WorldWideScience

Sample records for thermoelectric characteristics principles significance

  1. Thermoelectricity an introduction to the principles

    CERN Document Server

    MacDonald, D K C

    2006-01-01

    This introductory treatment provides an understanding of the fundamental concepts and principles involved in the study of thermoelectricity in solids and of conduction in general. Aimed at graduate-level students and those interested in basic theory, it will be especially valuable to experimental physicists working in fields connected with electron transport and to theoreticians seeking a survey of thermoelectricity and related questions.Chronicling the early history of thermoelectricity from its discovery to modern times, this text features a considerable amount of experimental data and discu

  2. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  3. Thermal characteristics of combined thermoelectric generator and refrigeration cycle

    International Nuclear Information System (INIS)

    Yilbas, Bekir S.; Sahin, Ahmet Z.

    2014-01-01

    Highlights: • TEM location in between the evaporator and condenser results in low coefficient of performance. • TEM location in between condenser and its ambient improves coefficient of performance of the combined system. • High temperature ratio enhances coefficient of performance of combined system. • Certain values of parameters enhance combined system performance. - Abstract: A combined thermal system consisting of a thermoelectric generator and a refrigerator is considered and the effect of location of the thermoelectric generator, in the refrigeration cycle, on the performance characteristics of the combined system is investigated. The operating conditions and their influence on coefficient of performance of the combined system are examined through introducing the dimensionless parameters, such as λ(λ = Q HTE /Q H , where Q HTE is heat transfer to the thermoelectric generator from the condenser, Q H is the total heat transfer from the condenser to its ambient), temperature ratio (θ L = T L /T H , where T L is the evaporator temperature and T H is the condenser temperature), r C (r C = C L /C H , where C L is the thermal capacitance due to heat transfer to evaporator and C H , is the thermal capacitance due to heat rejected from the condenser), θ W (θ W = T W /T H , where T W is the ambient temperature), θ C (θ C = T C /T H , where T C is the cold space temperature). It is found that the location of the thermoelectric generator in between the condenser and the evaporator decreases coefficient of performance of the combined system. Alternatively, the location of thermoelectric device in between the condenser and its ambient enhances coefficient of performance of the combined system. The operating parameters has significant effect on the performance characteristics of the combined system; in which case temperature ratio (θ L ) within the range of 0.68–0.70, r C = 2.5, θ W = 0.85, and θ C = 0.8 improve coefficient of performance of the

  4. Contrastive thermoelectric properties of strained SnSe crystals from the first-principles calculations

    Science.gov (United States)

    Tang, Yu; Cheng, Feng; Li, Decong; Deng, Shuping; Chen, Zhong; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Deng, Shukang

    2018-06-01

    SnSe is a promising thermoelectric material with a record high dimensionless figure of merit ZT at high temperature ∼923 K. However, the ZT values for low-Temperature Pnma phase SnSe are just 0.1-0.9. Here, we use First-principle combine with Boltzmann transport theory methods to study the effect of tensile and compressible strain on the thermoelectric transport properties. The power factor of SnSe with -4% strain have a large boost along b and c directions of 7.7 and 3.9 μW cm-1 K-2, respectively, which are 2.5 and 2 times as large as those pristine SnSe. The charge density distributions reveal that the overlap of wave function has significant change due to the changed bond lengths and bond angles under different strain, which lead to the change of band gap and band dispersion. Our work provides a new effective strategy to enhance the thermoelectric properties of materials.

  5. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  6. First-principles study of thermoelectric properties of CuI

    International Nuclear Information System (INIS)

    Yadav, Manoj K; Sanyal, Biplab

    2014-01-01

    Theoretical investigations of the thermoelectric properties of CuI have been carried out employing first-principles calculations followed by the calculations of transport coefficients based on Boltzmann transport theory. Among the three different phases of CuI, viz. zinc-blende, wurtzite and rock salt, the thermoelectric power factor is found to be the maximum for the rock salt phase. We have analysed the variations of Seebeck coefficients and thermoelectric power factors on the basis of calculated electronic structures near the valence band maxima of these phases. (papers)

  7. Thermoelectric properties of low-dimensional clathrates from first principles

    Science.gov (United States)

    Kasinathan, Deepa; Rosner, Helge

    2011-03-01

    Type-I inorganic clathrates are host-guest structures with the guest atoms trapped in the framework of the host structure. From a thermoelectric point of view, they are interesting because they are semiconductors with adjustable bandgaps. Investigations in the past decade have shown that type-I clathrates X8 Ga 16 Ge 30 (X = Ba, Sr, Eu) may have the unusual property of ``phonon glass-electron crystal'' for good thermoelectric materials. Among the known clathrates, Ba 8 Ga 16 Ge 30 has the highest figure of merit (ZT~1). To enable a more widespread usage of thermoelectric technology power generation and heating/cooling applications, ZT of at least 2-3 is required. Two different research approaches have been proposed for developing next generation thermoelectric materials: one investigating new families of advanced bulk materials, and the other studying low-dimensional materials. In our work, we concentrate on understanding the thermoelectric properties of the nanostructured Ba-based clathrates. We use semi-classical Boltzmann transport equations to calculate the various thermoelectric properties as a function of reduced dimensions. We observe that there exists a delicate balance between the electrical conductivity and the electronic part of the thermal conductivity in reduced dimensions. Insights from these results can directly be used to control particle size in nanostructuring experiments.

  8. NREL Research Yields Significant Thermoelectric Performance | News | NREL

    Science.gov (United States)

    Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could from an exemplary SWNCT thin film improved thermoelectric properties. The newest paper revealed that that the same SWCNT thin film achieved identical performance when doped with either positive or

  9. Thermoelectricity: materials and applications

    International Nuclear Information System (INIS)

    Elberg, S.; Mathonnet, P.

    1975-01-01

    After a brief recall of the basic principles of thermoelectricity, the essential characteristics intervening in the different thermoelectric devices operating modes are defined. Properties of the materials the most used nowadays and performances of the apparatus that they allow to realize are indicated. Advantages and drawbacks of the principal applications in the form of electrical generators, refrigerators and heat pumps are pointed out [fr

  10. The measure and significance of Bateman's principles.

    Science.gov (United States)

    Collet, Julie M; Dean, Rebecca F; Worley, Kirsty; Richardson, David S; Pizzari, Tommaso

    2014-05-07

    Bateman's principles explain sex roles and sexual dimorphism through sex-specific variance in mating success, reproductive success and their relationships within sexes (Bateman gradients). Empirical tests of these principles, however, have come under intense scrutiny. Here, we experimentally show that in replicate groups of red junglefowl, Gallus gallus, mating and reproductive successes were more variable in males than in females, resulting in a steeper male Bateman gradient, consistent with Bateman's principles. However, we use novel quantitative techniques to reveal that current methods typically overestimate Bateman's principles because they (i) infer mating success indirectly from offspring parentage, and thus miss matings that fail to result in fertilization, and (ii) measure Bateman gradients through the univariate regression of reproductive over mating success, without considering the substantial influence of other components of male reproductive success, namely female fecundity and paternity share. We also find a significant female Bateman gradient but show that this likely emerges as spurious consequences of male preference for fecund females, emphasizing the need for experimental approaches to establish the causal relationship between reproductive and mating success. While providing qualitative support for Bateman's principles, our study demonstrates how current approaches can generate a misleading view of sex differences and roles.

  11. Potential thermoelectric material open framework Si24 from a first-principles study

    International Nuclear Information System (INIS)

    Ouyang, Tao; Zhang, Pei; Xiao, Huaping; Tang, Chao; Li, Jin; He, Chaoyu; Zhong, Jianxin

    2017-01-01

    Open framework Si 24 is a new synthesis cage-like silicon allotrope with a quasi-direct bandgap and predicted to exhibit outstanding adsorption efficiency, foreshowing the potential applications in the photovoltaic community. In this paper, the thermoelectric property of such new Si structures is investigated by combining first-principles calculation and semiclassical Boltzmann transport theory. The calculations show that the Si 24 possesses a superb Seebeck coefficient, and obviously anisotropic electronic conductivity. Owing to more energy extremums existing in the conduction band region, the power factor of Si 24 in the n-type doping is always better than that in p-type samples. Anisotropic phonon transport property is observed as well in Si 24 with average lattice thermal conductivity of 45.35 W m −1 K −1 at room temperature. Based on the electron relaxation time estimated from the experiment, the thermoelectric figure of merit of Si 24 is found to be as high as 0.69 (n-type doping at 700 K) and 0.51 (p-type doping at 700 K) along the xx crystal direction, which is about two orders of magnitude larger than that of diamond Si ( d -Si). The findings presented in this work shed light on the thermoelectric performance of Si 24 and qualify that such new Si allotrope is a promising platform for achieving the recombination of photovoltaic and thermoelectric technologies together. (paper)

  12. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  13. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor

    International Nuclear Information System (INIS)

    Wang, Feng; Cao, Yiding; Wang, Guoqiang

    2015-01-01

    Thermoelectric (TE) generator converts heat to electric energy by thermoelectric material. However, heat removal on the cold side of the generator represents a serious challenge. To address this problem and for improved energy conversion, a thermoelectric generation process coupled with methanol steam reforming (SR) for hydrogen production is designed and analyzed in this paper. Experimental study on the cold spot character in a micro-reactor with monolayer catalyst bed is first carried out to understand the endothermic nature of the reforming as the thermoelectric cold side. A novel methanol steam reforming micro-reactor heated by waste heat or methanol catalytic combustion for hydrogen production coupled with a thermoelectric generation module is then simulated. Results show that the cold spot effect exists in the catalyst bed under all conditions, and the associated temperature difference first increases and then decreases with the inlet temperature. In the micro-reactor, the temperature difference between the reforming and heating channel outlets decreases rapidly with an increase in thermoelectric material's conductivity coefficient. However, methanol conversion at the reforming outlet is mainly affected by the reactor inlet temperature; while at the combustion outlet, it is mainly affected by the reactor inlet velocity. Due to the strong endothermic effect of the methanol steam reforming, heat supply of both kinds cannot balance the heat needed at reactor local areas, resulting in the cold spot at the reactor inlet. When the temperature difference between the thermoelectric module's hot and cold sides is 22 K, the generator can achieve an output voltage of 55 mV. The corresponding molar fraction of hydrogen can reach about 62.6%, which corresponds to methanol conversion rate of 72.6%. - Highlights: • Cold spot character of methanol steam reforming was studied through experiment. • Thermoelectric generation Coupling MSR process has been

  14. Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique.

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R C; Pathak, B D; Avasthi, Piyush Kumar; Kumar, Rishikesh; Kumar, Anil; Srivastava, A K; Dhar, Ajay

    2018-01-25

    The limited thermoelectric performance of p-type Higher Manganese Silicides (HMS) in terms of their low figure-of-merit (ZT), which is far below unity, is the main bottle-neck for realising an efficient HMS based thermoelectric generator, which has been recognized as the most promising material for harnessing waste-heat in the mid-temperature range, owing to its thermal stability, earth-abundant and environmentally friendly nature of its constituent elements. We report a significant enhancement in the thermoelectric performance of nanostructured HMS synthesized using rapid solidification by optimizing the cooling rates during melt-spinning followed by spark plasma sintering of the resulting melt-spun ribbons. By employing this experimental strategy, an unprecedented ZT ∼ 0.82 at 800 K was realized in spark plasma sintered 5 at% Al-doped MnSi 1.73 HMS, melt spun at an optimized high cooling rate of ∼2 × 10 7 K s -1 . This enhancement in ZT represents a ∼25% increase over the best reported values thus far for HMS and primarily originates from a nano-crystalline microstructure consisting of a HMS matrix (20-40 nm) with excess Si (3-9 nm) uniformly distributed in it. This nanostructure, resulting from the high cooling rates employed during the melt-spinning of HMS, introduces a high density of nano-crystallite boundaries in a wide spectrum of nano-scale dimensions, which scatter the low-to-mid-wavelength heat-carrying phonons. This abundant phonon scattering results in a significantly reduced thermal conductivity of ∼1.5 W m -1 K -1 at 800 K, which primarily contributes to the enhancement in ZT.

  15. Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor

    DEFF Research Database (Denmark)

    Qing, Shaowei; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    Flexible thermoelectric generator became an attractive technology for its wide use especially for curved surfaces applications. This study proposes design of a flexible thermoelectric generator, which is part of a sensor and supplies required electrical power for human body application...... elements thickness and thermoelectric module row number in a proper range can significantly enhance thermoelectric generator performance. The maximum output power can reach 0.2 μW/cm2, which indicates the proposed design is promising for supplying human body sensors. In addition, the basic optimal design....... The thermoelectric generator module has ink-based thermoelements which are made of nano-carbon bismuth telluride materials. Flexible fins conduct the body heat to the thermoelectric uni-couples, extended fins exchange the heat from the cold side of the thermoelectric generator to the ambient. A fully developed one...

  16. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material

    International Nuclear Information System (INIS)

    Guo, Donglin; Hu, Chenguo; Zhang, Cuiling

    2013-01-01

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi 2 S 3 depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value. ► By doping and temperature tuning, Bi 2 S 3 is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi 2 S 3 are investigated. The electron and hole effective mass of Bi 2 S 3 is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi 2 S 3 crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi 2 S 3 , the optimal doping concentration is found in the range of (1.0–5.0) × 10 19 cm −3 , in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant

  17. Analysis Of Power Characteristics Of Model Thermoelectric Generator TEG Small Modular

    Directory of Open Access Journals (Sweden)

    Kisman H. Mahmud

    2017-04-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this research was conducted to determine the potential of the electric energy of the two peltier modules which would be an alternative source for mobile charger using heat from source of methylated. The focus in this research is the testing of the model TEG Thermoelectric Generator Small Modular to generate power with a variety of different materials of 4 namely Bi2Te3 Bismuth Telluride PbTe-Bite CMO and CMO Cascade-32-62S-32-62S Calcium Mangan oxide to use the cold side heat sink and a fan to simulate heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Test results on the TEG Small Modular Model for mobile charger output voltage obtained from 2 pieces Bi2Te3 module Bismuth Telluride Peltier strung together a series of 3.01 Volt with amp916T of 22.7 C which produce power of 0.091 Watt.

  18. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  19. Xeroradiography. Principles, characteristics and method indications

    International Nuclear Information System (INIS)

    Uemura, L.; Forni, S.S.; Abreu Neto, B.P.; Broccoli Neto, J.; Abilio, S.O.

    1987-01-01

    The xeroradiography is an entirely photoeletric process to obtain the radiographic image, employing a selenium plate instead of the conventional radiologic film. A revision of the physical principles and technical aspects of the method is presented, and the characteristics of xeroradiographic images are explained. The applications of xeroradiography include evaluation of breast, structures of the neck soft tissues tumors and some bone tumors for soft tissue components, foreign body detection in soft issues and visualization of the smaller skeletal structures of the extremeties. (Author) [pt

  20. Significant enhancement of the thermoelectric figure of merit of polycrystalline Si films by reducing grain size

    International Nuclear Information System (INIS)

    Valalaki, K; Nassiopoulou, A G; Vouroutzis, N

    2016-01-01

    The thermoelectric properties of p-type polycrystalline silicon thin films deposited by low pressure chemical vapour deposition (LPCVD) were accurately determined at room temperature and the thermoelectric figure of merit was deduced as a function of film thickness, ranging from 100 to 500 nm. The effect of film thickness on their thermoelectric performance is discussed. More than threefold increase in the thermoelectric figure of merit of the 100 nm thick polysilicon film was observed compared to the 500 nm thick film, reaching a value as high as 0.033. This enhancement is mainly the result of the smaller grain size in the thinner films. With the decrease in grain size the resistivity of the films is increased twofold and electrical conductivity decreased, however the Seebeck coefficient is increased by 30% and the thermal conductivity is decreased eightfold, being mainly at the origin of the increased figure of merit of the 100 nm film. Our experimental results were compared to known theoretical models and the possible mechanisms involved are presented and discussed. (paper)

  1. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-01-01

    opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure

  2. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure

    International Nuclear Information System (INIS)

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-01-01

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg 2 Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg 2 Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg 2 Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg 2 Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10 −3 W/(K 2 m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg 2 Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  3. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    Science.gov (United States)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  4. Significance of personal characteristics for entrepreneurial youth activity

    Directory of Open Access Journals (Sweden)

    Ruta Adamoniene

    2015-02-01

    Full Text Available The economic policy of the European Union is based on the encouragement of every resident’s economic activity. The greatest attention is paid to motivating the youth to work and encouraging their entrepreneurial activity. Scientists are actively discussing the impact of personal characteristics on entrepreneurial activity, and entrepreneurship is analyzed under two key aspects in terms of this research. Scientists describe entrepreneurship differently: some claim entrepreneurship is simply initiative, others that these are natural and acquired human characteristics, which enable his/her innovative behaviours and active performance and risk. The research aim is, after having identified personal youth characteristics, to define their significance for entrepreneurial activity. During the research the significance of personal entrepreneurial characteristics was indicated, and their links to value principles and specific influential factors on youth entrepreneurial activity.

  5. Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator

    International Nuclear Information System (INIS)

    Kim, Tae Young; Negash, Assmelash; Cho, Gyubaek

    2017-01-01

    Highlights: • Energy harvesting performance of direct contact thermoelectric generator was studied. • Power-current and voltage-current curves were given for various operating conditions. • Output power prediction using numerical results and empirical correlation was verified. • A 1.0–2.0% conversion efficiency and 5.7–11.1% heat recovery efficiency were obtained. • A 0.25% increase in efficiency was found with a 10 K decrease in coolant temperature. - Abstract: In this study, waste heat recovery performance of a direct contact thermoelectric generator (DCTEG) is experimentally investigated on a diesel engine. In order to conduct an insightful analysis of the DCTEG characteristics, three experimental parameters—engine load, rotation speed, and coolant temperature—are chosen to vary over ranges during the experiments. Experimental results show that higher temperature differences across thermoelectric modules (TEM), larger engine loads, and rotation speeds lead to an improved energy conversion efficiency of the DCTEG, which lies in the range of approximately 1.0–2.0%, while the output power ranges approximately 12–45 W. The increase in the conversion efficiency for an increased engine load becomes more noticeable with a higher engine rotation speed. A 10 K decrease in the coolant temperature yields an approximately 0.25% increase in the conversion efficiency for the engine operating conditions tested. In addition, 3D numerical simulations were conducted to investigate the heat transfer and pressure characteristics of the DCTEG. Numerically obtained exhaust gas temperatures exiting the DCTEG were in good agreement with experimental results. It is also revealed that incorporation of the temperature fields from the numerical simulation and an empirical correlation for a temperature-power relationship provides a good predictor for output power from the DCTEG, especially at low engine load conditions, which deviates from experimental results as the

  6. Effect of Thermal Cycling on Zinc Antimonide Thin Film Thermoelectric Characteristics

    DEFF Research Database (Denmark)

    Mirhosseini, M.; Rezania, A.; Rosendahl, L.

    2017-01-01

    In this study, performance and stability of zinc antimonide thin film thermoelectric sample is analyzed under transient thermal conditions. The thermoelectric materials are deposited on glass based substrate where the heat flow is parallel with the thermoelectric element length. The specimen...

  7. THE CONSTITUTIONAL PRINCIPLE OF EQUALITY - LEGAL SIGNIFICANCE AND SOCIAL IMPLICATIONS -

    Directory of Open Access Journals (Sweden)

    Marius ANDREESCU

    2017-12-01

    Full Text Available The equality in human rights and obligations, the equality of citizens before the law are fundamental categories of the theories on social democracy but also conditions of the lawful state, without which constitutional democracy cannot be conceived. In Romanian Constitution, this principle is consecrated in the form of equality of the citizens before the law and public authorities. There are also particular aspects of this principle consecrated in the Constitution. The constitutional principle of equality requires that equal treatment be applied to equal situations. This social and legal reality implies numerous interferences between the principle of equality and other constitutional principles. In this study, by using theoretical and jurisprudential arguments, we intend to demonstrate that, in relation to contemporary social reality, equality, as a constitutional principle, is a particular aspect of the principle of proportionality. The latter one expresses in essence the ideas of: fairness, justice, reasonableness and fair appropriateness of state decisions to the facts and legitimate aims proposed.

  8. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  9. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  10. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    Directory of Open Access Journals (Sweden)

    Do Duc Cuong

    2015-11-01

    Full Text Available Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  11. Structural stability of diffusion barriers in thermoelectric SbTe: From first-principles calculations to experimental results

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hsuan; Cheng, Chun-Hu; Chiou, Shan-Haw; Huang, Chiung-Hui; Liu, Chia-Mei; Lin, Yu-Li; Chao, Wen-Hsuan; Yang, Ping-Hsing; Chang, Chun-Yen; Cheng, Chin-Pao

    2014-01-01

    Highlights: • The diffusion behavior was originated from high-vapor-pressure Te atom. • Te out-diffusion is main driving force to cause inter-diffusion effect. • Mid-band Ta and TaN with favored ohmic-like contact showed small diffusion tail. • Strong Ta-N bonding and high total energy suppressed interfacial layer formation. -- Abstract: This study involved developing robust diffusion barrier for n-type antimony telluride (SbTe) thermoelectric devices. Compared to conventional Ni barrier, the mid-band metals of Ta and TaN with favored ohmic-like contact exhibited smaller diffusion tail because of structurally stable interface on SbTe, which have been supported by first-principles calculations and demonstrated by experimental results. Furthermore, the TaN barrier has strong ionic Ta–N bonding and a high total energy of −4.7 eV/atom that could effectively suppress the formation of SbTe-compounds interfacial layer

  12. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  13. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh

    2014-05-12

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  14. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  15. A 3D TCAD simulation of a thermoelectric module configured for thermoelectric power generation, cooling and heating

    Science.gov (United States)

    Gould, C. A.; Shammas, N. Y. A.; Grainger, S.; Taylor, I.; Simpson, K.

    2012-06-01

    This paper documents the 3D modeling and simulation of a three couple thermoelectric module using the Synopsys Technology Computer Aided Design (TCAD) semiconductor simulation software. Simulation results are presented for thermoelectric power generation, cooling and heating, and successfully demonstrate the basic thermoelectric principles. The 3D TCAD simulation model of a three couple thermoelectric module can be used in the future to evaluate different thermoelectric materials, device structures, and improve the efficiency and performance of thermoelectric modules.

  16. General performance characteristics and parametric optimum criteria of a nano-thermoelectric refrigerator with an external magnetic field

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guoxing; Xie Jian

    2012-01-01

    In the paper, we describe a single-level quantum dot with an external magnetic field that works as a nano-thermoelectric refrigerator. Based on the model, the expressions for the cooling rate (R), the power input (P) and the coefficient of performance (ε) are derived. The effects of the magnetic field strength and the level energy on the performance of the refrigerator are revealed. The optimal performance characteristics of the refrigerator are analyzed by numerical calculation. Furthermore, the practical operating regions of the cycle are determined.

  17. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  18. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air

    International Nuclear Information System (INIS)

    Choi, Jinyong; Cho, Kyoungah; Kim, Sangsig

    2013-01-01

    We report on the thermoelectric characteristics of p-type silicon nanowires (NWs) on plastics in the relatively low temperature regime below 47 ° C, and for temperature differences of less than 10 K in ambient air. Thermal profile images are utilized to directly determine the temperature difference in the NWs generated by Joule heating in air. The Seebeck coefficient of the NWs increases from 294 to 414 μV K −1 as the NW length varies from 40 to 280 μm. For a temperature difference of 7 K, the maximal Seebeck voltage can be estimated to be 2.7 mV for NWs with a length of 280 μm. In contrast, the output power is maximized for NWs length of 240 μm. The maximized output power obtained experimentally in this study is 2.1 pW at a temperature difference of 6 K. The thermoelectric characteristics are analyzed and discussed. (paper)

  19. First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

    DEFF Research Database (Denmark)

    Nikolic, Branislav K.; Saha, Kamal K.; Markussen, Troels

    2012-01-01

    to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy......We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached...

  20. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    Science.gov (United States)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  1. High-temperature Thermoelectric and Microstructural Characteristics of Ga Substituted on the Co-site in Cobalt-based Oxides

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Yanagiya, S.; Sonne, Monica

    2011-01-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co...... results in a simultaneous increase in the Seebeck coefficient (S) and the electrical conductivity (σ), and the influence is more significant in the high temperature region. The power factor (S 2 σ) is thereby remarkably improved by Ga substitution, particularly at high temperatures. Texture factor......0.05O9 shows the best ZT value of 0.45 at 1200 K, which is about 87.5% higher than the nondoped one, a considerable improvement....

  2. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    Science.gov (United States)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for

  3. LaBiTe3: An unusual thermoelectric material

    KAUST Repository

    Singh, Nirpendra

    2014-06-18

    Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.

  4. LaBiTe3: An unusual thermoelectric material

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.

  5. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  6. Thermoelectrical-electrothermal feedback (te-et f) enhanced performance characteristics of a high temperature superconductor far-infrared bolometer

    International Nuclear Information System (INIS)

    Kaila, M.M.; Russell, G.J.

    2000-01-01

    Full text: It is more than a decade since the discovery of new a High Temperature Superconducting (HTSC) materials. Their adaptation to large scale applications e.g. high magnetic fields, friction-less motors, levitation trains etc., is still long way to go. Small scale applications e.g., far-infrared sensors, has certainly been established as a highly suitable area for immediate economically viable commercial exploitation. The semiconductor counterparts, NT(Neutron Transmutation doped)Ge, CD(Compensation Doped)Si sensors are not only expensive and difficult to manufacture but also require liquid helium refrigeration at mK temperatures to operate. Although the work around the world has centered on photo-electrical bolometers, in our approach we have adopted a much simpler, temperature stable and a better performing photo-thermoelectrical mode of operation. It is well known that the semi-metal BiSb has the highest electronic thermoelectric figure of merit at liquid nitrogen temperatures. One can obtain a value around 1x10 -2 / K by application of a magnetic field to the BiSb leg of a composite. BiSb-HTSC bolometer. We can use this high figure of merit to our advantage in two different modes of operation of the detector. One is the static mode where the thermoelectric power generated across the semi-metal leg (connected in parallel with the HTSC leg) of the bolometer drives the external electronic circuitry. This circuitry can be remotely (no direct electrical contact) coupled to the bolometer e.g. through the primary coil of a SQUID current amplifier, which can be connected in series with the bolometer inside the cryostat, for better noise performance, or outside, for convenience. Second is the heterodyne operation. The external bias is applied in a constant voltage bias mode. The direction of the bias is so chosen that the transient Peltier power generated, from the incident radiation, in the circuit extracts additional heat at the sensitive area of the bolometer

  7. Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi,Pb)2Ba2O4+/-ω]0.5CoO2

    Science.gov (United States)

    Sakai, K.; Karppinen, M.; Chen, J. M.; Liu, R. S.; Sugihara, S.; Yamauchi, H.

    2006-06-01

    We report strongly enhanced thermoelectric characteristics for a misfit-layered oxide, [Bi2Ba2O4±ω]0.5CoO2, in a wide temperature range, as achieved through substituting up to 20% of Bi by Pb. The Pb substitution kept the thermal conductivity (κ) unchanged but decreased the electrical resistivity (ρ) and increased the Seebeck coefficient (S) simultaneously, such that a three-fold enhancement in the thermoelectric figure of merit, Z (≡S2/ρκ), was realized. At the same time x-ray absorption near-edge structure data indicated that the valence and spin states of Co are not affected by the Pb-for-Bi substitution.

  8. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  9. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    Science.gov (United States)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  10. Germination rate is the significant characteristic determining coconut palm diversity

    Science.gov (United States)

    Harries, Hugh C.

    2012-01-01

    Rationale This review comes at a time when in vitro embryo culture techniques are being adopted for the safe exchange and cryo-conservation of coconut germplasm. In due course, laboratory procedures may replace the options that exist among standard commercial nursery germination techniques. These, in their turn, have supplanted traditional methods that are now forgotten or misunderstood. Knowledge of all germination options should help to ensure the safe regeneration of conserved material. Scope This review outlines the many options for commercial propagation, recognizes the full significance of one particular traditional method and suggests that the diversity of modern cultivated coconut varieties has arisen because natural selection and domestic selection were associated with different rates of germination and other morphologically recognizable phenotypic characteristics. The review takes into account both the recalcitrant and the viviparous nature of the coconut. The ripe fruits that fall but do not germinate immediately and lose viability if dried for storage are contrasted with the bunches of fruit retained in the crown of the palm that may, in certain circumstances, germinate to produce seedlings high above ground level. Significance Slow-germinating and quick-germinating coconuts have different patterns of distribution. The former predominate on tropical islands and coastlines that could be reached by floating when natural dispersal originally spread coconuts widely—but only where tides and currents were favourable—and then only to sea-level locations. Human settlers disseminated the domestic types even more widely—to otherwise inaccessible coastal sites not reached by floating—and particularly to inland and upland locations on large islands and continental land masses. This review suggests four regions where diversity has been determined by germination rates. Although recent DNA studies support these distinctions, further analyses of genetic markers

  11. Digital Learning Characteristics and Principles of Information Resources Knowledge Structuring

    Science.gov (United States)

    Belichenko, Margarita; Davidovitch, Nitza; Kravchenko, Yuri

    2017-01-01

    Analysis of principles knowledge representation in information systems led to the necessity of improving the structuring knowledge. It is caused by the development of software component and new possibilities of information technologies. The article combines methodological aspects of structuring knowledge and effective usage of information…

  12. Learning Characteristics of Small Business Managers: Principles for Training

    Science.gov (United States)

    Jeffrey, Lynn M.; Hide, Sophie; Legg, Stephen

    2010-01-01

    Purpose: This paper aims to report on the second half of a two-part study that identified relevant content for safety audit training in small businesses. The specific aim of the paper is to determine the preferred learning styles and approaches of managers in these businesses in order to identify some principles which could be used to tailor…

  13. Germination rate is the significant characteristic determining coconut palm diversity.

    Science.gov (United States)

    Harries, Hugh C

    2012-01-01

    This review comes at a time when in vitro embryo culture techniques are being adopted for the safe exchange and cryo-conservation of coconut germplasm. In due course, laboratory procedures may replace the options that exist among standard commercial nursery germination techniques. These, in their turn, have supplanted traditional methods that are now forgotten or misunderstood. Knowledge of all germination options should help to ensure the safe regeneration of conserved material. This review outlines the many options for commercial propagation, recognizes the full significance of one particular traditional method and suggests that the diversity of modern cultivated coconut varieties has arisen because natural selection and domestic selection were associated with different rates of germination and other morphologically recognizable phenotypic characteristics. The review takes into account both the recalcitrant and the viviparous nature of the coconut. The ripe fruits that fall but do not germinate immediately and lose viability if dried for storage are contrasted with the bunches of fruit retained in the crown of the palm that may, in certain circumstances, germinate to produce seedlings high above ground level. Slow-germinating and quick-germinating coconuts have different patterns of distribution. The former predominate on tropical islands and coastlines that could be reached by floating when natural dispersal originally spread coconuts widely-but only where tides and currents were favourable-and then only to sea-level locations. Human settlers disseminated the domestic types even more widely-to otherwise inaccessible coastal sites not reached by floating-and particularly to inland and upland locations on large islands and continental land masses. This review suggests four regions where diversity has been determined by germination rates. Although recent DNA studies support these distinctions, further analyses of genetic markers related to fruit abscission and

  14. Thermoelectric and spincaloric properties of epitaxial LaNiO{sub 3}/SrTiO{sub 3} superlattices from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Benjamin [FRM II, Technische Universitaet Muenchen, Garching (Germany); Fakultaet fuer Physik, Universitaet Duisburg-Essen, Duisburg (Germany); Blanca-Romero, Ariadna [Imperial College, London (United Kingdom); Pentcheva, Rossitza [Fakultaet fuer Physik, Universitaet Duisburg-Essen, Duisburg (Germany)

    2016-07-01

    Modern layer-by-layer fabrication techniques make it possible to grow epitaxial oxide superlattices with atomic precision. By combining accurate DFT+U calculations to determine the atomic and electronic structure and Boltzmann transport theory we show how a targeted design of the interface composition can be used to optimize the thermoelectric and/or spincaloric properties of LaNiO{sub 3}/SrTiO{sub 3}(001) superlattices. A TiO{sub 2}/LaO interface induces n-type doping, and a (potentially highly spin-polarized) charge current arises solely in-plane in the NiO{sub 2} layers. The out-of-plane resistance is high, since the SrTiO{sub 3} layers act as tunneling barriers. In contrast, a NiO{sub 2}/SrO interface leads to p-type doping. In this case, also the valence band of SrTiO{sub 3} contributes to the transmission, thereby reducing the out-of-plane resistance significantly. Besides this doping effect we find that the interface composition influences the electronic band structure, which leads to a nontrivial behavior of the Seebeck coefficient. Funding by the DFG within TRR 80 (G3 and G8) is acknowledged.

  15. DETERMINATION OF QMS PRINCIPLE COEFFICIENTS OF SIGNIFICANCE IN ACHIEVING BUSINESS EXCELLENCE

    Directory of Open Access Journals (Sweden)

    Aleksandar Vujovic

    2008-03-01

    Full Text Available This paper has been developed as a tendency of researchers in the Center for quality-Faculty of mechanical engineering in Podgorica to establish a model for improvement of business processes performances based on quality management system through comparison with top organizational performances characterized by criteria i.e. particularities of the business excellence model. Correlation of principles of the quality management system with QMS principles has been established to that effect. Weight coefficients have been also determined for each principle individually. Thereby key principles were identified, namely priorities in terms of achieving business excellence i.e. areas (principles were given priorities, that is to say principles that play the biggest part in achieving business excellence. In that way, pre conditions were made to define preventive measures of a certain intensity depending on the weight coefficients, with a goal to improve performances of a certified and process-modulated quality management system in direction of achieving top organizational performances.

