wide range of pumping power. In conjunction with effective numeric tests, the model discusses the optimum size of the system components’ dimensions at two area sizes of the substrate plate of heat exchanger. Results show that at every pumping power, there are particular values...

  11. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power...

  12. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin

    2012-06-09

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  13. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N H; Bay, N; Grivel, J C [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  14. Superconductivity and magnetism: Materials properties and developments

    International Nuclear Information System (INIS)

    Andersen, N.H.; Bay, N.; Grivel, J.C.

    2003-01-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T c superconductivity, magnetic superconductors, MgB 2 , CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  15. Fine Art of Thermoelectricity.

    Science.gov (United States)

    Brus, Viktor V; Gluba, Marc; Rappich, Jörg; Lang, Felix; Maryanchuk, Pavlo D; Nickel, Norbert H

    2018-02-07

    A detailed study of hitherto unknown electrical and thermoelectric properties of graphite pencil traces on paper was carried out by measuring the Hall and Seebeck effects. We show that the combination of pencil-drawn graphite and brush-painted poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films on regular office paper results in extremely simple, low-cost, and environmentally friendly thermoelectric power generators with promising output characteristics at low-temperature gradients. The working characteristics can be improved even further by incorporating n-type InSe flakes. The combination of pencil-drawn n-InSe:graphite nanocomposites and brush-painted PEDOT:PSS increases the power output by 1 order of magnitude.

  16. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  17. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  18. DEVELOPING LISTENING MATERIALS FOR THE TENTH GRADERS

    Directory of Open Access Journals (Sweden)

    Muhammad Lukman Syafi’i

    2016-11-01

    Full Text Available The needs survey shows that English listening skill of the students in the tenth graders of Indonesian Islamic High School or Madrasah Aliyah is not well developed. Consequently, the listening instructional materials based on standard of content 2006 used in the classes need to be advanced. The researcher used only one try out of the product, second revision in this study was the seventh step of Borg and Gall model operational product revision. This was done based on the result of the try out, and the final product (the production of the new materials. The development used in this study consists of needs survey, developing the materials, experts and teacher‟s validation, revision, try out, second revision and the final product. The product is found acceptable for the tenth grade students.

  19. Development & Characterization of Multifunctional Microfluidic Materials

    Science.gov (United States)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  20. Potential thermoelectric performance of hole-doped Cu2O

    International Nuclear Information System (INIS)

    Chen, Xin; Parker, David; Du, Mao-Hua; Singh, David J

    2013-01-01

    High thermoelectric performance in oxides requires stable conductive materials that have suitable band structures. Here we show, based on an analysis of the thermopower and related properties using first-principles calculations and Boltzmann transport theory in the relaxation time approximation, that hole-doped Cu 2 O may be such a material. We find that hole-doped Cu 2 O has a high thermopower of above 200 μV K −1 even with doping levels as high as 5.2 × 10 20 cm −3 at 500 K, mainly attributed to the heavy valence bands of Cu 2 O. This is reminiscent of the cobaltate family of high-performance oxide thermoelectrics and implies that hole-doped Cu 2 O could be an excellent thermoelectric material if suitably doped. (paper)

  1. Thermoelectric properties of silicon nano pillars

    Energy Technology Data Exchange (ETDEWEB)

    Stranz, Andrej; Soekmen, Uensal; Waag, Andreas; Peiner, Erwin [Institute of Semiconductor Technology, Braunschweig (Germany)

    2010-07-01

    In order to establish silicon as a efficient thermoelectric material, its high thermal conductivity has to be reduced which is feasible, e.g., by nano structuring. Therefore, in this study Si-based sub-micron pillars of various dimensions were investigated. Using anisotropic etching followed by thermal oxidation we could fabricate pillars of diameters <500 nm, about 25 {mu}m in height with aspect ratios of more than 50. The distance between the pillars was varied from 500 nm to 10 micron. Besides the fabrication and structural characterization of sub-micron silicon pillars, and adequate metrology for measuring their thermoelectric properties was implemented. Commercial tungsten probes and self-made gold probes, as well as Wollaston wire probes were used for electrical and thermal conductivity, as well as Seebeck voltage measurements on single pillars in a scanning electron microscope equipped with nano manipulators.

