WorldWideScience

Sample records for thermodynamics design fabrication

  1. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  2. Thermodynamic studies for drug design and screening.

    Science.gov (United States)

    Garbett, Nichola C; Chaires, Jonathan B

    2012-04-01

    A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.

  3. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  4. DESIGN AND FABRICATION OF MICRONOZZLES

    Directory of Open Access Journals (Sweden)

    Kean How Cheah

    2011-05-01

    Full Text Available Normal 0 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:SimSun; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Micronozzle, a key component in micropropulsion system, has been designed and fabricated. Quasi 1D inviscid theory was used in designing a series of conical micronozzles of different expander half-angles (10°-50°. Aerospike micronozzle, a promising candidate to achieve high performance propulsion system, was designed with Angelino method (or Approximate method. Both micronozzles were fabricated using soft lithography, an inexpensive and relatively simple technique comparing to well-established deep reactive ion etching (DRIE technique, with polydimethylsiloxane (PDMS as structural material. Micronozzles with two different nozzle throat width, 53.5µm and 107µm, were fabricated for comparison. Microscopic inspections reveal 107µm is the more producible nozzle throat width with current equipments. The PDMS-based micronozzle can be used as cold gas microthruster system for micro- and nanosatellites.

  5. Design Thinking for Digital Fabrication in Education

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Iversen, Ole Sejer; Hjorth, Mikkel

    2015-01-01

    In this paper, we argue that digital fabrication in education may benefit from design thinking, to foster a more profound understanding of digital fabrication processes among students. Two related studies of digital fabrication in education are presented in the paper. In an observational study we...... found that students (eleven to fifteen) lacked an understanding of the complexity of the digital fabrication process impeding on the potentials of digital fabrication in education. In a second explorative research through design study, we investigated how a focus on design thinking affected the students...

  6. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C

    2004-01-01

    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  7. MITG test assembly design and fabrication

    International Nuclear Information System (INIS)

    Schock, A.

    1983-01-01

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings

  8. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Bong Shick; Kim, Y. S.; Lee, C. Y. and others

    1999-03-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and fabrication of main equipment, licensing and technical review for fuel test loop have been performed during 2 years(1997, 1998) for this project. Following contents are described in the report. - Procurement and fabrication of the equipment, piping for OPS - IPS manufacture - License - Technical review and evaluation of the FTL facility. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and review ofHANARO interface have been performed respectively. (author)

  9. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  10. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C. [and others

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs.

  11. Design, fabrication and installation of irradiation facilities

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C.

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs

  12. MOLECULAR THERMODYNAMICS IN THE DESIGN OF SUBSTITUTE SOLVENTS

    Science.gov (United States)

    The use of physical properties and fluid behavior from molecular thermodynamics can lead to better decision making in the design of substitute solvents and can greatly reduce the expense and time required to find substitutes compared to designing solvents by experiment. this pape...

  13. Computation, architectural design and fabrication logic

    DEFF Research Database (Denmark)

    Larsen, Niels Martin

    2016-01-01

    Digital fabrication and digital form generation can change the way different professions interact in relation to the development and construction of architecture. The technologies can provide a more integrated design process and expand the architectural vocabulary. At Aarhus School of Architectur...

  14. Thermodynamic criterions for heat exchanger networks design

    Energy Technology Data Exchange (ETDEWEB)

    Guiglion, C.; Farhat, S.; Pibouleau, L.; Domenech, S. (Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, 31 - Toulouse (France))

    1994-03-01

    This problem under consideration consists in selecting a heat exchanger network able to carry out a given request in heatings and coolings, in steady-state behaviour with constant pressure, by using if necessary cold and hot utilities, and under the constraint [Delta] T [>=] e in order to restrict investment costs. The exchanged energy and the produced entropy are compared in terms of operating costs. According to the request to be satisfied and the constraints of utility consumption, it is shown that the goal to minimize the produced entropy more or less agrees with the goal to minimize the exchanged energy. In the last part, the case where the cost of utility use is assumed to be proportional to the flow rate, with a proportionality constant only depending on the input thermodynamic state, is studied thoroughly. Under this assumption, the minimization of operating costs is compatible with the minimization of exchanged energy, and can be obtained via the maximization of the difficulty of the request part, made without using utilities. This point is based on the notion of a request easier than another, which explicits the quite vague idea that a request is all the more easier because it involves less heatings at high temperatures and less coolings at low temperatures. (author). 5 refs., 1 fig.

  15. Architectural Geometry and Fabrication-Aware Design

    KAUST Repository

    Pottmann, Helmut

    2013-04-27

    Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication. © 2013 Kim Williams Books, Turin.

  16. Design of the MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Johnson, J.V.; Brabazon, E.J.

    2001-01-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  17. Design of the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.V. [MFFF Technical Manager, U.S. dept. of Energy, Washington, DC (United States); Brabazon, E.J. [MFFF Engineering Manager, Duke Cogema Stone and Webster, Charlotte, NC (United States)

    2001-07-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  18. Design and fabrication of topologically optimized structures;

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2012-01-01

    Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard...... & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus...

  19. CCD research. [design, fabrication, and applications

    Science.gov (United States)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  20. A novel constraint for thermodynamically designing DNA sequences.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.

  1. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  2. Crashworthy airframe design concepts: Fabrication and testing

    Science.gov (United States)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  3. Cryogenic Wind Tunnel Models. Design and Fabrication

    Science.gov (United States)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  4. Design and fabrication of the BNL radio frequency quadrupole

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1983-01-01

    The Brookhaven National Laboratory polarized H - injection program for the AGS will utilize a Radio Frequency Quadrupole for acceleration between the polarized source and the Alvarez Linac. Although operation will commence with a few μ amperes of H - current, it is anticipated that future polarized H - sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, and removal of heat from the vanes. The cavity design philosophy will be discussed together with the thermodynamics of heat removal from the vane. Details of the fabrication will be presented with a status report

  5. On the application of thermodynamics of corrosion for service life design of concrete structures

    DEFF Research Database (Denmark)

    Küter, Andre; Geiker, Mette Rica; Møller, Per

    2010-01-01

    There are unexploited possibilities in the application of thermodynamics of corrosion for service life design (SLD) of concrete structures. Thermodynamics provides means for insightful descriptions of corrosion mechanisms and of corrosion protection mechanisms. Strategies for corrosion protection...... of the application of thermodynamics for SLD and gives examples of two applications: description of corrosion processes and design of countermeasures. Emphasis is set on chloride induced corrosion....... can be based on thermodynamically consistent corrosion mechanisms and evaluation of existing and design of new countermeasures can be performed using thermodynamics. Similarly, materials concepts for embedded electrodes can be designed using thermodynamics. The present paper provides a brief outline...

  6. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes......, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors....

  7. Propulsion Design With Freeform Fabrication (PDFF)

    Science.gov (United States)

    Barnes, Daudi; McKinnon, James; Priem, Richard

    2010-01-01

    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in

  8. Fabrication of uranium-americium mixed oxide fuels: thermodynamical modeling and materials properties

    International Nuclear Information System (INIS)

    Prieur, D.