  16. A review of thermoelectric cooling: Materials, modeling and applications

    International Nuclear Information System (INIS)

    Zhao, Dongliang; Tan, Gang

    2014-01-01

    This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized

  17. Determinants of the most significant characteristics of reproductive health

    Directory of Open Access Journals (Sweden)

    Miljković Snežana

    2010-01-01

    Full Text Available Introduction. Reproductive health of women is determined by females’ demographic and socio-economic characteristics, their behavior, and the complex of environmental factors. Objective. The paper examines the predictive impact of personal and environmental characteristics, health and healthcare characteristics regarding the most important aspects of reproductive health. Methods From a sample of 2,718 women, aged 20-49 years, we collected information on various characteristics using a structured questionnaire. Based on factorial analysis (principal components method, Kaisser Varimax criterion we selected representative variables (factors, describing personal (demographic and socio-economic characteristics of women, their environment (family, household, community, health (attitudes towards health, life-style, health status, healthcare (independent and the characteristics of reproductive health (dependent variables. The predictors were analyzed by multiple regression and correlation. Results. Sexual behavior was determined by socio-economic status, personal tidiness, rest, presence of risk factor(s, health evaluation and attitude toward personal responsibility, trust in physicians etc. The predictors of contraception involved satisfaction with one’s own health, serious health problems, health evaluation. The presence and number of abortions were determined by personal psychological maturity, rest, risk factors, life-style, health evaluation and its manifestations, and the continuity and timely healthcare. The predictors of adequate protection of reproductive health involved the cultural level of the community, financial standing of the household, satisfaction with one’s own life, tidiness and rest, presence of risk factors, health evaluation, attitude towards personal responsibility, and trust in physicians. HIV control was determined by satisfaction with one’s own life, physical activity of women, presence of serious health problems, and

  18. Thermoelectric properties control due to doping level and sintering conditions for FGM thermoelectric element

    CERN Document Server

    Kajikawa, T; Shiraishi, K; Ohmori, M; Hirai, T

    1999-01-01

    Thermoelectric performance is determined with three factors, namely, Seebeck coefficient, electrical resistivity and thermal conductivity. For metal and single crystalline semiconductor, those factors have close interrelation each $9 other. However, as the sintered thermoelectric element has various levels of superstructure from macro scale and micro scale in terms of the thermoelectric mechanism, the relationship among them is more complex than that for the $9 melt- grown element, so it is suggested that the control of the temperature dependence of thermoelectric properties is possible to enhance the thermoelectric performance for wide temperature range due to FGM approach. The research $9 objective is to investigate the characteristics of the thermoelectric properties for various doping levels and hot-pressed conditions to make the thermoelectric elements for which the temperature dependence of the performance is $9 controlled due to FGM approach varying the doping levels and sintering conditions. By usage ...

  19. Fine Art of Thermoelectricity.

    Science.gov (United States)

    Brus, Viktor V; Gluba, Marc; Rappich, Jörg; Lang, Felix; Maryanchuk, Pavlo D; Nickel, Norbert H

    2018-02-07

    A detailed study of hitherto unknown electrical and thermoelectric properties of graphite pencil traces on paper was carried out by measuring the Hall and Seebeck effects. We show that the combination of pencil-drawn graphite and brush-painted poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films on regular office paper results in extremely simple, low-cost, and environmentally friendly thermoelectric power generators with promising output characteristics at low-temperature gradients. The working characteristics can be improved even further by incorporating n-type InSe flakes. The combination of pencil-drawn n-InSe:graphite nanocomposites and brush-painted PEDOT:PSS increases the power output by 1 order of magnitude.

  20. Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions.

    Science.gov (United States)

    Saha, Ranajit; Pan, Sudip; Chattaraj, Pratim K

    2016-11-05

    The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different approximations like the geometric mean of hardness and combined hardness are considered in case there are multiple reactants and/or products. It is observed that, based on the geometric mean of hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product side. A 50% null hypothesis is rejected at a 1% level of significance.

  1. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    Science.gov (United States)

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  2. DETERMINATION OF QMS PRINCIPLE COEFFICIENTS OF SIGNIFICANCE IN ACHIEVING BUSINESS EXCELLENCE

    OpenAIRE

    Aleksandar Vujovic; Jelena Jovanovic; Zdravko Krivokapic; Milan Perovic; Mirko Sokovic

    2008-01-01

    This paper has been developed as a tendency of researchers in the Center for quality-Faculty of mechanical engineering in Podgorica to establish a model for improvement of business processes performances based on quality management system through comparison with top organizational performances characterized by criteria i.e. particularities of the business excellence model. Correlation of principles of the quality management system with QMS principles has been established to that effect. Weigh...

  3. Significant characteristics of the new maize hybrid Rubin-7

    Directory of Open Access Journals (Sweden)

    Jeličić Zora

    2003-01-01

    Full Text Available The Rubin-7 maize hybrid belongs to the FAO 700 maturity group. It is characterized by high yield potential for kernels, which was proven during investigations by the Committee for Species. During the three year monitoring period, from 1999 to 2001, the average yield of kernel was 9.412 t/ha which is 5% above the ZP 704 standard, and was highly statistically significant. Resistance to disease was high for Ustilago maydis 0.49, Fusarium spp. 0.13, and Exerohilum turcicum 1.25. Tolerance against Ostrinia nubilalis is 3-33. All of the above parameters and the agreeable phenotype of this hybrid indicate the value of Rubin-7. .

  4. The significance of a new correspondence principle for electromagnetic interaction in strong optical field ionisation

    International Nuclear Information System (INIS)

    Boreham, B. W.; Hora, H.

    1997-01-01

    We have recently developed a correspondence principle for electromagnetic interaction. When applied to laser interactions with electrons this correspondence principle identifies a critical laser intensity I*. This critical intensity is a transition intensity separating classical mechanical and quantum mechanical interaction regimes. In this paper we discuss the further application of I* to the interaction of bound electrons in atoms. By comparing I* with the ionisation threshold intensities as calculated from a cycle-averaged simple-atom model we conclude that I* can be usefully interpreted as a lower bound to the classical regime in studies of ionisation of gas atoms by intense laser beams

  5. Insight into the optoelectronic and thermoelectric properties of Ca-based Zintl phase CaCd2X2 (X = P, As) from first principles calculation

    Science.gov (United States)

    Belfarh, T.; Batouche, M.; Seddik, T.; Uğur, G.; Omran, S. Bin; Bouhemadou, A.; Sandeep; Wang, Xiaotian; Sun, Xiao-Wei; Khenata, R.

    2018-06-01

    We have studied the structural, optical, electronic and thermoelectric properties of the CaCd2X2 (X = P, As) compounds by using the full-potential augmented plane wave plus local orbitals method (FP-APW + lo). The exchange-correlation potential was treated using both the gradient generalized approximation (WC-GGA) and local density approximation (LDA). The estimated structural parameters, including the lattice parameters and internal coordinates agree well with the available experimental data. Our computed band structure shows that both studied compounds are semiconductors, with direct band gaps (Γ-Γ) of approximately 1.78 eV and 1.2 eV for CaCd2P2 and CaCd2As2, respectively, using GGA-TB-mBJ approach. The calculated optical spectra reveal a strong response of these materials in the energy range between the visible light and extreme UV regions, making them a good candidate for optoelectronic devices. Thermoelectric parameters, such as thermal conductivity, electrical conductivity, Seebeck coefficient, power factor and figure of merit were calculated. We note that both the CaCd2P2 and CaCd2As2 compounds show promising thermoelectric properties.

  6. "No Significant Distance" between Face-to-Face and Online Instruction: Evidence from Principles of Economics

    Science.gov (United States)

    Coates, Dennis; Humphreys, Brad, R.; Kane, John; Vachris, Michelle, A.

    2004-01-01

    This paper describes an experiment focused on measuring and explaining differences in students learning between online and face-to-face modes of instruction in college level principles of economics courses. Our results indicate that students in face-to-face sections scored better on the Test of Understanding College Economics (TUCE) than students…

  7. THE SIGNIFICANCE OF THE COMPLEMENTARITY PRINCIPLE WITHIN THE ROME STATUTE IN INTERNATIONAL CRIMINAL LAW

    Directory of Open Access Journals (Sweden)

    Heribertus Jaka Triyana

    2014-03-01

    Full Text Available In practice, the application of the complementarity principle in the Rome Statute remains unclear, particularly with respect to the prioritization of national penal law jurisdiction. This paper willdiscuss the relevance of the complementarity principle to the development of a national criminal justice system and to the investigation and prosecution of the most serious crimes provided for in the Statute. It was concluded that the complementarity principle should be used to unravel the twisted development of the national criminal justice system in accordance with the provisions of international law. We need to establish our national criminal justice system as the main and foremost forum (hence, willing and able in the process of investigating and prosecuting the most serious crimes on earth. Dalam praktik, aplikasi Asas Pelengkap (the complementarity principle dalam Statuta Roma masihbelum jelas, khususnya terkait dengan pengutamaan (prioritization yurisdiksi hukum pidana nasional. Oleh karena itu, tulisan ini akan membahas relevansi asas tersebut terhadap pembangunan sistem hukum pidana nasional dan terhadap penyelidikan dan penuntutan kejahatan paling serius yang diatur dalam Statuta. Disimpulkan bahwa Asas Pelengkap harus Mahkamah digunakan sebagai pengurai benang kusutpembangunan sistem hukum pidana nasional Indonesia sesuai dengan ketentuan hukum internasional supaya menjadi forum utama (mau dan mampu dalam proses penyelidikan dan penuntutan kejahatan paling serius di muka bumi.

  8. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  9. Thermoelectric generators: A review of applications

    International Nuclear Information System (INIS)

    Champier, Daniel

    2017-01-01

    Highlights: • This paper reviews the state of the art of thermoelectric generators. • The latest thermoelectric modules are introduced. • Waste heat recovery in transport and industry with thermoelectric generators. • Domestic and industrial applications of thermoelectric generators. • Thermoelectric generators in space, micro-generation and solar conversion. - Abstract: In past centuries, men have mainly looked to increase their production of energy in order to develop their industry, means of transport and quality of life. Since the recent energy crisis, researchers and industrials have looked mainly to manage energy in a better way, especially by increasing energy system efficiency. This context explains the growing interest for thermoelectric generators. Today, thermoelectric generators allow lost thermal energy to be recovered, energy to be produced in extreme environments, electric power to be generated in remote areas and microsensors to be powered. Direct solar thermal energy can also be used to produce electricity. This review begins with the basic principles of thermoelectricity and a presentation of existing and future materials. Design and optimization of generators are addressed. Finally in this paper, we developed an exhaustive presentation of thermoelectric generation applications covering electricity generation in extreme environments, waste heat recovery in transport and industry, domestic production in developing and developed countries, micro-generation for sensors and microelectronics and solar thermoelectric generators. Many recent applications are presented, as well as the future applications which are currently being studied in research laboratories or in industry. The main purpose of this paper is to clearly demonstrate that, almost anywhere in industry or in domestic uses, it is worth checking whether a TEG can be added whenever heat is moving from a hot source to a cold source.

  10. Thermoelectric Materials

    Science.gov (United States)

    Gao, Peng; Berkun, Isil; Schmidt, Robert D.; Luzenski, Matthew F.; Lu, Xu; Bordon Sarac, Patricia; Case, Eldon D.; Hogan, Timothy P.

    2014-06-01

    Mg2(Si,Sn) compounds are promising candidate low-cost, lightweight, nontoxic thermoelectric materials made from abundant elements and are suited for power generation applications in the intermediate temperature range of 600 K to 800 K. Knowledge on the transport and mechanical properties of Mg2(Si,Sn) compounds is essential to the design of Mg2(Si,Sn)-based thermoelectric devices. In this work, such materials were synthesized using the molten-salt sealing method and were powder processed, followed by pulsed electric sintering densification. A set of Mg2.08Si0.4- x Sn0.6Sb x (0 ≤ x ≤ 0.072) compounds were investigated, and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si0.364Sn0.6Sb0.036. The high ZT is attributed to a high electrical conductivity in these samples, possibly caused by a magnesium deficiency in the final product. The mechanical response of the material to stresses is a function of the elastic moduli. The temperature-dependent Young's modulus, shear modulus, bulk modulus, Poisson's ratio, acoustic wave speeds, and acoustic Debye temperature of the undoped Mg2(Si,Sn) compounds were measured using resonant ultrasound spectroscopy from 295 K to 603 K. In addition, the hardness and fracture toughness were measured at room temperature.

  11. Physical Principles of the Method for Determination of Geometrical Characteristics and Particle Recognition in Digital Holography

    Science.gov (United States)

    Dyomin, V. V.; Polovtsev, I. G.; Davydova, A. Yu.

    2018-03-01

    The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given.

  12. Thermoelectric generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1978-01-01

    The main components of a thermoelectric generator are housed in an evacuated cylindrical vessel. In the middle of it there is the radioactive heat source, e.g. 90 Sr or 238 Pu, enclosed by a gamma radiation shield. This one is surrounded by a heat-insulating screen from getter material or indicidual sheets of titanium. In the bottom of the screen there are arranged several thermocouples on a circle. The thermocouples themselves are contained within casings sealed gas-tight and filled with an inert gas, e.g. argon. By separating the internal space of the generator vessel from the thermocouple casings, made of e.g. n- respectively p-doped lead telluride cylinders, for both the optimal gas state may be obtained. (DG) [de

  13. Principle and Basic Characteristics of a Hybrid Variable-Magnetic-Force Motor

    Science.gov (United States)

    Sakai, Kazuto; Kuramochi, Satoru

    Reduction in the power consumed by motors is important for energy saving in the case of electrical appliances and electric vehicles (EVs). The motors used for operating these devices operate at variable speeds. Further, the motors operate with a small load in the stationary mode and a large load in the starting mode. A permanent magnet motor can be operated at the rated power with a high efficiency. However, the efficiency is low at a small load or at a high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that decreases the voltage at a high speed leads to significant copper loss and core loss. Therefore, we have developed a new technique for controlling the magnetic force of a permanent magnet on the basis of the load or speed of the motor. In this paper, we propose a novel motor that can vary the magnetic flux of a permanent magnet and clarify the principle and basic characteristics of the motor. The new motor has a permanent magnet that is magnetized by the magnetizing coil of the stator. The analysis results show that the magnetic flux linkage of the motor can be changed from 37% to 100% that a high torque can be produced.

  14. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  15. Thermoelectric neutron dosimetry: a short introduction

    International Nuclear Information System (INIS)

    Mathieu, F.; Meier, R.; Debrue, J.; Leonard, F.; Schubert, W.

    1977-01-01

    The paper gives a short introduction and state-of-the-art account of an unconventional, non destructive neutron dosimetry method based on monitoring the neutron fluence dependent changes of the thermoelectric properties of base metals and alloys. The basic principles are exposed and illustrated with experimental data obtained during an exploratory irradiation in the BR2 reactor

  16. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  17. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  18. Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites

    Directory of Open Access Journals (Sweden)

    Devin R. Merrill

    2015-04-01

    Full Text Available A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe1+δ]m(TiSe2n family (m, n ≤ 3 are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.

  19. Thermoelectrics and its energy harvesting

    National Research Council Canada - National Science Library

    Rowe, David Michael

    2012-01-01

    .... It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material...

  20. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2010-01-01

    Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

  1. On Corestriction Principle in non-abelian Galois cohomology over local and global fields. II: Characteristic p > 0

    International Nuclear Information System (INIS)

    Nguyen Quoc Thang

    2004-08-01

    We show the validity of te Corestriction Principle for non-abelian cohomology of connected reductive groups over local ad global fields of characteristic p > 0 , by extending some results by Kneser and Douai. (author)

  2. Thermoelectric figure of merit of polymeric systems for low-power generators

    Science.gov (United States)

    Cigarini, Luigi; Ruini, Alice; Catellani, Alessandra; Calzolari, Arrigo

    2017-10-01

    The request of thermoelectric materials for low-power and flexible applications fosters the investigation of the intrinsic electron and thermal transport of conducting polymeric chains, which are building blocks of the complex variety of organic composites proposed in experimental samples. Using calculations from first principles and the Landauer approach for both electron and phonon carriers, we study the thermoelectric figure of merit zT of three representative and largely used polymer chains, namely poly(3,4-ethylenedioxythiophene), polyaniline and polyfluorene. Our results provide an upper-limit estimate of zT, due to the intrinsic electronic and vibrational properties of the selected compounds, and pave the way to a microscopic understanding of the mechanisms that affect their electronic and transport characteristics in terms of structural distortions and chemical doping.

  3. Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Zhang, Dong [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-05-31

    First-principles calculation was performed to investigate the effect of metal doping on the structural characteristics of amorphous carbon system, and the 3d transition metals (TM) were particularly selected as representative case. Results showed that the total energy in TM–C systems caused by distorting the bond angles was reduced distinctly for comparison with that in C–C system. Further electronic structure revealed that as the 3d electrons of doped TM increased, the bond characteristic of highest occupied molecular orbital changed from bonding (Sc, Ti) to nonbonding (V, Cr, Mn, Fe) and finally to antibonding (Co, Ni, Cu) between the TM and C atoms. Meanwhile, the TM–C bond presented a mixture of the covalent and ionic characters. The decrease of strength and directionality of TM–C bonds resulted in the total energy change upon bond angle distortion, which demonstrated that the bond characteristics played an important role in reducing residual stress of TM-doped amorphous carbon systems. - Highlights: • The bond characteristics as 3d electrons changed from bonding, nonbonding to antibonding. • The TM–C bond was a mixture of covalent and ionic characters. • Reduced strength and directionality of TM–C bond led to small distortion energy change. • The weak TM–C bond accounted for the reduced compressive stress caused by TM.

  4. Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields

    Science.gov (United States)

    Zhu, Hao; Xiao, Chong

    2018-06-01

    Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.

  5. Efficient technique for computational design of thermoelectric materials

    Science.gov (United States)

    Núñez-Valdez, Maribel; Allahyari, Zahed; Fan, Tao; Oganov, Artem R.

    2018-01-01

    Efficient thermoelectric materials are highly desirable, and the quest for finding them has intensified as they could be promising alternatives to fossil energy sources. Here we present a general first-principles approach to predict, in multicomponent systems, efficient thermoelectric compounds. The method combines a robust evolutionary algorithm, a Pareto multiobjective optimization, density functional theory and a Boltzmann semi-classical calculation of thermoelectric efficiency. To test the performance and reliability of our overall framework, we use the well-known system Bi2Te3-Sb2Te3.

  6. Laser assisted hybrid additive manufacturing of thermoelectric modules

    Science.gov (United States)

    Zhang, Tao; Tewolde, Mahder; Longtin, Jon P.; Hwang, David J.

    2017-02-01

    Thermoelectric generators (TEGs) are an attractive means to produce electricity, particular from waste heat applications. However, TEGs are almost exclusively manufactured as flat, rigid modules of limited size and shape, and therefore an appropriate mounting for intimate contact of TEGs modules onto arbitrary surfaces represents a significant challenge. In this study, we introduce laser assisted additive manufacturing method to produce multi-layered thermoelectric generator device directly on flat and non-flat surfaces for waste heat recovery. The laser assisted processing spans from laser scribing of thermal sprayed thin films, curing of dispensed thermoelectric inks and selective laser sintering to functionalize thermoelectric materials.

  7. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  8. An Online Premium? Characteristics and Performance of Online versus Face-to-Face Students in Principles of Microeconomics

    Science.gov (United States)

    Dendir, Seife

    2016-01-01

    The author uses data from two Principles of Microeconomics courses to examine differences in characteristics and performance of online versus face-to-face students. The analysis indicates that even in a traditional institution, the two delivery modes may be serving students with distinctly different backgrounds and characteristics. In terms of…

  9. Performance study of thermo-electric generator

    Science.gov (United States)

    Rohit, G.; Manaswini, D.; Kotebavi, Vinod; R, Nagaraja S.

    2017-07-01

    Devices like automobiles, stoves, ovens, boilers, kilns and heaters dissipate large amount of waste heat. Since most of this waste heat goes unused, the efficiency of these devices is drastically reduced. A lot of research is being conducted on the recovery of the waste heat, among which Thermoelectric Generators (TEG) is one of the popular method. TEG is a semiconductor device that produces electric potential difference when a thermal gradient develops on it. This paper deals with the study of performance of a TEG module for different hot surface temperatures. Performance characteristics used here are voltage, current and power developed by the TEG. One side of the TEG was kept on a hot plate where uniform heat flux was supplied to that. And the other side was cooled by supplying cold water. The results show that the output power increases significantly with increase in the temperature of the hot surface.

  10. First-principles thermodynamic calculations of diffusion characteristics of impurities in γ-iron

    International Nuclear Information System (INIS)

    Tsuru, T.; Kaji, Y.

    2013-01-01

    Because solute impurities have an effect on embrittlement through segregation under irradiation, solute stability and the influence of irradiation on the diffusion characteristics of impurities become prominent due to several acceleration effects of high irradiance circumstances in irradiated materials. In this study, the diffusion characteristics of several impurities in non-magnetic fcc iron are investigated using first-principles density functional theory (DFT) calculations. In accordance with classical diffusion and transition state theories, we nonempirically evaluated the contribution to properties of the binding energy between vacancy and each impurity and the migration enthalpy. The migration energy was calculated using the nudged elastic band method with DFT. The vacancy formation energy, including the entropic contributions to free energies in γ-iron, was evaluated by considering vibrational phonon frequencies based on frozen phonons employing the harmonic approximation for the lattice dynamics. Consequently, we confirmed that the binding energy between large-radius impurities and vacancies is larger than that with an equivalent size of the solvent element, and that the migration enthalpies of these impurities are quite small compared with self diffusion. This finding may indicate that the electronic binding states at the saddle point have a large influence on the migration of impurities

  11. The thermoelectric process

    Energy Technology Data Exchange (ETDEWEB)

    Vining, C B

    1997-07-01

    The efficiency of thermoelectric technology today is limited by the properties of available thermoelectric materials and a wide variety of new approaches to developing better materials have recently been suggested. The key goal is to find a material with a large ZT, the dimensionless thermoelectric figure of merit. However, if an analogy is drawn between thermoelectric technology and gas-cycle engines then selecting different materials for the thermoelements is analogous to selecting a different working gas for the mechanical engine. And an attempt to improve ZT is analogous to an attempt to improve certain thermodynamic properties of the working-gas. An alternative approach is to focus on the thermoelectric process itself (rather than on ZT), which is analogous to considering alternate cycles such as Stirling vs. Brayton vs. Rankine etc., rather than merely considering alternative gases. Focusing on the process is a radically different approach compared to previous studies focusing on ZT. Aspects of the thermoelectric process and alternative approaches to efficient thermoelectric conversion are discussed.

  12. Assessing the accuracy of mathematical models used in thermoelectric simulation: Thermal influence of insulated air zone and radiation heat

    International Nuclear Information System (INIS)

    Gao, Junling; Du, Qungui; Chen, Min; Li, Bo; Zhang, Dongwen

    2015-01-01

    An accurate mathematical model of thermoelectric modules (TEMs) provides the basis for the analysis and design of thermoelectric conversion system. TEM models from the literature are only valid for the heat transfer of N-type and P-type thermoelectric couples without considering air around the actual thermoelectric couples of TEMs. In fact, air space imposes significant influence on the model computational accuracy, especially for a TEM with large air space inside. In this study, heat transfer analyses of air between the TEM cold and hot plates were carried out in order to propose a new mathematical model that minimises simulation errors. This model was applied to analyse characteristic parameters of two typical TEMs, and the ratio of cross-sectional area of air space to thermocouples were 48.2% and 80.0%, respectively. The average relative errors in simulation decreased from 5.2% to 2.8% and from 12.8% to 3.7%, respectively. It is noted that our new model gives result more accurate than models from the literature provided that higher temperature difference occurs between hot side and cold side of TEM. Thus, the proposed model is of theoretical significance in guiding future design of TEMs for high-power or large-temperature-difference thermoelectric conversion systems. - Highlights: • Built a new accurate model for thermoelectric modules with inner air heat transfer. • Analysed the influence on heat transfer of the air within the TEM ∗ . • Reduced simulation errors for high-power thermoelectric conversion systems. • Two typical TEMs were measured with a good agreement with theoretical results. • ∗ TEM is the abbreviation of thermoelectric module

  13. On the Characteristics and the Development Significance of Hangzhou Lotus Culture

    Directory of Open Access Journals (Sweden)

    Shi Hongbin

    2015-01-01

    Full Text Available Lotus is the symbol of honesty, goodness, beauty and purity in the eyes of the Chinese people. The development of tourism in Hangzhou is inseparable from the lotus culture connotation. This paper analyzes the necessity to enhance the lotus culture in the city of Hangzhou, and discusses the Hangzhou Lotus Culture and its regional characteristics. The article indicates the further significance of the development of lotus culture tourism resources in Hangzhou.

  14. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    DEFF Research Database (Denmark)

    Rezania, Alireza; Rosendahl, L. A.

    2015-01-01

    . In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing...... equations for the flow and heat transfer are solved using computational fluid dynamics (CFD) in conjunction with the thermoelectric characteristics of the TEG over a wide range of flow inlet velocities. The results show that at small flow inlet velocity, the maximum net power output in TEG with plate......Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink...

  15. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects

    International Nuclear Information System (INIS)

    Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji; Takeuchi, Tsunehiro

    2011-01-01

    We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

  16. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    International Nuclear Information System (INIS)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh; Tahmasbi Rad, Armin; Tayebi, Lobat

    2014-01-01

    Nanocomposite thermoelectric compound of bismuth telluride (Bi 2 Te 3 ) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi 2 Te 3 were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  17. High thermoelectric performance of graphite nanofibers

    OpenAIRE

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2017-01-01

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high ...

  18. Principle and Basic Characteristics of Variable-Magnetic-Force Memory Motors

    Science.gov (United States)

    Sakai, Kazuto; Yuki, Kazuaki; Hashiba, Yutaka; Takahashi, Norio; Yasui, Kazuya; Kovudhikulrungsri, Lilit

    A reduction in the power consumed by motors is required for energy saving in the case of electrical appliances and electric vehicles (EV). The motors used for operating these apparatus operate at variable speeds. Further, the motors operate with small load in stationary mode and with large load in start-up mode. A permanent magnet motor can operate at the rated power with a high efficiency. However, the efficiency is lower at small load or high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that depresses voltage at high speed leads to significant copper loss. Therefore, we have developed a new technique for controlling the magnetic force of permanent magnet on the basis of the load or speed of the motor. In this paper, we propose the novel motor that can vary magnetic flux and we clarify the principle.

  19. Compatibility of Segments of Thermoelectric Generators

    Science.gov (United States)

    Snyder, G. Jeffrey; Ursell, Tristan

    2009-01-01

    A method of calculating (usually for the purpose of maximizing) the power-conversion efficiency of a segmented thermoelectric generator is based on equations derived from the fundamental equations of thermoelectricity. Because it is directly traceable to first principles, the method provides physical explanations in addition to predictions of phenomena involved in segmentation. In comparison with the finite-element method used heretofore to predict (without being able to explain) the behavior of a segmented thermoelectric generator, this method is much simpler to implement in practice: in particular, the efficiency of a segmented thermoelectric generator can be estimated by evaluating equations using only hand-held calculator with this method. In addition, the method provides for determination of cascading ratios. The concept of cascading is illustrated in the figure and the definition of the cascading ratio is defined in the figure caption. An important aspect of the method is its approach to the issue of compatibility among segments, in combination with introduction of the concept of compatibility within a segment. Prior approaches involved the use of only averaged material properties. Two materials in direct contact could be examined for compatibility with each other, but there was no general framework for analysis of compatibility. The present method establishes such a framework. The mathematical derivation of the method begins with the definition of reduced efficiency of a thermoelectric generator as the ratio between (1) its thermal-to-electric power-conversion efficiency and (2) its Carnot efficiency (the maximum efficiency theoretically attainable, given its hot- and cold-side temperatures). The derivation involves calculation of the reduced efficiency of a model thermoelectric generator for which the hot-side temperature is only infinitesimally greater than the cold-side temperature. The derivation includes consideration of the ratio (u) between the

  20. Thermoelectric transport in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T L; Broido, D A

    1997-07-01

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  1. Universal Majorana thermoelectric noise

    Science.gov (United States)

    Smirnov, Sergey

    2018-04-01

    Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling mechanisms to two contacts, one may achieve various situations where the electric current induced by an external bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even more exciting physics emerges when the system's electronic degrees freedom split to form Majorana fermions which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system's parameters, thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric signatures.

  2. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  3. Potency of Thermoelectric Generator for Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nandy Putra

    2010-10-01

    Full Text Available Thermoelectric Generator (TEG has been known as electricity generation for many years. If the temperature difference occurred between two difference semi conductor materials, the current will flow in the material and produced difference voltage. This principle is known as Seebeck effect that is the opposite of Peltier effect Thermoelectric Cooling (TEC. This research was conducted to test the potential of electric source from twelve peltier modules. Then, these thermoelectric generators were applied in hybrid car by using waste heat from the combustion engine. The experiment has been conducted with variations of peltier module arrangements (series and parallels and heater as heat source for the thermoelectric generator, with variations of heater voltage input (110V and 220V applied. The experimental result showed that twelve of peltier modules arranged in series and heater voltage of 220V generated power output of 8.11 Watts with average temperature difference of 42.82°C. This result shows that TEG has a bright prospect as alternative electric source.

  4. High thermoelectric performance of graphite nanofibers.

    Science.gov (United States)

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2018-02-22

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high thermoelectric performance. This study unveils that the platelet form of GNFs in which graphite layers are perpendicular to the fiber axis can exhibit outstanding thermoelectric properties with a figure of merit ZT reaching 3.55 in a 0.5 nm diameter fiber and 1.1 in a 1.1 nm diameter one. Interestingly, by introducing 14 C isotope doping, ZT can even be enhanced up to more than 5, and more than 8 if we include the effect of finite phonon mean free path, which demonstrates the amazing thermoelectric potential of GNFs.

  5. Thermoelectric effects in a rectangular Aharonov-Bohm geometry

    Science.gov (United States)

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2016-04-01

    The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.

  6. Clinical Significance and Characteristic Clinical Differences of Cytolytic Vaginosis in Recurrent Vulvovaginitis.

    Science.gov (United States)

    Yang, Shuhua; Zhang, Yuexiang; Liu, Ying; Wang, Jianhong; Chen, Shuqin; Li, Shuxia

    2017-01-01

    The study aimed to evaluate whether cytolytic vaginosis (CV) has important clinical implications for recurrent vulvovaginitis and to identify clinical differences between CV and vulvovaginal candidosis (VVC). Medical histories, physical examinations and laboratory findings were used to diagnose and assess the prevalence rates of various vulvovaginal infections among 536 women with recurrent vulvovaginitis. Chi-square and Fisher exact tests were used to compare age, menstrual cycle phase at episode onset, symptoms/signs of infection and discharge characteristics between CV and VVC with single infection. Among the 484 women with a single-infection recurrent vulvovaginitis, the prevalence of CV (n = 143; 26.7%) was second only to VVC (n = 196; 36.6%). CV symptoms occurred predominantly during the ovulatory and luteal phases. Meanwhile, VVC episodes were not concentrated premenstrually, but rather occurred throughout the menstrual cycle. Significant differences were found in the vaginal pH, discharge characteristics and frequency of inflammatory symptoms between the 2 groups. CV is clinically important, because it is a common cause of recurrent vulvovaginitis. To distinguish CV from VVC, gynecologists should consider the patient's medical history, physical and laboratory findings, vaginal pH and vaginal discharge characteristics. © 2016 S. Karger AG, Basel.

  7. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    Science.gov (United States)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  8. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  9. Impact of preoperative patient characteristics on posturethroplasty recurrence: The significance of stricture length and prior treatments

    Directory of Open Access Journals (Sweden)

    Jibril Oyekunle Bello

    2016-01-01

    Full Text Available Introduction: Urethral strictures are common in urologic practice of Sub-Saharan Africa including Nigeria. We determine the rate of stricture recurrence following urethroplasty for anterior urethral strictures and evaluate preoperative variables that predict of stricture recurrence in our practice. Subjects and Methods: Thirty-six men who had urethroplasty for proven anterior urethral stricture disease between February 2012 and January 2015 were retrospectively analyzed. Preoperative factors including age, socioeconomic factors, comorbidities, etiology of strictures, stricture location, stricture length, periurethral spongiofibrosis, and prior stricture treatments were assessed for independent predictors of stricture recurrence. Results: The median age was 49.5 years (range 21-90, median stricture length was 4 cm (range 1-18 cm and the overall recurrence rate was 27.8%. Postinfectious strictures, pan urethral strictures or multiple strictures involving the penile and bulbar urethra were more common. Most patients had penile circular fasciocutaneous flap urethroplasty. Following univariate analysis of potential preoperative predictors of stricture recurrence, stricture length, and prior treatments with dilations or urethrotomies were found to be significantly associated with stricture recurrence. On multivariate analysis, they both remained statistically significant. Patients who had prior treatments had greater odds of having a recurrent stricture (odds ratio 18, 95% confidence interval [CI] 1.4-224.3. Stricture length was dichotomized based on receiver operating characteristic (ROC analysis, and strictures of length ≥5 cm had significantly greater recurrence (area under ROC curve of 0.825, 95% CI 0.690-0.960, P = 0.032. Conclusion: Patients who had prior dilatations or urethrotomies and those with long strictures particularly strictures ≥5 cm have significantly greater odds of developing a recurrence following urethroplasty in Nigerian

  10. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2016-01-01

    This book is a comprehensive introduction to all aspects of thermoelectric energy conversion. It covers both theory and practice. The book is timely as it refers to the many improvements that have come about in the last few years through the use of nanostructures. The concept of semiconductor thermoelements led to major advances during the second half of the twentieth century, making Peltier refrigeration a widely used technique. The latest materials herald thermoelectric generation as the preferred technique for exploiting low-grade heat. The book shows how progress has been made by increasing the thermal resistivity of the lattice until it is almost as large as it is for glass. It points the way towards the attainment of similar improvements in the electronic parameters. It does not neglect practical considerations, such as the desirability of making thermocouples from inexpensive and environmentally acceptable materials. The second edition was extended to also include recent advances in thermoelectric ener...