  2. Manipulation of charge transport in thermoelectrics

    Science.gov (United States)

    Zhang, Xinyue; Pei, Yanzhong

    2017-12-01

    While numerous improvements have been achieved in thermoelectric materials by reducing the lattice thermal conductivity (κL), electronic approaches for enhancement can be as effective, or even more. A key challenge is decoupling Seebeck coefficient (S) from electrical conductivity (σ). The first order approximation - a single parabolic band assumption with acoustic scattering - leads the thermoelectric power factor (S2σ) to be maximized at a constant reduced Fermi level (η 0.67) and therefore at a given S of 167 μV/K. This simplifies the challenge of maximization of σ at a constant η, leading to a large number of degenerate transport channels (band degeneracy, Nv) and a fast transportation of charges (carrier mobility, μ). In this paper, existing efforts on this issue are summarized and future prospectives are given.

  3. Thermoelectric properties of SnSe compound

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wu, Liyuan; Han, Lihong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Liu, Gang [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Song, Yuxin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-09-15

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data.

  4. Thermoelectric properties of SnSe compound

    International Nuclear Information System (INIS)

    Guan, Xinhong; Lu, Pengfei; Wu, Liyuan; Han, Lihong; Liu, Gang; Song, Yuxin; Wang, Shumin

    2015-01-01

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data

  5. Microwave plasma synthesis of Si/Ge and Si/WSi2 nanoparticles for thermoelectric applications

    Science.gov (United States)

    Petermann, Nils; Schneider, Tom; Stötzel, Julia; Stein, Niklas; Weise, Claudia; Wlokas, Irenäus; Schierning, Gabi; Wiggers, Hartmut

    2015-08-01

    The utilization of microwave-based plasma systems enables a contamination-free synthesis of highly specific nanoparticles in the gas phase. A reactor setup allowing stable, long-term operation was developed with the support of computational fluid dynamics. This paper highlights the prospects of gas-phase plasma synthesis to produce specific materials for bulk thermoelectrics. Taking advantage of specific plasma reactor properties such as Coulomb repulsion in combination with gas temperatures considerably higher than 1000 K, spherical and non-aggregated nanoparticles of multiple compositions are accessible. Different strategies towards various nanostructured composites and alloys are discussed. It is shown that, based on doped silicon/germanium alloys and composites, thermoelectric materials with zT values up to almost unity can be synthesized in one step. First experimental results concerning silicon/tungsten silicide thermoelectrics applying the nanoparticle-in-alloy idea are presented indicating that this concept might work. However, it is found that tungsten silicides show a surprising sinter activity more than 1000 K below their melting temperature.

  6. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  7. Recent developments in hard magnetic materials

    International Nuclear Information System (INIS)

    Asti, G.

    1989-01-01

    Hard magnetic materials find ever-increasing uses in modern technology. Their importance is mainly in the domain of permanent magnets, but a variety of other applications is being offered to this class of materials, especially for what regards the areas of information storage, telecommunications and special electronic devices. These developments are connected to the emphasis that is more and more given to thin films having high magnetic anisotropy. The recent advancement in the field of hard magnetic materials is among the best examples where technology depends to a great extent upon the continuous progress in the scientific knowledge. The research activity is characterized by the introduction of new classes of materials and continuous improvements in the preparation techniques both for what regards industrial processing and method for obtaining high quality materials in form of crystals, films or amorphous specimens. In this respect a special place must be reserved to rare earth transition metal compounds, a class of materials that attracted enormeous attention after the discovery by Hoffer and Strnat in 1966 of the large uniaxial magnetocrystalline anisotropy of the compound YCo 5 . Beside the so called 1:5 phase, other compositions of technical importance are the 2:17 and the recently discovered Nd 2 Fe 14 B, which is a real new ternary phase having tetragonal crystal structure. Great efforts have been done to gain a better understanding of the magnetic anisotropy and its relationship to the coercivity is of leading importance for a further development in this important area of magnetism. (orig.)