    2011-01-01

    Fuel irradiation in pressurized water reactors lead to the formation of fission products and minor actinides (Np, Am, Cm) which can be transmuted in fast neutrons reactors. In this context, the aim of this work was to study the fabrication conditions of the U 1-y Am y O 2+x fuels which exhibit particular thermodynamical properties requiring an accurate monitoring of the oxygen potential during the sintering step. For this reason, a thermodynamical model was developed to assess the optimum sintering conditions for these materials. From these calculations, U 1-y Am y O 2+x (y=0.10; 0.15; 0.20; 0.30) were sintered in two range of atmosphere. In hyper-stoichiometric conditions at low temperature, porous and multiphasic compounds are obtained whereas in reducing conditions at high temperature materials are dense and monophasic. XAFS analyses were performed in order to obtain additional experimental data for the thermodynamical modeling refinement. These characterizations also showed the reduction of Am(+IV) to Am(+III) and the partial oxidation of U(+IV) to U(+V) due to a charge compensation mechanism occurring during the sintering. Finally, taking into account the high - activity of Am, self-irradiation effects were studied for two types of microstructures and two Am contents (10 and 15%). For each composition, a lattice parameter increase was observed without structural change coupled with a macroscopic swelling of the pellet diameter up to 1.2% for the dense compounds and 0.6% for the tailored porosity materials. (author) [fr

  9. Photon nanojet lens: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Xu, Chen; Zhang, Sichao; Shao, Jinhai; Lu, Bing-Rui; Chen, Yifang; Mehfuz, Reyad; Drakeley, Stacey; Huang, Fumin

    2016-01-01

    In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect. (paper)

  10. Design and Fabrication of an Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    M. S. Abubakar

    2017-02-01

    Full Text Available Anaerobic digester is a physical structure that provides a conducive environment for the multiplication of micro-organisms that degrades organic matter to generate biogas energy. Energy is required in agriculture for crop production, processing and storage, poultry production and electricity for farmstead and farm settlements. It is energy that propels agricultural mechanization, which minimizes the use of human and animal muscles and its inherent drudgery in agriculture. The energy demand required to meet up with the agricultural growth in Nigeria is high and growing every year. In this study the design and fabrication of an anaerobic digester was reported which is an attempt to boost energy requirement for small and medium dryland farmers in Nigeria. The design of the digester includes the following concept; the basic principles of anaerobic digestion processes, socio-economic status of the dryland farmers, amount of biogas to be produced. Finally, the digester was fabricated using locally available raw materials within the dryland area of Nigeria. At the end, preliminary flammability test was conducted and the biogas produced was found to be flammable.

  11. Plasma Chamber Design and Fabrication Activities

    Science.gov (United States)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  12. Novel fabric pressure sensors: design, fabrication, and characterization

    International Nuclear Information System (INIS)

    Wang, Yangyong; Hua, Tao; Zhu, Bo; Li, Qiao; Yi, Weijing; Tao, Xiaoming

    2011-01-01

    Soft and pliable pressure sensors are essential elements in wearable electronics which have wide applications in modern daily lives. This paper presents a family of fabric pressure sensors made by sandwiching a piece of resistive fabric strain sensing element between two tooth-structured layers of soft elastomers. The pressure sensors are capable of measuring pressure from 0 to 2000 kPa, covering the whole range of human–machine interactions. A pressure sensitivity of up to 2.98 × 10 −3 kPa −1 was obtained. Theoretical modeling was conducted based on an energy method to predict the load–displacement relationship for various sensor configurations. By adjusting the Young's modulus of the two conversion layers, as well as the geometrical dimensions, the measurement ranges, and sensitivities of the sensors can be quantitatively determined. The sensors are being used for pressure measurements between the human body and garments, shoes, beds, and chairs

  13. Design, Fabrication, and Optimization of Jatropha Sheller

    Directory of Open Access Journals (Sweden)

    Richard P. TING

    2012-07-01

    Full Text Available A study designed, fabricated, and optimized performance of a jatropha sheller, consisting of mainframe, rotary cylinder, stationary cylinder, transmission system. Evaluation and optimization considered moisture content, clearance, and roller speed as independent parameters while the responses comprised of recovery, bulk density factor, shelling capacity, energy utilization of sheller, whole kernel recovery, oil recovery, and energy utilization by extruder.Moisture content failed to affect the response variables. The clearance affected response variables except energy utilization of the extruder. Roller speed affected shelling capacity, whole kernel recovery, and energy utilization of the extruder. Optimization resulted in operating conditions of 9.5%wb moisture content, clearance of 6 mm, and roller speed of 750 rpm.

  14. FPGA fabric specific optimization for RLT design

    International Nuclear Information System (INIS)

    Perwaiz, A.; Khan, S.A.

    2010-01-01

    This paper proposes a technique custom to the optimization requirements suited for a particular family of Field Programmable Gate Arrays (FPGAs). As FPGAs have introduced re configurable black boxes there is a need to perform optimization across FPGAs slice fabric in order to achieve optimum performance. Though the Register Transfer Level (RTL) Hardware Descriptive Language (HDL) code should be technology independent but in many design instances it is imperative to understand the target technology especially once the target device embeds dedicated arithmetic blocks. No matter what the degree of optimization of the algorithm is, the configuration of target device plays an important role as far as the device utilization and path delays are concerned Index Terms: Field Programmable Gate Arrays (FPGA), Compression Tree, Bit Width Reduction, Look Ahead Pipelining. (author)

  15. Fabrication and Design of Optical Nanomaterials

    Science.gov (United States)

    Huntington, Mark D.

    Over the past several decades, advances in nanometer scale fabrication has sparked interes in applications that take advantage of materials that are structured at these small length scales. Specifically, metallic optical nanomaterials have emerged as a new way to control light at length scales that are smaller than the wavelength of light and have optical properties that are distinctly different from their macroscale counterparts. Although there have been may advances in nanofabrication, the performance and widespread use of optical nanomaterials is still limited by fabrication and design challenges. This dissertation describes advances in the fabrication, characterization, and design of optical nanomaterials. First we demonstrate how a portable and compact photolithography system can be made using a light source composed of UV LEDs. Our solid-state photolithography (SSP) system brings the capabilities of one of the most important yet workhorse tools of micro- and nanotechnology--the mask aligner--to the benchtop. The two main highlights of chapter 2 include: (i) portable, low-cost photolithography and (ii) high quality patterning. We replace the mask aligner with a system composed of UV LEDs and a diffuser that can be built for as little as $30. The design of the SSP system alleviates the need for dedicated power supplies, vacuum lines and cooling systems, which makes it a true benchtop photolithography system. We further show that sub-wavelength features can be fabricated across 4-in wafers and that these patterns are of high quality such that they can be easily transferred into functional materials. Chapter 3 describes a parallel method to create nanometer scale textures over large areas with unprecedented control over wrinkle wavelength. The main points of this chapter include: (i) a new material system for nanowrinkles, (ii) wrinkles with tunable wavelengths, and (iii) a method for measuring the skin thickness. First, we show that RIE treatment of PS with

  16. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Science.gov (United States)

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  17. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  18. Robotic fabrication in architecture, art, and design

    CERN Document Server

    Braumann, Johannes

    2013-01-01

    Architects, artists, and designers have been fascinated by robots for many decades, from Villemard’s utopian vision of an architect building a house with robotic labor in 1910, to the design of buildings that are robots themselves, such as Archigram’s Walking City. Today, they are again approaching the topic of robotic fabrication but this time employing a different strategy: instead of utopian proposals like Archigram’s or the highly specialized robots that were used by Japan’s construction industry in the 1990s, the current focus of architectural robotics is on industrial robots. These robotic arms have six degrees of freedom and are widely used in industry, especially for automotive production lines. What makes robotic arms so interesting for the creative industry is their multi-functionality: instead of having to develop specialized machines, a multifunctional robot arm can be equipped with a wide range of end-effectors, similar to a human hand using various tools. Therefore, architectural researc...

  19. Design and fabrication of broadband rugate filter

    International Nuclear Information System (INIS)

    Zhang Jun-Chao; Fang Ming; Shao Yu-Chuan; Jin Yun-Xia; He Hong-Bo

    2012-01-01

    The design and the deposition of a rugate filter for broadband applications are discussed. The bandwidth is extended by increasing the rugate period continuously with depth. The width and the smoothness of the reflection band with the distribution of the periods are investigated. The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces. The rapidly alternating deposition technology is used to fabricate a rugate filter sample. The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband. Based on the analysis of the cross-sectional scanning electron microscopic image of the sample, it is found that the transmission peak is most likely to be caused by the instability of the deposition rate. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Design and fabrication of sun tracker

    International Nuclear Information System (INIS)

    Novinrooz, A. J.; Ghasemi, M. R.; Mohati, M.; Sadri, H.