  11. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  12. The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer

    International Nuclear Information System (INIS)

    Rhee, Jiyoung; Kim, Tae-You; Han, Sae-Won; Oh, Do-Youn; Kim, Jee Hyun; Im, Seock-Ah; Han, Wonshik; Ae Park, In; Noh, Dong-Young; Bang, Yung-Jue

    2008-01-01

    Triple-negative (TN) breast cancer, which is defined as being negative for the estrogen receptor (ER), the progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER-2), represents a subset of breast cancer with different biologic behaviour. We investigated the clinicopathologic characteristics and prognostic indicators of lymph node-negative TN breast cancer. Medical records were reviewed from patients with node-negative breast cancer who underwent curative surgery at Seoul National University Hospital between Jan. 2000 and Jun. 2003. Clinicopathologic variables and clinical outcomes were evaluated. Among 683 patients included, 136 had TN breast cancer and 529 had non-TN breast cancer. TN breast cancer correlated with younger age (< 35 y, p = 0.003), and higher histologic and nuclear grade (p < 0.001). It also correlated with a molecular profile associated with biological aggressiveness: negative for bcl-2 expression (p < 0.001), positive for the epidermal growth factor receptor (p = 0.003), and a high level of p53 (p < 0.001) and Ki67 expression (p < 0.00). The relapse rates during the follow-up period (median, 56.8 months) were 14.7% for TN breast cancer and 6.6% for non-TN breast cancer (p = 0.004). Relapse free survival (RFS) was significantly shorter among patients with TN breast cancer compared with those with non-TN breast cancer (4-year RFS rate 85.5% vs. 94.2%, respectively; p = 0.001). On multivariate analysis, young age, close resection margin, and triple-negativity were independent predictors of shorter RFS. TN breast cancer had higher relapse rate and more aggressive clinicopathologic characteristics than non-TN in node-negative breast cancer. Thus, TN breast cancer should be integrated into the risk factor analysis for node-negative breast cancer

  13. Significance and principles of the calculation of the effective dose equivalent for radiological protection of personnel and patients

    International Nuclear Information System (INIS)

    Drexler, G.; Williams, G.

    1985-01-01

    The application of the effective dose equivalent, Hsub(E), concept for radiological protection assessments of occupationally exposed persons is justifiable by the practicability thus achieved with regard to the limiting principles. Nevertheless, it would be proper logic to further use as the basic limiting quantity the real physical dose equivalent of homogeneous whole-body exposure, and for inhomogeneous whole-body irradiation the Hsub(E) value, calculated by means of the concept of the effective dose equivalent. For then the required concepts, models and calculations would not be connected with a basic radiation protection quantity. Application of the effective dose equivalent for radiation protection assessments for patients is misleading and is not practical with regard to assessing an individual or collective radiation risk of patients. The quantity of expected harm would be better suited to this purpose. There is no need to express the radiation risk by a dose quantity, which means careless handling of good information. (orig./WU) [de

  14. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  15. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  16. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  17. Designing of Bulk Nano-Structures with Enhanced Thermoelectric Properties

    National Research Council Canada - National Science Library

    Kanatzidis, Mercouri; Hogan, Timothy; Murray, Chris

    2007-01-01

    .... K2Bi8Se13 is a member of this series and was found to be a promising thermoelectric. The charge transport properties were studied under pressure, where a significant increase in the power factor was observed...

  18. Designing of Bulk Nano-Structures With Enhanced Thermoelectric Properties

    National Research Council Canada - National Science Library

    Kanatzidis, Mercouri G

    2007-01-01

    .... K2Bi8Se13 is a member of this series and was found to be a promising thermoelectric. The charge transport properties were studied under pressure, where a significant increase in the power factor was observed...

  19. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  20. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  1. Magnetic tunnel junction thermocouple for thermoelectric power harvesting

    Science.gov (United States)

    Böhnert, T.; Paz, E.; Ferreira, R.; Freitas, P. P.

    2018-05-01

    The thermoelectric power generated in magnetic tunnel junctions (MTJs) is determined as a function of the tunnel barrier thickness for a matched electric circuit. This study suggests that lower resistance area product and higher tunnel magnetoresistance will maximize the thermoelectric power output of the MTJ structures. Further, the thermoelectric behavior of a series of two MTJs, a MTJ thermocouple, is investigated as a function of its magnetic configurations. In an alternating magnetic configurations the thermovoltages cancel each other, while the magnetic contribution remains. A large array of MTJ thermocouples could amplify the magnetic thermovoltage signal significantly.

  2. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo

    2018-01-01

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high

  3. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance

    International Nuclear Information System (INIS)

    Elghool, Ali; Basrawi, Firdaus; Ibrahim, Thamir Khalil; Habib, Khairul; Ibrahim, Hassan; Idris, Daing Mohamad Nafiz Daing

    2017-01-01

    Highlights: • Coupling a thermoelectric power generation (TEG) to a heat sink is presented. • Review the classifications and parameters affecting performance of the TEG with heat sink. • Discuss different mathematical models of the heat sinks. • The passive heat sinks are most appropriate because of the inherent efficiency of TEG. • Medium temperature range below 300 °C is found to be most suitable for HPHS. - Abstract: In recent years, there have been growing interests in key areas related to global warming resulting from environmental emissions, and the diminishing sources of fossil fuel. The increased interest has led to significant research efforts towards finding novel technologies in clean energy production. Consequently, the merits of a thermo-electric generator (TEG) have promised a revival of alternative means of producing green energy. It is, however, impractical to account for the cost of thermal energy input to the TEG which is in the form of final waste heat. This is because the technology presents critical limitations in determining its cost efficiency nor its economic disadvantages. This paper reviews the principles of thermo-electric power production, as well the materials use, performance achieved, and application areas. The paper also takes a particular deliberation on TEG heat sinks geometries and categories. The review emphasizes more on the TEG performance while considering a number of heat sink parameters related to its performance.

  4. Performance characteristics of SCC radioimmunoassay and clinical significance serum SCC Ag assay in patients with malignancy

    International Nuclear Information System (INIS)

    Kim, Dong Youn

    1986-01-01

    To evaluate the performance characteristics of SCC RIV and the clinical significance of serum SCC Ag assay in patients with malignancy, serum SCC Ag levels were measured by SCC RIV kit in 40 normal controls and 35 percents with various untreated malignancy, who visited Chonju Presbyterian Medical Center. The results were as follows; 1. The SCC RIA was simple to perform and can be completed in two workday. And the standard curve and reproducibility were both good. 2. The mean serum SCC Ag level in normal controls was 1.64 ± 0.93 ng/mL and normal upper limit of serum SCC Ag was defined as 2.6 ng/mL. 3 out of 40 (7.5%) normal controls showed elevated SCC Ag levels above the normal upper limit. 3. In 35 patients with various untreated malignancy, 18 patients (51.4%) showed elevated serum SCC Ag levels, 59.1% of 22 patients with cervical cancer, 80% of 5 patients with lung cancer, 33% of 3 patients with esophageal cancer, 0% of 2 patients with rectal cancer and 0% of 3 patients with breast cancer showed elevated serum SCC Ag levels. Above results represent that SCC RIV is simple method to perform followed by good standard curve and reproducibility, and may be a useful indicator reflecting diagnostic data of patients with cervical cancer and lung cancer

  5. Experimental and analytical study on thermoelectric self cooling of devices

    International Nuclear Information System (INIS)

    Martinez, A.; Astrain, D.; Rodriguez, A.

    2011-01-01

    This paper presents and studies the novel concept of thermoelectric self cooling, which can be introduced as the cooling and temperature control of a device using thermoelectric technology without electricity consumption. For this study, it is designed a device endowed with an internal heat source. Subsequently, a commonly used cooling system is attached to the device and the thermal performance is statistically assessed. Afterwards, it is developed and studied a thermoelectric self cooling system appropriate for the device. Experimental and analytical results show that the thermal resistance between the heat source and the environment reduced by 25-30% when the thermoelectric self cooling system is installed, and indicates the promising applicability of this technology to devices that generate large amounts of heat, such as electrical power converters, transformers and control systems. Likewise, it was statistically proved that the thermoelectric self cooling system leads to significant reductions in the temperature difference between the heat source and the environment, and, what is more, this reduction increases as the heat flow generated by the heat source increases, which makes evident the fact that thermoelectric self cooling systems work as temperature controllers. -- Highlights: → Novel concept of thermoelectric self cooling is presented and studied. → No extra electricity is needed. → Thermal resistance between the heat source and the environment reduces by 25-30%. → Increasing reduction in temperature difference between heat source and environment. → Great applicability to any device that generates heat and must be cooled.

  6. Thermoelectrode for thermoelectric converter

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Bondarciuc, Nicolae; Ghitu, Dumitru; Nikolaeva, Albina; Konopko, Leonid; Turcan, Ana

    2008-01-01

    The invention relates to the electronic engneering and can be used for manufacturing of thermoelectrodes for thermoelectric converters. The thermoelectrode is made of semiconductor anisotropic material in the form of thread in glass insulation. At the same timer, the thread is made of stannum-doped tellurium in the ratio of 0.1...3 at.%.

  7. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-01-01

    of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate

  8. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    Directory of Open Access Journals (Sweden)

    Goupil Christophe

    2016-01-01

    Full Text Available Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant’s electrophysiological response. therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  9. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  10. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  11. Characteristics and Significance of Magma Emplacement Horizons, Black Sturgeon Sill, Nipigon, Ontario

    Science.gov (United States)

    Zieg, M. J.; Hone, S. V.

    2017-12-01

    Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.

  12. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    Schmitz, Andreas

    2013-01-01

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb 1-x Ca x Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties

  13. A Method for testing the integrated thermal resistance of thermoelectric modules

    Science.gov (United States)

    Gao, Junling; Du, Qungui; Chen, Min

    2013-11-01

    The integrated thermal resistance (ITR) of thermoelectric modules (TEMs) is an important parameter that represents the thermal-conduction of ceramic substrates, copper conducting strips, and welding material used in the TEM as well as the thermal contact resistances between different materials. In this study, an accurate and practical test method is proposed for the ITR of TEMs according to thermoelectric heat transfer theory and the equivalent characteristics of heat flux through the cold and hot sides of TEMs in an open-circuit situation. By using such measurements and comparisons, it is verified that the measured ITR value in our mode is accurate and reliable. In particular this method accurately predicts the actual operating conditions of TEMs, in which TEMs are under certain mechanical pressure. It effectively solves the problem of thermal resistance extraction from operating TEMs and is of great significance in their analysis and optimization.

  14. Working principle and structure characteristics analysis of the reactivity control drive mechanism

    International Nuclear Information System (INIS)

    Zhao Tianyu; Huang Zhiyong; Chen Feng; He Xuedong

    2010-01-01

    The startup, power regulation and safety shutdown of the nuclear reactor are operated by the reactivity control devices. Reactivity control drive mechanism is a key mechanical transmission component, which directly control the location of the neutron absorber in the core. Its working condition is complex, and its service life should be long., which requires high reliability. PWR as well as newly developed different type of reactors have different control devices drive mechanism. This paper mainly do analysis and comparison about the working environment, mechanical transmission principle, structure, performance, service life and other aspects of PWR, HTR control devices drive mechanism. In addition, this paper is also based on the working principles of reactive control devices drive mechanism, also consider the trends of its design and test verification by the international countries, and discussed the method and feasibility of improving and perfecting the structure and function of drive mechanism. (authors)

  15. Plutonium Finishing Plant (PFP) Safety Class and Safety Significant Commercial Grade Items (CGI) Critical Characteristic

    International Nuclear Information System (INIS)

    THOMAS, R.J.

    2000-01-01

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for use in the Plutonium Finishing Plant as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics of any one item

  16. Thermoelectric properties of SnSe compound

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wu, Liyuan; Han, Lihong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Liu, Gang [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Song, Yuxin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-09-15

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data.

  17. Thermoelectric properties of SnSe compound

    International Nuclear Information System (INIS)

    Guan, Xinhong; Lu, Pengfei; Wu, Liyuan; Han, Lihong; Liu, Gang; Song, Yuxin; Wang, Shumin

    2015-01-01

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data

  18. Impact of the substrate on the efficiency of thin film thermoelectric technology

    International Nuclear Information System (INIS)

    Alvarez-Quintana, J.

    2015-01-01

    Thermoelectricity is one of the simplest technologies for thermal energy conversion. Moreover, because of their relatively low efficiency, bulk thermoelectric materials are generally used in environments where their solid state nature outweighs their poor efficiency. Nevertheless, low dimensional thermoelectric materials shed a light in order to achieve higher thermoelectric performance than their bulk counterparts via quantum and spatial confinement of energy carriers. The Thermoelectric figure of merit ZT is the basic criterion for estimating the performance of thermoelectric materials. In this work, by way of an extension of the Harman method to thin films onto substrate to evaluate ZT it is shown that the solely presence of a substrate affects significantly the intrinsic value of the ZT independently of the electrical and thermal nature of the substrate. Furthermore, the model unveils that as the thickness ratio between substrate and thin film increases, the parameter ZT sharply tends to zero; this effect opens a serious problem to overcome by the thin film thermoelectric technology, especially at nanoscale. In this sense, challenges in order to engineering planar thermoelectric devices at micro/nanoscale are properly identified. - Highlights: • Extended Harman method to evaluate ZT of thin films onto substrate is presented. • ZT of thermoelectric thin films is strongly affected by substrate's nature. • Thin dielectric substrates are desirable to hold ZT in in-plane configuration. • Film/substrate thickness ratio play important role on the device performance. • Challenges to engineering planar thermoelectric devices are properly identified

  19. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  20. Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs

    Science.gov (United States)

    Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh

    2017-04-01

    Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.

  1. Sport swimming characteristics in the light of ideas and principles of modern classifications of sports

    Directory of Open Access Journals (Sweden)

    Kachurovs'kyy D.O.

    2010-09-01

    Full Text Available The known classifications of modern authors are considered. The criteria of grouping of types of sport are certain in classification. The place of the sporting swimming is indicated in different classifications. Psychological descriptions of sporting activity are presented: relationships of sportsman with a competitor, with comrades on a command, with the environment of sporting activity. Emphasized necessity of analysis of the basic experiencing of sportsman during a competition situation. On principle it is important to understand and examine these relations in full.

  2. The characteristics of original geochemical halo in fault zone and its prospecting significance in Xiangyangping uranium deposit

    International Nuclear Information System (INIS)

    Ouyang Pingning; Huang Manxiang; Liu Xinyang; Chen Yue; Xiao Jianjun

    2012-01-01

    Xiangyangping uranium deposit is a hydrothermal filling deposit controlled by faults. The axial zonation of original element along the fault is sequence of Ni-Rb-Bi-Sn-Cu-W-Hg→As-U-Sb-Mo→Sr-Zn which shows the characteristics of superimposed halos and multiphase mineralization. The distribution characteristics of original halos along structure suggests that uranium mineralization may possess multi-enrichment zones along axial and strata tend. These characteristics are of prospecting significance. (authors)

  3. Attaching and effacing Escherichia coli isolates from Danish children: clinical significance and microbiological characteristics

    DEFF Research Database (Denmark)

    Jensen, C; Ethelberg, S; Olesen, B

    2007-01-01

    This study describes the prevalence, clinical manifestations and microbiological characteristics of attaching and effacing Escherichia coli isolates, i.e., enteropathogenic E. coli (EPEC) belonging to the classical EPEC serotypes, non-EPEC attaching and effacing E. coli (A/EEC) and verocytotoxin...

  4. The characteristics of ginger-like rock and its geological significance in Northern Zhungeer basin

    International Nuclear Information System (INIS)

    Wu Rengui

    1998-01-01

    The author studies the characteristics of ginger-like stratum and its genesis in northern Zhungeer basin. There are many ginger-like strata of Tertiary-Quaternary exist in northern Zhungeer basin. It shows a good prospect for the formation of Tertiary sandstone type Uranium deposit which can be leached in-situ

  5. Potential thermoelectric performance of hole-doped Cu2O

    International Nuclear Information System (INIS)

    Chen, Xin; Parker, David; Du, Mao-Hua; Singh, David J

    2013-01-01

    High thermoelectric performance in oxides requires stable conductive materials that have suitable band structures. Here we show, based on an analysis of the thermopower and related properties using first-principles calculations and Boltzmann transport theory in the relaxation time approximation, that hole-doped Cu 2 O may be such a material. We find that hole-doped Cu 2 O has a high thermopower of above 200 μV K −1 even with doping levels as high as 5.2 × 10 20 cm −3 at 500 K, mainly attributed to the heavy valence bands of Cu 2 O. This is reminiscent of the cobaltate family of high-performance oxide thermoelectrics and implies that hole-doped Cu 2 O could be an excellent thermoelectric material if suitably doped. (paper)

  6. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  7. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  8. Opto-thermoelectric nanotweezers

    Science.gov (United States)

    Lin, Linhan; Wang, Mingsong; Peng, Xiaolei; Lissek, Emanuel N.; Mao, Zhangming; Scarabelli, Leonardo; Adkins, Emily; Coskun, Sahin; Unalan, Husnu Emrah; Korgel, Brian A.; Liz-Marzán, Luis M.; Florin, Ernst-Ludwig; Zheng, Yuebing

    2018-04-01

    Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.

  9. Principles of MONJU maintenance. Characteristic of MONJU maintenance and reflection of LWR maintenance experience to FBR

    International Nuclear Information System (INIS)

    Nakai, Satoru; Nishio, Ryuichi; Uchihashi, Masaya; Kaneko, Yoshihisa; Yamashita, Hironobu; Yamaguchi, Atsunori; Aoki, Takayuki

    2014-01-01

    A sodium cooled fast breeder reactor (FBR) has unique systems and components and different degradation mechanism from light water reactor (LWR) so that need to establish maintenance technology in accordance with its features. The examination of the FBR maintenance technology is carried out in the special committee for considering the maintenance for Monju established in the Japan Society of Maintenology (JSM). As a result of the study such as extraction of Monju maintenance feature, maintenance technology benchmark between Monju and LWR components and survey of LWR maintenance experience, it is clear that principles of maintenance are same as LWR, necessity of LWR maintenance experience reflection and points to be considered in Monju maintenance. The road map to establish a FBR maintenance technology in the technical aspect became clear and it is vital to acquire operation and maintenance experience of the plant to implement this road map, and to establish a fast reactor maintenance. (author)

  10. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  11. Thermoelectric response of bulk and monolayer MoSe2 and WSe2

    KAUST Repository

    Sarath Kumar, S. R.

    2015-02-24

    We study the thermoelectric properties of bulk and monolayer MoSe2 and WSe2 by first-principles calculations and semiclassical Boltzmann transport theory. The lattice thermal conductivity is calculated using the self-consistent iterative approach as well as the single-mode relaxation time approximation. The acoustical and optical contributions to the lattice thermal conductivity are evaluated along with the influence of the phonon mean free path. The employed methodology enables a quantitative comparison of the thermoelectric properties of transition-metal dichalcogenides. In particular, WSe2 is found to be superior to MoSe2 for thermoelectric applications.

  12. Thermoelectric response of bulk and monolayer MoSe2 and WSe2

    KAUST Repository

    Sarath Kumar, S. R.; Schwingenschlö gl, Udo

    2015-01-01

    We study the thermoelectric properties of bulk and monolayer MoSe2 and WSe2 by first-principles calculations and semiclassical Boltzmann transport theory. The lattice thermal conductivity is calculated using the self-consistent iterative approach as well as the single-mode relaxation time approximation. The acoustical and optical contributions to the lattice thermal conductivity are evaluated along with the influence of the phonon mean free path. The employed methodology enables a quantitative comparison of the thermoelectric properties of transition-metal dichalcogenides. In particular, WSe2 is found to be superior to MoSe2 for thermoelectric applications.

  13. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  14. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    International Nuclear Information System (INIS)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi

    2016-01-01

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research

  15. Methods of synthesizing thermoelectric materials

    Science.gov (United States)

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  16. Heat shrink formation of a corrugated thin film thermoelectric generator

    International Nuclear Information System (INIS)

    Sun, Tianlei; Peavey, Jennifer L.; David Shelby, M.; Ferguson, Scott; O’Connor, Brendan T.

    2015-01-01

    Highlights: • Demonstrate and characterize a thermoelectric generator with a corrugated geometry. • Employ a novel heat shrink fabrication approach compatible with low-cost processing. • Use thermal impedance modeling to explore design potential. • Corrugated design shown to be advantageous for low heat-flux density applications. - Abstract: A thin film thermoelectric (TE) generator with a corrugated architecture is demonstrated formed using a heat-shrink fabrication approach. Fabrication of the corrugated TE structure consists of depositing thin film thermoelectric elements onto a planar non-shrink polyimide substrate that is then sandwiched between two uniaxial stretch-oriented co-polyester (PET) films. The heat shrink PET films are adhered to the polyimide in select locations, such that when the structure is placed in a high temperature environment, the outer films shrink resulting in a corrugated core film and thermoelectric elements spanning between the outer PET films. The module has a cross-plane heat transfer architecture similar to a conventional bulk TE module, but with heat transfer in the plane of the thin film thermoelectric elements, which assists in maintaining a significant temperature difference across the thermoelectric junctions. In this demonstration, Ag and Ni films are used as the thermoelectric elements and a Seebeck coefficient of 14 μV K −1 is measured with a maximum power output of 0.22 nW per couple at a temperature difference of 7.0 K. We then theoretically consider the performance of this device architecture with high performance thermoelectric materials in the heat sink limited regime. The results show that the heat-shrink approach is a simple fabrication method that may be advantageous in large-area, low power density applications. The fabrication method is also compatible with simple geometric modification to achieve various form factors and power densities to customize the TE generator for a range of applications

  17. V-amylose structural characteristics, methods of preparation, significance, and potential applications

    CSIR Research Space (South Africa)

    Obiro, WC

    2012-02-01

    Full Text Available , and postprandial hyperglycaemia in diabetics. Various aspects of V-amylose structure, methods of preparation, factors that affect its formation, and the significance and potential applications of the V-amylose complexes are reviewed....

  18. First principle DFT study of electric field effects on the characteristics of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2017-04-01

    First principle density functional theory methods, local density and Perdew-Burke-Ernzerhof generalized gradient approximations with Goedecker pseudopotential (LDA-G and PBE-G), are used to study the electric field effects on the binding energy and atomic charges of bilayer graphene (BLG) at the Γ point of the Brillouin zone based on two types of unit cells (α and β) containing n{sub C}=8-32 carbon atoms. Results show that application of electric fields of 4-24 V/nm strengths reduces the binding energies and induces charge transfer between the two layers. The transferred charge increases almost linearly with the strength of the electric field for all sizes of the two types of unit cells. Furthermore, the charge transfer calculated with the α-type unit cells is more sensitive to the electric field strength. The calculated field-dependent contour plots of the differential charge densities of the two layers show details of charge density redistribution under the influence of the electric field.

  19. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  20. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural Characteristics of Paleozoic and Geological Significance of Oil and Gas of Dongpu Depression

    Institute of Scientific and Technical Information of China (English)

    杨世刚

    2003-01-01

    The Dongpu depression has experienced a complicated evolution of structure since Mesozoic. The Paleozoic carbonate rock has been strongly reformed and the buried hills with different characteristics of structure are developed in the depression. There exist lots of groups of fault structures with strikes of NNE(or NE),NW, near NS and EW etc., of which the faults with strikes of NNE and NW play an important controlling role on present-day structural framework of the depression. The faults with near NS-striking and EW-striking deeply affect the establishment of structural framework of basement of the depression. Although most of the fractures are filled by calcite and other minerals, under the action of later structural stress, the earlier fractures could change their features into tensional ones. Therefore, much attention should be paid to the exploration and exploitation of Paleozoic oil and gas in Dongpu depression.

  2. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  3. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine

    International Nuclear Information System (INIS)

    Niu, Zhiqiang; Diao, Hai; Yu, Shuhai; Jiao, Kui; Du, Qing; Shu, Gequn

    2014-01-01

    Highlights: • A 3-D model for exhaust-based thermoelectric waste heat recovery is developed. • Various heat, mass and electric transfer characteristics are elucidated. • Channel size needs to be moderate to balance heat transfer and pressure drop. • Bafflers need to be placed at all locations near all TEG modules. • Baffler angle needs to be sufficiently large, especially for downstream locations. - Abstract: Thermoelectric generator (TEG) has attracted considerable attention for the waste heat recovery of internal combustion engine. In this study, a 3-D numerical model for engine exhaust-based thermoelectric generator (ETEG) system is developed. By considering the detailed geometry of thermoelectric generator (TEG) and exhaust channel, the various transport phenomena are investigated, and design optimization suggestions are given. It is found that the exhaust channel size needs to be moderate to balance the heat transfer to TEG modules and pressure drop along channel. Increasing the number of exhaust channels may improve the performance, however, since more space and TEG modules are needed, the system size and cost need to be considered as well. Although only placing bafflers at the channel inlet could increase the heat transfer coefficient for the whole channel, the near wall temperature downstream might decrease significantly, leading to performance degradation of the TEG modules downstream. To ensure effective utilization of hot exhaust gas, the baffler angle needs to be sufficiently large, especially for the downstream locations. Since larger baffler angles increase the pressure drop significantly, it is suggested that variable baffler angles, with the angle increasing along the flow direction, might be a middle course for balancing the heat transfer and pressure drop. A single ETEG design may not be suitable to all the engine operating conditions, and making the number of exhaust channels and baffler angle adjustable according to different engine

  4. From phase-change materials to thermoelectrics?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthias N.; Rosenthal, Tobias; Oeckler, Oliver [Dept. of Chemistry, Ludwig Maximilian Univ. Munich (Germany); Stiewe, Christian [German Aerospace Center, Cologne (Germany)

    2010-07-01

    Metastable tellurides play an important role as phase-change materials in data storage media and non-volatile RAM devices. The corresponding crystalline phases with very simple basic structures are not stable as bulk materials at ambient conditions, however, for a broad range of compositions they represent stable high-temperature phases. In the system Ge/Sb/Te, rocksalt-type high-temperature phases are characterized by a large number of vacancies randomly distributed over the cation position, which order as 2D vacancy layers upon cooling. Short-range order in quenched samples produces pronounced nanostructures by the formation of twin domains and finite intersecting vacancy layers. As phase-change materials are usually semimetals or small-bandgap semiconductors and efficient data storage requires low thermal conductivity, bulk materials with similar compositions and properties can be expected to exhibit promising thermoelectric characteristics. Nanostructuring by phase transitions that involve partial vacancy ordering may enhance the efficiency of such thermoelectrics. We have shown that germanium antimony tellurides with compositions close to those used as phase-change materials in rewritable Blu-Ray Discs, e.g. (GeTe){sub 12}Sb{sub 2}Te{sub 3}, exhibit thermoelectric figures of merit of up to ZT = 1.3 at 450 C if a nanodomain structure is induced by rapidly quenching the cubic high-temperature phase. Structural changes have been elucidated by X-ray diffraction and high-resolution electron microscopy. (orig.)

  5. Frequencies and trends of significant characteristics of reported events in Germany

    International Nuclear Information System (INIS)

    Farber, G.; Matthes, H.

    2001-01-01

    In the frame of its support to the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety the GRS continuously performs in-depth technical analyses of reported events at operating nuclear power reactors in Germany which can be used for the determination of plant weaknesses with regard to reactor safety. During the last 18 months, in addition to those activities, the GRS has developed a data bank model for the statistical assessment of events. This model is based on a hierarchically structured, detailed coding system with respect to technical and safety relevant characteristics of the plants and the systematic characterization of plant-specific events. The data bank model is ready for practical application. Results of a first statistical evaluation, taking into account the data sets from the time period 1996 to 1999, are meanwhile available. By increasing the amount of data it will become possible to herewith improve the statements concerning trends of safety aspects. This report describes the coding system, the evaluation model, the data input and the evaluations performed during the period beginning in April 2000. (authors)

  6. Frequencies and trends of significant characteristics of reported events in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Farber, G.; Matthes, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koln (Germany)

    2001-07-01

    In the frame of its support to the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety the GRS continuously performs in-depth technical analyses of reported events at operating nuclear power reactors in Germany which can be used for the determination of plant weaknesses with regard to reactor safety. During the last 18 months, in addition to those activities, the GRS has developed a data bank model for the statistical assessment of events. This model is based on a hierarchically structured, detailed coding system with respect to technical and safety relevant characteristics of the plants and the systematic characterization of plant-specific events. The data bank model is ready for practical application. Results of a first statistical evaluation, taking into account the data sets from the time period 1996 to 1999, are meanwhile available. By increasing the amount of data it will become possible to herewith improve the statements concerning trends of safety aspects. This report describes the coding system, the evaluation model, the data input and the evaluations performed during the period beginning in April 2000. (authors)

  7. [Characteristic and clinical significance of DNA methyltransferase 3B overexpression in endometrial carcinoma].

    Science.gov (United States)

    Dong, Y; Zhou, M; Ba, X J; Si, J W; Li, W T; Wang, Y; Li, D; Li, T

    2016-10-18

    To determine the clinicopathological significance of the DNA methyltransferase 3B (DNMT3B) overexpression in endometrial carcinomas and to evaluate its correlation with hormone receptor status. Immunohistochemistry was performed to assess the expression of DNMT3B and hormone receptors in 104 endometrial carcinomas. DNMT3B overexpression occurred frequently in endometrioid carcinoma (EC, 54.8%) more than in nonendometrioid carcinoma (NEC, 30.0%) with statistical significance (P=0.028). Furthermore, there was a trend that EC with worse clinico-pathological variables and shorter survival had a higher DNMT3B expression, and the correlation between DNMT3B and tumor grade reached statistical significance (P=0.019).A negative correlation between DNMT3B and estrogen receptor (ER) or progesterone receptor (PR) expression was found in EC. NMT3B overexpression occurred frequently in the ER or PR negative subgroups (78.9%, 86.7%) more than in the positive subgroups (47.7%, 47.8%) with statistical significance (P=0.016, P=0.006). In addition, the DNMT3B overexpression increased in tumors with both ER and PR negative expression (92.9%, P=0.002). However, no such correlation was found in NEC (P>0.05). Sequence analyses demonstrated multiple ER and PR binding sites in the promoter regions of DNMT3B gene. This study showed that the expression of DNMT3B in EC and NEC was different. DNMT3B overexpression in EC was associated with the worse clinicopathological variables and might have predictive value. The methylation status of EC and NEC maybe different. In addition, in EC, DNMT3B overexpression negatively correlated with ER or PR expression. In NEC, the correlation between DNMT3B and ER or PR status was not present.

  8. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Carmen Bellas

    Full Text Available Diffuse large B-cell lymphoma (DLBCL is an aggressive non-Hodgkin lymphoma with marked biologic heterogeneity. We analyzed 100 cases of DLBCL to evaluate the prognostic value of immunohistochemical markers derived from the gene expression profiling-defined cell origin signature, including MYC, BCL2, BCL6, and FOXP1 protein expression. We also investigated genetic alterations in BCL2, BCL6, MYC and FOXP1 using fluorescence in situ hybridization and assessed their prognostic significance. BCL6 rearrangements were detected in 29% of cases, and BCL6 gene alteration (rearrangement and/or amplification was associated with the non-germinal center B subtype (non-GCB. BCL2 translocation was associated with the GCB phenotype, and BCL2 protein expression was associated with the translocation and/or amplification of 18q21. MYC rearrangements were detected in 15% of cases, and MYC protein expression was observed in 29% of cases. FOXP1 expression, mainly of the non-GCB subtype, was demonstrated in 37% of cases. Co-expression of the MYC and BCL2 proteins, with non-GCB subtype predominance, was observed in 21% of cases. We detected an association between high FOXP1 expression and a high proliferation rate as well as a significant positive correlation between MYC overexpression and FOXP1 overexpression. MYC, BCL2 and FOXP1 expression were significant predictors of overall survival. The co-expression of MYC and BCL2 confers a poorer clinical outcome than MYC or BCL2 expression alone, whereas cases negative for both markers had the best outcomes. Our study confirms that DLBCL, characterized by the co-expression of MYC and BCL2 proteins, has a poor prognosis and establishes a significant positive correlation with MYC and FOXP1 over-expression in this entity.