  8. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    Science.gov (United States)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  9. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Directory of Open Access Journals (Sweden)

    Hector Carreon

    2017-05-01

    Full Text Available The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  10. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Science.gov (United States)

    Carreon, Hector

    2017-05-01

    The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  11. Developing Higher-Order Materials Knowledge Systems

    Science.gov (United States)

    Fast, Anthony Nathan

    2011-12-01

    Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these

  12. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    The central problem in thermoelectric material research is the selection of ... temperature range (400–1000 K), and bismuth telluride-based materials .... parent from the results that band non-parabolicity has a significant effect on the .... M P Singh thankfully acknowledges financial assistance from the Council of Scien-.

  13. Fabrication of Thermoelectric Devices Using Additive-Subtractive Manufacturing Techniques: Application to Waste-Heat Energy Harvesting

    Science.gov (United States)

    Tewolde, Mahder

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by

  14. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    Science.gov (United States)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  15. Base technology development of new materials for FBR performance innovations

    International Nuclear Information System (INIS)

    Kano, Shigeki; Koyama, Masahiro; Nomura, Shigeo; Morikawa, Satoru; Ueno, Fumiyoshi

    1989-01-01

    This paper describes the base technology development of new materials for FBR performance innovations at the Power Reactor and Nuclear Fuel Development Corporation. The contents are as follows: (1) development of sodium and radiation resistant new materials, (2) development of high performance shielding material, (3) development of high performance control material, (4) development of new functional materials for reactor instrumentation. (author)

  16. Witness: The Movie. A Material Development Project.

    Science.gov (United States)

    Conlon, Susan Henderson

    A teaching guide and series of exercises for high-intermediate or advanced English-as-a-Second-Language (ESL) instruction based on the movie "Witness" are presented. The materials are designed primarily to develop English listening and speaking skills and enhance awareness of American culture and the criminal justice system. The teaching…

  17. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  18. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  19. Increasing the thermoelectric power factor of Ge17Sb2Te20 by adjusting the Ge/Sb ratio

    Science.gov (United States)

    Williams, Jared B.; Mather, Spencer P.; Page, Alexander; Uher, Ctirad; Morelli, Donald T.

    2017-07-01

    We have investigated the thermoelectric properties of Ge17Sb2Te20. This compound is a known phase change material with electronic properties that depend strongly on temperature. The thermoelectric properties of this compound can be tuned by altering the stoichiometry of Ge and Sb without the use of additional foreign elements during synthesis. This tuning results in a 26% increase in the thermoelectric power factor at 723 K. Based on a single parabolic band model we show that the pristine material is optimally doped, and thus, a reduction in the lattice thermal conductivity of pure Ge17Sb2Te20 should result in an enhanced thermoelectric figure of merit.

  20. Thermoelectric effects in disordered branched nanowires

    Science.gov (United States)

    Roslyak, Oleksiy; Piriatinskiy, Andrei

    2013-03-01

    We shall develop formalism of thermal and electrical transport in Si1 - x Gex and BiTe nanowires. The key feature of those nanowires is the possibility of dendrimer type branching. The branching tree can be of size comparable to the short wavelength of phonons and by far smaller than the long wavelength of conducting electrons. Hence it is expected that the branching may suppress thermal and let alone electrical conductance. We demonstrate that the morphology of branches strongly affects the electronic conductance. The effect is important to the class of materials known as thermoelectrics. The small size of the branching region makes large temperature and electrical gradients. On the other hand the smallness of the region would allow the electrical transport being ballistic. As usual for the mesoscopic systems we have to solve macroscopic (temperature) and microscopic ((electric potential, current)) equations self-consistently. Electronic conductance is studied via NEGF formalism on the irreducible electron transfer graph. We also investigate the figure of merit ZT as a measure of the suppressed electron conductance.