    2003-01-01

    A sun tacker system, consists of two parts (opto-electronic and hydraulic), has been designed and fabricated to be used in solar thermal power plant. In this paper various parts of the system including optical sensors, electronic circuits, computational control and mechanical lever have been explained and the operational mechanism of each one is discussed. The parabolic mirror used in this plant has 400 cm length, 570 cm width and 170 cm focal length. Rays falling to the axis of mirror are reflected and collected at the focal point, while unparallel rays are diverted. To determine the rate of divergence, a three - dimensional equation of radiation path is written. Using a computational program in Cl anguage the error is calculated from 0t o 0 .5 d eg, for modifying the operational error of the optical system. The optical sensors detect the beam deviation from the mirror's principal axis with a precision of 0.1 degree and transfer the necessary corrections to the active mechanical system of the hydraulic type. A three phase electro motor of 0.7 k W power and one thousand revolutions per minute controls the mirror movement

  1. Compound Half-Backed Weave Design For Digital Jacquard Fabric

    Science.gov (United States)

    Zhang, Meng; Zhou, Jiu

    2017-12-01

    Based on layered-combination design mode and compound structure, this paper presents a design method, named compound half-backed weave in order to achieve innovating weave structure and surface effect of fabric. This design method includes primary weaves chosen, half-backed technical points set up and half-backed weave databases established. The fabric produced using compound half-backed weave designed by this method can exhibit a unique half-backed effect that only half of the threads on the fabric surface remain in a state of being covered by adjacent wefts. Compound half-backed weave can not only meets the design need of jacquard fabric with different digital images and effectively improves the efficiency of structural design, but also puts forward new theory and method for innovative design of digital jacquard fabric.

  2. Chemical Product Design: A new challenge of applied thermodynamics

    DEFF Research Database (Denmark)

    Abildskov, Jens; Kontogeorgis, Georgios

    2004-01-01

    , and then to outline some specific examples from our research activities in the area of thermodynamics for chemical products. The examples cover rather diverse areas such as interrelation between thermodynamic and engineering properties in detergents (surfactants), paint thermodynamics and the development of models...

  3. LOFT fuel modules design, characterization, and fabrication program

    International Nuclear Information System (INIS)

    Russell, M.L.

    1977-06-01

    The loss-of-fluid test [LOFT) fuel modules have evolved from a comprehensive five-year design, characterization, and fabrication program which has resulted in the accomplishment of many technical activities of interest in pressurized water reactor fuel design development and safety research. Information is presented concerning: determination of fundamental high-temperature reactor material properties; design invention related to in-core instrumentation attachment; implementation of advanced and/or unique fuel bundle characterization techniques; implementation of improved fuel bundle fabrication techniques; and planning and execution of a multimillion dollar design, characterization, and fabrication program for pressurized water reactor fuel

  4. Mechanical Design and Fabrication Studies for SPL Superconducting RF Cavities

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Capatina, O; Renaglia, T; Tardy, T; Valverde Alonso, N; Weingarten, W

    2011-01-01

    CERN’s R&D programme on the Superconducting Proton Linac’s (SPL) superconducting radio frequency (SRF) elliptical cavities made from niobium sheets explores new mechanical design and consequently new fabrication methods, where several opportunities for improved optimization were identified. A stainless steel helium vessel is under design rather than a titanium helium vessel using an integrated brazed transition between Nb and the SS helium vessel. Different design and fabrication aspects were proposed and the results are discussed hereafter.

  5. Thermodynamic metrics for measuring the ``sustainability'' of design for recycling

    Science.gov (United States)

    Reuter, Markus; van Schaik, Antoinette

    2008-08-01

    In this article, exergy is applied as a parameter to measure the “sustainability” of a recycling system in addition to the fundamental prediction of material recycling and energy recovery, summarizing a development of over 20 years by the principal author supported by various co-workers, Ph.D., and M.Sc. students. In order to achieve this, recyclate qualities and particle size distributions throughout the system must be predicted as a function of product design, liberation during shredding, process dynamics, physical separation physics, and metallurgical thermodynamics. This crucial development enables the estimation of the true exergy of a recycling system from its inputs and outputs including all its realistic industrial traits. These models have among others been linked to computer aided design tools of the automotive industry and have been used to evaluate the performance of waste electric and electronic equipment recycling systems in The Netherlands. This paper also suggests that the complete system must be optimized to find a “truer” optimum of the material production system linked to the consumer market.

  6. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling

    International Nuclear Information System (INIS)

    Carroll, Beth E.; Otis, Richard A.; Borgonia, John Paul; Suh, Jong-ook; Dillon, R. Peter; Shapiro, Andrew A.; Hofmann, Douglas C.; Liu, Zi-Kui; Beese, Allison M.

    2016-01-01

    Many engineering applications, particularly in extreme environments, require components with properties that vary with location in the part. Functionally graded materials (FGMs), which possess gradients in properties such as hardness or density, are a potential solution to address these requirements. The laser-based additive manufacturing process of directed energy deposition (DED) can be used to fabricate metallic parts with a gradient in composition by adjusting the volume fraction of metallic powders delivered to the melt pool as a function of position. As this is a fusion process, secondary phases may develop in the gradient zone during solidification that can result in undesirable properties in the part. This work describes experimental and thermodynamic studies of a component built from 304L stainless steel incrementally graded to Inconel 625. The microstructure, chemistry, phase composition, and microhardness as a function of position were characterized by microscopy, energy dispersive spectroscopy, X-ray diffraction, and microindentation. Particles of secondary phases were found in small amounts within cracks in the gradient zone. These were ascertained to consist of transition metal carbides by experimental results and thermodynamic calculations. The study provides a combined experimental and thermodynamic computational modeling approach toward the fabrication and evaluation of a functionally graded material made by DED additive manufacturing.

  7. Design and fabrication of NDA standards

    International Nuclear Information System (INIS)

    Long, S.M.; Hsue, S.T.

    1996-01-01

    The Plutonium Facility, TA-55, at Los Alamos National Laboratory is currently producing NDA calibration standards used by various laboratories in the DOE complex. These NIST traceable standards have been produced to calibrate NDA instruments for accountability measurements used for resolving shipper/receiver differences, and for accountability in process residues and process waste. Standards are needed to calibrate various NDA (Non-destructive Assay) instruments such as neutron coincidence counters, gamma-ray counters, and calorimeters. These instruments measure various ranges of nuclear material being produced in the DOE nuclear community. Los Alamos National Laboratory has taken a lead role in fabrication of uranium and plutonium standards, along with other actinides such as neptunium and americium. These standards have been fabricated for several laboratories within the complex. This paper will summarize previous publications detailing the careful planning encompassing components such as precise weighing, destructive analysis, and the use of post fabrication NDA measurements to confirm that the standards meet all preliminary expectations before use in instrument calibration. The paper will also describe the specialized containers, diluents, and the various amount of nuclear materials needed to accommodate the calibration ranges of the instruments

  8. Design and Fabrication of an Industrial Poultry Feed Tumble Mixer

    Directory of Open Access Journals (Sweden)

    Osokam Shadrach ONYEGU

    2012-08-01

    Full Text Available This paper presents the design and fabrication of a poultry feed industrial tumble mixer. The design computations to handle a 50Kg mass of feed was done in the MS Excel environment for proper machine design approach. The machine was designed using AUTOCAD 2D/3D design software and proper material selection was done before the assembling and fabrication of parts. The efficiency of the machine, its associated cost of production and the product obtained after few minutes of mixing were outstanding, thereby, making the design acceptable and cost effective.

  9. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...

  10. Design and fabrication of the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Tatro, R.E.; Kozman, T.A.

    1985-09-01

    The MFTF-B superconducting magnet system consists of 40 NbTi magnets and two Nb 3 Sn magnets. General Dynamics (GD) designed all magnets except for the small trim coils. GD then fabricated 20 NbTi magnets, while LLNL fabricated 20 NbTi magnets and two Nb 3 Sn magnets. The design phase was completed in February 1984 and included the competitive procurement of magnet structural fabrication, superconductor, G-10CR insulation, support struts and bearings, vapor-cooled leads, and thermal shields for all magnets. Fabrication of all magnets was completed in March 1985. At GD, dual assembly lines were necessary during fabrication in order to meet the aggressive LLNL schedule. The entire magnet system has been installed and aligned at LLNL, and Tech Demo tests will be performed during September-November 1985

  11. Iodine Beam Dump Design and Fabrication

    Science.gov (United States)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  12. Sandia Laboratories technical capabilities: design, definition, and fabrication

    International Nuclear Information System (INIS)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures

  13. Design, analysis and fabrication of a linear permanent magnet ...

    Indian Academy of Sciences (India)

    MONOJIT SEAL

    Linear permanent magnet synchronous machine; LPMSM—fabrication; design optimisation; finite-element ... induction motor (LIM) prototype was patented in 1890 [1]. Since then, linear ..... Also, for manual winding, more slot area is allotted to ...