  9. The significance of zircon characteristic and its uranium concentration in evaluation of uranium metallogenetic prospect

    International Nuclear Information System (INIS)

    Li Yaosong; Zhu Jiechen; Xia Yuliang

    1992-02-01

    Zircon characteristic and its relation to uranium metallogenetic process have been studied on the basis of physics properties and chemical compositions. It is indicated that the colour of zircon crystal is related to uranium concentration; on the basis of method of zircon population type of Pupin J.P., the sectional plan of zircon population type has been designed, from which result that zircon population type of uranium-producing rock body is distributed mainly in second section, secondly in fourth section; U in zircon presents synchronous increase trend with Th, Hf and Ta; the uranium concentration in zircon from uranium-producing geologic body increases obviously and its rate of increase is more than that of the uranium concentration in rock; the period, in which uranium concentration in zircon is increased, is often related to better uranium-producing condition in that period of this area. 1785 data of the average uranium concentration in zircon have been counted and clear regularity has been obtained, namely the average uranium concentrations in zircon in rich uranium-producing area, rock, geologic body and metallogenetic zone are all higher than that in poor or no uranium-producing area, rock, geologic body and metallogenetic zone. This shows that the average uranium concentration in zircon within the region in fact reflects the primary uranium-bearing background in region and restricts directly follow-up possibility of uranium mineralization. On the basis of this, the uranium source conditions of known uranium metallogenetic zones and prospective provinces have been discussed, and the average uranium concentrations in zircon from magmatic rocks for 81 districts have been contrasted and graded, and some districts in which exploration will be worth doing further are put forward

  10. Hemodynamic Characteristics in Significant Symptomatic and Asymptomatic Primary Mitral Valve Regurgitation at Rest and during Exercise

    DEFF Research Database (Denmark)

    Bakkestrøm, Rine; Banke, Ann; Christensen, Nicolaj L.

    2018-01-01

    ventricular ejection fraction, >60%) were included. Right heart catheterization during rest and exercise, echocardiography, magnetic resonance imaging, and peak oxygen consumption test was performed. Symptomatic subjects had significantly higher pulmonary capillary wedge pressure at rest (14±4 versus 11±3 mm...... mean PAP and left ventricular ejection fraction (r=-0.52; P=0.02) and right ventricular ejection fraction (r=-0.67; Pequal and normal in both groups and correlated with left ventricular stroke volume but not with pulmonary capillary wedge pressure. Conclusions...

  11. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Hittman, F.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 2 claims, 4 drawing figures

  12. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Barr, H.N.

    1978-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 4 claims, 4 figures

  13. Superlattices in thermoelectric applications

    International Nuclear Information System (INIS)

    Sofo, J.O.; Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1994-08-01

    The electrical conductivity, thermopower and the electronic contribution to the thermal conductivity of a superlattice, are calculated with the electric field and the thermal gradient applied parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the lowest subband when the period of the superlattice is decreased produces a reduction of the thermoelectric figure of merit. However, we found that a moderate increase of the figure of merit may be expected for intermediate values of the period, due to the enhancement of the density of states produced by the superlattice structure

  14. Semiconductor thermoelectric generators

    CERN Document Server

    Fahrner, Wolfgang R

    2009-01-01

    It is well-known that fossil fuels are being rapidly depleted, and that atomic power is rejected by many people. As a consequence, there is a strong trend towards alternative sources such as wind, photovoltaics, solar heat and biomass. Strangely enough, quite another power source is generally neglected: namely, the thermoelectric generator (a device which converts heat, i.e. thermal energy, directly into electrical energy). The reason for this neglect is probably the low conversion efficiency, which is of the order of a few percent at most. However, there are two arguments in favor of the ther

  15. Thermoelectric power of PrMg3

    Science.gov (United States)

    Isikawa, Yosikazu; Somiya, Kazuya; Koyanagi, Huruto; Mizushima, Toshio; Kuwai, Tomohiko; Tayama, Takashi

    2010-01-01

    PrMg3 is supposed to be one of the strongly correlated electron systems originated from the hybridization between the Pr 4f and conduction electrons, because the gigantic electronic specific heat coefficient C/T was observed at low temperatures. However, a typical behaviour of - ln T dependence was not observed in the temperature dependence of the electrical resistivity. The thermoelectric power S is a powerful tool to investigate the density of states at the Fermi energy. We measured carefully the thermoelectric power of PrMg3 in the temperature range between 2 and 300 K. S is extremely small, ranged within ±1 μV/K over the whole temperature. The value of S/T at low temperature limit was also significantly smaller than expected from the specific heat results. We therefore conclude that the density of state at the Fermi level is not enhanced in PrMg3.

  16. Thermoelectric power of PrMg3

    International Nuclear Information System (INIS)

    Isikawa, Yosikazu; Somiya, Kazuya; Koyanagi, Huruto; Mizushima, Toshio; Kuwai, Tomohiko; Tayama, Takashi

    2010-01-01

    PrMg 3 is supposed to be one of the strongly correlated electron systems originated from the hybridization between the Pr 4f and conduction electrons, because the gigantic electronic specific heat coefficient C/T was observed at low temperatures. However, a typical behaviour of - ln T dependence was not observed in the temperature dependence of the electrical resistivity. The thermoelectric power S is a powerful tool to investigate the density of states at the Fermi energy. We measured carefully the thermoelectric power of PrMg 3 in the temperature range between 2 and 300 K. S is extremely small, ranged within ±1 μV/K over the whole temperature. The value of S/T at low temperature limit was also significantly smaller than expected from the specific heat results. We therefore conclude that the density of state at the Fermi level is not enhanced in PrMg 3 .

  17. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    International Nuclear Information System (INIS)

    Borisyuk, P.V.; Krasavin, A.V.; Tkalya, E.V.; Lebedinskii, Yu.Yu.; Vasiliev, O.S.; Yakovlev, V.P.; Kozlova, T.I.; Fetisov, V.V.

    2016-01-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters’ tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  18. SMORN-1: thermoelectrically generated noise in sheathed thermocouples and in other low level instrumentation cables

    International Nuclear Information System (INIS)

    Mathieu, F.; Meier, R.; Soenen, M.; Delcon, M.; Nysten, C.

    Starting from the fact that thermoelectric emfs of thermocouples are generated in the thermal gradients and not at the hot junction, it is shown how thermoelectric heterogeneity in conjunction with natural and forced convection phenomena gives rise to unwanted noise called: ''thermoelectric noise'' in the technological sense. A distinction is made between four different types of noise--i.e. uncorrelated noise, correlated noise, spectral noise and thermoelectric noise in the physical sense--each of which has its own characteristics. The experimental results presented reveal that noise amplitudes may be quite embarrassing when dealing with problems of quantitative signal fluctuation analysis. It is however emphasized that thermoelectric noise may also convey useful information which, without noise, might be lost

  19. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  20. Low velocity gunshot wounds result in significant contamination regardless of ballistic characteristics.

    Science.gov (United States)

    Weinstein, Joseph; Putney, Emily; Egol, Kenneth

    2014-01-01

    Controversy exists among the orthopedic community regarding the treatment of gunshot injuries. No consistent treatment algorithm exists for treatment of low energy gunshot wound (GSW) trauma. The purpose of this study was to critically examine the wound contamination following low velocity GSW based upon bullet caliber and clothing fiber type found within the injury track. Four types of handguns were fired at ballistic gel from a 10-foot distance. Various clothing materials were applied (denim, cotton, polyester, and wool) circumferentially around the tissue agar in a loose manor. A total of 32 specimens were examined. Each caliber handgun was fired a minimum of 5 times into a gel. Regardless of bullet caliber there was gross contamination of the entire bullet track in 100% of specimens in all scenarios and for all fiber types. Furthermore, as would be expected, the degree of contamination appeared to increase as the size of the bullet increased. Low velocity GSWs result in significant contamination regardless of bullet caliber and jacket type. Based upon our results further investigation of low velocity GSW tracks is warranted. Further clinical investigation should focus on the degree to which debridement should be undertaken.

  1. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    Science.gov (United States)

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999

  2. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    International Nuclear Information System (INIS)

    DAVIS, S.J.

    2000-01-01

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications

  3. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in the

  4. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    synergistically enhanced thermoelectric properties. This occurs through a significant reduction of thermal conductivity, without the deterioration of thermopower and electrical conductivity. In addition, we introduce the concept of spin entropy in wide band gap semiconductor nanocrystals, which acts to fully disentangle the otherwise interconnected quantities for synergistically optimized thermoelectric performance. Finally, we discuss a new concept we developed that is based on an ultrathin-nanosheet composite that we fabricated from ultrathin nanosheets of atomic thickness. These retain the original strong two-dimensional electron gas (2DEG) and allow for decoupled optimization of the three thermoelectric parameters, which improves thermoelectric performance.

  5. Principles, design and fuel performance characteristics of gas cooled thermal reactors

    International Nuclear Information System (INIS)

    Boocock, P.M.; Eaton, J.R.P.

    1989-01-01

    Reactor output and availability are closely related to fuel design and performance and the SSEB, in collaboration with the Central Electricity Generating Board have followed a policy of continuous analysis and improvement. The position reached is set out and some views on further improvements, are given. The strategy of increasing fuel burn-up on Hunterston A power station has brought significant dividends in the form of major benefits in fuel cycle cost and station availability. Significant improvements in output and availability at Hunterston B have resulted from increasing the fuel cycle burn-up, from 18 GWd/t U to 21 GWd/t U and introducing on-load refuelling. Additional benefits are soon to be obtained by further extending the burn-up to 24 GWd/t U. Further reduction of typically Pound 2-7 million/year in fuel cycle costs over the remaining life of the stations would be made by extending the burn-up to 30 GWd/t U at Hunterston B and Torness. There would be additional savings of about Pound 4 million/year in replacement fuel costs if the reactors continued to be refuelled at 30% power at Hunterston B and 40% power at Torness. (author)

  6. Estimating capacity of solar thermoelectric generator (STEG) panels

    International Nuclear Information System (INIS)

    Kokhova, I.I.; Malevskii, Yu.N.; Tsvetkov, A.I.

    1979-01-01

    Energy characteristics of a solar thermoelectric generator (STEG) panel without solar-flux concentration are considered. The design of such devices is no simple task. Several fully justified assumptions have been introduced in an attempt to obtain a solution convenient for engineering calculations

  7. A Review of SnSe: Growth and Thermoelectric Properties

    Science.gov (United States)

    Nguyen, Van Quang; Kim, Jungdae; Cho, Sunglae

    2018-04-01

    SnSe is a 2D semiconductor with an indirect energy gap of 0.86 - 1 eV; it is widely used in solar cell, optoelectronics, and electronic device applications. Recently, SnSe has been considered as a robust candidate for energy conversion applications due to its high thermoelectric performance ( ZT = 2.6 in p-type and 2.2 in n-type), which is assigned mainly to its anhamornic bonding leading to an ultralow thermal conductivity. In this review, we first discuss the crystalline and electronic structures of SnSe and the source of its p-type characteristic. Then, some typical single crystal and polycrystal growth techniques, as well as an epitaxial thin film growth technique, are outlined. The reported thermoelectric properties of SnSe grown by using each technique are also reviewed. Finally, we will describe some remaining issues concerning the use of SnSe for thermoelectric applications.

  8. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    Science.gov (United States)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  9. Compliant Interfacial Layers in Thermoelectric Devices

    Science.gov (United States)

    Firdosy, Samad A. (Inventor); Li, Billy Chun-Yip (Inventor); Ravi, Vilupanur A. (Inventor); Fleurial, Jean-Pierre (Inventor); Caillat, Thierry (Inventor); Anjunyan, Harut (Inventor)

    2017-01-01

    A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.

  10. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay; Wu, Albert T.; Wei, Pei-chun; Chen, Sinn-wen

    2018-01-01

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module

  11. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called ... However, there are other parameters which are fairly good indicators ... Whereas a final deciding factor reflecting on .... matter of a future work.

  12. Multiscale Modelling of Electronic and Thermal Transport : Thermoelectrics, Turbostratic 2D Materials and Diamond/c-BN HEMT

    Science.gov (United States)

    Narendra, Namita

    Multiscale modelling has become necessary with the advent of low dimensional devices as well as use of heterostructures which necessitates atomistic treatment of the interfaces. Multiscale methodology is able to capture the quantum mechanical atomistic details while enabling the simulation of micro-scale structures at the same time. In this thesis, multiscale modelling has been applied to study transport in thermoelectrics, turbostratic 2D MoS2/WS 2 heterostructure and diamond/c-BN high mobility electron transistor (HEMT). The possibility of enhanced thermoelectric properties through nanostructuring is investigated theoretically in a p-type Bi2Te3/Sb 2Te3 heterostructure. A multi-scale modeling approach is adopted to account for the atomistic characteristics of the interface as well as the carrier/phonon transport properties in the larger scales. The calculations clearly illustrate the desired impact of carrier energy filtering at the potential barrier by locally boosting the power factor over a sizable distance in the well region. Further, the phonon transport analysis illustrates a considerable reduction in the thermal conductivity at the heterointerface. Both effects are expected to provide an effective means to engineer higher zT in this material system. Next, power factor enhancement through resonant doping is explored in Bi2Te3 based on a detailed first-principles study. Of the dopant atoms investigated, it is found that the formation of resonant states may be achieved with In, Po and Na, leading potentially to significant increase in the thermoelectric efficiency at room temperature. While doping with Po forms twin resonant state peaks in the valence and conduction bands, the incorporation of Na or In results in the resonant states close to the valence band edge. Further analysis reveals the origin of these resonant states. Transport calculations are also carried out to estimate the anticipated level of enhancement. Next, in-plane and cross-plane transport

  13. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion

    Science.gov (United States)

    Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S.; Chen, Gang

    2015-01-01

    Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect—a coupling phenomenon between electrons and nonequilibrium phonons—in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons. PMID:26627231

  14. APPLYING THE PRINCIPLES OF ACCOUNTING IN

    OpenAIRE

    NAGY CRISTINA MIHAELA; SABĂU CRĂCIUN; ”Tibiscus” University of Timişoara, Faculty of Economic Science

    2015-01-01

    The application of accounting principles (accounting principle on accrual basis; principle of business continuity; method consistency principle; prudence principle; independence principle; the principle of separate valuation of assets and liabilities; intangibility principle; non-compensation principle; the principle of substance over form; the principle of threshold significance) to companies that are in bankruptcy procedure has a number of particularities. Thus, some principl...

  15. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system

    International Nuclear Information System (INIS)

    Al-Madhhachi, Hayder; Min, Gao

    2017-01-01

    Highlights: • New distillation process using thermoelectric to assist evaporation/condensation. • Novel thermoelectric distillation system with reduced specific energy consumption. • Freshwater production by thermoelectrically assisted evaporation and condensation. - Abstract: An efficient thermoelectric distillation system has been designed and constructed for production of drinkable water. The unique design of this system is to use the heat from hot side of the thermoelectric module for water evaporation and the cold side for vapour condensation simultaneously. This novel design significantly reduces energy consumption and improves the system performance. The results of experiments show that the average water production is 28.5 mL/h with a specific energy consumption of 0.00114 kW h/mL in an evaporation chamber filled with 10 × 10 × 30 mm"3 of water. This is significantly lower than the energy consumption required by other existing thermoelectric distillation systems. The results also show that a maximum temperature difference between the hot and cold side of the thermoelectric module is 42.3 °C, which led to temperature increases of 26.4 °C and 8.4 °C in water and vapour, respectively.

  16. Apparatus, System, and Method for On-Chip Thermoelectricity Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.

  17. Apparatus, System, and Method for On-Chip Thermoelectricity Generation

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Rojas, Jhonathan Prieto

    2012-01-01

    An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.

  18. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  19. Methods for estimating water consumption for thermoelectric power plants in the United States

    Science.gov (United States)

    Diehl, Timothy H.; Harris, Melissa; Murphy, Jennifer C.; Hutson, Susan S.; Ladd, David E.

    2013-01-01

    Water consumption at thermoelectric power plants represents a small but substantial share of total water consumption in the U.S. However, currently available thermoelectric water consumption data are inconsistent and incomplete, and coefficients used to estimate consumption are contradictory. The U.S. Geological Survey (USGS) has resumed the estimation of thermoelectric water consumption, last done in 1995, based on the use of linked heat and water budgets to complement reported water consumption. This report presents the methods used to estimate freshwater consumption at a study set of 1,284 power plants based on 2010 plant characteristics and operations data.

  20. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Directory of Open Access Journals (Sweden)

    Hector Carreon

    2017-05-01

    Full Text Available The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  1. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Science.gov (United States)

    Carreon, Hector

    2017-05-01

    The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  2. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  3. Deployable Thermoelectric Metamaterial Energy Harvesting Monitoring System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will combine a novel asynchronous monitoring system with the first-of-its-kind thermoelectric metamaterial.  The thermoelectric prototype is constructed...

  4. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  5. CT characteristics of Morel-Lavallee lesions: an under-recognized but significant finding in acute trauma imaging

    International Nuclear Information System (INIS)

    McKenzie, Gavin A.; Niederhauser, Blake D.; Collins, Mark S.; Howe, Benjamin M.

    2016-01-01

    To highlight the significance and imaging characteristics of Morel-Lavallee (ML) lesions, which have been well characterized on MRI, but are potentially under-recognized on CT. Twenty-eight Morel-Lavallee lesions were identified in 18 patients and were all clinically or surgically confirmed. Lesions were grouped into acute (<3 days), subacute (3-30 days), and chronic (>30 days) at the time of CT imaging. Charts were reviewed to gather patient characteristics, injury patterns, radiologist interpretation, treatment, and outcomes. Sixteen male and 2 female patients with a mean age of 50 years (range 19-80) at the date of their initial evaluation were identified. All patients had significant trauma that accounted for 28 ML lesions, all of which were in a characteristic subcutaneous location overlying the muscular fascial plane. Lesions on CT went through an evolution from hyperdense, poorly or moderately marginated without a pseudocapsule to being hypodense, with internal fat globules or septations and well marginated with a complete enhancing pseudocapsule. Only 1 (4 %) of the ML lesions was suggested and 7 (25 %) lesions were not commented on at all by the interpreting radiologist. Morel-Lavallee lesions are post-traumatic closed, internal, soft-tissue, degloving lesions that are potentially underrecognized on CT. Most acute ML lesions are nonspecific, resembling simple hematomas or contusions. ML lesions evolve as they age with subacute and chronic lesions demonstrating the known features described on MR imaging that should allow for an accurate imaging diagnosis. (orig.)

  6. CT characteristics of Morel-Lavallée lesions: an under-recognized but significant finding in acute trauma imaging.

    Science.gov (United States)

    McKenzie, Gavin A; Niederhauser, Blake D; Collins, Mark S; Howe, Benjamin M

    2016-08-01

    To highlight the significance and imaging characteristics of Morel-Lavallée (ML) lesions, which have been well characterized on MRI, but are potentially under-recognized on CT. Twenty-eight Morel-Lavallée lesions were identified in 18 patients and were all clinically or surgically confirmed. Lesions were grouped into acute (30 days) at the time of CT imaging. Charts were reviewed to gather patient characteristics, injury patterns, radiologist interpretation, treatment, and outcomes. Sixteen male and 2 female patients with a mean age of 50 years (range 19-80) at the date of their initial evaluation were identified. All patients had significant trauma that accounted for 28 ML lesions, all of which were in a characteristic subcutaneous location overlying the muscular fascial plane. Lesions on CT went through an evolution from hyperdense, poorly or moderately marginated without a pseudocapsule to being hypodense, with internal fat globules or septations and well marginated with a complete enhancing pseudocapsule. Only 1 (4 %) of the ML lesions was suggested and 7 (25 %) lesions were not commented on at all by the interpreting radiologist. Morel-Lavallée lesions are post-traumatic closed, internal, soft-tissue, degloving lesions that are potentially underrecognized on CT. Most acute ML lesions are nonspecific, resembling simple hematomas or contusions. ML lesions evolve as they age with subacute and chronic lesions demonstrating the known features described on MR imaging that should allow for an accurate imaging diagnosis.

  7. Exact Optimum Design of Segmented Thermoelectric Generators

    Directory of Open Access Journals (Sweden)

    M. Zare

    2016-01-01

    Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.

  8. DEVELOPMENT OF VACUUM SUBLIMATION DRYERS USING THERMOELECTRIC MODULES

    Directory of Open Access Journals (Sweden)

    R. A. Barykin

    2014-01-01

    Full Text Available Summary. The main directions of use of freeze-dryed products and ingredients are revealed. The analysis of sales markets of freeze-dryed products is provided. It is shown that introduction of innovative production technologies will allow to develop dynamically not only to the large companies, but also small firms that will create prerequisites for growth of the Russian market of freeze-dryed products. Tendencies of development of the freeze-drying equipment are analysed. Relevance of development of energy saving freeze-dryers is proved The integrated approach to creation of competitive domestic technologies and the equipment for sublimation dehydration of thermolabile products consists in use of the effective combined remedies of a power supply, a process intensification, reduction of specific energy consumption and, as a result, decrease in product cost at achievement of high quality indicators. Advantages of thermoelectric modules as alternative direction to existing vapor-compression and absorbing refrigerating appliances are given. Researches of process of freeze-drying dehydration with use of thermoelectric modules are conducted. It is scientifically confirmed, that the thermoelectric module working at Peltier effect, promotes increase in refrigerating capacity due to use of the principle of the thermal pump. Options of use of thermoelectric modules in designs of dryers are offered. Optimum operating modes and number of modules in section are defined. Ways of increase of power efficiency of freeze-dryers with use of thermoelectric modules are specified. The received results will allow to make engineering calculations and design of progressive freeze-drying installations with various ways of a power supply.

  9. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons

    DEFF Research Database (Denmark)

    Sevincli, Haldun; Sevik, Cem; Cagin, Tahir

    2013-01-01

    We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants and Hamilto......We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants...... and Hamiltonians, we show that the thermal conductance of graphene nanoribbons can be reduced by 98.8% at room temperature and the thermoelectric figure of merit, ZT, can be as high as 3.25 at T = 800 K. The proposed scheme relies on a recently developed bottom-up fabrication method, which is proven to be feasible...

  10. Simple experiments with a thermoelectric module

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2005-01-01

    The Seebeck and Peltier effects are explored with a commercially available thermoelectric module and a data-acquisition system. Five topics are presented: (i) thermoelectric heating and cooling, (ii) the Seebeck coefficient, (iii) efficiency of a thermoelectric generator, (iv) the maximum temperature difference provided by a thermoelectric cooler and (v) the Peltier coefficient and the coefficient of performance. Using a data-acquisition system, the measurements are carried out in a reasonably short time. It is shown how to deduce quantities important for the theory and applications of thermoelectric devices

  11. Low cost thermoelectric module

    Energy Technology Data Exchange (ETDEWEB)

    Kumpeerapun, T.; Hirunlabh, J. [King Mongkut Univ. of Technology, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Perpignan (France). Faculty of Sciences; Scherrer, H.; Dauscher, A.; Weber, S.; Jahed, H.M.; Lernoir, B.; Kosalathip, V. [Ecole des Mines, Nancy (France). Laboratoire de Physique des Materiaux; Khedari, J. [South-East Asia Univ., Bangkok (Thailand). Faculty of Engineering

    2006-07-01

    The properties of a bismuth-telluride-antimony (Bi{sub x}Sb{sub 2-8}Te{sub 3}) polycrystalline thermoelectric material prepared using a novel melting and hot pressing process were investigated. The aim of the study was to synthesize the materials without the need for doping. Materials were weighed and placed in a quartz tube, which was sealed under vacuum and heated in a rocking furnace from room temperature to 750 degrees C over a period of 1 hour. Temperatures were maintained at 750 degrees C for a further 2 hours. The sample was then removed from the furnace and suddenly quenched in water. The ingot was then crushed into a powder using an agate mortar and sieved. Samples exhibiting a cylindrical shape were reserved. Samples were then examined using scanning electron microscopy (SEM) to determine their morphology and homogeneity. A sample pellet was then prepared for thermal conductivity measurements at room temperature. the pellet was nickel-plated on both sides and stacked between circular copper disks with thermocouples. Data were collected when the system reached thermal equilibrium. The Seebeck coefficient was measured by applying a small temperature difference. Results showed that the process effectively transformed the base materials into an alloy. It was concluded that the hot pressing successfully synthesized the materials. 6 refs., 1 tab., 6 figs.

  12. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  13. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh

    2018-04-20

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.

  14. On the calculation of Lorenz numbers for complex thermoelectric materials

    Science.gov (United States)

    Wang, Xufeng; Askarpour, Vahid; Maassen, Jesse; Lundstrom, Mark

    2018-02-01

    A first-principles informed approach to the calculation of Lorenz numbers for complex thermoelectric materials is presented and discussed. Example calculations illustrate the importance of using accurate band structures and energy-dependent scattering times. Results obtained by assuming that the scattering rate follows the density-of-states show that in the non-degenerate limit, Lorenz numbers below the commonly assumed lower limit of 2 (kB /q ) 2 can occur. The physical cause of low Lorenz numbers is explained by the shape of the transport distribution. The numerical and physical issues that need to be addressed in order to produce accurate calculations of the Lorenz number are identified. The results of this study provide a general method that should contribute to the interpretation of measurements of total thermal conductivity and to the search for materials with low Lorenz numbers, which may provide improved thermoelectric figures of merit, z T .

  15. Experimental investigation of a portable desalination unit configured by a thermoelectric cooler

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Soylu, Sezgi Koçak; Atmaca, İbrahim; Solmuş, İsmail

    2014-01-01

    Highlights: • Portable humidification–dehumidification desalination system configured by a thermoelectric cooler is experimentally studied. • Effect of feed water mass flow rate and air flow velocity on COP value of TEC and system productivity are investigated. • Maximum daily yield of system and COP value of TEC unit were recorded as 143.6 g and 0.78, respectively. - Abstract: Possible use of a novel portable desalination system was investigated experimentally. The system is based on humidification–dehumidification principle and thermoelectric cooling technique. A thermoelectric cooler was integrated into the system to enhance the process of both humidification and dehumidification. A prototype was fabricated and its performance was tested for various working conditions of the prototype to observe complex relation between psychrometric and thermoelectric phenomena. The effect of feed water mass flow rate and air flow velocity on the COP value of the thermoelectric cooler and clean water production of the system were examined. The maximum daily yield of the system and the COP value of the thermoelectric cooler unit were recorded as 143.6 g and 0.78, respectively

  16. Safety Principles

    Directory of Open Access Journals (Sweden)

    V. A. Grinenko

    2011-06-01

    Full Text Available The offered material in the article is picked up so that the reader could have a complete representation about concept “safety”, intrinsic characteristics and formalization possibilities. Principles and possible strategy of safety are considered. A material of the article is destined for the experts who are taking up the problems of safety.

  17. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    The central problem in thermoelectric material research is the selection of ... temperature range (400–1000 K), and bismuth telluride-based materials .... parent from the results that band non-parabolicity has a significant effect on the .... M P Singh thankfully acknowledges financial assistance from the Council of Scien-.

  18. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  19. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  20. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  1. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  2. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  3. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  4. Thermoelectric Generation Of Current - Theoretical And Experimental Analysis

    Science.gov (United States)

    Ruciński, Adam; Rusowicz, Artur

    2017-12-01

    This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology) was used.

  5. Thermoelectric Generation Of Current – Theoretical And Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Ruciński Adam

    2017-12-01

    Full Text Available This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology was used.

  6. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Science.gov (United States)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  7. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  8. Evaluation of high step-up power electronics stages in thermoelectric generator systems

    DEFF Research Database (Denmark)

    Sun, Kai; Ni, Longxian; Chen, Min

    2013-01-01

    To develop practical thermoelectric generator (TEG) systems, especially radioisotope thermoelectric power supplies for deep-space exploration, a power conditioning stage with high step-up gain is indispensable. This stage is used to step up the low output voltage of thermoelectric generators...... to the required high level. Furthermore, maximum power point tracking control for TEG modules needs to be implemented into the power electronics stages. In this paper, the temperature-dependent electrical characteristics of a thermoelectric generator are analyzed in depth. Three typical high step-up power...... converters suitable for TEG applications are discussed: an interleaved boost converter, a boost converter with a coupled inductor and an interleaved boost converter with an auxiliary transformer. A general comparison of the three high step-up converters is conducted to study the step-up gain, conversion...

  9. High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt

    International Nuclear Information System (INIS)

    Diez, J.C.; Rasekh, S.; Madre, M.A.; Torres, M.A.; Sotelo, A.E.

    2018-01-01

    Bi2AE2Co2Ox (AE=Ca, Sr, and Ba) thermoelectric compounds were grown from the melt by the laser floating zone technique. Microstructural analysis of as-grown samples has shown the formation of well-aligned thermoelectric grains together with a relative high amount of secondary phases. On the other hand, a short (24h) thermal treatment (810°C for Sr, 800°C for Ca, and 750°C for Ba) under air, raises of thermoelectric phase content through the recombination of the secondary ones. These microstructural modifications led to a large decrease of electrical resistivity, improving the power factor. These results have been compared with samples prepared by the conventional solid state method and with the best values reported in the literature. From these data, it is possible to deduce that the high thermoelectric characteristics obtained in these samples make them very attractive for practical applications. [es

  10. Environmental Impact Report for thermoelectric from coal in Candiota region - Brazil

    International Nuclear Information System (INIS)

    Rossato, A.C.; Camison, F.L.; Ladniuk, S.T.

    1989-01-01

    The principles for executing the Environmental Impact Studies and the elaboration of Environmental Impact Report, referring to the first module of Candiota III Thermoelectric Plant, near to the Electric Energy State Company are described, with some aspects about the mine, plant, region, executor corporations and comprehend area for the environmental impact studies. (C.G.C.)

  11. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-06-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  12. Numerical Investigation for Strengthening Heat Transfer Mechanism of the Tube-Row Heat Exchanger in a Compact Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Chen, Zijian; Liu, Hongwu; Yue, Hao; Chen, Dongbo; Qin, Delei

    2018-04-01

    According to the basic principle of heat transfer enhancement, a 1-kW compact thermoelectric generator (TEG) is proposed that is suitable for use at high temperatures and high flow speeds. The associated heat exchanger has a tube-row structure with a guide-plate to control the thermal current. The heat exchanger has a volume of 7 L, and the TEG has a mass of 8 kg (excluding the thermoelectric modules (TEMs)). In this paper, the heat transfer process of the tube-row exchanger is modeled and analyzed numerically; and the influences of its structure on the heat transfer and temperature status of the TEMs are investigated. The results show that use of the thin - wall pipes and increase of surface roughness inside the pipes are effective ways to improve the heat transfer efficiency, obtain the rated surface temperature, and make the TEG compact and lightweight. Furthermore, under the same conditions, the calculated results are compared with the data of a fin heat exchanger. The comparison results show that the volume and mass of the tube-row heat exchanger are 19% and 33% lower than those of the fin type unit, and that the pressure drop is reduced by 16%. In addition, the average temperature in the tube-row heat exchanger is increased by 15°C and the average temperature difference is increased by 19°C; the tube-row TEG has a more compact volume and better temperature characteristics.

  13. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good ...

  14. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  15. Thermoelectric effects in magnetic nanostructures

    NARCIS (Netherlands)

    Hatami, Moosa; Bauer, Gerrit E.W.; Zhang, Q.F.; Kelly, Paul J.

    2009-01-01

    We model and evaluate the Peltier and Seebeck effects in magnetic multilayer nanostructures by a finite-element theory of thermoelectric properties. We present analytical expressions for the thermopower and the current-induced temperature changes due to Peltier cooling/heating. The thermopower of a

  16. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    Science.gov (United States)

    Carstens, Thomas Alan

    This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment. OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency. The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the

  17. Thermoelectric Power Factor Limit of a 1D Nanowire

    Science.gov (United States)

    Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-01

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  18. Analytical and numerical investigation on a new compact thermoelectric generator

    International Nuclear Information System (INIS)

    Ming, Tingzhen; Yang, Wei; Huang, Xiaoming; Wu, Yongjia; Li, Xiaohua; Liu, Jun

    2017-01-01

    Highlights: • The mathematical model of maximum efficiency of TEG is deduced. • A new design method of compact TEG is presented. • The dimensional optimization of TEG is presented. • Comparison on the overall performance of three different TEGs is presented. - Abstract: In order to improve the performance and maximize the efficiency of energy conversion of thermoelectric generator (TEG), a mathematical model to predict the maximum energy conversion efficiency of TEG is developed. Then, a new compact thermoelectric generator (C-TEG) and a dimensional optimized TEG (DO-TEG) are proposed in this article. The compact thermoelectric generator is designed via logical intersection angle selection and layout, thus to improve the electric performance per unit volume. Finally, we compared the output electric performance of C-TEG and traditional thermoelectric generator (T-TEG) and that of DO-TEG under design and off-design conditions via numerical simulations. The results indicate that C-TEG has an excellent electric performance whose voltage, power, and efficiency decrease slightly whereas the output voltage, work, and efficiency compared with that of T-TEG have been significantly improved, with the amplitude increasing with the increase of resistant value of external loads.

  19. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  20. Thermoelectric performance enhancement of SrTiO3 by Pr doping

    KAUST Repository

    Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2014-01-01

    We investigate Pr doping at the Sr site as a possible route to enhance the thermoelectric behavior of SrTiO3-based materials, using first principles calculations in full-potential density functional theory. The effects of the Pr dopant on the local electronic structure and resulting transport properties are compared to common Nb doping. We demonstrate a substantial enhancement of the thermoelectric figure of merit and develop an explanation for the positive effects, which opens new ways for materials optimization by substitutional doping at the perovskite B site. © 2014 the Partner Organisations.