  1. Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent.

    Science.gov (United States)

    Ang, Ran; Khan, Atta Ullah; Tsujii, Naohito; Takai, Ken; Nakamura, Ryuhei; Mori, Takao

    2015-10-26

    Current high-performance thermoelectric materials require elaborate doping and synthesis procedures, particularly in regard to the artificial structure, and the underlying thermoelectric mechanisms are still poorly understood. Here, we report that a natural chalcopyrite mineral, Cu1+x Fe1-x S2 , obtained from a deep-sea hydrothermal vent can directly generate thermoelectricity. The resistivity displayed an excellent semiconducting character, and a large thermoelectric power and high power factor were found in the low x region. Notably, electron-magnon scattering and a large effective mass was detected in this region, thus suggesting that the strong coupling of doped carriers and antiferromagnetic spins resulted in the natural enhancement of thermoelectric properties during mineralization reactions. The present findings demonstrate the feasibility of thermoelectric energy generation and electron/hole carrier modulation with natural materials that are abundant in the Earth's crust. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of functional materials by using ultrafast laser pulses

    Science.gov (United States)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  3. Globalization determinants of raw materials markets development

    Directory of Open Access Journals (Sweden)

    Olga Yatsenko

    2013-02-01

    Full Text Available The determinants of development of raw materials markets and the peculiarities of their formation in the terms of world economy globalization have been researched. The empirical base of research is the agricultural food market as one of the most important bases in the sphere of material production and provision of food security of the country. The important social and economic mission of the agricultural sector has been highlighted, along with the export competitiveness and import dependence of agricultural food products in the international trade. The imperative norms have been substantiated and conclusions have been drawn regarding the establishment of respective conditions for the operation of globally integrated markets in Ukraine.

  4. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-06-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  5. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    Science.gov (United States)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  6. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    Science.gov (United States)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    the development and application of thermoelectric generators, particularly for the design and optimization of TE modules.

  7. THERMOELECTRIC PROPERTIES OF HOT-PRESSED p-TYPE Mg2Si0.3Sn0.7 SOLID SOLUTION

    Directory of Open Access Journals (Sweden)

    G. N. Isachenko

    2014-05-01

    Full Text Available It is shown that thermoelectric energy conversion which gives the possibility for utilizing a low potential heat is one of the ways for adoption of energy-saving technologies; and semiconductor materials with p-type and n-type conductivities having high thermoelectric figure of merit are necessary for operation of thermoelectric generators. The paper deals with possibility of usage of the p-Mg2Si0.3Sn0.7 solid solution (with a nanostructured modification as a couple for the well studied thermoelectric material based on n-Mg2Si-Mg2Sn. A technological scheme for fabrication of heavily doped Mg2Si0.3Sn0.7 solid solution of p-type by hot pressing from nanopowder is developed. The given technology has made it possible to reduce duration of a homogeneous material fabrication and has improved its physical and chemical properties. The samples were made by three ways: direct fusion for polycrystals fabrication; hot pressing from microparticles; nanostructuring, i.e. hot pressing from nanoparticles. By X-ray diffraction it is shown that sizes of structural elements in the fabricated samples are about 40 nm. The probe technique is used for measurement of electric conductivity and Seebeck coefficient. The stationary absolute method is used for measurement of thermal conductivity. Thermoelectric figure of merit is defined by measured values of kinetic coefficients in the temperatures range of 77 – 800 K. It was demonstrated, that electric conductivity, Seebeck coefficient and the power factor do not depend practically on a way of solid solution preparation. Thermal conductivity of samples pressed from nanoparticles has appeared to be higher, than of samples, obtained by direct fusion; i.e. in this case nanostructuring has not led to increase of thermoelectric figure of merit. The conclusion is drawn, that polycrystalline semiconductor Mg2Si0.3Sn0.7 can be used as a p-branch for a thermoelectric generator though nanostructuring has not led to the figure of