  14. Sandia Laboratories technical capabilities: design, definition, and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures.

  15. The Preliminary Design and Fabrication of a Manually Operated ...

    African Journals Online (AJOL)

    A ten (10) tonnes capacity agro waste manual briquetting machine have been designed and fabricated using locally available materials. The machine principal parts are made of frame, compaction chamber and base plate . Compaction ...

  16. Design and Fabrication of Aerospace-Grade Digital Composite Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to advance design rules and fabrication approaches to create aerospace-grade structures from digital composite materials. Digital materials are...

  17. AERIAL DELIVERY DESIGN AND FABRICATION FACILITY

    Data.gov (United States)

    Federal Laboratory Consortium — Skilled personnel are equipped to design and develop various prototype airdrop items. This facility has all classes of sewing machines, ranging from lightweight to...

  18. EDITORIAL: Designer fabrication: nanotemplates get in shape Designer fabrication: nanotemplates get in shape

    Science.gov (United States)

    Demming, Anna

    2013-02-01

    People working in device design rarely see something that works without thinking how it could be made to work better. The work on anodic aluminum oxide materials in this issue provides a case in point [1]. Over the past century researchers have observed, manipulated and exploited the porous structures that result when anodizing aluminum in for example oxalic, sulfuric, and phosphoric acid solutions [1, 2]. The self-organized pore arrays have demonstrated the potential to facilitate high through-put, low-cost fabrication of nanocomposites as well as other nanostructures. The straight self-aligned nanochannels in porous anodic aluminum oxide (AAO) have long been accepted as an inherent property of these films and for many applications they are an attractive attribute. However, researchers in Taiwan have considered a novel manifestation of AAO materials which may enhance their natural attributes by generating arrays that bend [3]. Their work is an example of how even well studied systems continue to harbour surprises and scope for creative innovation. As the authors point out, 'This novel fan-out platform facilitates probing and handling many signals from different areas on a sample's surface and is therefore promising for applications in detection and manipulation at the nanoscale level'. It has long been recognized that the inter-pore distance, pore diameter and pore depth in AAO can be controlled by changing the anodization conditions. These accommodating features have motivated researchers to seek a better understanding of how to optimize fabrication conditions. A collaboration of researchers in Sweden, Chile and Uruguay studied the structural and optical properties of silver nanowires electrodeposited in commercially available nanoporous alumina templates, with a nominal pore diameter of 20 nm [4]. Their results revealed a decrease in the uniformity of pore filling with increasing deposition overpotential and suggested that overpotentials were preferred for the

  19. design and fabrication of a fou fabrication of a foundry sand mixer

    African Journals Online (AJOL)

    eobe

    favourably with the the imported existing one which urably with the the imported existing one which foundry shops will eliminate the use manual effort save the the country of huge save the the country of huge foreign exchange used i foreign exchange used i. Keywords: Keywords:foundry,sand mixer,fabrication,design,bla.

  20. Robotic Fabrication in Architecture, Art and Design 2016

    CERN Document Server

    Saunders, Rob; Burry, Jane

    2016-01-01

    The book presents the proceedings of Rob/Arch 2016, the third international conference on robotic fabrication in architecture, art, and design. The work contains a wide range of contemporary topics, from methodologies for incorporating dynamic material feedback into existing fabrication processes, to novel interfaces for robotic programming, to new processes for large-scale automated construction. The latent argument behind this research is that the term ‘file-to-factory’ must not be a reductive celebration of expediency but instead a perpetual challenge to increase the quality of feedback between design, matter, and making.

  1. Thermodynamic design of natural gas liquefaction cycles for offshore application

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  2. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  3. Thermodynamic evaluation of highly exothermic reactions for the fabrication of ceramic metal composites

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Pandolfelli, V.C.; Botta Filho, W.J.; Tomasi, R.; Stevens, R.; Brook, R.J.

    1990-01-01

    Highly exothermic reactions allow the synthesis or production of materials. Which present advantages regarding to energy saving, simplicity of process and higher purity of the products. Considering adiabatic conditions these reactions give off a large amount of heat which will raise the temperature of the system, allowing the production of highly refractory materials. This paper presents a thermodynamic forecast of reactants are Nb2O5, Al e Zr. The objective is to produce high toughness alumina matrix composites containing ZrO2 particles and Nb metal. (author)

  4. Design and Fabrication of a Foundry Sand Mixer Using Locally ...

    African Journals Online (AJOL)

    Most small foundry shops mix their sand manually which is not efficient since homogenous mix cannot be guaranteed and even when foundry mixer are available most of them are imported costing the nation huge foriegn exchange. A foundry sand mixer capable of mixing foundry sand has been designed and fabricated ...

  5. Design and fabrication of a cassava peeling machine | Akintunde ...

    African Journals Online (AJOL)

    Design and fabrication of a cassava peeling machine. ... Journal Home > Vol 23, No 1 (2005) > ... The varying shapes and sizes of cassava tubers have made cassava peeling to be one of the major problems in the mechanization of cassava ...

  6. Mechanical design and fabrication of pure-permanent magnet undulator

    International Nuclear Information System (INIS)

    Chouksey, Sanjay; Vinit Kumar; Abhay Kumar; Krishnagopal, Srinivas

    2003-01-01

    A 50 mm period, 2.5 m long (50 periods), pure permanent magnet, variable gap undulator using NdFeB magnets is being built in two sections, each 1.25 m long. We present details of the mechanical design, fabrication experience, assembly and inspection of the undulator. (author)

  7. Design, Fabrication and Evaluation of a Plantain Roaster | Ezekiel ...

    African Journals Online (AJOL)

    In this work, an electric roaster capable of roasting twenty-one plantain fingers per batch was designed, fabricated and tested. The roaster had two electric heating elements (one at the top and the other at the base of the roaster) supplying power at the rate of 2.4 kW. In addition ... However, sample at the upper layer

  8. Design, fabrication and evaluation of fish meal pelletizing machine ...

    African Journals Online (AJOL)

    A 113.1kg/h fish meal pellet processing machine which produced 4mm diameter pellet, with an average length of 6mm was designed and fabricated. Design values of 210 was used for the maximum angle that the hopper wall formed with the vertical in the discharge zone, a critical stress of 1.3kPa of the ground particulate ...

  9. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  10. Design, fabrication and operation of the LVDT based vertical dilatometer

    International Nuclear Information System (INIS)

    Manoj, N.; Kerkar, A.S.; Mathews, M.D.; Gautam, J.K.; Tyagi, A.K.; Thomas, K.C.

    2005-07-01

    This report provides the details of a dilatometer developed in-house to measure thermal expansion from room temperature to 1173 K. The instrument was designed, fabricated and tested for its satisfactory performance by analyzing the thermal expansion properties of several materials up to a maximum temperature of 1123 K. One of the important feature in this design is that, the instrument has been fabricated by using all indigenously available components. The sample loading and initial zero adjustment procedure has been made very simple in this design. The software for furnace temperature programming and control, data collection, data processing and plotting of the graph has also been developed. Provision for carrying out the measurements in vacuum as well as flowing gas have been provided. (author)

  11. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Directory of Open Access Journals (Sweden)

    Ho-Chiao Chuang

    2014-06-01

    Full Text Available This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  12. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Science.gov (United States)

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  13. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    International Nuclear Information System (INIS)

    Gierczak, M; Markowski, P; Dziedzic, A

    2016-01-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators. (paper)

  14. 1024x1024 resistive emitter array design and fabrication status

    Science.gov (United States)

    Bryant, Paul T.; Oleson, Jim; McHugh, Stephen W.; Beuville, Eric; Schlesselmann, John D.; Woolaway, James T.; Barskey, Steve; Solomon, Steven L.; Joyner, Thomas W.