  1. Clinical significance of creative 3D-image fusion across multimodalities [PET + CT + MR] based on characteristic coregistration

    International Nuclear Information System (INIS)

    Peng, Matthew Jian-qiao; Ju Xiangyang; Khambay, Balvinder S.; Ayoub, Ashraf F.; Chen, Chin-Tu; Bai Bo

    2012-01-01

    Objective: To investigate a registration approach for 2-dimension (2D) based on characteristic localization to achieve 3-dimension (3D) fusion from images of PET, CT and MR one by one. Method: A cubic oriented scheme of“9-point and 3-plane” for co-registration design was verified to be geometrically practical. After acquisiting DICOM data of PET/CT/MR (directed by radiotracer 18 F-FDG etc.), through 3D reconstruction and virtual dissection, human internal feature points were sorted to combine with preselected external feature points for matching process. By following the procedure of feature extraction and image mapping, “picking points to form planes” and “picking planes for segmentation” were executed. Eventually, image fusion was implemented at real-time workstation mimics based on auto-fuse techniques so called “information exchange” and “signal overlay”. Result: The 2D and 3D images fused across modalities of [CT + MR], [PET + MR], [PET + CT] and [PET + CT + MR] were tested on data of patients suffered from tumors. Complementary 2D/3D images simultaneously presenting metabolic activities and anatomic structures were created with detectable-rate of 70%, 56%, 54% (or 98%) and 44% with no significant difference for each in statistics. Conclusion: Currently, based on the condition that there is no complete hybrid detector integrated of triple-module [PET + CT + MR] internationally, this sort of multiple modality fusion is doubtlessly an essential complement for the existing function of single modality imaging.

  2. A Retrospective Study of the Characteristics and Clinical Significance of A-Waves in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Jia Fang

    2017-09-01

    Full Text Available A-wave was observed in patients with motor neuron disease (1. However, data on the characteristics and clinical significance of A-waves in patients with amyotrophic lateral sclerosis (ALS have been scarce. The F-wave studies of 83 patients with ALS and 63 normal participants which were conducted previously at the Department of Neurology in Peking Union Medical College Hospital were retrospectively reviewed to determine the occurrence of A-waves in ALS. A-waves occurred more frequently in ALS patients than in normal controls. For the median and peroneal nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were comparable between the ALS patients and normal controls. For the ulnar and tibial nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were significantly increased in the ALS patients compared with those of the normal participants. Disease progression rate was slower in the ALS patients with A-waves (0.73 ± 0.99 than that in the ALS patients without A-waves (0.87 ± 0.55, P = 0.007. No correlations were found between the amplitudes of F-waves with A-waves and those of A-waves in the ulnar nerves (r = 0.423, P = 0.149. No correlations were found between the persistence of F-waves with A-waves and the persistence of A-waves in the ulnar nerves as well (r = 0.219, P = 0.473. The occurrence of A-waves may indicate dysfunction of lower motor neurons and possibly imply a relatively slower degenerative process.

  3. Experimental nuclear thermoelectric assembly open-quotes Gammaclose quotes-a prototype of an unattended self-regulating nuclear thermoelectric station

    International Nuclear Information System (INIS)

    Buinitskii, B.A.; Kaplar, E.P.; Kondrat'ev, F.V.; Leppik, P.A.; Nafikov, D.Ya.; Pavelko, V.I.; Rychev, A.S.; Tarasov, V.P.; Khlopkin, N.S.

    1993-01-01

    At the beginning of the seventies, the concept of building small atomic power stations with direct conversion of the thermal energy of a reactor for supplying electricity and heat to consumers located at remote and inaccessible regions was developed on the basis of assessment calculations and technical studies made in the I.V. Kurchatov Institute of Atomic Energy. When new technical solutions were adopted to put this concept into practice, combined trials on a test stand were required. For this purpose, the nuclear thermoelectric test-demonstration assembly open-quotes Gammaclose quotes was built and put into operation in 1981. It is based on the three principles which determine the development of unattended self-regulating nuclear thermoelectric stations: using a water-water reactor with self-regulation of the power as a source of heat; using a cooling system without pumps but with natural circulation of the coolant in the primary and intermediate circuits for removing the hend thermoelectric conversion of heat into electricity. During the ten years of operation of the open-quotes Gammaclose quotes assembly, a research program on the principles of unattended self-regulating nuclear thermoelectric stations was carried out and the results are summarized

  4. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  5. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  6. Comparison of CDOM EEMs Characteristics along F and PN section in Eastern China Sea: significance for sources tracing

    Science.gov (United States)

    Du, Yong; Zhang, Xiaoyu; Jiang, Binbin; Huang, Dasong; Yao, Lingling

    2015-04-01

    In this paper, a total of 28 water samples were collected mainly from three sections(C section in the Yangtze river inner estuary, PN section and F section on the spindle of Changjiang diluted water influenced by different hydrodynamic processes),which taken on two cruises in spring and summer of 2011. Absorption and fluorescence spectroscopy were measured along with dissolved organic carbon(DOC) concentrations and temperature, salinity and another environmental parameters to characterize the material sources and environmental implications of dissolved organic matter(DOM). Two protein-like components(tyrosine-like peak B and tryptophan-like peak T1), and two humic-like components(marine humic-like peak M and ultraviolet region humic-like peak A ) were identified by PARAFAC. We discussed CDOM distribution characteristic, material composition, and influence factors during the slowly dilution process of Changjiang diluted water into the east China sea by comparing the correlation of the CDOM absorption, fluorescence intensity, and fluorescence peak with DOC, in order to provide the based biogeochemistry theory basis for building DOC implications using CDOM fluorescence properties. The results revealed that:1) the Yangtze river and its inner estuary (upstream of the river mouth) were detected a higher amount of humic-like components. With the rapid dilution (or settlement) at the inner estuary, the humic-like components would further spread and dilute slowly on PN section and F section. On PN section, the terrigenous material is the main source material, and the main mechanism of CDOM distribution characteristics is controlled by dilution diffusion. Affected by the water mass convergence, marine dissolved organic matter in local waters had obvious input. However, due to the complexed hydrodynamic environment on F section, the input of terrigenous material has many ways. The influence of marine dissolved organic matter increased with the offshore distance increases.2

  7. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  8. Investigation of Nanophase Materials for Thermoelectric Applications

    National Research Council Canada - National Science Library

    Stokes, Kevin

    2004-01-01

    .... We have also made contributions to new, pressure-dependent thermoelectric transport measurement techniques and chemical techniques for creating ordered nanoparticle assemblies consisting of two different nanoparticle materials.

  9. Thermoelectric properties of atomically thin silicene and germanene nanostructures

    Science.gov (United States)

    Yang, K.; Cahangirov, S.; Cantarero, A.; Rubio, A.; D'Agosta, R.

    2014-03-01

    The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been investigated using first-principles density functional techniques and linear response for the thermal and electrical transport. We have considered here the two-dimensional silicene and germanene, together with nanoribbons of different widths. For the nano ribbons, we have also investigated the possibility of nano structuring these systems by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is remarkably high, up to 2.5.

  10. Nonlocal thermoelectric symmetry relations in ferromagnet-superconductor proximity structures

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX (United Kingdom)

    2012-07-01

    The symmetries of thermal and electric transport coefficients in quantum coherent structures are related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize Onsager's symmetry relation to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer processes. We proof this general symmetry by applying spin-dependent boundary conditions for quasi-classical Green's functions in both the clean and the dirty limit. We predict an anomalously large local thermopower and a nonlocal Seebeck effect, which can be explained by the spin-dependent spectral properties.

  11. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator

    International Nuclear Information System (INIS)

    Khattab, N.M.; El Shenawy, E.T.

    2006-01-01

    The possibility of using a solar thermoelectric generator (TEG) to drive a small thermoelectric cooler (TEC) is studied in the present work. The study includes the theory of both the TEG and the TEC, giving special consideration to determination of the number of TEG modules required to power the TEC to achieve the best performance of the TEG-TEC system all year round. Commercially available thermoelectric modules (TE) are used in the system. The TEG contains 49 thermocouples and the TEC contains 127 thermocouples. A simple arrangement of plane reflectors that are designed to receive maximum solar energy during noon time is used to heat the TEG. Performance tests are conducted to determine both the physical properties and the performance curves of the available TE modules. Also, empirical relations describing the performance of the TEG and TEC modules have been established. These relations are used to develop a mathematical model simulating the TEG-TEC system to predict its performance all year round under the actual climatic conditions of Cairo, Egypt (30 deg. N latitude). The model results are used to determine the number of TEG modules required to drive a single TEC module at maximum cooling capacity. The results show that five thermocouples of the TEG can drive one thermocouple of the TEC, which coincides with the previous theory of the TEG-TEC. This means that 10 of the used TEG modules are required to power the used TEC at optimum performance most times of the year

  12. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    Science.gov (United States)

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  13. Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering

    International Nuclear Information System (INIS)

    Qu Xiurong; Lue Shuchen; Hu Jianmin; Meng Qingyu

    2011-01-01

    Highlights: → With increasing hot-pressing (HP) temperature, the thermoelectric figure of merit of β-FeSi 2 ceramics is improved slightly. → The grain size of the sample sintered by the spark plasma sintering (SPS) process is smaller than that by the HP process. → The SPS sample shows excellent thermoelectric performance attributed to low thermal conductivity. - Abstract: The microstructure and thermoelectric properties of β-FeSi 2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi 2 and ε-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.

  14. Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

    International Nuclear Information System (INIS)

    Peng Changhai; Wu Zhishen

    2008-01-01

    Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming

  15. Magnéli oxides as promising n-type thermoelectrics

    Directory of Open Access Journals (Sweden)

    Gregor Kieslich

    2014-10-01

    Full Text Available The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magnéli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magnéli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magnéli oxides are encouraging for future research. Here, we put Magnéli oxides into context of n-type oxide thermoelectrics and give a perspective where future research can bring us.

  16. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

    Science.gov (United States)

    Zhang, Lucy T; Yang, Jubiao

    2016-12-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

  17. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli’s principle: An application to vocal folds vibration

    Science.gov (United States)

    Zhang, Lucy T.; Yang, Jubiao

    2017-01-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541

  18. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    Science.gov (United States)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  19. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  20. Thermoelectric single-photon detector

    International Nuclear Information System (INIS)

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  1. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Li, Z.; Su, C.Q.

    2015-01-01

    Graphical abstract: A new automotive exhaust-based thermoelectric generator and its “four-TEGs” system are constructed, and the performance characteristics of system are discussed through road test and revolving drum test. - Highlights: • The automotive thermoelectric generator system was constructed and studied. • Road test and revolving drum test were used to measure the output power. • A performance of 201.7 V (open circuit voltage)/944 W obtained. - Abstract: Thermoelectric power generators are one of the promising green energy sources. In this case study, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) has been constructed. The test bench is developed to analysis the performance of TEG system characteristics, which are undertaken to assess the feasibility of automotive applications. Based on the test bench, a new system called “four-TEGs” system is designed and assembled into prototype vehicle called “Warrior”, through the road test and revolving drum test table, characteristics of the system such as hot-side temperature, cold-side temperature, open circuit voltage and power output are studied, and a maximum power of 944 W was obtained, which completely meets the automotive application. The present study shows the promising potential of using this kind of thermoelectric generator for low-temperature waste heat recovery vehicle

  2. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  3. Thermoelectric coolers as power generators

    International Nuclear Information System (INIS)

    Burke, E.J.; Buist, R.J.

    1984-01-01

    There are many applications where thermoelectric (TE) coolers can be used effectively as power generators. The literature available on this subject is scarce and very limited in scope. This paper describes the configuration, capability, limitations and performance of TE coolers to be used as power generators. Also presented are performance curves enabling the user to design the optimum TE module for any given power generation application

  4. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Mateeva, N; Niculescu, H; Schlenoff, J; Testardi, L

    1997-07-01

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  5. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  6. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler...

  7. Test system for thermoelectric modules and materials

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Jiří; Knížek, Karel; Švejda, V.; Horna, P.; Sikora, M.

    2014-01-01

    Roč. 43, č. 10 (2014), s. 3726-3732 ISSN 0361-5235 R&D Projects: GA ČR GA13-17538S Institutional support: RVO:68378271 Keywords : thermoelectric power module * automatic thermoelectric testing setup * heat flow measurement * power generation * heat recovery Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.798, year: 2014

  8. semiconducting nanostructures: morphology and thermoelectric properties

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  9. Computational studies of novel thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D J; Mazin, I I; Kim, S G; Nordstrom, L

    1997-07-01

    The thermoelectric properties of La-filled skutterdites and {beta}-Zn{sub 4}Sb{sub 3} are discussed from the point of view of their electronic structures. These are calculated from first principles within the local density approximation. The electronic structures are in turn used to determine transport related quantities, {beta}-Zn{sub 4}Sb{sub 3} is found to be metallic with a complex Fermi surface topology, which yields a non-trivial dependence of the Hall concentration on the band filling. Calculations of the variation with band filling are used to extract the carrier concentration from the experimental Hall number. At this band filling, which corresponds to 0.1 electrons per 22 atom unit cell, the authors calculate a Seebeck coefficient and temperature dependence in good agreement with the experimental value. The high Seebeck coefficients in a metallic material are remarkable, and arise because of the strong energy dependence of the Fermiology near the experimental band filling. Virtual crystal calculations for La(Fe,Co){sub 4}Sb{sub 12}. The valence band maximum occurs at the {Gamma} point and is due to a singly degenerate dispersive (Fe,Co)-Sb band, which by itself would not be favorable for TE. However, very flat transition metal derived bands occur in close proximity and become active as the doping level is increased, giving a non-trivial dependence of the properties on carrier concentration and explaining the favorable TE properties.

  10. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    Directory of Open Access Journals (Sweden)

    J. García-Cañadas

    2016-03-01

    Full Text Available Understanding the dynamics of thermoelectric (TE phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.

  11. A holistic 3D finite element simulation model for thermoelectric power generator element

    International Nuclear Information System (INIS)

    Wu, Guangxi; Yu, Xiong

    2014-01-01

    Highlights: • Development of a holistic simulation model for the thermoelectric energy harvester. • Account for delta Seebeck coefficient and carrier charge densities variations. • Solution of thermo-electric coupling problem with finite element method. • Model capable of predicting phenomena not captured by traditional models. • A simulation tool for design of innovative TEM materials and structures. - Abstract: Harvesting the thermal energy stored in the ambient environment provides a potential sustainable energy source. Thermoelectric power generators have advantages of having no moving parts, being durable, and light-weighted. These unique features are advantageous for many applications (i.e., carry-on medical devices, embedded infrastructure sensors, aerospace, transportation, etc.). To ensure the efficient applications of thermoelectric energy harvesting system, the behaviors of such systems need to be fully understood. Finite element simulations provide important tools for such purpose. Although modeling the performance of thermoelectric modules has been conducted by many researchers, due to the complexity in solving the coupled problem, the influences of the effective Seebeck coefficient and carrier density variations on the performance of thermoelectric system are generally neglected. This results in an overestimation of the power generator performance under strong-ionization temperature region. This paper presents an advanced simulation model for thermoelectric elements that considers the effects of both factors. The mathematical basis of this model is firstly presented. Finite element simulations are then implemented on a thermoelectric power generator unit. The characteristics of the thermoelectric power generator and their relationship to its performance are discussed under different working temperature regions. The internal physics processes of the TEM harvester are analyzed from the results of computational simulations. The new model

  12. Theoretical analysis of heat transfer in, and electrical performance of, a milliwatt radioisotopic powered thermoelectric generator

    International Nuclear Information System (INIS)

    Biver, C.J.

    1975-01-01

    A simplified, theoretical model has been made for a radioisotope-powered milliwatt thermoelectric generator (RTG). Calculations of unit heat transfer and electrical performance characteristics are made in two ways: (a) using discrete values of input physical parameters for an individual unit; and (b) using a statistical simulation (Monte Carlo) approach for estimating the variation in performance in a group of N-units. The statistical simulation approach is useful in: (a) estimating the allowable range of input parameters conducive to the production design meeting specifications in a group of N-units; and (b) determining particular parameters that must be significantly restricted in variation to achieve desired performance. The available experimental data, as compared with the discrete value calculations, are in quite good agreement (within 5 percent generally). (U.S.)

  13. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-10-15

    The impurity formation energies of the σ and γ phases of Ni-based single crystal superalloys doped with W, Cr and Co in different sublattices have been investigated using first-principles based on the density functional theory. The bonding characteristics of the doped σ phase were analyzed with the valence charge densities and the density of the states. The results of the calculations indicated that the typical refractory element W, which has a large atomic size, preferentially partitions into the σ phase due to the nature of the bonding and the unique crystal structure with close-packed planes and large interstitial spaces. In addition, the site preference of refractory elements in γ phase was in the order of W, Cr and Co. - Highlights: • A reasonable σ phase model was adopted in our calculation. • The site preference of refractory elements in σ and γ phases was investigated. • The bonding characteristic was analyzed on the basis of electronic microstructures.

  14. Cosmological principles. II. Physical principles

    International Nuclear Information System (INIS)

    Harrison, E.R.

    1974-01-01

    The discussion of cosmological principle covers the uniformity principle of the laws of physics, the gravitation and cognizability principles, and the Dirac creation, chaos, and bootstrap principles. (U.S.)

  15. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  16. Radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel

  17. Environmental Impact Report for thermoelectric from coal in Candiota region - Brazil; RIMA para termeletrica a carvao na regiao de Candiota

    Energy Technology Data Exchange (ETDEWEB)

    Rossato, A C; Camison, F L; Ladniuk, S T [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1990-12-31

    The principles for executing the Environmental Impact Studies and the elaboration of Environmental Impact Report, referring to the first module of Candiota III Thermoelectric Plant, near to the Electric Energy State Company are described, with some aspects about the mine, plant, region, executor corporations and comprehend area for the environmental impact studies. (C.G.C.).

  18. Thermoelectric transport properties of high mobility organic semiconductors

    Science.gov (United States)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states

  19. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  20. Dynamic thermoelectricity in uniform bipolar semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Volovichev, I.N., E-mail: vin@ire.kharkov.ua

    2016-07-01

    The theory of the dynamic thermoelectric effect has been developed. The effect lies in an electric current flowing in a closed circuit that consists of a uniform bipolar semiconductor, in which a non-uniform temperature distribution in the form of the traveling wave is created. The calculations are performed for the one-dimensional model in the quasi-neutrality approximation. It was shown that the direct thermoelectric current prevails, despite the periodicity of the thermal excitation, the circuit homogeneity and the lack of rectifier properties of the semiconductor system. Several physical reasons underlining the dynamic thermoelectric effect are found. One of them is similar to the Dember photoelectric effect, its contribution to the current flowing is determined by the difference in the electron and hole mobilities, and is completely independent of the carrier Seebeck coefficients. The dependence of the thermoelectric short circuit current magnitude on the semiconductor parameters, as well as on the temperature wave amplitude, length and velocity is studied. It is shown that the magnitude of the thermoelectric current is proportional to the square of the temperature wave amplitude. The dependence of the thermoelectric short circuit current on the temperature wave length and velocity is the nonmonotonic function. The optimum values for the temperature wave length and velocity, at which the dynamic thermoelectric effect is the greatest, have been deduced. It is found that the thermoelectric short circuit current changes its direction with decreasing the temperature wave length under certain conditions. The prospects for the possible applications of the dynamic thermoelectric effect are also discussed.

  1. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    Science.gov (United States)

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm-1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m-1 K-2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  2. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  3. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  4. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  5. Numerical and experimental investigation of thermoelectric cooling in down-hole measuring tools; a case study

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-09-01

    Full Text Available Use of Peltier cooling in down-hole seismic tooling has been restricted by the performance of such devices at elevated temperatures. Present paper analyses the performance of Peltier cooling in temperatures suited for down-hole measuring equipment using measurements, predicted manufacturer data and computational fluid dynamic analysis. Peltier performance prediction techniques is presented with measurements. Validity of the extrapolation of thermoelectric cooling performance at elevated temperatures has been tested using computational models for thermoelectric cooling device. This method has been used to model cooling characteristics of a prototype downhole tool and the computational technique used has been proven valid.

  6. Hall and thermoelectric evaluation of p-type InAs

    International Nuclear Information System (INIS)

    Wagener, M.C.; Wagener, V.; Botha, J.R.

    2009-01-01

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  7. Electrical properties and figures of merit for new chalcogenide-based thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, J L; Hogan, T P; Brazis, P W; Kannewurf, C R; Chung, D Y; Kanatzidis, M G

    1997-07-01

    New Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi{sub 4}Te{sub 6} have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of {approx}+110 {micro}V/K at room temperature. A second compound, {beta}-K{sub 2}Bi{sub 8}Se{sub 13} shows lower conductivity {approx}240 S/cm, but a larger n-type thermopower {approx}{minus}200 {micro}V/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi{sub 2}Te{sub 3}. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi{sub 4}Te{sub 6} reaches ZT {approx} 0.32 at 260 K and for {beta}-K{sub 2}Bi{sub 8}Se{sub 13} ZT {approx} 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.

  8. Thermoelectric Effects under Adiabatic Conditions

    Directory of Open Access Journals (Sweden)

    George Levy

    2013-10-01

    Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.

  9. Body Dysmorphic Disorder and Other Clinically Significant Body Image Concerns in Adolescent Psychiatric Inpatients: Prevalence and Clinical Characteristics

    Science.gov (United States)

    Dyl, Jennifer; Kittler, Jennifer; Phillips, Katharine A.; Hunt, Jeffrey I.

    2006-01-01

    Background: This study assessed prevalence and clinical correlates of body dysmorphic disorder (BDD), eating disorders (ED), and other clinically significant body image concerns in 208 consecutively admitted adolescent inpatients. It was hypothesized that adolescents with BDD would have higher levels of depression, anxiety, and suicidality.…

  10. Big Science comes of age talk of the demise of Big Science is premature. But its characteristics have changed significantly

    CERN Multimedia

    1999-01-01

    Large scale science research facilities are now not only multi-user and multi-experimental, they are also used by scientists from different scientific areas. This demonstrates a significant trend - the growing collaboration between separate scientific disciplines and hence a real interdisciplinary approach to scientific questions (1/2 page).

  11. Experimental Study on Effect of Operating Conditions on Thermoelectric Power Generation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Effect of boundary conditions of thermal reservoirs on power generation of thermoelectric modules (TEMs) is examined experimentally. To realize the characteristics of the power generation by the TEMs, the system performance is studied over various volumetric flow rates and flow temperatures...

  12. Thermoelectric generator cooling system and method of control

    Science.gov (United States)

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  13. High Temperature Thermoelectric Oxides Engineered At Multiple Length Scales For Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, Fumio [Univ. of Washington, Seattle, WA (United States); Bordia, Rajendra [Clemson Univ., SC (United States)

    2014-12-20

    Thermoelectric aspects of the processing parameters the n-type relaxors, including SrxBa1-xNb2O6 (SBN100x), Sr2Nb2O7 (SN) and SrBi2Nb2O9 (SBiN), were investigated. A solution combustion synthesis (SCS) route was devised to fabricate SBN, SN and SBiN nanoparticles with excellent phase purity. X-ray photoelectron spectroscopy (XPS) was used to deduce the local cation site occupancy, and detailed thermoelectric transport processes were investigated. Based on the identified behavior, effectiveness of pore formers on the thermoelectric performance was investigated with the goal of decreasing κ through enhanced phonon scattering while preserving the electron transport characteristics.

  14. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics

    Science.gov (United States)

    2016-09-01

    estimate all swim speeds for those water bodies. For this reason, statistical tests for significance were conducted on only the WR and IR estimates. An...was not statistically significant does not support this conclusion. In addition to direct estimates of burst swim speeds from videotape of fish...perspective. P. Domenici and B.G. Kapoor (ed.s), Boca Raton: CRC Press. Gray, J. 1953. How animals move. Cambridge , U.K.: University Press. Holliman, F. M

  15. Development and optimization of a stove-powered thermoelectric generator

    Science.gov (United States)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  16. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    Astrain, D.; Martínez, A.; Rodríguez, A.

    2012-01-01

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  17. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric

  18. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  19. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    Science.gov (United States)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  20. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  1. Review on Polymers for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Mario Culebras

    2014-09-01

    Full Text Available In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3–4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  2. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  3. Review on Polymers for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Gómez, Clara M; Cantarero, Andrés

    2014-09-18

    In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  4. Effective thermal conductivity in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  5. Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material

    International Nuclear Information System (INIS)

    Parker, David; Singh, David J

    2012-01-01

    We analyze the thermoelectric behavior, using first principles and Boltzmann transport calculations, of very heavily electron-doped CrSi 2 and find that at temperatures of 900-1250 K and electron dopings of 1-4 × 10 21 cm -3 , thermopowers as large in magnitude as 200 μV K -1 may be found. Such high thermopowers at such high carrier concentrations are extremely rare, and suggest that excellent thermoelectric performance may be found in these ranges of temperature and doping. (paper)

  6. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator

    International Nuclear Information System (INIS)

    Wang, Yiping; Li, Shuai; Zhang, Yifeng; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-01-01

    Highlights: • Cylindrical grooves to improve the performance of TEG were proposed. • Mainly thermal resistance in TEG was the heat convection in heat exchanger. • Proper height of heat exchanger can improve the TEG performance. • Keeping heat exchanger partly covered with TEM can make full use of each TEM. - Abstract: The waste heat of automotive exhaust gas would be directly transferred into electricity by thermoelectric modules (TEM) because of the temperature difference between heat exchanger and water tank. For the vehicle thermoelectric generator (TEG), the electrical power generation was deeply influenced by temperature difference, temperature uniformity and topological structure of TEG. In previous works, increasing the difference of temperature would significantly enhance the power generation of TEG and inserted fins were always applied to enhance heat transfer in heat exchanger. However the fins would result in a large unwanted back pressure which went against to the efficiency of the engine. In current studies, in order to enhance heat transfer rates and to avoid back pressure increase, a heat exchanger containing cylindrical grooves (the depth-to-width ratio is 0.25) on the interior surface of heat exchanger was proposed. The cylindrical grooves could increase the heat transfer area and enhance the turbulence intensity, meanwhile there was no additional inserts in the fluid to block the flow. The surface temperatures of water tank and heat exchanger with three internal structures, such as grooved surface, flat surface and inserted fins, were studied by numerical simulation at each row of thermoelectric modules. The results showed that comparing to other structures, heat exchanger with cylindrical grooves could improve the TEG efficiency at a low back pressure. The influence of the channel height on the TEG performance was investigated and the TEG with a channel height of 8 mm showed the best overall performance. It was also found that a portion

  7. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  8. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  9. The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.

    Science.gov (United States)

    James, Darren C; Farmer, Laura J; Sayers, Jason B; Cook, David P; Mileva, Katya N

    2015-05-01

    The net contribution of all muscles that act about a joint can be represented as an internal joint moment profile. This approach may be advantageous when studying footwear-induced perturbations during walking since the contribution of the smaller deeper muscles that cross the ankle joint cannot be evaluated with surface electromyography. Therefore, the present study aimed to advance the understanding of FitFlop™ footwear interaction by investigating lower extremity joint moment, and kinematic and centre of pressure profiles during gait. 28 healthy participants performed 5 walking trials in 3 conditions: a FitFlop™ sandal, a conventional sandal and an athletic trainer. Three-dimensional ankle joint, and sagittal plane knee and hip joint moments, as well as corresponding kinematics and centre of pressure trajectories were evaluated. FitFlop™ differed significantly to both the conventional sandal and athletic trainer in: average anterior position of centre of pressure trajectory (Pgait pattern of wearers. An anterior displacement of the centre of pressure trajectory during early stance is the primary response to the destabilising effect of the mid-sole technology, and this leads to reductions in sagittal plane ankle joint range of motion and corresponding kinetics. Future investigations should consider the clinical implications of these findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft

    Science.gov (United States)

    Elefsiniotis, A.; Becker, Th.; Schmid, U.

    2014-06-01

    Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.

  11. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  12. Thermoelectric properties of cobalt–antimonide thin films prepared by radio frequency co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aziz; Han, Seungwoo, E-mail: swhan@kimm.re.kr

    2015-07-31

    Co–Sb thin films with an Sb content in the range 65–76 at.%, were deposited on a thermally oxidized Si (100) substrate preheated at 200 °C using radio-frequency co-sputtering. Evaluation using scanning electron microscopy images and X-ray diffraction reveals that the films were polycrystalline, with a grain size in the range 100–250 nm. Energy-dispersive spectroscopy analysis indicates single-phase CoSb{sub 2} and CoSb{sub 3} films, as well as multiphase thin films with either CoSb{sub 2} or CoSb{sub 3} as the dominant phase. The electrical and thermoelectric properties were measured and found to be strongly dependent on the observed phases and the defect concentrations. The CoSb{sub 2} thin films were found to exhibit a significant n-type thermoelectric effect, which, coupled with the very low electrical resistivity, resulted in a larger power factor than that of the CoSb{sub 3} thin films. We find power factors of 0.73 mWm{sup −1} K{sup −2} and 0.67 mWm{sup −1} K{sup −2} for the CoSb{sub 2} and CoSb{sub 3} thin films, respectively. - Highlights: • Polycrystalline Co–Sb thin films were obtained by present deposition strategy. • CoSb{sub 2} and CoSb{sub 3} have semimetal and semiconductor characteristics respectively. • The Seebeck coefficient depends heavily on defect concentration and impurity phases. • Film properties in the second heating cycle were different from the first. • CoSb{sub 2} is found to possess significant n-type thermopower.

  13. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay

    2018-02-21

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module and illustrate the inter-diffusions across the interface of constituent layers. For Bi2Te3-based module, soldering is the primary bonding method, giving rise to the investigations on the selections of solder, diffusion barrier layer and electrode. For mid-temperature PbTe-based TE module, hot-pressing or spark plasma sintering are alternative bonding approaches; the inter-diffusions between the diffusion barrier layer, electrode and TE substrate are addressed as well.

  14. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  15. Bernoulli's Principle

    Science.gov (United States)

    Hewitt, Paul G.

    2004-01-01

    Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

  16. Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Leena; Sekhon, Jagmeet S.; Arora, Ashima; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali (IISER M), Sector 81, S. A. S. Nagar, Manauli PO-140306 (India); Guin, Satya N.; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in [New Chemistry Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064 (India)

    2014-09-15

    It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe{sub 2} has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe{sub 2} crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm–3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe{sub 2} and gives rise to the observed ferroelectricity. Stereochemically active 5S{sup 2} lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe{sub 2}.

  17. Thermoelectric generator performance analysis: Influence of pin tapering on the first and second law efficiencies

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Ali, H.

    2015-01-01

    Highlights: • Double tapering of thermoelectric elements improves first and second law efficiency. • Pin geometric feature maximizing device output work does not maximize thermal efficiency. • Pin geometric feature maximizing first law efficiency slight alters for maximum second law efficiency. • External resistance and operating temperature ratios influence design configuration of thermoelectric generator. - Abstract: Thermoelectric generators are the important candidates for clean energy conversion from the waste heat; however, their low efficiency limits the practical applications of the devices. Tailoring the geometric configuration of the device in line with the operating conditions can improve the device performance. Consequently; in the present study, the influence of the pin geometric configuration on the thermoelectric generator performance is investigated. The dimensionless tapering parameter is introduced and its effect on the first and second law efficiencies is examined for various operating conditions including the external load resistance and the temperature ratio. It is found that the first and second law efficiencies are significantly influenced by the pin geometry. The dimensionless tapering parameter (a), increasing tapering of the thermoelectric pins, within the range of 2 ⩽ a ⩽ 4 results in improved first and second law efficiencies. However, the dimensionless tapering parameter maximizing the first and second law efficiencies does not maximize the device output power. This behavior is associated with the external load resistance which has a considerable influence on the device output power such that increasing external load resistance lowers the device output power

  18. Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Hejazi, Mohamad; Li, Hongyi; Forman, Barton; Zhang, Xiao

    2017-07-10

    This study explores the interactions between climate and thermoelectric generation in the U.S. by coupling an Earth System Model with a thermoelectric power generation model. We validated model simulations of power production for selected power plants (~44% of existing thermoelectric capacity) against reported values. In addition, we projected future usable capacity for existing power plants under two different climate change scenarios. Results indicate that climate change alone may reduce average thermoelectric generating capacity by 2%-3% by the 2060s. Reductions up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. This study concludes that the impact of climate change on the U.S. thermoelectric power system is less than previous estimates due to an inclusion of a spatially-disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. This work highlights the significance of accounting for legal constructs in which the operation of power plants are managed, and underscores the effects of provisional variances in addition to environmental requirements.

  19. Hierarchical thermoelectrics : Crystal grain boundaries as scalable phonon scatterers

    NARCIS (Netherlands)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, PZ; Donadio, Davide; Leoni, Stefano

    2016-01-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier

  20. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses

  1. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  2. Experimental transport phenomena and optimization strategies for thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, A C; Gillespie, D J

    1997-07-01

    When a new and promising thermoelectric material is discovered, an effort is undertaken to improve its figure of merit. If the effort is to be more efficient than one of trial and error with perhaps some rule of thumb guidance then it is important to be able to make the connection between experimental data and the underlying material characteristics, electronic and phononic, that influence the figure of merit. Transport and fermiology experimental data can be used to evaluate these material characteristics and thus establish trends as a function of some controllable parameter, such as composition. In this paper some of the generic-materials characteristics, generally believed to be required for a high figure of merit, will be discussed in terms of the experimental approach to their evaluation and optimization. Transport and fermiology experiments will be emphasized and both will be outlined in what they can reveal and what can be obscured by the simplifying assumptions generally used in their interpretation.