  8. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  9. Recent developments in dynamic testing of materials

    Directory of Open Access Journals (Sweden)

    Gilat Amos

    2015-01-01

    Full Text Available New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012, and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  10. Material Technologies Developments for Solar Hydrogen

    International Nuclear Information System (INIS)

    Agrafiotis, C.; Pagkoura, C.; Lorentzou, S.; Hoguet, J.C.; Konstandopoulos, A.G.

    2006-01-01

    The present work presents recent activities of our Laboratory in the field of solar-aided hydrogen production materials and reactor technologies that can be fully integrated into solar thermal power plants. Emphasis is given on structured monolithic solar reactors where ceramic supports optimized to absorb solar radiation and develop sufficiently high temperatures, are coated with active materials to perform a variety of 'solar-aided' reactions such as water splitting or natural gas reforming. Particular examples discussed include properties'' assessment of monolithic ceramic honeycombs used as volumetric solar thermal reactors/receivers, synthesis of active water-splitting redox materials for the production of hydrogen and their tailored deposition upon porous supports and design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. (authors)

  11. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  12. Paper-Based Origami Flexible and Foldable Thermoelectric Nanogenerator

    KAUST Repository

    Rojas, Jhonathan Prieto; Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; Singh, Devendra; Foulds, Ian G.; Hussain, Muhammad Mustafa

    2016-01-01

    Paper has been an essential material in our daily life since ancient times. Its affordability, accessibility, adaptability, workability and its easiness of usage makes it an attractive structural material to develop many kind of technologies such as flexible electronics, energy storage and harvesting devices. Additionally, the scientific community has increased its interest on waste heat as an environmentally friendly energy source to support the increasing energy demand. Therefore, in this paper we described two affordable and flexible thermoelectric nanogenerators (TEGs) developed on paper substrates by the usage of simple micromachining and microfabrication techniques. Moreover, they exhibit mechanical stability and adaptability (through folding and cutting techniques) for a diverse set of scenarios where vertical or horizontal schemes can be conveniently used depending on the final application. The first TEG device, implemented on standard paper, generated a power of 0.5 nW (ΔT = 50 K). By changing the substrate to a tearless and extra-smooth polyester paper, the TEG performance was optimized achieving less internal resistance and a greater power of ~80 nW (ΔT = 75 K), at the cost of more rigidity in the substrate. This power represented over three times higher power production than the standard paper–based TEG with same dimensions, number of thermoelectric pairs and temperature difference. Another interesting aspect of paper based TEG is due to its foldability, one can control the temperature difference by unfolding (larger separation between hot and cold ends) and folding (smaller separation). Finally, one of the underlying objectives of this work is to spread the availability of essential technologies to the broad population by inclusion of everyday materials and simple processes.

  13. Paper-Based Origami Flexible and Foldable Thermoelectric Nanogenerator

    KAUST Repository

    Rojas, Jhonathan Prieto

    2016-11-12

    Paper has been an essential material in our daily life since ancient times. Its affordability, accessibility, adaptability, workability and its easiness of usage makes it an attractive structural material to develop many kind of technologies such as flexible electronics, energy storage and harvesting devices. Additionally, the scientific community has increased its interest on waste heat as an environmentally friendly energy source to support the increasing energy demand. Therefore, in this paper we described two affordable and flexible thermoelectric nanogenerators (TEGs) developed on paper substrates by the usage of simple micromachining and microfabrication techniques. Moreover, they exhibit mechanical stability and adaptability (through folding and cutting techniques) for a diverse set of scenarios where vertical or horizontal schemes can be conveniently used depending on the final application. The first TEG device, implemented on standard paper, generated a power of 0.5 nW (ΔT = 50 K). By changing the substrate to a tearless and extra-smooth polyester paper, the TEG performance was optimized achieving less internal resistance and a greater power of ~80 nW (ΔT = 75 K), at the cost of more rigidity in the substrate. This power represented over three times higher power production than the standard paper–based TEG with same dimensions, number of thermoelectric pairs and temperature difference. Another interesting aspect of paper based TEG is due to its foldability, one can control the temperature difference by unfolding (larger separation between hot and cold ends) and folding (smaller separation). Finally, one of the underlying objectives of this work is to spread the availability of essential technologies to the broad population by inclusion of everyday materials and simple processes.