    2002-07-01

    Santa Barbara Infrared (SBIR) is producing a high performance 1,024 x 1,024 Large Format Resistive emitter Array (LFRA) for use in the next generation of IR Scene Projectors (IRSPs). LFRA requirements were developed through close cooperation with the Tri-Service IR Scene Projector working group, and through detailed trade studies sponsored by the OSD Central T&E Investment Program (CTEIP) and a Phase I US Navy Small Business Innovative Research (SBIR) contract. The CMOS Read-In Integrated Circuit (RIIC) is being designed by SBIR and Indigo Systems under a Small Business Innovative Research (SBIR) contract. Performance and features include 750 K MWIR maximum apparent temperature, 5 ms radiance rise time, 200 Hz full frame update, and 400 Hz window mode operation. Ten 8-inch CMOS wafers will be fabricated and characterized in mid-2002, followed by emitter fabrication in late 2002. This paper discusses array performance, requirements flow-down, array design, fabrication of 2 X 2-inch CMOS devices, and plans for subsequent RIIC wafer test and emitter pixel fabrication.

  15. Engineering design and fabrication of ICH antenna on KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.D.; Hong, B.G.; Hwang, C.K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    Engineering design of 6MW ICH(Ion Cyclotron Heating) system for the plasma heating and current drive in KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is carried out and a proto-type antenna is domestically fabricated. The proto-type antenna is installed on RF test chamber, and its mutual coupling and vacuum impedance will be measured. Furthermore, high voltage and current behavior under no-plasma load conditions will be studied using 100 kW of 30 MHz RF power. A vacuum feedthrough is designed and fabricated using two ceramic cylinder, which has power rating of 1.5 MW and pulse length of 300 sec. Its RF characteristics will be tested using 100 kW RF transmitter. 19 refs., 46 figs., 8 tabs. (Author)

  16. Quantifying the thermodynamic interactions of polyhedral boranes in solution to guide nanocomposite fabrication

    International Nuclear Information System (INIS)

    Mutz, M.; Eastwood, Eric; Lee, Mark E.; Bowen, Daniel E.; Dadmun, M. D.

    2012-01-01

    The solubility of boron containing nanoparticles in a variety of solvents is quantified using static light scattering in conjunction with refractometry. Four polyhedral boranes were tested in this work, using refractometry to obtain dn/dc, while static light scattering quantifies A 2 . A 2 obtained from these measurements was then used to calculate χ, the solute–solvent interaction parameter, and the Hildebrand solubility parameter, δ, which provides a quantifiable method to identify good solvents. Of the nanoparticles studied, 1,3-di-o-carboranylpropane is thermodynamically stable in toluene, with a χ less than 0.5, a solubility limit of 2.47 mg/mL, and all solutions remaining clear with no visible particle settling. For all of the particles tested, there was good correlation between the physical observations of the solutions, χ, and δ. For instance, lower values of χ correspond to a smaller radius of gyration (R g ). A list of suitable solvents based on δ is also presented.

  17. Quantifying the thermodynamic interactions of polyhedral boranes in solution to guide nanocomposite fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M. [University of Tennessee, Department of Chemistry (United States); Eastwood, Eric [Honeywell Kansas City Plant (United States); Lee, Mark E. [University of Missouri (United States); Bowen, Daniel E. [Honeywell Kansas City Plant (United States); Dadmun, M. D., E-mail: dad@utk.edu [University of Tennessee, Department of Chemistry (United States)

    2012-11-15

    The solubility of boron containing nanoparticles in a variety of solvents is quantified using static light scattering in conjunction with refractometry. Four polyhedral boranes were tested in this work, using refractometry to obtain dn/dc, while static light scattering quantifies A{sub 2}. A{sub 2} obtained from these measurements was then used to calculate {chi}, the solute-solvent interaction parameter, and the Hildebrand solubility parameter, {delta}, which provides a quantifiable method to identify good solvents. Of the nanoparticles studied, 1,3-di-o-carboranylpropane is thermodynamically stable in toluene, with a {chi} less than 0.5, a solubility limit of 2.47 mg/mL, and all solutions remaining clear with no visible particle settling. For all of the particles tested, there was good correlation between the physical observations of the solutions, {chi}, and {delta}. For instance, lower values of {chi} correspond to a smaller radius of gyration (R{sub g}). A list of suitable solvents based on {delta} is also presented.

  18. MEMS-Based Micro Gas Chromatography: Design, Fabrication and Characterization

    OpenAIRE

    Zareian-Jahromi, Mohammad Amin

    2009-01-01

    This work is focused on the design, fabrication and characterization of high performance MEMS-based micro gas chromatography columns having wide range of applications in the pharmaceutical industry, environmental monitoring, petroleum distillation, clinical chemistry, and food processing. The first part of this work describes different approaches to achieve high-performance microfabricated silicon-glass separation columns for micro gas chromatographic (µGC) systems. The capillary width effec...

  19. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  20. Revised MITG design, fabrication procedure, and performance predictions

    International Nuclear Information System (INIS)

    Schock, A.

    1983-01-01

    The design, analysis, and key features of the Modular Isotopic Thermoelectric Generator (MITG) were described in a 1981 IECEC paper; and the design, fabrication, testing, and post-test analysis of test assemblies simulating prototypical MITG modules were described in preceding papers in these proceedings. These analyses succeeded in identifying and explaining the principal causes of thermal-stress problems encountered in the tests, and in confirming the effectiveness of design changes for alleviating them. The present paper presents additional design improvements for solving these and other problems, and describes new thermoelectric material properties generated by independent laboratories over the past two years. Based on these changes and on a revised fabrication procedure, it presents a reoptimization of the MITG design and computes the power-to-weight ratio for the revised design. That ratio is appreciably lower than the 1981 prediction, primarily because of changes in material properties; but it is still much higher than the specific power of current-generation RTGs

  1. Piping and pipeline calculations manual construction, design fabrication and examination

    CERN Document Server

    Ellenberger, Philip

    2010-01-01

    The lack of commentary, or historical perspective, regarding the codes and standards requirements for piping design and construction is an obstacle to the designer, manufacturer, fabricator, supplier, erector, examiner, inspector, and owner who want to provide a safe and economical piping system. An intensive manual, this book will utilize hundreds of calculation and examples based on of 40 years of personal experiences of the author as both an engineer and instructor. Each example demonstrates how the code and standard has been correctly and incorrectly applied. This book is a ?no non

  2. Deepwater offshore windfarm. Design fabrication and installation study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report discusses the plans and benefits of using the Beatrice oil field installation for the development of the offshore Beatrice windfarm in the Moray Firth. The development of an economic support structure for wind turbine generators to allow development of deepwater wind farms was investigated, and the screening of structural designs, and the analysis of fatigue, fabrication and installation considerations is described. Details are given of the recommendation for a further examination of two structural designs as options for the Beatrice windfarm development, the estimated costs, and the results of an environmental review.

  3. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  4. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  5. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-06-22

    This thesis presents the design and fabrication of a customized in house Micro-Electro-Mechanical-Systems (MEMS) process based on-chip antenna that is both frequency and polarization reconfigurable. It is designed to work at both 60 GHz and 77 GHz through MEMS switches. This antenna can also work in both horizontal and vertical linear polarizations by utilizing a moveable plate. The design is intended for Wireless Personal Area Networks (WPAN) and automotive radar applications. Typical on-chip antennas are inefficient and difficult to reconfigure. Therefore, the focus of this work is to develop an efficient on-chip antenna solution, which is reconfigurable in frequency and in polarization. A fractal bowtie antenna is employed for this thesis, which achieves frequency reconfigurability through MEMS switches. The design is simulated in industry standard Electromagnetic (EM) simulator Ansoft HFSS. A novel concept for horizontal to vertical linear polarization agility is introduced which incorporates a moveable polymer plate. For this work, a microprobe is used to move the plate from the horizontal to vertical position. For testing purposes, a novel mechanism has been designed in order to feed the antenna with RF-probes in both horizontal and vertical positions. A simulated gain of approximately 0 dB is achieved at both target frequencies (60 and 77 GHz), in both horizontal and vertical positions. In all the cases mentioned above (both frequencies and positions), the antenna is well matched (< -10 dB) to the 50 Ω system impedance. Similarly, the radiation nulls are successfully shifted by changing the position of the antenna from horizontal to vertical. The complete design and fabrication of the reconfigurable MEMS antenna has been done at KAUST facilities. Some challenges have been encountered during its realization due to the immaturity of the customized MEMS fabrication process. Nonetheless, a first fabrication attempt has highlighted such shortcomings. According

  6. Design, fabrication and performance of the 10-in TOM HPD

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; Giunta, M; Malakhov, N; Menzione, A; Pegna, R; Piccioli, A; Raffaelli, F; Sartori, G

    2004-01-01

    The first sealed TOM Hybrid Photon Detector (HPD) with 10-in. diameter has been fabricated and successfully tested at CERN. This HPD has a spherical entrance window and a bialkali photocathode. The fountain focusing optics produces a demagnified image (D = 4) on the round segmented silicon sensor. The signals of the 2048 cells are read out through analog front-end electronics encapsulated in the vacuum envelope. We report on the design, fabrication technique and the experimental results obtained with laboratory test benches. The large TOM HPD is a prototype tube developed for the CLUE cosmic ray experiment. The final tubes, now under development, will be equipped with a solar-blind Rb//2Te photocathode and self triggering front-end electronics.