  3. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Sikander; Khan, Saleem Ayaz [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2015-10-15

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method and the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.

  4. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.

    2015-02-01

    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  5. On one possibility for application of new thermoelectric materials based on Ag2Te

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Parvanov, Svetlin; Vachkov, Valeri

    2011-01-01

    The thermoelectric characteristics of Ag 2 Te and Ag 1,84 Cd 0,08 Te (solid solution based on Ag 2 Te) are investigated and analyzed. The main thermoelectric characteristics of the solid solution: α=118 μV/K; σ = 2230 S/cm and = 2,45.10 -2 W/(cm.K) ensure coefficient of thermoelectric efficiency z = 1,27. 10-3 K -1 (at 300 ), which increases this of the Ag 2 Te. A composition for commutation material is developed, which connects the N- and the P-branches of a single thermo element (52 wt. % In + 48 wt. % Sn) with melting temperature of 390 K. The possibility for application of the Ag 1,84 Cd 0,08 Te solid solution as N-branch of a thermo element in combination with the solid solution Bi 0,5 Sb 1,5 Te 3 (P-branch) is investigated. The thermo element guarantees values of z from 0,71.10 -3 to 1,27.10 -3 K -1 in the temperature interval 250 - 350 . The maximum z value is registered at 300 K (z = 1,27.10 -3 K -1 ). Keywords: Silver telluride, Solid solutions, Thermoelectric properties, Thermo element

  6. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle

    International Nuclear Information System (INIS)

    He, Y.L.; Tao, W.Q.; Song, F.Q.; Zhang, W.

    2005-01-01

    In this paper, 3-D numerical simulations were performed for laminar heat transfer and fluid flow characteristics of plate fin-and-tube heat exchanger. The effects of five factors were examined: Re number, fin pitch, tube row number, spanwise and longitudinal tube pitch. The Reynolds number based on the tube diameter varied from 288 to 5000, the non-dimensional fin pitch based on the tube diameter varied from 0.04 to 0.5, the tube row number from 1 to 4, the spanwise tube pitch S 1 /d varies from 1.2 to 3, and the longitudinal tube pitch S 2 /d from 1.0 to 2.4. The numerical results were analyzed from the view point of field synergy principle, which says that the reduction of the intersection angle between velocity and fluid temperature gradient is the basic mechanism to enhance convective heat transfer. It is found that the effects of the five parameters on the heat transfer performance of the finned tube banks can be well described by the field synergy principle, i.e., the enhancement or deterioration of the convective heat transfer across the finned tube banks is inherently related to the variation of the intersection angle between the velocity and the fluid temperature gradient. It is also recommended that to further enhance the convective heat transfer, the enhancement techniques, such as slotting the fin, should be adopted mainly in the rear part of the fin where the synergy between local velocity and temperature gradient become worse

  7. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  8. Influence of high energy β-radiation on thermoelectric performance of filled skutterudites compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun, E-mail: jikunchen@seas.harvard.edu [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zha, Hao [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Xia, Xugui; Qiu, Pengfei; Li, Yulong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Chuanjing; Han, Yunsheng [Nuctech Company Limited, Beijing (China); Shi, Xun; Chen, Lidong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jin, Qingxiu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Chen, Huaibi, E-mail: chenhb@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-08-15

    Highlights: • Impact by MeV β-rays irradiation on skutterudite TE material was investigated. • Monte-Carlo simulation is used to simulate the deposited energy irradiations. • The high deposited energy does not change the TE performance. • The light irradiation does not show a significant impact on TE materials. - Abstract: The influence of MeV β-rays irradiation on the thermoelectric performance of n-type filled skutterudite material has been investigated using an electron accelerator. Using a Monte-Carlo simulation base on Fluka code, the deposited energy in the sample material from the irradiation is estimated, which shows a large power deposited around 50 W/mm. Nevertheless, the thermoelectric performances of the filled skutterudite samples are compared before and after irradiations. It indicates that the thermoelectric material will not be easily jeopardized by ‘light’ irradiations with energy lower than MeV range.

  9. Influence of high energy β-radiation on thermoelectric performance of filled skutterudites compounds

    International Nuclear Information System (INIS)

    Chen, Jikun; Zha, Hao; Xia, Xugui; Qiu, Pengfei; Li, Yulong; Wang, Chuanjing; Han, Yunsheng; Shi, Xun; Chen, Lidong; Jin, Qingxiu; Chen, Huaibi

    2015-01-01

    Highlights: • Impact by MeV β-rays irradiation on skutterudite TE material was investigated. • Monte-Carlo simulation is used to simulate the deposited energy irradiations. • The high deposited energy does not change the TE performance. • The light irradiation does not show a significant impact on TE materials. - Abstract: The influence of MeV β-rays irradiation on the thermoelectric performance of n-type filled skutterudite material has been investigated using an electron accelerator. Using a Monte-Carlo simulation base on Fluka code, the deposited energy in the sample material from the irradiation is estimated, which shows a large power deposited around 50 W/mm. Nevertheless, the thermoelectric performances of the filled skutterudite samples are compared before and after irradiations. It indicates that the thermoelectric material will not be easily jeopardized by ‘light’ irradiations with energy lower than MeV range

  10. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  11. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  12. Coupled Thermoelectric Devices: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jaziel A. Rojas

    2016-07-01

    Full Text Available In this paper, we address theoretically and experimentally the optimization problem of the heat transfer occurring in two coupled thermoelectric devices. A simple experimental set up is used. The optimization parameters are the applied electric currents. When one thermoelectric is analysed, the temperature difference Δ T between the thermoelectric boundaries shows a parabolic profile with respect to the applied electric current. This behaviour agrees qualitatively with the corresponding experimental measurement. The global entropy generation shows a monotonous increase with the electric current. In the case of two coupled thermoelectric devices, elliptic isocontours for Δ T are obtained in applying an electric current through each of the thermoelectrics. The isocontours also fit well with measurements. Optimal figure of merit is found for a specific set of values of the applied electric currents. The entropy generation-thermal figure of merit relationship is studied. It is shown that, given a value of the thermal figure of merit, the device can be operated in a state of minimum entropy production.

  13. Improvement In The COP Of Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2015-08-01

    Full Text Available This paper described the study for heat transfer through thermoelectric cooler TEC by use of multistage thermoelectric module. To satisfy the heat dissipation of modern electronic element thermal designers have to increase fin area and fan speed to improve its cooling capacity. However the increase of fin area is restricted by the space. Besides the increase of fan speed would induce noise which damages human health. So air cooling by fan is hardly to meet the requirement of modern electronic component. Recently thermoelectric cooler TEC is applied to electronic cooling with the advantages of small size quietness and reliability. A typical thermoelectric cooler consists of p-type and n-type semiconductor pellets connected electrically in series and sandwiched between two ceramic substrates. Whenever direct current passes through the circuit it causes temperature differential between TEC sides. As a result one face of TEC which is called cold side will be cooled while its opposite face which is called hot side is simultaneously heated. The main problem over the use of TEC is the limited COP and its thermal performance. But these can be eliminated by use of multistage thermoelectric cooler.

  14. Performance characteristics of CA 19-9 radioimmunoassay and clinical significance of serum CA 19-9 assay in patients with malignancy

    International Nuclear Information System (INIS)

    Kim, S.E.; Shong, Y.K.; Cho, B.Y.; Kim, N.K.; Koh, C.S.; Lee, M.H.; Hong, K.S.

    1985-01-01

    To evaluate the performance characteristics of CA 19-9 radioimmunoassay and the clinical significance of serum CA 19-9 assay in patients with malignancy, serum CA 19-9 levels were measured by radioimmunoassay using monoclonal antibody in 135 normal controls, 81 patients with various untreated malignancy, 9 patients of postoperative colon cancer without recurrence and 20 patients with benign gastrointestinal diseases, who visited Seoul National University Hospital from June, 1984 to March, 1985. (Author)

  15. Silicon Germanium Quantum Well Thermoelectrics

    Science.gov (United States)

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  16. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  17. Development of a heat exchanger for the cold side of a thermoelectric module

    Energy Technology Data Exchange (ETDEWEB)

    Vian, J.G.; Astrain, D. [Department of Mechanical Engineering, Universidad Publica de Navarra, UPNA, 31006 Pamplona (Spain)

    2008-08-15

    A heat exchanger for the cold side of Peltier pellets in thermoelectric refrigeration, based on the principle of a thermosyphon with phase change and capillary action has been developed. This device improves the thermal resistance between the cold side of a Peltier pellet and the refrigerated ambient by 37% (from 0.513 of the finned heat sink, to 0.323 K/W). Analytic calculations and experimental optimisation of the TPM have been carried out by building and testing several prototypes. It also has been experimentally proved that the COP of thermoelectric refrigerators can be improved up to 32% (from 0.297 to 0.393) by incorporating the developed device. (author)

  18. Electronic, optical, and thermoelectric properties of Fe2+xV1−xAl

    Directory of Open Access Journals (Sweden)

    D. P. Rai

    2017-04-01

    Full Text Available We report the electronic, optical, and thermoelectric properties of full-Heusler alloy Fe2VAl with Fe antisite doping (Fe2+xV1−xAl as obtained from the first-principles Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to the available experimental data and show good agreements for the band gap, magnetic moment, and optical spectra. Exploring our transport data for thermoelectric applicability suggest that Fe2+xV1−xAl is a good candidate with a high figure of merit (ZT 0.75(0.65 for x = 0.25(0.50 at room temperature.

  19. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    International Nuclear Information System (INIS)

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  20. Enhanced thermoelectric figure of merit in strained Tl-doped Bi2Se3

    KAUST Repository

    Saeed, Y.

    2014-07-21

    We explain recent experimental findings on Tl-doped Bi2Se3 by determining the electronic and transport properties by first-principles calculations and semi-classical Boltzmann theory. Though Tl-doping introduces a momentum-dependent spin-orbit splitting, the effective mass of the carriers is essentially not modified, while the band gap is reduced. Tl is found to be exceptional in this respect as other dopants modify the dispersion, which compromises thermoelectricity. Moreover, we demonstrate that only after Tl-doping strain becomes an efficient tool for enhancing the thermoelectric performance. A high figure of merit of 0.86 is obtained for strong p-doping (7 × 10^20 cm^(−3), maximal power factor) at 500 K under 2% tensile strain.

  1. Electronic structure and high thermoelectric properties of a new material Ba{sub 3}Cu{sub 20}Te{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui, E-mail: kuiziyang@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China); Wu, Jinghe [Department of Physics and Electronic Engineering, Henan Institute of Education, Zhengzhou, 450046 (China); Zhang, Jing; Ma, Dongwei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China)

    2016-09-05

    The electronic structure and high thermoelectric properties of Ba{sub 3}Cu{sub 20}Te{sub 13} are studied using first principles calculations and the semiclassical Boltzmann theory. The coexistence of ionic and covalent bonding in Ba{sub 3}Cu{sub 20}Te{sub 13} indicates that it is a Zintl phase compound. The calculated band structure shows that the compound is a semiconductor with an indirect band gap ∼0.45 eV, which is an appropriate band for the high thermoelectric performance. The transport calculations based on the electronic structure indicate that it exhibits relatively large Seebeck coefficients, high electrical conductivities, and high power factor. For Ba{sub 3}Cu{sub 20}Te{sub 13}, the n-type doping may achieve a higher thermoelectric performance than that of p-type doping. It is worth noting that the thermoelectric parameters of Ba{sub 3}Cu{sub 20}Te{sub 13} are comparable or larger than that of Ca{sub 5}Al{sub 2}Sb{sub 6}, a typical Zintl compound representative with high thermoelectric performance. - Highlights: • The electronic structure and thermoelectric(TE) properties are firstly studied. • The heavy and light bands near the Fermi level benefit TE properties. • The comparison indicates Ba{sub 3}Cu{sub 20}Te{sub 13} is a potential high TE material.

  2. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    Science.gov (United States)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  3. A thermoelectric voltage effect in polyethylene oxide

    CERN Document Server

    Martin, B; Kliem, H

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depen...

  4. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  5. Holistic quantum design of thermoelectric niobium oxynitride

    Science.gov (United States)

    Music, Denis; Bliem, Pascal; Hans, Marcus

    2015-06-01

    We have applied holistic quantum design to thermoelectric NbON (space group Pm-3m). Even though transport properties are central in designing efficient thermoelectrics, mechanical properties should also be considered to minimize their thermal fatigue during multiple heating/cooling cycles. Using density functional theory, elastic constants of NbON were predicted and validated by nanoindentation measurements on reactively sputtered thin films. Based on large bulk-to-shear modulus ratio and positive Cauchy pressure, ceramic NbON appears ductile. These unusual properties may be understood by analyzing the electronic structure. Nb-O bonding is of covalent-ionic nature with metallic contributions. Second neighbor O-N bonds exhibit covalent-ionic character. Upon shear loading, these O-N bonds break giving rise to easily shearable planes. Ductile NbON, together with large Seebeck coefficient and low thermal expansion, is promising for thermoelectric applications.

  6. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  7. Method of operating a thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  8. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  9. Knudsen pump driven by a thermoelectric material

    International Nuclear Information System (INIS)

    Pharas, Kunal; McNamara, Shamus

    2010-01-01

    The first use of a thermoelectric material in the bidirectional operation of a gas pump using thermal transpiration has been demonstrated. The thermoelectric material maintains a higher temperature difference which favors thermal transpiration and thus increases the efficiency of gas pumping. Since the hot and cold sides of the thermoelectric material are reversible, the direction of the pump may be changed by reversing the electrical current direction. Two different pump designs are presented that illustrate some of the design tradeoffs. The pumps are characterized by measuring the pressure difference that may be generated and by measuring the flow rate in the forward and reverse directions. For a pump composed of a porous material with a pore size of 100 nm, a maximum flow rate of 0.74 cm 3 min −1 and a maximum pressure of 1.69 kPa are achieved

  10. Materials growth and characterization of thermoelectric and resistive switching devices

    Science.gov (United States)

    Norris, Kate J.

    erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and

  11. NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    L. V. Bochkov

    2014-07-01

    Full Text Available The urgency of thermoelectric energy conversion is proved. Perspectives of nanostructures usage as thermoelectric materials are shown. The authors have systematized and generalized the methods and investigation results of bulk nanostructure thermoelectrics based on Bi-Sb-Te solid solutions. Ways of nanoparticles fabrication and their subsequent sintering into a bulk sample, results of structure study of the received materials are shown by methods of electronic microscopy and X-ray spectroscopy, results of mechanical properties investigation. Methods of manufacturing suggested with the authors’ participation and properties of thermoelectric nanocomposites, fabricated with addition of fullerene, thermally split graphite, graphene and molybdenum disulphide are discussed. Methods for prevention of recrystallization, measurement methods of thermoelectric properties of studied nanothermoelectrics are considered, including electric and thermal conductivities, thermoemf and the figure of merit. Factors that influence on thermoelectric figure of merit, including the tunneling of carriers through interfaces between nanograins, the additional phonon scattering on nanograin borders and the energy filtration of carriers through barriers have been theoretically investigated. Mechanisms and ways for improvement of the figure of merit are determined. Experimental confirmation for thermoelectric figure of merit increase is received. Physical mechanisms of thermoelectric figure of merit increase are shown by perceptivity of nanostructures utilization. The growth of thermoelectric figure of merit means an expansion of areas for rational application of thermoelectric energy generation and thermoelectric cooling.

  12. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  13. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  14. Peltier coefficient measurement in a thermoelectric module

    International Nuclear Information System (INIS)

    Garrido, Javier; Casanovas, Alejandro; Chimeno, José María

    2013-01-01

    A new method for measuring the Peltier coefficient in a thermocouple X/Y based on the energy balance at the junction has been proposed recently. This technique needs only the hot and cold temperatures of a thermoelectric module when an electric current flows through it as the operational variables. The temperature evolutions of the two module sides provide an evident and accurate idea of the Peltier effect. From these temperatures, the heat transfer between the module and the ambient is also evaluated. The thermoelectric phenomena are described in the framework of an observable theory. Based on this procedure, an experiment is presented for a university teaching laboratory at the undergraduate level. (paper)

  15. Thermoelectric materials and devices made therewith

    International Nuclear Information System (INIS)

    Moore, D.E.

    1985-01-01

    The disclosed invention includes improved devices and materials for thermoelectric conversion, particularly for operation at temperatures of 300 0 C. and below. Disordered p-type semiconductor elements incorporate compound adjuvants of silver and lead to achieve enhanced ''figure of merit'' values and corresponding increased efficiencies of thermoelectric conversion. Similar results are obtained with disordered n-type elements by employing lowered selenium contents, preferably in combination with cuprous bromide. Improved conversion devices include powder pressed elements from one or both of these materials

  16. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  17. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  18. High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Diez

    2018-01-01

    Full Text Available Bi2AE2Co2Ox (AE = Ca, Sr, and Ba thermoelectric compounds were grown from the melt by the laser floating zone technique. Microstructural analysis of as-grown samples has shown the formation of well-aligned thermoelectric grains together with a relative high amount of secondary phases. On the other hand, a short (24 h thermal treatment (810 °C for Sr, 800 °C for Ca, and 750 °C for Ba under air, raises of thermoelectric phase content through the recombination of the secondary ones. These microstructural modifications led to a large decrease of electrical resistivity, improving the power factor. These results have been compared with samples prepared by the conventional solid state method and with the best values reported in the literature. From these data, it is possible to deduce that the high thermoelectric characteristics obtained in these samples make them very attractive for practical applications.

  19. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    International Nuclear Information System (INIS)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira

    2007-01-01

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO 2 ), with thermoelectric power plants being responsible for about 7% of global CO 2 emissions. Microalgae can reduce CO 2 emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO 2 . When cultivated with 6% and 12% CO 2 , C. kessleri showed a high maximum specific growth rate (μ max ) of 0.267/day, with a maximum biomass productivity (P max ) of 0.087 g/L/day at 6% CO 2 . For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO 2 . We also found that these two microalgae also grew well when the culture medium contained up to 18% CO 2 , indicating that they have potential for biofixation of CO 2 in thermoelectric power plants

  20. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    de Morais, M.G.; Costa, J.A.V. [Federal University of Rio Grande, Rio Grande (Brazil)

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({lambda}{sub max}) of 0.267/day, with a maximum biomass productivity (P-max) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  1. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil); Costa, Jorge Alberto Vieira [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil)]. E-mail: dqmjorge@furg.br

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({mu} {sub max}) of 0.267/day, with a maximum biomass productivity (P {sub max}) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  2. A simple maximum power point tracker for thermoelectric generators

    International Nuclear Information System (INIS)

    Paraskevas, Alexandros; Koutroulis, Eftichios

    2016-01-01

    Highlights: • A Maximum Power Point Tracking (MPPT) method for thermoelectric generators is proposed. • A power converter is controlled to operate on a pre-programmed locus. • The proposed MPPT technique has the advantage of operational and design simplicity. • The experimental average deviation from the MPP power of the TEG source is 1.87%. - Abstract: ThermoElectric Generators (TEGs) are capable to harvest the ambient thermal energy for power-supplying sensors, actuators, biomedical devices etc. in the μW up to several hundreds of Watts range. In this paper, a Maximum Power Point Tracking (MPPT) method for TEG elements is proposed, which is based on controlling a power converter such that it operates on a pre-programmed locus of operating points close to the MPPs of the power–voltage curves of the TEG power source. Compared to the past-proposed MPPT methods for TEGs, the technique presented in this paper has the advantage of operational and design simplicity. Thus, its implementation using off-the-shelf microelectronic components with low-power consumption characteristics is enabled, without being required to employ specialized integrated circuits or signal processing units of high development cost. Experimental results are presented, which demonstrate that for MPP power levels of the TEG source in the range of 1–17 mW, the average deviation of the power produced by the proposed system from the MPP power of the TEG source is 1.87%.

  3. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  4. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.

    Science.gov (United States)

    Kim, Suk Lae; Choi, Kyungwho; Tazebay, Abdullah; Yu, Choongho

    2014-03-25

    Thermoelectric energy conversion is very effective in capturing low-grade waste heat to supply electricity particularly to small devices such as sensors, wireless communication units, and wearable electronics. Conventional thermoelectric materials, however, are often inadequately brittle, expensive, toxic, and heavy. We developed both p- and n-type fabric-like flexible lightweight materials by functionalizing the large surfaces and junctions in carbon nanotube (CNT) mats. The poor thermopower and only p-type characteristics of typical CNTs have been converted into both p- and n-type with high thermopower. The changes in the electronic band diagrams of the CNTs were experimentally investigated, elucidating the carrier type and relatively large thermopower values. With our optimized device design to maximally utilize temperature gradients, an electrochromic glucose sensor was successfully operated without batteries or external power supplies, demonstrating self-powering capability. While our fundamental study provides a method of tailoring electronic transport properties, our device-level integration shows the feasibility of harvesting electrical energy by attaching the device to even curved surfaces like human bodies.

  5. Performance estimation of photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin; Yang, Lili

    2014-01-01

    A theoretical model for evaluating the efficiency of concentrating PV–TE (photovoltaic–thermoelectric) hybrid system is developed in this paper. Hybrid systems with different photovoltaic cells are studied, including crystalline silicon photovoltaic cell, silicon thin-film photovoltaic cell, polymer photovoltaic cell and copper indium gallium selenide photovoltaic cell. The influence of temperature on the efficiency of photovoltaic cell has been taken into account based on the semiconductor equations, which reveals different efficiency temperature characteristic of polymer photovoltaic cells. It is demonstrated that the polycrystalline silicon thin-film photovoltaic cell is suitable for concentrating PV–TE hybrid system through optimization of the convection heat transfer coefficient and concentrating ratio. The polymer photovoltaic cell is proved to be suitable for non-concentrating PV–TE hybrid system. - Highlights: • Performances of four types of photovoltaic–thermoelectric hybrid systems are studied. • Temperature is one of dominant factors of affecting the conversion efficiency of PV–TE systems. • One can select a proper PV–TE assembly system according to given operating conditions

  6. Direct contact thermoelectric generator (DCTEG): A concept for removing the contact resistance between thermoelectric modules and heat source

    International Nuclear Information System (INIS)

    Kim, Tae Young; Negash, Assmelash; Cho, Gyubaek

    2017-01-01

    Highlights: • A design concept of a direct contact thermoelectric generator (DCTEG) is proposed. • Power generation characteristics of the DCTEG on a diesel engine are examined. • Maximum power output of ∼45 W and conversion efficiency of ∼2.0% are obtained. • Effect of clearance on energy conversion of the DCTEG is numerically investigated. • A 132% increase in output power with a flush mounted configuration is obtained. - Abstract: This paper proposes the concept of a direct contact thermoelectric generator (DCTEG) to enhance the practicality and widen the application areas of thermoelectric generators (TEGs). In the DCTEG, one thermoelectric module (TEM) surface is directly exposed to a heat source, and the other surface is in direct contact with a coolant flow. The current direct-contact configuration is beneficial for system fabrication, maintenance, long-term reliability, and maximizing energy usage in cooperation with other energy systems because of its simple configuration and lack of interfaces between the TEMs and heat sources. In order to validate the proposed concept experimentally, a DCTEG was constructed by fabricating customized TEMs and exhaust gas and coolant channels with openings to mount the TEMs. A diesel engine served as a heat source by providing hot exhaust gas into the DCTEG, while the coolant (water–ethylene glycol mixture) was pumped into the coolant channels to remove heat. Based on the experimental results obtained under various engine operating conditions, the power generation of the DCTEG was characterized in the form of current–voltage and power–voltage curves. The maximum output power of 43 W and conversion efficiency of 2.0% were obtained under the highest engine load and rotation speed conditions. A series of numerical simulations was carried out to investigate the effect of the system configuration on the DCTEG power generation performance with the clearance between the TEM surfaces and exhaust gas

  7. An oxide-based thermoelectric generator: Transversal thermoelectric strip-device

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Töpfer, J.

    2015-07-01

    A special design of an oxide-based transversal thermoelectric device utilizing thermoelectric oxides in combination with a ceramic multilayer technology is proposed. Metal strips within the ceramic matrix replace the tilted stack of alternating layers used in artificial anisotropic transversal thermoelectric devices. Numerical three-dimensional simulations of both device types reveal better thermoelectric performance data for the device with metal stripes. A monolithic transversal strip-device based on the material combination La1.97Sr0.03CuO4/Ag6Pd1 was prepared and electrically characterized. A maximum power output of 4.0 mW was determined at ΔT = 225 K for the monolithic device. The observed results are in remarkable agreement with three-dimensional numerical simulations utilizing the transport parameters of the two materials and the geometry data of the device.

  8. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  9. Stretchable Helical Architecture Inorganic-Organic Hetero Thermoelectric Generator

    KAUST Repository

    Rojas, Jhonathan Prieto; Singh, Devendra; Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; Foulds, Ian G.; Hussain, Muhammad Mustafa

    2016-01-01

    To achieve higher power output from a thermoelectric generator (TEG), one needs to maintain a larger temperature difference between hot and cold end. In that regard, a stretchable TEG can be interesting to adaptively control the temperature difference. Here we show, the development of simple yet versatile and highly stretchable thermoelectric generators (TEGs), by combining well-known inorganic thermoelectric materials Bismuth Telluride and Antimony Telluride (Bi2Te3 and Sb2Te3) with organic substrates (Off-Stoichiometry Thiol-Enes polymer platform – OSTE, polyimide or paper) and novel helical architecture (double-arm spirals) to achieve over 100% stretchability. First, an OSTE-based TEG design demonstrates higher open circuit voltage generation at 100% strain than at rest, although it exhibits high internal resistance and a relatively complex fabrication process. The second, simpler TEG design, achieves a significant resistance reduction and two different structural substrates (PI and paper) are compared. The paper-based TEG generates 17 nW (ΔT = 75 °C) at 60% strain, which represents more than twice the power generation while at rest (zero strain). On the other hand, polyimide produces more conductive TE films and higher power (~35 nW at ΔT = 75 °C) but due to its higher thermal conductivity, power does not increase at stretch. In conclusion, highly stretchable TEGs can lead to higher temperature gradients (thus higher power generation), given that thermal conductivity of the structural material is low enough. Furthermore, either horizontal or vertical displacement can be achieved with double-arm helical architecture, hence allowing to extend the device to any nearby and mobile heat sink for continuous, effectively higher power generation.

  10. Stretchable Helical Architecture Inorganic-Organic Hetero Thermoelectric Generator

    KAUST Repository

    Rojas, Jhonathan Prieto

    2016-10-26

    To achieve higher power output from a thermoelectric generator (TEG), one needs to maintain a larger temperature difference between hot and cold end. In that regard, a stretchable TEG can be interesting to adaptively control the temperature difference. Here we show, the development of simple yet versatile and highly stretchable thermoelectric generators (TEGs), by combining well-known inorganic thermoelectric materials Bismuth Telluride and Antimony Telluride (Bi2Te3 and Sb2Te3) with organic substrates (Off-Stoichiometry Thiol-Enes polymer platform – OSTE, polyimide or paper) and novel helical architecture (double-arm spirals) to achieve over 100% stretchability. First, an OSTE-based TEG design demonstrates higher open circuit voltage generation at 100% strain than at rest, although it exhibits high internal resistance and a relatively complex fabrication process. The second, simpler TEG design, achieves a significant resistance reduction and two different structural substrates (PI and paper) are compared. The paper-based TEG generates 17 nW (ΔT = 75 °C) at 60% strain, which represents more than twice the power generation while at rest (zero strain). On the other hand, polyimide produces more conductive TE films and higher power (~35 nW at ΔT = 75 °C) but due to its higher thermal conductivity, power does not increase at stretch. In conclusion, highly stretchable TEGs can lead to higher temperature gradients (thus higher power generation), given that thermal conductivity of the structural material is low enough. Furthermore, either horizontal or vertical displacement can be achieved with double-arm helical architecture, hence allowing to extend the device to any nearby and mobile heat sink for continuous, effectively higher power generation.

  11. Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarragon essential oil.

    Science.gov (United States)

    Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Mortazavi, Seyed Ali; Mohebbi, Mohebbat

    2017-04-01

    Principle component analysis (PCA) was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. Antimicrobial effect was evaluated on 10 pathogenic microorganisms through the methods of hole-plate diffusion method, disk diffusion method, pour plate method, minimum inhibitory concentration and minimum bactericidal/fungicidal concentration. Antioxidant potential and total phenolic content were examined through the method of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu method, respectively. The components were identified through gas chromatography and gas chromatography/mass spectrometry. Barhang seed mucilage (BSM) based edible coating containing 0, 0.5, 1 and 1.5% (w/w) Tarragon (T) essential oil mix were applied on beef slices to control the growth of pathogenic microorganisms. Microbiological (total viable count, psychrotrophic count, Escherichia coli, Staphylococcus aureus and fungi), chemical (thiobarbituric acid, peroxide value and pH) and sensory characteristics (odor, color and overall acceptability) analysis measurements were made during the storage periodically. PCA was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. The PCA showed that the properties of the uncoated meat samples on the 9th, 12th, 15th and 18th days of storage are continuously changing independent of the exerted treatments on the other samples. This reveals the effect of the exerted treatments on the samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  13. Application of thermoelectric generator as an alternative energy source; Utilizacao dos geradores termoeletricos como fonte de energia alternativa

    Energy Technology Data Exchange (ETDEWEB)

    Pepino, Giovana [Newmar Energia, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This document will deal some information about the TEG and design of TEGs. Thermoelectric energy conversion is a solid state process that converts heat energy to electrical energy without moving parts. The result is a device that is characterized by a very high degree of reliability and low maintenance requirement. These characteristics lend the unit to service in remote areas where limited access is available fore service. Technicians that service the other equipment on location can be trained to service the thermoelectric generator. There are many other uses for TEGs including power supplies for supervisory control and data acquisition systems. (author)

  14. Thermoelectric Generator Emulator for MPPT Testing

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    This paper presents a novel approach to use a DC power supply as a thermoelectric generator (TEG) emulator to perform static and dynamic maximum power point tracking (MPPT). First, the electrical characterization of a calcium-manganese-oxide module is performed on a TEG test rig. Afterwards...

  15. Experimental Study of a Thermoelectric Generation System

    DEFF Research Database (Denmark)

    Zhu, Junpeng; Gao, Junling; Chen, Min

    2011-01-01

    . System-level simulation is carried out using a quasi-one-dimensional numerical model that enables direct comparison with experimental results. The results of both experiment and simulation will provide a foundation to improve and optimize complex thermoelectric generation systems....

  16. Thermoelectric devices and applications for the same

    Science.gov (United States)

    Olsen, Larry C.; DeSteese, John G.; Martin, Peter M.; Johnston, John W.; Peters, Timothy J.

    2016-03-08

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  17. Thermoelectric cooling container for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Aivazov, A A; Shtern, Y I; Budaguan, B G; Makhrachev, K B; Pastor, M

    1997-07-01

    In this work the thermoelectric cooling container for storing and transportation of the medicine, particularly for insulin, is discussed. In the working volume the temperature is supported on the level of +4 C. The container can work in two operating conditions: with the power supply and without the power supply. Two removable blocks are used for this purpose. One block (thermoelectric) is used for the work with the power supply and another (passive)-for the work without power supply. The thermoelectric block has a 12V power supply, which is used in the automobiles, yachts and other kinds of transport. The temperature in the working volume is supported by the use of the Peltier effect. An electronic device is used in this block and stabilizes temperature on the level of +4 C and indicates information about working conditions. The thermoelectric container has a power supply block for work at 220(110)V. The working temperature in the container can be maintained in the absence of the power supply. In this case the necessary temperature conditions are supported by melting of the crystallized salt. For this purpose the container has a hermetic volume containing this salt and contacting with the working volume.

  18. Design concepts for improved thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Slack, G A

    1997-07-01

    Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and cryptoclathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

  19. Interference enhanced thermoelectricity in quinoid type structures

    Energy Technology Data Exchange (ETDEWEB)

    Strange, M., E-mail: strange@chem.ku.dk; Solomon, G. C. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); Seldenthuis, J. S.; Verzijl, C. J. O.; Thijssen, J. M. [Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft (Netherlands)

    2015-02-28

    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical interacting model Hamiltonian describing the π-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdrawing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S{sup 2}G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.

  20. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  1. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  2. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Sellan, Daniel P.; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Evans, Daniel A.; Williams, Owen M.; Cowley, Alan H. [Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-05-16

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phonon scattering. The room temperature value of (186 ± 46) W m{sup −1 }K{sup −1} is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.