  14. Development of the Structural Materials Information Center

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.

    1990-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where data and information on the time variation of concrete and other structural material properties under the influence of pertinent environmental stressors and aging factors are being collected and assembled into a data base. This data base will be used to assist in the prediction of potential long-term deterioration of critical structural components in nuclear power plants and to establish limits on hostile environmental exposure for these structures and materials. Two complementary data base formats have been developed. The Structural Materials Handbook is an expandable, hard-copy reference document that contains complete sets of data and information for selected portland cement concrete, metallic reinforcement, prestressing tendon, and structural steel materials. Baseline data, reference properties and environmental information are presented in the handbook as tables, notes and graphs. The handbook, which will be published in four volumes, serves as the information source for the electronic data base. The Structural Materials Electronic Data Base is accessible by an IBM-compatible personal computer and provides an efficient means for searching the various data base files to locate materials with similar properties. Properties will be reported in the International System of Units (SI) and in customary units whenever possible. 7 refs., 3 figs., 4 tabs

  15. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  16. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Hittman, F.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 2 claims, 4 drawing figures

  17. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Barr, H.N.

    1978-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 4 claims, 4 figures

  18. Superlattices in thermoelectric applications

    International Nuclear Information System (INIS)

    Sofo, J.O.; Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1994-08-01

    The electrical conductivity, thermopower and the electronic contribution to the thermal conductivity of a superlattice, are calculated with the electric field and the thermal gradient applied parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the lowest subband when the period of the superlattice is decreased produces a reduction of the thermoelectric figure of merit. However, we found that a moderate increase of the figure of merit may be expected for intermediate values of the period, due to the enhancement of the density of states produced by the superlattice structure

  19. Semiconductor thermoelectric generators

    CERN Document Server

    Fahrner, Wolfgang R

    2009-01-01

    It is well-known that fossil fuels are being rapidly depleted, and that atomic power is rejected by many people. As a consequence, there is a strong trend towards alternative sources such as wind, photovoltaics, solar heat and biomass. Strangely enough, quite another power source is generally neglected: namely, the thermoelectric generator (a device which converts heat, i.e. thermal energy, directly into electrical energy). The reason for this neglect is probably the low conversion efficiency, which is of the order of a few percent at most. However, there are two arguments in favor of the ther

  20. Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rouessac, F., E-mail: Florence.Rouessac@univ-montp2.fr [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, C2M Universite Montpellier 2, CC 1504 Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Ayral, R.-M. [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, C2M Universite Montpellier 2, CC 1504 Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Reliable preparation method of thermoelectric materials. Black-Right-Pointing-Pointer Formation of zinc antimonide by the combustion synthesis method is investigated. Black-Right-Pointing-Pointer XRD and Raman spectroscopy as a function of temperature. Black-Right-Pointing-Pointer SHS: a new way for synthesizing thermoelectric materials. - Abstract: Due to the interesting properties of Zn{sub 4}Sb{sub 3} thermoelectric material, a reliable preparation method of this material is required. In this study, the formation of zinc antimonides by the combustion synthesis method is investigated and subjected to characterization using X-ray diffraction and Raman spectroscopy as a function of temperature. The results show that combustion synthesis can be a new way for synthesizing these thermoelectric materials.