  7. Design, fabrication and performance of the 10-in. TOM HPD

    International Nuclear Information System (INIS)

    Braem, A.; Chesi, E.; Joram, C.; Seguinot, J.; Weilhammer, P.; Giunta, M.; Malakhov, N.; Menzione, A.; Pegna, R.; Piccioli, A.; Raffaelli, F.; Sartori, G.

    2004-01-01

    The first sealed TOM Hybrid Photon Detector (HPD) with 10-in. diameter has been fabricated and successfully tested at CERN. This HPD has a spherical entrance window and a bialkali photocathode. The fountain focusing optics produces a demagnified image (D=4) on the round segmented silicon sensor. The signals of the 2048 cells are read out through analog front-end electronics encapsulated in the vacuum envelope. We report on the design, fabrication technique and the experimental results obtained with laboratory test benches. The large TOM HPD is a prototype tube developed for the CLUE cosmic ray experiment. The final tubes, now under development, will be equipped with a solar-blind Rb 2 Te photocathode and self triggering front-end electronics

  8. International conference on design, fabrication and economy of metal structures

    CERN Document Server

    Farkas, József

    2013-01-01

    These are the proceedings of the International Conference on Design, Fabrication and Economy of Metal Structures held on 24-26 April 2013 in Miskolc, Hungary which contain 99 papers covering: Structural optimization Thin-walled structures Stability Fatigue Frames Fire Fabrication Welding technology Applications Steel-concrete composite Special problems The authors are from 23 different countries, ensuring that the themes covered are of worldwide interest and importance. The International Institute of Welding (IIW), the International Society of Structural and Multidisciplinary Optimization (ISSMO), the TÁMOP 4.2.1.B-10/2/KONV-2010-0001 project entitled “Increasing the quality of higher education through the development of research - development and innovation program at the University of Miskolc supported by the European Union, co-financed by the European Social Fund” and many other sponsors helped organizers to collect these valuable studies, the results of which will provoke discussion, and provide an i...

  9. Micro solar concentrators: Design and fabrication for microcells arrays

    Science.gov (United States)

    Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François

    2015-09-01

    In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.

  10. Robotic fabrication in architecture, art and design 2014

    CERN Document Server

    Leon, Monica

    2014-01-01

    Robotic automation has become ubiquitous in the modern manufacturing landscape, spanning an overwhelming range of processes and applications-- from small scale force-controlled grinding operations for orthopedic joints to large scale composite manufacturing of aircraft fuselages. Smart factories, seamlessly linked via industrial networks and sensing, have revolutionized mass production, allowing for intelligent, adaptive manufacturing processes across a broad spectrum of industries. Against this background, an emerging group of researchers, designers, and fabricators have begun to apply robotic technology in the pursuit of architecture, art, and design, implementing them in a range of processes and scales. Coupled with computational design tools the technology is no longer relegated to the repetitive production of the assembly line, and is instead being employed for the mass-customization of non-standard components. This radical shift in protocol has been enabled by the development of new design to production...

  11. Design and fabrication of the Mini-Brayton Recuperator (MBR)

    Science.gov (United States)

    Killackey, J. J.; Graves, R.; Mosinskis, G.

    1978-01-01

    Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met.

  12. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  13. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  14. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  15. Integration of thermodynamic insights and MINLP optimisation for the synthesis, design and analysis of process flowsheets

    DEFF Research Database (Denmark)

    Hostrup, Martin; Gani, Rafiqul; Kravanja, Zdravko

    1999-01-01

    This paper presents an integrated approach to the solution of process synthesis, design and analysis problems. Integration is achieved by combining two different techniques, synthesis based on thermodynamic insights and structural optimization together with a simulation engine and a properties pr...

  16. Design, fabrication and transportation of Si rotating device

    International Nuclear Information System (INIS)

    Kimura, Nobuaki; Imaizumi, Tomomi; Takemoto, Noriyuki; Tanimoto, Masataka; Saito, Takashi; Hori, Naohiko; Tsuchiya, Kunihiko; Romanova, Nataliya; Gizatulin, Shamil; Martyushov, Alexandr; Nakipov, Darkhan; Chakrov, Petr; Tanaka, Futoshi; Nakajima, Takeshi

    2012-06-01

    Si semiconductor production by Neutron Transmutation Doping (NTD) method using the Japan Materials Testing Reactor (JMTR) has been investigated in Neutron Irradiation and Testing Reactor Center, Japan Atomic Energy Agency (JAEA) in order to expand industry use. As a part of investigations, irradiation test of silicon ingot for development of NTD-Si with high quality was planned using WWR-K in Institute of Nuclear Physics (INP), National Nuclear Center of Republic of Kazakhstan (NNC-RK) based on one of specific topics of cooperation (STC), Irradiation Technology for NTD-Si (STC No.II-4), on the implementing arrangement between NNC-RK and the JAEA for 'Nuclear Technology on Testing/Research Reactors' in cooperation in research and development in nuclear energy and technology. As for the irradiation test, Si rotating device was fabricated in JAEA, and the fabricated device was transported with irradiation specimens from JAEA to INP-NNC-RK. This report described the design, the fabrication, the performance test of the Si rotating device and transportation procedures. (author)

  17. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  18. Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm

    Science.gov (United States)

    Nabeel, Hafiz Muhammad; Azher, Anum; Usman Ali, Syed M.; Wahab Mughal, Abdul

    2013-12-01

    In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface.

  19. Design, Fabrication, and Initial Operation of a Reusable Irradiation Facility

    International Nuclear Information System (INIS)

    Heatherly, D.W.; Thoms, K.R.; Siman-Tov, I.I.; Hurst, M.T.

    1999-01-01

    A Heavy-Section Steel Irradiation (HSSI) Program project, funded by the US Nuclear Regulatory Commission, was initiated at Oak Ridge National Laboratory to develop reusable materials irradiation facilities in which metallurgical specimens of reactor pressure vessel steels could be irradiated. As a consequence, two new, identical, reusable materials irradiation facilities have been designed, fabricated, installed, and are now operating at the Ford Nuclear Reactor at the University of Michigan. The facilities are referred to as the HSSI-IAR facilities with the individual facilities being designated as IAR-1 and IAR-2. This new and unique facility design requires no cutting or grinding operations to retrieve irradiated specimens, all capsule hardware is totally reusable, and materials transported from site to site are limited to specimens only. At the time of this letter report, the facilities have operated successfully for approximately 2500 effective full-power hours

  20. Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm

    International Nuclear Information System (INIS)

    Nabeel, Hafiz Muhammad; Azher, Anum; Ali, Syed M Usman; Mughal, Abdul Wahab

    2013-01-01

    In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface

  1. Design and fabrication of a composite wind turbine blade

    Science.gov (United States)

    Brown, R. A.; Haley, R. G.

    1980-01-01

    The design considerations are described which led to the combination of materials used for the MOD-I wind turbine generator rotor and to the fabrication processes which were required to accomplish it. It is noted that the design problem was to create a rotor for a 2500 kW wind turbine generator. The rotor was to consist of two blades, each with a length of 97.5 feet and a weight of less than 21,000 pounds. The spanwise frequency is 1.17-1.45 Hz, and the chordwise frequency 2.80-2.98 Hz. The design life of the blade is 30 years, or 4.35 x 10 to the 8th cycles. The structures of the spars and trailing edges are described, and the adhesive bonding system is discussed.

  2. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  3. Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites

    Science.gov (United States)

    Sathiyanathan, Kartheephan

    This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.