  3. Efficient p-n junction-based thermoelectric generator that can operate at extreme temperature conditions

    Science.gov (United States)

    Chavez, Ruben; Angst, Sebastian; Hall, Joseph; Maculewicz, Franziska; Stoetzel, Julia; Wiggers, Hartmut; Thanh Hung, Le; Van Nong, Ngo; Pryds, Nini; Span, Gerhard; Wolf, Dietrich E.; Schmechel, Roland; Schierning, Gabi

    2018-01-01

    In many industrial processes, a large proportion of energy is lost in the form of heat. Thermoelectric generators can convert this waste heat into electricity by means of the Seebeck effect. However, the use of thermoelectric generators in practical applications on an industrial scale is limited in part because electrical, thermal, and mechanical bonding contacts between the semiconductor materials and the metal electrodes in current designs are not capable of withstanding thermal-mechanical stress and alloying of the metal-semiconductor interface when exposed to the high temperatures occurring in many real-world applications. Here we demonstrate a concept for thermoelectric generators that can address this issue by replacing the metallization and electrode bonding on the hot side of the device by a p-n junction between the two semiconductor materials, making the device robust against temperature induced failure. In our proof-of-principle demonstration, a p-n junction device made from nanocrystalline silicon is at least comparable in its efficiency and power output to conventional devices of the same material and fabrication process, but with the advantage of sustaining high hot side temperatures and oxidative atmosphere.

  4. CeB6 Sensor for Thermoelectric Single-Photon Detector

    Directory of Open Access Journals (Sweden)

    Armen KUZANIAN

    2015-08-01

    Full Text Available Interest in single-photon detectors has recently sharply increased. The most developed single-photon detectors are currently based on superconductors. Following the theory, thermoelectric single-photon detectors can compete with superconducting detectors. The operational principle of thermoelectric detector is based on photon absorption by absorber as a result of which a temperature gradient is generated across the sensor. In this work we present the results of computer modeling of heat distribution processes after absorption of a photon of 1 keV - 1 eV energy in different areas of the absorber for different geometries of tungsten absorber and cerium hexaboride sensor. The time dependence of the temperature difference between the ends of the thermoelectric sensor and electric potential appearing across the sensor are calculated. The results of calculations show that it is realistic to detect single photons from IR to X-ray and determine their energy. Count rates up to hundreds gigahertz can be achieved.

  5. Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties

    Science.gov (United States)

    Li, Xia; Liu, Congcong; Wang, Tongzhou; Wang, Wenfang; Wang, Xiaodong; Jiang, Qinglin; Jiang, Fengxing; Xu, Jingkun

    2017-11-01

    Nowadays, inorganic/polymer composites have attracted significant interest in thermoelectric field, since the composite materials usually achieve their respective advantages complementary to each other. In this work, molybdenum diselenide (MoSe2) was synthesized by a facile hydrothermal method. Solution processible two-dimensional (2D) MoSe2 nanosheets (NSs) were successfully obtained using dimethylsulfoxide (DMSO) solvent or lithium intercalation procedure. Combined with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), MoSe2/PEDOT:PSS composite thin films were fabricated by direct vacuum-filtration method. Thermoelectric properties of composite thin films were investigated systematically and found that 2D MoSe2 NSs and PEDOT:PSS have the synergistic effect on improving thermoelectric properties. The maximum power factor was calculated to be 48.6 µW m-1 K-2 with 5 wt% 2D MoSe2 NSs embedding into PEDOT:PSS matrix, which is almost 69% higher than that of pure PEDOT:PSS. These results demonstrate that 2D inorganic/polymer composite method is one of promising strategies to get high-performance polymer-based thermoelectric composites.

  6. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  7. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  8. Performance Investigation of an Exhaust Thermoelectric Generator for Military SUV Application

    Directory of Open Access Journals (Sweden)

    Rui Quan

    2018-01-01

    Full Text Available To analyze the thermoelectric power generation for sports utility vehicle (SUV application, a novel thermoelectric generator (TEG based on low-temperature Bi2Te3 thermoelectric modules (TEMs and a chaos-shaped brass heat exchanger is constructed. The temperature distribution of the TEG is analyzed based on an experimental setup, and the temperature uniformity optimization method is performed by chipping peak off and filling valley is taken to validate the improved output power. An automobile exhaust thermoelectric generator (AETEG using four TEGs connected thermally in parallel and electrically in series is assembled into a prototype military SUV, its temperature distribution, output voltage, output power, system efficiency, inner resistance, and backpressure is analyzed, and several important influencing factors such as vehicle speed, clamping pressure, engine coolant flow rate, and ambient temperature on its output performance are tested. Experimental results demonstrate that higher vehicle speed, larger clamping pressure, faster engine coolant flow rate and lower ambient temperature can enhance the overall output performance, but the ambient temperature and coolant flow rate are less significant. The maximum output power of AETEG is 646.26 W, the corresponding conversion efficiency is 1.03%, and the increased backpressure changes from 1681 Pa to 1807 Pa when the highest vehicle speed is 125 km/h.

  9. Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons

    Science.gov (United States)

    Krompiewski, Stefan; Cuniberti, Gianaurelio

    2017-10-01

    Edge states in narrow quasi-two-dimensional nanostructures determine, to a large extent, their electric, thermoelectric, and magnetic properties. Nonmagnetic edge states may quite often lead to topological-insulator-type behavior. However, another scenario develops when the zigzag edges are magnetic and the time reversal symmetry is broken. In this work we report on the electronic band structure modifications, electrical conductance, and thermoelectric properties of narrow zigzag nanoribbons with spontaneously magnetized edges. Theoretical studies based on the Kane-Mele-Hubbard tight-binding model show that for silicene, germanene, and stanene both the Seebeck coefficient and the thermoelectric power factor are strongly enhanced for energies close to the charge neutrality point. A perpendicular gate voltage lifts the spin degeneracy of energy bands in the ground state with antiparallel magnetized zigzag edges and makes the electrical conductance significantly spin polarized. Simultaneously the gate voltage worsens the thermoelectric performance. Estimated room-temperature figures of merit for the aforementioned nanoribbons can exceed a value of 3 if phonon thermal conductances are adequately reduced.

  10. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.; Becker, D.L.

    1996-01-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration close-quote s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. copyright 1996 American Institute of Physics

  11. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  12. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    Science.gov (United States)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  13. Phosphorene nanoribbon as a promising candidate for thermoelectric applications

    Science.gov (United States)

    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J.

    2014-01-01

    In this work, the electronic properties of phosphorene nanoribbons with different width and edge configurations are studied by using density functional theory. It is found that the armchair phosphorene nanoribbons are semiconducting while the zigzag nanoribbons are metallic. The band gaps of armchair nanoribbons decrease monotonically with increasing ribbon width. By passivating the edge phosphorus atoms with hydrogen, the zigzag series also become semiconducting, while the armchair series exhibit a larger band gap than their pristine counterpart. The electronic transport properties of these phosphorene nanoribbons are then investigated using Boltzmann theory and relaxation time approximation. We find that all the semiconducting nanoribbons exhibit very large values of Seebeck coefficient and can be further enhanced by hydrogen passivation at the edge. Taking pristine armchair nanoribbons and hydrogen-passivated zigzag naoribbons with width N = 7, 8, 9 as examples, we calculate the lattice thermal conductivity with the help of phonon Boltzmann transport equation and evaluate the width-dependent thermoelectric performance. Due to significantly enhanced Seebeck coefficient and decreased thermal conductivity, we find that at least one type of phosphorene nanoribbons can be optimized to exhibit very high figure of merit (ZT values) at room temperature, which suggests their appealing thermoelectric applications. PMID:25245326

  14. Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements

    Science.gov (United States)

    Meng, Xiangning; Suzuki, Ryosuke O.

    2015-06-01

    The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.

  15. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined

  16. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  17. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  18. Applications of thermoelectric modules on heat flow detection.

    Science.gov (United States)

    Leephakpreeda, Thananchai

    2012-03-01

    This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. New discovery in study of remote sensing image characteristics at sandstone-type uranium deposits in China and its important significance

    International Nuclear Information System (INIS)

    Liu Dechang; Huang Xianfang; Ye Fawang

    2004-01-01

    Sandstone-type uranium deposit now is one of main targets in uranium prospecting in China. During the prospecting, the study is often emphasized on those ore-controlling factors such as the lithology and lithofacies of ore-hosting strata. While the ore-controlling factor of fault structure is usually neglected. By means of systematic research on remote sensing image features of sandstone-type uranium deposits, it is found that fault structure is always present at most main sandstone-type uranium ore districts. Based on above research achievements characteristics of ore-controlling fault and its ore-controlling role are analysed and a new metallogenetic model--'structural-geochemical barrier model' is put forward. Finally, the difference between the sturctural-geochemical barrier model and traditional interlayer oxidation zone front model is elaborated and its important significance is discussed. (authors)

  20. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    OpenAIRE

    Lim Chong C.; Al-Kayiem Hussain H.; Sing Chin Y.

    2014-01-01

    Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material f...

  1. Enhanced thermoelectric power in ultrathin topological insulators with magnetic doping

    KAUST Repository

    Tahir, M.

    2014-09-07

    We derive analytical expressions for the magnetic moment and orbital magnetization as well as for the corresponding thermal conductivity and thermoelectric power of a topological insulator film. We demonstrate enhancement of the thermoelectric transport for decreasing film thickness and for application of an exchange field due to the tunable band gap. Combining hybridization and exchange field is particularly suitable for heat to electric energy conversion and thermoelectric cooling.

  2. Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoon; Kim, Kyomin; Kim, Woochul [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

  3. Enhanced thermoelectric power in ultrathin topological insulators with magnetic doping

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Schwingenschlö gl, Udo

    2014-01-01

    We derive analytical expressions for the magnetic moment and orbital magnetization as well as for the corresponding thermal conductivity and thermoelectric power of a topological insulator film. We demonstrate enhancement of the thermoelectric transport for decreasing film thickness and for application of an exchange field due to the tunable band gap. Combining hybridization and exchange field is particularly suitable for heat to electric energy conversion and thermoelectric cooling.

  4. Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Anoop K.; Gudelli, Vijay Kumar; Sreeparvathy, P.C.; Kanchana, V., E-mail: kanchana@iith.ac.in

    2016-11-15

    First-principles calculations were carried out to study the structural, mechanical, dynamical and transport properties of zintl phase materials CaLiPn (Pn=As, Sb and Bi). We have used two different approaches to solve the system based on density functional theory. The plane wave pseudopotential approach has been used to study the structural and dynamical properties whereas, full potential linear augment plane wave method is used to examine the electronic structure, mechanical and thermoelectric properties. The calculated ground-state properties agree quite well with experimental values. The computed electronic structure shows the investigated compounds to be direct band gap semiconductors. Further, we have calculated the thermoelectric properties of all the investigated compounds for both the carriers at various temperatures. We found a high thermopower for both the carriers, especially n-type doping to be more favourable, which enabled us to predict that CaLiPn might have promising applications as a good thermoelectric material. Further, the phonon dispersion curves of the investigated compounds showed flat phonon modes and we also find lower optical and acoustic modes to cut each other at the lower frequency range, which further indicate the investigated compounds to possess reasonably low thermal conductivity. We have also analysed the low value of the thermal conductivity through the empirical relations and discussions are presented here. - Highlights: • Electronic band structure and chemical bonding. • Single crystalline elastic constants and poly crystalline elastic moduli. • Thermoelectric properties of zintl phase. • Lattice dynamics and phonon density of states.

  5. Investigation of doped Perovskite systems RAIO3 using density functional theory based electronic structure and thermoelectric studies

    International Nuclear Information System (INIS)

    Sandeep; Ghimire, M. P.; Thapa, R. K.; Rai, D. P.; Shankar, A

    2016-01-01

    Samarium doping effects on the thermoelectric properties in Eu 1-x Sm x AlO 3 (x=0%, 50%, and 100%) were studied using first principles calculations based thermal transport property measurement. The result indicate that the compound is an intrinsic n-type material. Samarium doping has a positive effect on the overall thermoelectric performance of the Eu 1-x Sm x AlO 3 system, with sharp increase in figure of merit (ZT) observed when x=0, 50 and 100% up to 150K. Compared to x=0 and 100%, the case of x=50% was found to have more positive increment in ZT value suggesting that the doing to have positive effect on figure of merit in Eu 1-x Sm x AlO 3 . Furthermore, all the samples show stable thermoelectric compatibility factors over a broad temperature range from 700 to 1000 K, which could have great benefits for their practical applications. It is concluded that the overall thermoelectric performance of the Eu 1-x Sm x AlO 3 could be highly enhanced using doping techniques. (paper)

  6. Development in Zn4Sb-based thermoelectric materials

    DEFF Research Database (Denmark)

    Yin, Hao

    or thermopower,  the electrical conductivity, the thermal conductivity and T the absolute temperature. The best thermoelectrics are heavily doped semiconductors with high thermoelectric power factors and low thermal conductivities, known as “Phonon Glasses Electrical Crystals”. Zn4Sb3 is one such material......-section. The following part reports the effect of nano-particles on the thermoelectric properties and thermal stability of Zn4Sb3. Though TiO2 nano particles have remarkably enhanced the stability, the thermoelectric performance of all the nano-composites deteriorates. Optimization of the content of the nano...

  7. Investigation of thermoelectricity in KScSn half-Heusler compound

    Science.gov (United States)

    Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.

    2018-05-01

    The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.

  8. Combined use of hyperbaric and hypobaric ropivacaine significantly improves hemodynamic characteristics in spinal anesthesia for caesarean section: a prospective, double-blind, randomized, controlled study.

    Directory of Open Access Journals (Sweden)

    ZheFeng Quan

    Full Text Available To observe the hemodynamic changes of parturients in the combined use of hyperbaric (4 mg and hypobaric (6 mg ropivacaine during spinal anesthesia for caesarean section in this randomized double-blind study.Parturients (n = 136 undergoing elective cesarean delivery were randomly and equally allocated to receive either combined hyperbaric and hypobaric ropivacaine (Group A or hyperbaric ropivacaine (Group B. Outcome measures were: hemodynamic characteristics, maximum height of sensory block, time to achieve T8 sensory blockade level, incidence of complications, Apgar scores at 1 and 5 min, and neonatal blood gas analysis.Group A had a lower level of sensory blockade (T6 [T6-T7] and longer time to achieve T8 sensory blockade level (8 ± 1.3 min than did patients in Group B (T3 [T2-T4] and 5 ± 1.0 min, respectively; P < 0.001, both. The incidence rates for hypotension, nausea, and vomiting were significantly lower in Group A (13%, 10%, and 3%, respectively than Group B (66%, 31%, and 13%; P < 0.001, P = 0.003, P = 0.028.Combined use of hyperbaric (4 mg and hypobaric (6 mg ropivacaine significantly decreased the incidences of hypotension and complications in spinal anesthesia for caesarean section by extending induction time and decreasing the level of sensory blockade.Chinese Clinical Trial Register ChiCTR-TRC-13004622.

  9. Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6

    Science.gov (United States)

    Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2017-11-01

    Layered structures especially perovskites have titanic potential for novel device applications and thanks to the multifunctional properties displayed in these materials. We forecast and justify the robust spin-polarized ferromagnetism in half-metallic Sr2SnFeO6 and semiconducting Sr2SnMnO6 perovskite oxides. Different approximation methods have been argued to put forward their physical properties. The intriguingly intricate electronic band structures favor the application of these materials in spintronics. The transport parameters like Seebeck coefficient, electrical and thermal conductivity, have been put together to establish their thermoelectric response. Finally, the layered oxides are found to switch their application as thermoelectric materials and hence, these concepts design the principles of the technologically desired thermoelectric and spin based devices.

  10. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells

    International Nuclear Information System (INIS)

    Zhang, Houcheng; Kong, Wei; Dong, Feifei; Xu, Haoran; Chen, Bin; Ni, Meng

    2017-01-01

    Highlights: • Cascading thermoelectric devices are proposed to recover waste heat from SOFCs. • A theoretical model is developed to analyze the new hybrid system performance. • Performance parameters for evaluating the hybrid system are specified. • Feasibility and effectiveness of the proposed system are demonstrated. • Effects of some important parameters on the system performance are discussed. - Abstract: Besides electricity generation, solid oxide fuel cells (SOFCs) produce a significant amount of waste heat, which needs to be immediately removed to ensure the normal operation of SOFCs. If the waste heat is recovered through bottoming thermal devices, the global efficiency of SOFCs can be improved. In this study, a new hybrid system mainly consisting of a thermoelectric generator, a thermoelectric cooler and an SOFC is proposed to recover the waste heat from SOFC for performance enhancement. The thermodynamic and electrochemical irreversible losses in each component are fully considered. An analytical relationship between the SOFC operating current density and the thermoelectric devices dimensionless electric current is derived, from which the range of SOFC operating current density that permits the thermoelectric devices to effectively work is determined. The equivalent power output and efficiency for the hybrid system are specified under different operating current density regions. The feasibility and effectiveness are illustrated by comparing the proposed hybrid system with the stand-alone SOFC. It is found that the power density and efficiency of the proposed system allow 2.3% and 4.6% larger than that of the stand-alone SOFC, respectively. Finally, various parametric analyses are performed to discuss the effects of some design and operation parameters on the hybrid system performance.

  11. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling

    Science.gov (United States)

    Ren, Zongqing; Lee, Jaeho

    2018-01-01

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  12. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.

    Science.gov (United States)

    Ren, Zongqing; Lee, Jaeho

    2018-01-26

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  13. Thermoelectric properties of currently available Au/Pt thermocouples related to the valid reference function

    Directory of Open Access Journals (Sweden)

    Edler F.

    2015-01-01

    Full Text Available Au/Pt thermocouples are considered to be an alternative to High Temperature Standard Platinum Resistance Thermometers (HTSPRTs for realizing temperatures according to the International Temperature Scale of 1990 (ITS-90 in the temperature range between aluminium (660.323 °C and silver (961.78 °C. The original aim of this work was to develop and to validate a new reference function for Au/Pt thermocouples which reflects the properties of presently commercially available Au and Pt wires. The thermoelectric properties of 16 Au/Pt thermocouples constructed at different National Metrological Institutes by using wires from different suppliers and 4 commercially available Au/Pt thermocouples were investigated. Most of them exhibit significant deviations from the current reference function of Au/Pt thermocouples caused by the poor performance of the Au-wires available. Thermoelectric homogeneity was investigated by measuring immersion profiles during freezes at the freezing point of silver and in liquid baths. The thermoelectric inhomogeneities were found to be one order of magnitude larger than those of Au/Pt thermocouples of the Standard Reference Material® (SRM® 1749. The improvement of the annealing procedure of the gold wires is a key process to achieve thermoelectric homogeneities in the order of only about (2–3 mK, sufficient to replace the impracticable HTSPRTs as interpolation instruments of the ITS-90. Comparison measurements of some of the Au/Pt thermocouples against a HTSPRT and an absolutely calibrated radiation thermometer were performed and exhibit agreements within the expanded measurement uncertainties. It has been found that the current reference function of Au/Pt thermocouples reflects adequately the thermoelectric properties of currently available Au/Pt thermocouples.

  14. Thermoelectric properties of PbSe₀.₅Te₀.₅: x (PbI₂) with endotaxial nanostructures: a promising n-type thermoelectric material.

    Science.gov (United States)

    Rawat, P K; Paul, B; Banerji, P

    2013-05-31

    In the present investigation, we report on the thermoelectric properties of PbSe₀.₅Te₀.₅: x (PbI₂) from room temperature to 625 K. High-resolution transmission electron micrographs of the samples reveal endotaxial nanostructures embedded in a PbSe₀.₅Te₀.₅ matrix. The combined effect of mass fluctuation and nanostructures reduces the thermal conductivity to a great extent compared to PbTe and PbSe, without affecting the carrier mobility. As a result, a thermoelectric figure of merit with a value of 1.5 is achieved at 625 K. This value is significantly higher than that of the available state-of-the-art n-type materials.

  15. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  16. Optimal Integration of Cascade Thermoelectric Cooler into Electronic Housing: Experimental Approach

    Science.gov (United States)

    Semeniuk, V.; Protsenko, D.

    2018-06-01

    The problem of the optimal integration of thermoelectrically cooled optoelectronic components into an electronic housing is studied with the emphasis on practical implementation. The lines of 2-stage and 3-stage thermoelectric coolers (TECs) compatible with TO8 housing have been developed, and their parameters are measured in a wide range of heat sink temperatures. The TECs are optimized to receive a temperature difference of 100-110 K under a heat load from 70 mW to 100 mW with minimal power consumption. To fit into a standard housing interior, all the TECs have the same overall dimensions, regardless of the number of stages. Details of the TEC configurations and their performance characteristics are presented and discussed.

  17. Thermoelectric Materials Evaluation Program. Annual technical report for fiscal year 1979

    International Nuclear Information System (INIS)

    Hinderman, J.D.

    1979-10-01

    Optimization was initiated with respect to performance, operating temperatures, and thermoelectric properties of an N-type material based on rare earth (neodymium and gadolinium) selenide technology. Effort was expanded to experimentally describe the chemical, electrical and physical behavior of P-type thermoelectric material over a range of temperatures. Emphasis was changed in P-type material research from basic properties to sublimation suppression by wrapping, and to the understanding of contact resistance problems at the hot end. Analytical performance calculations were made as an aid in couple development. In the area of module development an evaluation of the reduction of bypass-heat loss was made and module M-22R was placed on test. Parts were fabricated for M23R. Data on long term operating characteristics, ingradient compatibility, and reliability of elements and couples was obtained

  18. Nanocomposites with High Thermoelectric Figures of Merit

    Science.gov (United States)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  19. Thermoelectric properties of finite graphene antidot lattices

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka

    2011-01-01

    We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...... properties converge fast toward the bulk limit with increasing length of the lattice: only a few repetitions (≃6) of the fundamental unit cell are required to recover the electronic band gap of the infinite lattice as a transport gap for the finite lattice. We investigate how different antidot shapes...... and sizes affect the thermoelectric properties. The resulting thermoelectric figure of merit, ZT, can exceed 0.25, and it is highly sensitive to the atomic arrangement of the antidot edges. Specifically, hexagonal holes with pure armchair edges lead to an order-of-magnitude larger ZT as compared to pure...

  20. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  1. Thermoelectric properties of silicon nano pillars

    Energy Technology Data Exchange (ETDEWEB)

    Stranz, Andrej; Soekmen, Uensal; Waag, Andreas; Peiner, Erwin [Institute of Semiconductor Technology, Braunschweig (Germany)

    2010-07-01

    In order to establish silicon as a efficient thermoelectric material, its high thermal conductivity has to be reduced which is feasible, e.g., by nano structuring. Therefore, in this study Si-based sub-micron pillars of various dimensions were investigated. Using anisotropic etching followed by thermal oxidation we could fabricate pillars of diameters <500 nm, about 25 {mu}m in height with aspect ratios of more than 50. The distance between the pillars was varied from 500 nm to 10 micron. Besides the fabrication and structural characterization of sub-micron silicon pillars, and adequate metrology for measuring their thermoelectric properties was implemented. Commercial tungsten probes and self-made gold probes, as well as Wollaston wire probes were used for electrical and thermal conductivity, as well as Seebeck voltage measurements on single pillars in a scanning electron microscope equipped with nano manipulators.

  2. Manipulation of charge transport in thermoelectrics

    Science.gov (United States)

    Zhang, Xinyue; Pei, Yanzhong

    2017-12-01

    While numerous improvements have been achieved in thermoelectric materials by reducing the lattice thermal conductivity (κL), electronic approaches for enhancement can be as effective, or even more. A key challenge is decoupling Seebeck coefficient (S) from electrical conductivity (σ). The first order approximation - a single parabolic band assumption with acoustic scattering - leads the thermoelectric power factor (S2σ) to be maximized at a constant reduced Fermi level (η 0.67) and therefore at a given S of 167 μV/K. This simplifies the challenge of maximization of σ at a constant η, leading to a large number of degenerate transport channels (band degeneracy, Nv) and a fast transportation of charges (carrier mobility, μ). In this paper, existing efforts on this issue are summarized and future prospectives are given.

  3. Scanning thermal microscopy of thermoelectric nanostructures

    Czech Academy of Sciences Publication Activity Database

    Vaniš, Jan; Zelinka, Jiří; Zeipl, Radek; Jelínek, Miroslav; Kocourek, Tomáš; Remsa, Jan; Navrátil, Jiří

    2016-01-01

    Roč. 45, č. 3 (2016), s. 1734-1739 ISSN 0361-5235 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA13-33056S Institutional support: RVO:68378271 ; RVO:61389013 Keywords : thermoelectric layer * scanning thermal microscopy * pulsed laser deposition * laser deposition * secondary ion mass spectrometry Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UMCH-V) Impact factor: 1.579, year: 2016

  4. New thinking on modeling of thermoelectric devices

    International Nuclear Information System (INIS)

    Zhang, T.

    2016-01-01

    Highlights: • New model was developed for performance calculation of thermoelectric devices. • The model takes into account the temperature-dependent material properties. • It takes into account the spatial-dependent heat flow rate in thermoelement. • It can take into account the heat and electricity losses at the junctions. • It can probe a broad range of parameters for module performance optimization. - Abstract: The performance of a thermoelectric power generation (TEPG) module and a device designed to convert engine exhaust heat directly into electricity was studied under different operating conditions using a proposed thermoelectric (TE) model in this work. The proposed model was obtained from the first law of thermodynamics, Ohm’s law, nonlinear analytical solution of thermoelectric transport equation, and a control volume that represents a typical TEPG module or device such that the temperature-dependent material properties of, the spatial-dependent heat flow rate through the TE element, and the interfacial electrical and thermal losses can be taken into account in the performance calculation. The performance of a typical TEPG module under a broad range of cold-side temperatures and the temperature differences between its hot-side and cold-side was calculated by the proposed model and the results agree very well with the existing model predictions. Comparison between the model predictions and the experimental results confirmed that reducing the interfacial electric resistance can enhance the module performance. The inter-dependence of the key thermal and TEPG system design and optimization parameters was examined for a real TEPG device using the proposed model and an optimal module fill factor of 0.35 was found within the given mass flow rates between 0.0154 and 0.052 kg/s of exhaust stream.

  5. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  6. Lunar base thermoelectric power station study

    Science.gov (United States)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  7. Thermoelectric simple and multilayers prepared by laser

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Zeipl, Radek; Vaniš, Jan; Kocourek, Tomáš; Remsa, Jan; Navrátil, Jiří; Lorinčík, J.

    2016-01-01

    Roč. 4, Jan (2016), s. 52-64 ISSN 2327-6045 R&D Projects: GA ČR(CZ) GA13-33056S Institutional support: RVO:68378271 ; RVO:61389013 Keywords : PLD * RTA * laser deposition * annealing * thermoelectric layer * harman * FeSb 2 Te * Ce 0.1 * Fe 0.7 * Co 3.3 * Sb 12 Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Superlattice design for optimal thermoelectric generator performance

    Science.gov (United States)

    Priyadarshi, Pankaj; Sharma, Abhishek; Mukherjee, Swarnadip; Muralidharan, Bhaskaran

    2018-05-01

    We consider the design of an optimal superlattice thermoelectric generator via the energy bandpass filter approach. Various configurations of superlattice structures are explored to obtain a bandpass transmission spectrum that approaches the ideal ‘boxcar’ form, which is now well known to manifest the largest efficiency at a given output power in the ballistic limit. Using the coherent non-equilibrium Green’s function formalism coupled self-consistently with the Poisson’s equation, we identify such an ideal structure and also demonstrate that it is almost immune to the deleterious effect of self-consistent charging and device variability. Analyzing various superlattice designs, we conclude that superlattice with a Gaussian distribution of the barrier thickness offers the best thermoelectric efficiency at maximum power. It is observed that the best operating regime of this device design provides a maximum power in the range of 0.32–0.46 MW/m 2 at efficiencies between 54%–43% of Carnot efficiency. We also analyze our device designs with the conventional figure of merit approach to counter support the results so obtained. We note a high zT el   =  6 value in the case of Gaussian distribution of the barrier thickness. With the existing advanced thin-film growth technology, the suggested superlattice structures can be achieved, and such optimized thermoelectric performances can be realized.

  9. A thermoelectric voltage effect in polyethylene oxide

    International Nuclear Information System (INIS)

    Martin, Bjoern; Wagner, Achim; Kliem, Herbert

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depends on the energy-barrier heights in the multi-well potential

  10. Thermoelectric flux effect in superconducting indium

    International Nuclear Information System (INIS)

    Van Harlingen, D.J.

    1977-01-01

    In this paper we discuss a thermoelectric effect in superconductors which provides a mechanism for studying quasiparticle relaxation and scattering processes in non-equilibrium superconductors by transport measurements. We report measurements of the thermoelecric flux effect in samples consisting of indium and lead near the In transition temperature; in this temperature range, the contribution to DELTA/sub TAU/ from the Pb is insignificant and so values of OMEGA(T) are obtained for indium. The results of our experiments may be summarized as follows: (1) we have a thermally-generated flux effect in 5 superconducting In-Pb toroidal samples, (2) experimental tests suggest that the observed effect does indeed arise from the proposed thermoelectric flux effect, (3) OMEGA(T) for indium is found to diverge as (T/sub c/ - T)/sup -3/2/ more rapidly than predicted by simple theory, (4) OMEGA(T) at T/T sub c/ = .999 is nearly 10/sup 5/ larger than initially expected, (5) OMEGA (T) roughly correlates with the magnitude of the normal state thermoelectric coefficient for our samples

  11. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  12. New evaluation parameter for wearable thermoelectric generators

    Science.gov (United States)

    Wijethunge, Dimuthu; Kim, Woochul

    2018-04-01

    Wearable devices constitute a key application area for thermoelectric devices. However, owing to new constraints in wearable applications, a few conventional device optimization techniques are not appropriate and material evaluation parameters, such as figure of merit (zT) and power factor (PF), tend to be inadequate. We illustrated the incompleteness of zT and PF by performing simulations and considering different thermoelectric materials. The results indicate a weak correlation between device performance and zT and PF. In this study, we propose a new evaluation parameter, zTwearable, which is better suited for wearable applications compared to conventional zT. Owing to size restrictions, gap filler based device optimization is extremely critical in wearable devices. With respect to the occasions in which gap fillers are used, expressions for power, effective thermal conductivity (keff), and optimum load electrical ratio (mopt) are derived. According to the new parameters, the thermal conductivity of the material has become much more critical now. The proposed new evaluation parameter, namely, zTwearable, is extremely useful in the selection of an appropriate thermoelectric material among various candidates prior to the commencement of the actual design process.

  13. Radioisotope thermoelectric generators for implanted pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Pustovalov, A.A.; Bovin, A.V.; Fedorets, V.I.; Shapovalov, V.P.

    1986-08-01

    This paper discusses the development and application of long-life lithium batteries and the problems associated with miniature radioisotope thermoelectric generators (RITEG) with service lives of 10 years or longer. On eof the main problems encountered when devising a radioisotope heat source (RHS) for an RITEG is to obtain biomedical /sup 238/PuO/sub 2/ with a specific neutron yield of 3.10/sup 3/-4.10/sup 3/ (g /SUP ./ sec)/sup -1/, equivalent to metallic Pu 238, and with a content of gamma impurities sufficient to ensure a permissible exposure a permissible exposure does rate (EDR) of a mixture of neutron and gamma radiation. After carrying out the isotope exchange and purifying the initial sample of its gamma impurity elements, the authors obtain biomedical Pu 238 satisfying the indicated requirements king suitable for use in the power packs of medical devices. Taking the indicated specifications into account, the Ritm-1o and gamma radioisotope heat sources were designed, built, tested in models and under natural conditions, and then into production as radioisotope thermoelectric generators designed to power the electronic circuits of implanted pacemakers. The Ritm-MT and Gemma radioisotope thermoelectric generators described are basic units, which can be used as self-contained power supplies for electronic equipment with power requirements in the micromilliwatt range.

  14. Special Application Thermoelectric Micro Isotope Power Sources

    International Nuclear Information System (INIS)

    Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted

    2008-01-01

    Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources

  15. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  16. Si Thermoelectric Power Generator with an Unconventional Structure

    Science.gov (United States)

    Sakamoto, Tatsuya; Iida, Tsutomu; Ohno, Yota; Ishikawa, Masashi; Kogo, Yasuo; Hirayama, Naomi; Arai, Koya; Nakamura, Takashi; Nishio, Keishi; Takanashi, Yoshifumi

    2014-06-01

    We examine the mechanical stability of an unconventional Mg2Si thermoelectric generator (TEG) structure. In this structure, the angle θ between the thermoelectric (TE) chips and the heat sink is less than 90°. We examined the tolerance to an external force of various Mg2Si TEG structures using a finite-element method (FEM) with the ANSYS code. The output power of the TEGs was also measured. First, for the FEM analysis, the mechanical properties of sintered Mg2Si TE chips, such as the bending strength and Young's modulus, were measured. Then, two-dimensional (2D) TEG models with various values of θ (90°, 75°, 60°, 45°, 30°, 15°, and 0°) were constructed in ANSYS. The x and y axes were defined as being in the horizontal and vertical directions of the substrate, respectively. In the analysis, the maximum tensile stress in the chip when a constant load was applied to the TEG model in the x direction was determined. Based on the analytical results, an appropriate structure was selected and a module fabricated. For the TEG fabrication, eight TE chips, each with dimensions of 3 mm × 3 mm × 10 mm and consisting of Sb-doped n-Mg2Si prepared by a plasma-activated sintering process, were assembled such that two chips were connected in parallel, and four pairs of these were connected in series on a footprint of 46 mm × 12 mm. The measured power generation characteristics and temperature distribution with temperature differences between 873 K and 373 K are discussed.

  17. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  18. Combined use of hyperbaric and hypobaric ropivacaine significantly improves hemodynamic characteristics in spinal anesthesia for caesarean section: a prospective, double-blind, randomized, controlled study.

    Science.gov (United States)

    Quan, ZheFeng; Tian, Ming; Chi, Ping; Li, Xin; He, HaiLi; Luo, Chao

    2015-01-01

    To observe the hemodynamic changes of parturients in the combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine during spinal anesthesia for caesarean section in this randomized double-blind study. Parturients (n = 136) undergoing elective cesarean delivery were randomly and equally allocated to receive either combined hyperbaric and hypobaric ropivacaine (Group A) or hyperbaric ropivacaine (Group B). Outcome measures were: hemodynamic characteristics, maximum height of sensory block, time to achieve T8 sensory blockade level, incidence of complications, Apgar scores at 1 and 5 min, and neonatal blood gas analysis. Group A had a lower level of sensory blockade (T6 [T6-T7]) and longer time to achieve T8 sensory blockade level (8 ± 1.3 min) than did patients in Group B (T3 [T2-T4] and 5 ± 1.0 min, respectively; P hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine significantly decreased the incidences of hypotension and complications in spinal anesthesia for caesarean section by extending induction time and decreasing the level of sensory blockade. Chinese Clinical Trial Register ChiCTR-TRC-13004622.

  19. Thermoelectric performance of spin Seebeck effect in Fe3O4/Pt-based thin film heterostructures

    Directory of Open Access Journals (Sweden)

    R. Ramos

    2016-10-01

    Full Text Available We report a systematic study on the thermoelectric performance of spin Seebeck devices based on Fe3O4/Pt junction systems. We explore two types of device geometries: a spin Hall thermopile and spin Seebeck multilayer structures. The spin Hall thermopile increases the sensitivity of the spin Seebeck effect, while the increase in the sample internal resistance has a detrimental effect on the output power. We found that the spin Seebeck multilayers can overcome this limitation since the multilayers exhibit the enhancement of the thermoelectric voltage and the reduction of the internal resistance simultaneously, therefore resulting in significant power enhancement. This result demonstrates that the multilayer structures are useful for improving the thermoelectric performance of the spin Seebeck effect.

  20. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  1. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  2. Double quantum dot as a minimal thermoelectric generator

    OpenAIRE

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  3. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  4. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  5. Thermoelectric Performance of Na-Doped GeSe

    NARCIS (Netherlands)

    Shaabani, Laaya; Aminorroaya-Yamini, Sima; Byrnes, Jacob; Akbar Nezhad, Ali; Blake, Graeme R

    2017-01-01

    Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized

  6. The thermoelectric figure of merit of poor thermal conductors

    International Nuclear Information System (INIS)

    Dixon, A.J.

    1977-01-01

    Calculations are given to show that for low thermal conductivity materials the radiation losses at even moderate temperatures preclude the use of the Harman technique for measuring the thermoelectric figure of merit. Measurements on liquid Tl 66 Se 34 , which has suitable thermoelectric properties, confirm this. (author)

  7. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala

    2014-11-25

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  8. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2014-01-01

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  9. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  10. Geometric Optimization of Thermo-electric Coolers Using Simulated Annealing

    International Nuclear Information System (INIS)

    Khanh, D V K; Vasant, P M; Elamvazuthi, I; Dieu, V N

    2015-01-01

    The field of thermo-electric coolers (TECs) has grown drastically in recent years. In an extreme environment as thermal energy and gas drilling operations, TEC is an effective cooling mechanism for instrument. However, limitations such as the relatively low energy conversion efficiency and ability to dissipate only a limited amount of heat flux may seriously damage the lifetime and performance of the instrument. Until now, many researches were conducted to expand the efficiency of TECs. The material parameters are the most significant, but they are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of finding the optimal TECs design is to define a set of design parameters. In this paper, a new method of optimizing the dimension of TECs using simulated annealing (SA), to maximize the rate of refrigeration (ROR) was proposed. Equality constraint and inequality constraint were taken into consideration. This work reveals that SA shows better performance than Cheng's work. (paper)

  11. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  12. Thermoelectric properties of P-type Sb2Te3 thick film processed by a screen-printing technique and a subsequent annealing process

    International Nuclear Information System (INIS)

    Kim, Sun Jin; We, Ju Hyung; Kim, Jin Sang; Kim, Gyung Soo; Cho, Byung Jin

    2014-01-01

    Highlights: • We report on thermoelectric properties of screen-printed Sb 2 Te 3 thick film. • Subsequent annealing process determines thermoelectric properties of Sb 2 Te 3 film. • Annealing in tellurium powder ambient contributes to tellurium-rich Sb 2 Te 3 film. • Annealing in tellurium powder ambient enhances carrier mobility of Sb 2 Te 3 film. -- Abstract: We herein report the thermoelectric properties of Sb 2 Te 3 thick film fabricated by a screen-printing technique and a subsequent annealing process. Each step of the screen-printing fabrication process of Sb 2 Te 3 thick film is described in detail. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of the screen-printed film. The results show that the annealing of the screen-printed Sb 2 Te 3 thick film together with tellurium powder in the same process chamber significantly improves the carrier mobility by increasing the average scattering time of the carrier in the film, resulting in a large improvement of the power factor. By optimizing the annealing process, we achieved a maximum thermoelectric figure-of-merit, ZT, of 0.32 at room temperature, which is slightly higher than that of bulk Sb 2 Te 3 . Because screen-printing is a simple and low-cost process and given that it is easy to scale up to large sizes, this result will be useful for the realization of large, film-type thermoelectric devices

  13. Thermoelectric properties of one-dimensional graphene antidot arrays

    International Nuclear Information System (INIS)

    Yan, Yonghong; Liang, Qi-Feng; Zhao, Hui; Wu, Chang-Qin; Li, Baowen

    2012-01-01

    We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green's function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. -- Highlights: ► We study thermoelectric properties of one-dimensional (1D) graphene antidot arrays. ► Thermoelectric figure of merit (ZT) of 1D antidot arrays can exceed unity. ► ZT of 1D antidot arrays is larger than that of two-dimensional arrays.

  14. Silicon nanowire networks for multi-stage thermoelectric modules

    International Nuclear Information System (INIS)

    Norris, Kate J.; Garrett, Matthew P.; Zhang, Junce; Coleman, Elane; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2015-01-01

    Highlights: • Fabricated flexible single, double, and quadruple stacked Si thermoelectric modules. • Measured an enhanced power production of 27%, showing vertical stacking is scalable. • Vertically scalable thermoelectric module design of semiconducting nanowires. • Design can utilize either p or n-type semiconductors, both types are not required. • ΔT increases with thickness therefore power/area can increase as modules are stacked. - Abstract: We present the fabrication and characterization of single, double, and quadruple stacked flexible silicon nanowire network based thermoelectric modules. From double to quadruple stacked modules, power production increased 27%, demonstrating that stacking multiple nanowire thermoelectric devices in series is a scalable method to generate power by supplying larger temperature gradient. We present a vertically scalable multi-stage thermoelectric module design using semiconducting nanowires, eliminating the need for both n-type and p-type semiconductors for modules

  15. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...... for different operating conditions and objective functions, such as temperature span, efficiency, and power recoveryrate. As a specific application, the integration of a thermoelectric cooler into the electronics section ofa downhole oil well intervention tool is investigated, with the objective of minimizing...

  16. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  17. An On-Site Thermoelectric Cooling Device for Cryotherapy and Control of Skin Blood Flow.

    Science.gov (United States)

    Mejia, Natalia; Dedow, Karl; Nguy, Lindsey; Sullivan, Patrick; Khoshnevis, Sepideh; Diller, Kenneth R

    2015-12-01

    Cryotherapy involves the surface application of low temperatures to enhance the healing of soft tissue injuries. Typical devices embody a remote source of chilled water that is pumped through a circulation bladder placed on the treatment site. In contrast, the present device uses thermoelectric refrigeration modules to bring the cooling source directly to the tissue to be treated, thereby achieving significant improvements in control of therapeutic temperature while having a reduced size and weight. A prototype system was applied to test an oscillating cooling and heating protocol for efficacy in regulating skin blood perfusion in the treatment area. Data on 12 human subjects indicate that thermoelectric coolers (TECs) delivered significant and sustainable changes in perfusion for both heating (increase by (±SE) 173.0 ± 66.0%, P device for cryotherapy with local temperature regulation.

  18. Maquet principle

    Energy Technology Data Exchange (ETDEWEB)

    Levine, R.B.; Stassi, J.; Karasick, D.

    1985-04-01

    Anterior displacement of the tibial tubercle is a well-accepted orthopedic procedure in the treatment of certain patellofemoral disorders. The radiologic appearance of surgical procedures utilizing the Maquet principle has not been described in the radiologic literature. Familiarity with the physiologic and biochemical basis for the procedure and its postoperative appearance is necessary for appropriate roentgenographic evaluation and the radiographic recognition of complications.

  19. Cosmological principle

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution

  20. Co-generation system with a linear concentrator and thermoelectric elements; Senkei shukokei to netsuden henkan soshi wo mochiita netsuden heikyu system

    Energy Technology Data Exchange (ETDEWEB)

    Kachi, E; Suzuki, A; Fujibayashi, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    The co-generation system using a solar cell has the disadvantage that the performance of a cell element deteriorates when the temperature rises. Therefore, the co-generation system in which a BiTe thermoelectric element and linear Fresnel lens are used was constructed. Moreover, the basic characteristics were confirmed and the characteristics of a system model were analyzed. A thermoelectric element area must be reduced to improve the generating efficiency. The generating efficiency depends on the temperature difference between thermoelectric elements rather than the thermoelectric element area. As the thermoelectric area gets lower, the generating efficiency will get higher. This inclination is advantageous on the economic side. The generating efficiency becomes low during operation at high temperature. As a result, the temperature supplied to the thermal load is set to the lower position (100 to 200{degree}C) so as to advance the validity of the system. Even if the co-generation temperature is low, a heat supply capability of 150{degree}C is sufficient for an industrial heat supply system because it holds a large majority of the consumption demand for the whole industry. 3 refs., 8 figs., 3 tabs.

  1. Quantification of the equivalence principle

    International Nuclear Information System (INIS)

    Epstein, K.J.

    1978-01-01

    Quantitative relationships illustrate Einstein's equivalence principle, relating it to Newton's ''fictitious'' forces arising from the use of noninertial frames, and to the form of the relativistic time dilatation in local Lorentz frames. The equivalence principle can be interpreted as the equivalence of general covariance to local Lorentz covariance, in a manner which is characteristic of Riemannian and pseudo-Riemannian geometries

  2. Performance Characteristics of CA 19-9 Radioimmunoassay and Clinical Significance of Serum CA 19-9 Assay in Patients with Malignancy

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Shong, Young Kee; Cho, Bo Youn; Kim, Noe Kyeong; Koh, Chang Soon; Lee, Mun Ho; Hong, Seong Woon; Hong, Kee Suk

    1985-01-01

    To evaluate the performance characteristics of CA 19-9 radioimmunoassay and the clinical significance of serum CA 19-9 assay in patients with malignancy, serum. CA 19-9 levels were measured by radioimmunoassay using monoclonal antibody in 135 normal controls, 81 patients with various untreated malignancy, 9 patients of postoperative colon cancer without recurrence and 20 patients with benign gastrointestinal diseases, who visited Seoul National University Hospital from June, 1984 to March, 1985. The results were as follows; 1) The CA 19-9 radioimmunoassay was simple to perform and can be completed in one work day. And the between-assay reproducibility and the assay recovery were both excellent. 2) The mean serum CA 19-9 level in 135 normal controls was 8.4±4.2 U/mL. Normal upper limit of serum CA 19-9 was defined as 21.0 U/mL. 4 out of 135 (3.0%) normal controls showed elevated CA 19-9 levels above the normal upper limit. 3) One out of 20 (5.0%) patients with benign gastrointestinal diseases showed elevated serum CA 19-9 level above the normal upper limit. 4) In 81 patients with various untreated malignancy, 41 patients (50.6%) showed elevated serum CA 19-9 levels. 66.7% of 18 patients with colorectal cancer, 100% of 2 patients with pancreatic cancer, 100% of 3 patients with common bile duct cancer, 47.1% of 17 patients with stomach cancer, 28.6% of 28 patients with hepatoma and 60.0% of 5 gastrointestinal tract cancers showed elevated serum CA 19-9 levels. 5) The sensitivities of serum CA 19-9 related to respectability in colorectal and stomach cancer were 33.3% in resectable colorectal cancer, 83.3% in unresectable colorectal cancer, 41.7% in resectable stomach cancer, 60.0% in unresectable stomach cancer respectively. 6) The sensitivity of serum CA 19-9 in 9 patients of postoperative colorectal cancer without recurrence were 33.3% and significantly decreased compared with that of untreated colorectal cancer, 66.7% (p<0.05). 7) In Patients with colorectal cancer

  3. Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module

    Directory of Open Access Journals (Sweden)

    Khaled Teffah

    2018-03-01

    Full Text Available In this work, a modeling and experimental study of a new thermoelectric cooler–thermoelectric generator (TEC-TEG module is investigated. The studied module is composed of TEC, TEG and total system heatsink, all connected thermally in series. An input voltage (1–5 V passes through the TEC where the electrons by means of Peltier effect entrain the heat from the upper side of the module to the lower one creating temperature difference; TEG plays the role of a partial heatsink for the TEC by transferring this waste heat to the total system heatsink and converting an amount of this heat into electricity by a phenomenon called Seebeck effect, of the thermoelectric modules. The performance of the TEG as partial heatsink of TEC at different input voltages is demonstrated theoretically using the modeling software COMSOL Multiphysics. Moreover, the experiment validates the simulation result which smooths the path for a new manufacturing thermoelectric cascade model for the cooling and the immediate electric power generation.

  4. Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module

    Czech Academy of Sciences Publication Activity Database

    Tomeš, P.; Robert, R.; Trottmann, M.; Bocher, L.; Aguirre, M.H.; Bitschi, A.; Hejtmánek, Jiří; Weidenkaff, A.

    2010-01-01

    Roč. 39, č. 9 (2010), 1696-1703 ISSN 0361-5235 Institutional research plan: CEZ:AV0Z10100521 Keywords : thermoelectric materials * perovskites * power generation * oxide ceramics * micro-IR camera measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.421, year: 2010

  5. Methodology on sizing and selecting thermoelectric cooler from different TEC manufacturers in cooling system design

    International Nuclear Information System (INIS)

    Tan, F.L.; Fok, S.C.

    2008-01-01

    The search and selection for a suitable thermoelectric cooler (TEC) to optimize a cooling system design can be a tedious task as there are many product ranges from several TEC manufacturers. Although the manufacturers do provide proprietary manuals or electronic search facilities for their products, the process is still cumbersome as these facilities are incompatible. The electronic facilities often have different user interfaces and functionalities, while the manual facilities have different presentations of the performance characteristics. This paper presents a methodology to assist the designer to size and select the TECs from different manufacturers. The approach will allow designers to find quickly and to evaluate the devices from different TEC manufacturers. Based on the approach, the article introduces a new operational framework for an Internet based thermoelectric cooling system design process that would promote the interaction and collaboration between the designers and TEC manufacturers. It is hoped that this work would be useful for the advancement of future tools to assist designers to develop, analyze and optimize thermoelectric cooling system design in minimal time using the latest TECs available on the market

  6. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Science.gov (United States)

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  7. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  8. Electronic structure and thermoelectric transport properties of the golden Th2S3-type Ti2O3 under pressure

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-05-01

    Full Text Available A lot of physical properties of Th2S3-type Ti2O3 have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30GP to 35GP, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease with increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.

  9. Nonlocal thermoelectric effects and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet device

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)

    2013-07-01

    We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.

  10. Thermoelectric power of RFeAsO (R = Ce, Pr, Nd, Sm and Gd)

    International Nuclear Information System (INIS)

    Poddar, Asok; Mukherjee, Sanjoy; Samanta, Tanmay; Saha, Rajat S.; Mukherjee, Rajarshi; Dasgupta, Papri; Mazumdar, Chandan; Ranganathan, R.

    2009-01-01

    Thermoelectric powers of a series of compounds RFeAsO (R = Ce, Pr, Nd, Sm and Gd) have been reported for temperatures ranging from 77 K up to room temperature. The behavior of S(T) in this temperature range can be divided into three regions. Every region has been fitted with mathematical functions of T. The physical significance of separate terms in the mathematical functions has been discussed. Some kind of universality has been observed between different members of the series.

  11. Thermoelectric power of RFeAsO (R = Ce, Pr, Nd, Sm and Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Poddar, Asok, E-mail: asok.poddar@saha.ac.i [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, West Bengal (India); Mukherjee, Sanjoy [Department of Physics, The University of Burdwan, Golapbag, Burdwan 713 104, West Bengal (India); Samanta, Tanmay [Rishra High School, 15 Tilakram Dan Ghat Lane, Rishra, Hooghly, West Bengal (India); Saha, Rajat S.; Mukherjee, Rajarshi [Department of Physics, University of Burdwan, Golapbag, Burdwan 713 104, West Bengal (India); Dasgupta, Papri; Mazumdar, Chandan; Ranganathan, R. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, West Bengal (India)

    2009-07-15

    Thermoelectric powers of a series of compounds RFeAsO (R = Ce, Pr, Nd, Sm and Gd) have been reported for temperatures ranging from 77 K up to room temperature. The behavior of S(T) in this temperature range can be divided into three regions. Every region has been fitted with mathematical functions of T. The physical significance of separate terms in the mathematical functions has been discussed. Some kind of universality has been observed between different members of the series.

  12. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied......, indicating a significant improvement compared with the non-doped CuAlO2 sample...

  13. An electrodynamic preconcentrator integrated thermoelectric biosensor chip for continuous monitoring of biochemical process

    International Nuclear Information System (INIS)

    Choi, Yong-Hwan; Kim, Min-gu; Kang, Dong-Hyun; Sim, Jaesam; Kim, Jongbaeg; Kim, Yong-Jun

    2012-01-01

    This paper proposes an integrated sensor chip for continuous monitoring of a biochemical process. It is composed of a preconcentrator and a thermoelectric biosensor. In the preconcentrator, the concentration of the injected biochemical sample is electrodynamically condensed. Then, in the downstream thermoelectric biosensor, the preconcentrated target molecules react with sequentially injected capture molecules and generate reaction heat. The reaction heat is detected based on the thermoelectric effect, and an integrated split-flow microchannel improves the sensor stability by providing ability to self-compensate thermal noise. These sequential preconcentration and detection processes are performed in completely label-free and continuous conditions and consequently enhance the sensor sensitivity. The performance of the integrated biosensor chip was evaluated at various flow rates and applied voltages. First, in order to verify characteristics of the fabricated preconcentrator, 10 µm -diameter polystyrene (PS) particles were used. The particles were concentrated by applying ac voltage from 0 to 16 V pp at 3 MHz at various flow rates. In the experimental result, approximately 92.8% of concentration efficiency was achieved at a voltage over 16 V pp and at a flow rate below 100 µl h −1 . The downstream thermoelectric biosensor was characterized by measuring reaction heat of biotin–streptavidin interaction. The preconcentrated streptavidin-coated PS particles flow into the reaction chamber and react with titrated biotin. The measured output voltage was 288.2 µV at a flow rate of 100 µl h −1 without preconcentration. However, by using proposed preconcentrator, an output voltage of 812.3 µV was achieved with a 16 V pp -applied preconcentration in the same given sample and flow rate. According to these results, the proposed label-free biomolecular preconcentration and detection technique can be applied in continuous and high-throughput biochemical applications

  14. Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy

    Science.gov (United States)

    Kim, Min-Ki; Kim, Myoung-Soo; Jo, Sung-Eun; Kim, Yong-Jun

    2016-12-01

    The triboelectric nanogenerator, an energy harvesting device that converts external kinetic energy into electrical energy through using a nano-structured triboelectric material, is well known as an energy harvester with a simple structure and high output voltage. However, triboelectric nanogenerators also inevitably generate heat resulting from the friction that arises from their inherent sliding motions. In this paper, we present a hybrid nanogenerator, which integrates a triboelectric generator and a thermoelectric generator (TEG) for harvesting both the kinetic friction energy and the heat energy that would otherwise be wasted. The triboelectric part consists of a polytetrafluoroethylene (PTFE) film with nano-structures and a movable aluminum panel. The thermoelectric part is attached to the bottom of the PTFE film by an adhesive phase change material layer. We confirmed that the hybrid nanogenerator can generate an output power that is higher than that generated by a single triboelectric nanogenerator or a TEG. The hybrid nanogenerator was capable of producing a power density of 14.98 mW cm-2. The output power, produced from a sliding motion of 12 cm s-1, was capable of instantaneously lighting up 100 commercial LED bulbs. The hybrid nanogenerator can charge a 47 μF capacitor at a charging rate of 7.0 mV s-1, which is 13.3% faster than a single triboelectric generator. Furthermore, the efficiency of the device was significantly improved by the addition of a heat source. This hybrid energy harvester does not require any difficult fabrication steps, relative to existing triboelectric nanogenerators. The present study addresses a method for increasing the efficiency while solving other problems associated with triboelectric nanogenerators.

  15. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  16. Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S

    International Nuclear Information System (INIS)

    Feldman, David; Slough, Amanda; Garrett, Gary

    2008-01-01

    There is a myriad of uses to which our country's freshwater supply is currently committed. Together with increasing quantities of consumption, there are growing constraints on water availability. In our future there will be two elements of consumption at the forefront of concern: availability and efficiency. Availability of freshwater is the most important of these and is the subject of this report. To use water efficiently, we must first have it. Efficiency is key to ensuring availability for future needs. As population grows and economic and technology demands increase - especially for thermoelectric power - needs for freshwater will also increase. Thus, using our limited supplies of freshwater must be done as efficiently as possible. Thermoelectric generating industry is the largest user of our nation's water resources, including fresh, surface, ground, and saline water. Saline water use accounts for approximately 30% of thermoelectric use, while the remaining 70% is from freshwater sources. The U.S. Geological Survey (USGS) estimates that thermoelectric generation accounts for roughly 136,000 million gallons per day (MGD), or 39% of freshwater withdrawals. This ranks slightly behind agricultural irrigation as the top source of freshwater withdrawals in the U.S. in 2000. For Americans to preserve their standard of living and maintain a thriving economy it is essential that greater attention be paid to freshwater availability in efforts to meet energy demands - particularly for electric power. According to projections by the Energy Information Administration's (EIA) Annual Energy Outlook 2006 (AEO 2006) anticipated growth of thermoelectric generating capacity will be 22% between 2005 and 2030. In the 2007 Report, EIA estimates that capacity to grow from approximately 709 GW in 2005 to 862 GW in 20303. These large increases in generating capacity will result in increased water demands by thermoelectric power plants and greater competition over water between the

  17. Thermoelectricity from wasted heat of integrated circuits

    KAUST Repository

    Fahad, Hossain M.

    2012-05-22

    We demonstrate that waste heat from integrated circuits especially computer microprocessors can be recycled as valuable electricity to power up a portion of the circuitry or other important accessories such as on-chip cooling modules, etc. This gives a positive spin to a negative effect of ever increasing heat dissipation associated with increased power consumption aligned with shrinking down trend of transistor dimension. This concept can also be used as an important vehicle for self-powered systemson- chip. We provide theoretical analysis supported by simulation data followed by experimental verification of on-chip thermoelectricity generation from dissipated (otherwise wasted) heat of a microprocessor.

  18. Energy harvesting using a thermoelectric material

    Science.gov (United States)

    Nersessian, Nersesse [Van Nuys, CA; Carman, Gregory P [Los Angeles, CA; Radousky, Harry B [San Leandro, CA

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  19. Thermoelectric power in n-InSe

    International Nuclear Information System (INIS)

    Casanovas, A.; Cantarero, A.; Segura, A.

    1985-01-01

    Thermoelectric power of InSe samples doped with tin has been measured as functions of the doping concentration in the range of 0.01 to 10% Sn and of the temperature in the range of 50 to 550 K. In the low temperature range the results obtained are coherent with the two-dimensional behaviour of electrons proposed by other authors. About 100 K the results can be explained successfully by introducing the same scattering mechanisms used to interpret the temperature dependence of the electron mobility

  20. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  1. SP-100 converter multicouple thermoelectric cell

    International Nuclear Information System (INIS)

    Kull, R.A.; Terrill, W.R.

    1990-01-01

    The General Electric Company is under contract to DOE to design, fabricate, and test an SP-100 Ground Engineering System. This paper provides a description of the SP-100 space reactor power system configuration, and a more detailed description of the power conversion subsystem (PCSS) and the key building block of the power converter, the thermoelectric cell. The functions of the various elements of the PCSS and the cells are also presented. These cells convert the thermal energy from the reactor into electrical power at the desired voltage while being conductively coupled to the hot and cold side heat exchangers to maximize the power output and system specific power

  2. Studies of bulk materials for thermoelectric cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J W; Nolas, G S; Volckmann, E H

    1997-07-01

    The authors discuss ongoing work in three areas of thermoelectric materials research: (1) broad band semiconductors featuring anion networks, (2) filled skutterudites, and (3) polycrystalline Bi-Sb alloys. Key results include: a preliminary evaluation of a previously untested ternary semiconductor, KSnSb; the first reported data in which Sn is used as a charge compensator in filled antimonide skutterudites; the finding that Sn doping does not effect polycrystalline Bi{sub 1{minus}x}Sb{sub x} as it does single crystal samples.

  3. Thermoelectric Properties of the Chemically Doped Ca3Co4O9 System: A Structural Perspective

    Science.gov (United States)

    Wu, Tao; Tyson, Trevor; Wang, Hsin; Li, Qiang

    2010-03-01

    Cu doped and Y doped [Ca2CoO3][CoO2]1.61 (referred to as Ca3Co4O9) were prepared by solid state reaction. Temperature dependent thermoelectric properties, resistivity (ρ), Seeback coefficient (S) and thermal conductivity (κ), were measured. As seen before, it is found that doping by Cu and Y significantly enhances the thermoelectric properties. In order to understand the origin of these changes in properties in terms of the atomic structure, synchrotron x-ray diffraction and x-ray absorption spectroscopy were applied to probe the change in the average structure and the location of the dopants. The details of the location and coordination of Co and Y in the host lattice and the effect on the figure of merit are discussed. This work is supported by DOE Grant DE-FG02-07ER46402.

  4. Co-optimized design of microchannel heat exchangers and thermoelectric generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Yazawa, K.; Rosendahl, Lasse

    2013-01-01

    Designs of heat exchangers have mostly been disconnected to the performance of thermoelectric generator (TEG) systems. The development work, mostly focused on thermoelectric materials, required a significant amount of engineering parametric analysis. In this work, a micro plate-fin heat exchanger...... applied to a TEG is investigated and optimized to maximize the output power and the cost performance of generic TEG systems. The cost per performance is counted by a measure of price per power output ($/W). The channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG...... are theoretically optimized for a wide range of pumping power. In conjunction with effective numeric tests, the model discusses the optimum size of the system components’ dimensions at two area sizes of the substrate plate of heat exchanger. Results show that at every pumping power, there are particular values...

  5. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  6. Thermoelectric Phenomena in a Quantum Dot Attached to Ferromagnetic Leads in Kondo Regime

    International Nuclear Information System (INIS)

    Chen Qiao; Zhao Li-Li

    2014-01-01

    We have studied the thermoelectric properties through ferromagnetic leads-QD coupled system (F-QD-F) in the Kondo regime by nonequilibrium Green's functions method. The spin-flip effect induced by ferromagnetic leads and Kondo effect influence the thermoelectric properties significantly. The peak-valley structure emerges at the low temperature due to Kondo resonance, and the peak-valley structure also relies on the polarization angle θ, the spin-dependent linewidth function Γ γσ and the energy level of QD ∈ d . Novel resonant peak also emerges in the curve of ZT c versus polarization angle θ. The Kondo effect suppresses the figure of merit ZT c and the spin-dependent figure of merit ZT s . In addition, the spin-dependent figure of merit ZT s is relate with the gap between Γ γ↑ and Γ γ↓ . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Mehdizadeh Dehkordi, Arash; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  8. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions

    International Nuclear Information System (INIS)

    Mi, Wenlong; Lv, Yanhong; Qiu, Pengfei; Shi, Xun; Chen, Lidong; Zhang, Tiansong

    2014-01-01

    Small amount of Se atoms are used to tune the carrier concentrations (n H ) and electrical transport in Ag 2 Se. Significant enhancements in power factor and thermoelectric figure of merit (zT) are observed in the compositions of Ag 2 Se 1.06 and Ag 2 Se 1.08 . The excessive Se atoms do not change the intrinsically electron-conducting character in Ag 2 Se. The detailed analysis reveals the experiment optimum carrier concentration in Ag 2 Se is around 5 × 10 18  cm −3 . We also investigate the temperature of maximum zT and the thermoelectric transport during the first order phase transitions using the recently developed measurement system

  9. WSi2 in Si(1-x)Ge(x) Composites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    Traditional SiGe thermoelectrics have potential for enhanced figure of merit (ZT) via nano-structuring with a silicide phase, such as WSi2. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples were prepared using powder metallurgy techniques; including mechano-chemical alloying, via ball milling, and spark plasma sintering for densification. Processing, micro-structural development, and thermoelectric properties will be discussed. Additionally, couple and device level characterization will be introduced.

  10. High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering

    Science.gov (United States)

    Tan, Ming; Hao, Yanming; Deng, Yuan; Chen, Jingyi

    2018-06-01

    In this paper, we present an innovative tilt-structure design concept for (Sb, Bi)2Te3 nanowire array assembled by high-quality nanowires with well oriented growth, utilizing a simple vacuum thermal evaporation technique. The unusual tilt-structure (Sb, Bi)2Te3 nanowire array with a tilted angle of 45° exhibits a high thermoelectric dimensionless figure-of-merit ZT = 1.72 at room temperature. The relatively high ZT value in contrast to that of previously reported (Sb, Bi)2Te3 materials and the vertical (Sb, Bi)2Te3 nanowire arrays evidently reveals the crucial role of the unique tilt-structure in favorably influencing carrier and phonon transport properties, resulting in a significantly improved ZT value. The transport mechanism of such tilt-structure is proposed and investigated. This method opens a new approach to optimize nano-structure in thin films for next-generation thermoelectric materials and devices.

  11. Stochastic Drought Risk Analysis and Projection Methods For Thermoelectric Power Systems

    Science.gov (United States)

    Bekera, Behailu Belamo

    Combined effects of socio-economic, environmental, technological and political factors impact fresh cooling water availability, which is among the most important elements of thermoelectric power plant site selection and evaluation criteria. With increased variability and changes in hydrologic statistical stationarity, one concern is the increased occurrence of extreme drought events that may be attributable to climatic changes. As hydrological systems are altered, operators of thermoelectric power plants need to ensure a reliable supply of water for cooling and generation requirements. The effects of climate change are expected to influence hydrological systems at multiple scales, possibly leading to reduced efficiency of thermoelectric power plants. This study models and analyzes drought characteristics from a thermoelectric systems operational and regulation perspective. A systematic approach to characterize a stream environment in relation to extreme drought occurrence, duration and deficit-volume is proposed and demonstrated. More specifically, the objective of this research is to propose a stochastic water supply risk analysis and projection methods from thermoelectric power systems operation and management perspectives. The study defines thermoelectric drought as a shortage of cooling water due to stressed supply or beyond operable water temperature limits for an extended period of time requiring power plants to reduce production or completely shut down. It presents a thermoelectric drought risk characterization framework that considers heat content and water quantity facets of adequate water availability for uninterrupted operation of such plants and safety of its surroundings. In addition, it outlines mechanisms to identify rate of occurrences of the said droughts and stochastically quantify subsequent potential losses to the sector. This mechanism is enabled through a model based on compound Nonhomogeneous Poisson Process. This study also demonstrates how

  12. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  13. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    In this article survey of variational principles has been given. Variational principles play a significant role in mathematical theory with emphasis on the physical aspects. There are two principals used i.e. to represent the equation of the system in a succinct way and to enable a particular computation in the system to be carried out with greater accuracy. The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basic finite element methods on variational principles. (A.B.)

  14. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basing finite element methods on variational principles, especially if, as maximum and minimum principles, these can provide bounds and hence estimates of accuracy. The non-symmetric (and hence stationary rather than extremum principles) are seen however to play a significant role in optimisation theory. (Orig./A.B.)

  15. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  16. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  17. The uncertainty principle

    International Nuclear Information System (INIS)

    Martens, Hans.

    1991-01-01

    The subject of this thesis is the uncertainty principle (UP). The UP is one of the most characteristic points of differences between quantum and classical mechanics. The starting point of this thesis is the work of Niels Bohr. Besides the discussion the work is also analyzed. For the discussion of the different aspects of the UP the formalism of Davies and Ludwig is used instead of the more commonly used formalism of Neumann and Dirac. (author). 214 refs.; 23 figs

  18. NATO Advanced Research Workshop on New Materials for Thermoelectric Applications

    CERN Document Server

    Hewson, Alex

    2013-01-01

    Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.

  19. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  20. Thermoelectric microgenerators. Current status and prospects of application

    Directory of Open Access Journals (Sweden)

    Strutynska L. T.

    2008-08-01

    Full Text Available Analysis of current status and prospects of using thermoelectric microgenerators, including organic-fueled ones, is performed. Developments of thermoelectric microgenerators presented in this review demonstrate that their increasingly wide use forms a separate, very important line of thermoelectricity – micropower generation with growing potential of practical applications for charging batteries, mobile phones, digital cameras and photocameras, power supply to small radio stations, other portable devices, including medical. The ways of increasing the efficiency of such devices and relevant lines of their wide use in practice are determined.