  4. Design and characterization of ultra-stretchable monolithic silicon fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-10-13

    Stretchable electronic systems can play instrumental role for reconfigurable macro-electronics such as distributed sensor networks for wearable and bio-integrated electronics. Typically, polymer composite based materials and its deterministic design as interconnects are used to achieve such systems. Nonetheless, non-polymeric inorganic silicon is the predominant material for 90% of electronics. Therefore, we report the design and fabrication of an all silicon based network of hexagonal islands connected through spiral springs to form an ultra-stretchable arrangement for complete compliance to highly asymmetric shapes. Several design parameters are considered and their validation is carried out through finite element analysis. The fabrication process is based on conventional microfabrication techniques and the measured stretchability is more than 1000% for single spirals and area expansions as high as 30 folds in arrays. The reported method can provide ultra-stretchable and adaptable electronic systems for distributed network of high-performance macro-electronics especially useful for wearable electronics and bio-integrated devices.

  5. Design and characterization of ultra-stretchable monolithic silicon fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Carreno, Armando Arpys Arevalo; Foulds, I. G.; Hussain, Muhammad Mustafa

    2014-01-01

    Stretchable electronic systems can play instrumental role for reconfigurable macro-electronics such as distributed sensor networks for wearable and bio-integrated electronics. Typically, polymer composite based materials and its deterministic design as interconnects are used to achieve such systems. Nonetheless, non-polymeric inorganic silicon is the predominant material for 90% of electronics. Therefore, we report the design and fabrication of an all silicon based network of hexagonal islands connected through spiral springs to form an ultra-stretchable arrangement for complete compliance to highly asymmetric shapes. Several design parameters are considered and their validation is carried out through finite element analysis. The fabrication process is based on conventional microfabrication techniques and the measured stretchability is more than 1000% for single spirals and area expansions as high as 30 folds in arrays. The reported method can provide ultra-stretchable and adaptable electronic systems for distributed network of high-performance macro-electronics especially useful for wearable electronics and bio-integrated devices.

  6. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  7. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    Science.gov (United States)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  8. Design, fabrication and testing of a thermal diode

    Science.gov (United States)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  9. Design and Fabrication of Carbon Nano tube for Medical Application

    International Nuclear Information System (INIS)

    Azniza Abas; Nuzaihan, M.N.; Hafiza, N.; Nazwa, T.

    2011-01-01

    Carbon nano tubes or known as CNTs are allotropes of carbon with a cylindrical nano structure. They exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors [1]. Due to its ordinary properties this research will based on BIOSENSOR device. Normally these CNTs biosensor are based on an enzyme catalyzed reaction that will produce either electrons or protons. In particular, it is useful in genetic profiling of human diseases, which includes in identifying genes that are expressed in certain diseases such as cancer [2]. This research will based on design and fabricate sensor or device using carbon nano tube and integrate carbon nano tube (CNTs) onto wafer using combination of dichlorophosphate and nano manipulation. Carbon nano tubes device mask are design using AUTOCAD software; there is four mask involved, first mask is Gate Formation,second mask is insulation layer third mask is source and drain and final mask forth mask is used as test channel. For fabrication and optimization of biosensor using carbon nano tube CNT that will be involve both microfabrication and nano fabrication. This process will involve conventional photolithography process, electron beam evaporator, thermal oxidation and wet etching process. To inspect and characterize carbon nano tube electrical properties it will involve tools such as SEM, AFM, Dielectric Analyzer, IV-CV and Semiconductor Parametric Analyzer system. This inspection is very important to produce a perfect profile to produce a good biosensor based on carbon nano tube structure. Preparation of various samples for testing functionality of the device this various samples and conditions will be done to ensure the detection is precise. Conductivity and capacitance effect will be tested electrically to detect the hybridization of the sample. (author)

  10. Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells

    Science.gov (United States)

    Chowdhury, Ahrar Ahmed

    Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our

  11. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Directory of Open Access Journals (Sweden)

    McKinlay J.

    2012-10-01

    Full Text Available To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal and 75 um (vertical.

  12. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Science.gov (United States)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  13. Design and Fabrication of a PDMS Microchip Based Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  14. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  15. Design and fabrication of a pulsed diode electron gun

    International Nuclear Information System (INIS)

    Mahadevan, S.; Gandhi, M.L.; Nandedkar, R.V.

    2003-01-01

    A pulsed diode electron gun has been designed, fabricated and tested and this will be used for the initial hot testing of the Plane Wave Transformer (PWT) linac. The gun is required to deliver 1 A at 70 kV which works out to a current of 500 mA at 40 kV. The gun geometry is optimized using the Electron Trajectory Program EGUN at a mesh size of 0.2 mm. The beam divergence close to cathode caused by an annular gap of 2 mm between cathode and focusing electrode (FE) is compensated by using a suitable focusing electrode. Important features of the pulsed power supply (40 kV, 500 mA, 2 μsec) developed for testing this gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance. Suitable positioning of cathode with respect to the FE helps in further improving the beam quality

  16. Hand-held spectrophotometer design for textile fabrics

    Science.gov (United States)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  17. Design and fabrication of multispectral optics using expanded glass map

    Science.gov (United States)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  18. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the

  19. Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2011-01-01

    is based on fundamental thermodynamic relations and group contributions to properties of pure species (solvent, active ingredient and polymer) and their mixtures. The method is intended for pharmaceuticals with complex molecular structures, for which limited experimental information is known. Case studies......A systematic design strategy is given for computer-aided design of microparticle drug-delivery systems produced by solvent evaporation. In particular, design of solvents, polymer material, and external phase composition are considered for the case when the active ingredient is known. The procedure...... of solvent design are given....

  20. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species. © 2014. Published by The Company of Biologists Ltd.

  1. Iron Dominated Electromagnets: Design, Fabrication, Assembly and Measurements

    International Nuclear Information System (INIS)

    Tanabe, Jack

    2005-01-01

    Medium energy electron synchrotrons used for the production of high energy photons from synchrotron radiation is an accelerator growth industry. Many of these accelerators have been built or are under construction to satisfy the needs of synchrotron light users throughout the world. Because of the long beam lifetimes required for these synchrotrons, these medium energy accelerators require the highest quality magnets of various types. Other accelerators, for instance low and medium energy boosters for high energy physics machines and electron/positron colliders, require the same types of magnets. Because of these needs, magnet design lectures, were organized and presented periodically at biennual classes organized under the auspices of the US Particle Accelerator School (USPAS). These classes were divided among areas of magnet design from fundamental theoretical considerations, the design approaches and algorithms for permanent magnet wigglers and undulators and the design and engineering of conventional accelerator magnets. The conventional magnet lectures were later expanded for the internal training of magnet designers at LLNL at the request of Lou Bertolini. Because of the broad nature of magnet design, Dr. S. Y. Lee, the former Director of the Particle Accelerator School, saw the need for a specialized course covering the various aspects of the design, engineering and fabrication of conventional magnets. This section of the class was isolated and augmented using the LLNL developed material resulting in the class on conventional magnet design. Conventional magnets are defined (for the purposes of this publication) as magnets whose field shape is dominated by the shape of the iron magnet yoke and are excited by coils, usually wound from solid or hollow water-cooled copper or aluminum conductors. This publication collects the lecture notes, written for the first course in the USPAS conventional magnet design course and evolved over subsequent presentations of

  2. Iron Dominated Electromagnets: Design, Fabrication, Assembly and Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Jack; /SLAC, SSRL

    2005-09-19

    Medium energy electron synchrotrons used for the production of high energy photons from synchrotron radiation is an accelerator growth industry. Many of these accelerators have been built or are under construction to satisfy the needs of synchrotron light users throughout the world. Because of the long beam lifetimes required for these synchrotrons, these medium energy accelerators require the highest quality magnets of various types. Other accelerators, for instance low and medium energy boosters for high energy physics machines and electron/positron colliders, require the same types of magnets. Because of these needs, magnet design lectures, were organized and presented periodically at biennual classes organized under the auspices of the US Particle Accelerator School (USPAS). These classes were divided among areas of magnet design from fundamental theoretical considerations, the design approaches and algorithms for permanent magnet wigglers and undulators and the design and engineering of conventional accelerator magnets. The conventional magnet lectures were later expanded for the internal training of magnet designers at LLNL at the request of Lou Bertolini. Because of the broad nature of magnet design, Dr. S. Y. Lee, the former Director of the Particle Accelerator School, saw the need for a specialized course covering the various aspects of the design, engineering and fabrication of conventional magnets. This section of the class was isolated and augmented using the LLNL developed material resulting in the class on conventional magnet design. Conventional magnets are defined (for the purposes of this publication) as magnets whose field shape is dominated by the shape of the iron magnet yoke and are excited by coils, usually wound from solid or hollow water-cooled copper or aluminum conductors. This publication collects the lecture notes, written for the first course in the USPAS conventional magnet design course and evolved over subsequent presentations of

  3. Design and fabrication of a micro zinc/air battery

    International Nuclear Information System (INIS)

    Fu, L; Luo, J K; Huber, J E; Lu, T J

    2006-01-01

    Micro-batteries are one of the key components that restrict the application of autonomous Microsystems. However little efforts were made to solve the problem. We have proposed a new planar zinc/air micro-battery, suitable for autonomous microsystem applications. The micro-battery has a layered structure of zinc electrode/alkaline electrolyte/air cathode. A 3D zinc electrode with a high density of posts was designed to obtain a high porosity, hence to offer a best performance. A model of the micro-battery is developed and the device performances were simulated and discussed. A four-mask process was developed to fabricate the prototype micro-batteries. The preliminary testing results showed the micro-batteries is able to deliver a maximum power up to 5 mW, and with an average power of 100 μW at a steady period for up to 2hrs. Fabrication process is still under optimization for further improvement

  4. Secure Automated Fabrication: a system design description (SDD), section 1

    International Nuclear Information System (INIS)

    Konze, G.M.; Thompson, M.L.; Wadekamper, D.C.; Zimmer, J.J.

    Information is presented concerning the conversion system to convert purified mixed nitrate solution to MO/sub x/ powder; powder preparation and pellet fabrication; sintering and pin loading; assembly fabrication; and scrap recovery

  5. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  6. Liquid-crystal laser optics: design, fabrication, and performance

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Marshall, K.L.; Schmid, A.; Guardalben, M.J.; Skerrett, K.J.

    1988-01-01

    We describe the development of laser optics utilizing liquid crystals. Devices discussed constitute passive optical elements for both low-power and high-power laser systems, operating in either the pulsed or cw mode. Designs and fabrication methods are given in detail for wave plates, circular polarizers, optical isolators, laser-blocking notch filters, and soft apertures. Performance data in the visible to near infrared show these devices to be useful alternatives to other technologies based on conventional glasses, crystals, or thin films. The issue of laser damage is examined on the basis of off-line threshold testing and daily use in OMEGA, the 24-beam Nd:glass laser system at the Laboratory for Laser Energetics. Results demonstrate that long-term survivability has been achieved

  7. Design and fabrication stable LNF contact for future IC application

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Bhuiyan, M; Rashid, M M; Ahmed, Sayem; Kajihara, M

    2013-01-01

    Enable the design of a small contact spring for applications requiring high density, high speed and high durability. A low normal force (LNF) contact spring with high performance is fabricated using a unique combined MEMS photo resist lithography and electro fine forming (EFF) technology. Reducing a total contact material cost of a connector, a high-Hertz stress with LNF contact will be a key technology in the future. Only radius R 5μm tip with 0.1N force contact provides an excellent electrical performance which is much sharper than conventional contact. 0.30million cycle's durability test was passed at 300μm displacement and the contact resistance was ≤50mΩ

  8. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  9. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  10. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    International Nuclear Information System (INIS)

    Neumeyer, C.; Barnes, G.; Chrzanowski, J.H.; Heitzenroeder, P.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  11. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  12. Design and fabrication of an articulated four axes microrobot arm

    Science.gov (United States)

    Zhang, Ruoshi; Yang, Zhong; Wei, Danming; Popa, Dan O.

    2017-05-01

    In order to carry out nanomanufacturing tasks, a microrobot requires both high precision and high reliability over prolonged periods of time. Articulated Four-Axis Microrobots (AFAM) have been introduced a decade ago as millimetric microrobots capable of carrying out nanoscale tasks. The original robot design relied on a Micro Electro Mechanical (MEMS) actuator bank positioned onto a Silicon substrate, and an assembled arm mechanically coupled to the actuators through a cable. Movement of two thermal actuator banks positions the AFAM's end effector in 3-Dimensional space with approximately 75 microns workspace and 50 nm repeatability. However, failure of the AFAM's cable mechanism was observed after less than 1 million cycles. In this paper, we propose a novel arm mechanism for AFAM that improve its performance. The design presented in this article substitutes the "wire-gluing" cable with an anchored electrostatic actuator, and therefore it simplifies assembly requirements, reduces overall footprint of the microrobot, and achieves higher operating frequency. Simulation results are presented for a rotary electrostatic comb drive as basis for the microrobot arm with overall dimensions of 2 mm × 2 mm. The AFAM arm cantilever is 1 mm long to achieve a workspace of dimension of 75 microns along the vertical axis. Experimental evaluation of the design was accomplished using a prototype fabricated on a silicon on insulator (SOI) wafer processed with the deep reactive ion etching (DRIE) process.

  13. Salt pill design and fabrication for adiabatic demagnetization refrigerators

    Science.gov (United States)

    Shirron, Peter J.; McCammon, Dan

    2014-07-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.

  14. Artificial heartbeat: design and fabrication of a biologically inspired pump

    International Nuclear Information System (INIS)

    Walters, Peter; Stephenson, Robert; Lewis, Amy; Stinchcombe, Andrew; Ieropoulos, Ioannis

    2013-01-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the ‘artificial heartbeat’ actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots (‘EcoBots’) that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or ‘bio-automaton’ that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. (paper)

  15. Design and Fabrication of Automatic Glass Cutting Machine

    Science.gov (United States)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  16. Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators

    Science.gov (United States)

    Shirron, Peter J.; Mccammon, Dan

    2014-01-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single-­- or poly-­-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low-­- and mid-­-temperature applications.

  17. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  18. Structural design and fabrication techniques of composite unmanned aerial vehicles

    Science.gov (United States)

    Hunt, Daniel Stephen

    Popularity of unmanned aerial vehicles has grown substantially in recent years both in the private sector, as well as for government functions. This growth can be attributed largely to the increased performance of the technology that controls these vehicles, as well as decreasing cost and size of this technology. What is sometimes forgotten though, is that the research and advancement of the airframes themselves are equally as important as what is done with them. With current computer-aided design programs, the limits of design optimization can be pushed further than ever before, resulting in lighter and faster airframes that can achieve longer endurances, higher altitudes, and more complex missions. However, realization of a paper design is still limited by the physical restrictions of the real world and the structural constraints associated with it. The purpose of this paper is to not only step through current design and manufacturing processes of composite UAVs at Oklahoma State University, but to also focus on composite spars, utilizing and relating both calculated and empirical data. Most of the experience gained for this thesis was from the Cessna Longitude project. The Longitude is a 1/8 scale, flying demonstrator Oklahoma State University constructed for Cessna. For the project, Cessna required dynamic flight data for their design process in order to make their 2017 release date. Oklahoma State University was privileged enough to assist Cessna with the mission of supporting the validation of design of their largest business jet to date. This paper will detail the steps of the fabrication process used in construction of the Longitude, as well as several other projects, beginning with structural design, machining, molding, skin layup, and ending with final assembly. Also, attention will be paid specifically towards spar design and testing in effort to ease the design phase. This document is intended to act not only as a further development of current

  19. Design, fabrication and thermal characterization of a magnetocaloric microcooler

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ghirlanda, S.; Adams, C.; Bethala, B.; Sambandam, S.N.; Bhansali, S. [BioMEMS and Microsystems Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., ENB118, Tampa, FL 33620, (United States)

    2006-12-11

    Magnetocaloric cooling is an alternative, high-efficiency cooling technology. In this paper, we present the design and fabrication of a micromachined magnetocaloric cooler and demonstrate its ability to work in a small magnetic field (<1.2 T) with a cooling test. The cooler was built by fabricating Si microfluidic channels, and it was integrated with a Gd{sub 5}(Si{sub 2}Ge{sub 2}) magnetocaloric refrigeration element. The magnetic properties of the Gd{sub 5}(Si{sub 2}Ge{sub 2}) material were characterized to calculate the magnetic entropy change at different ambient temperatures. Three different methods to integrate the channel layer and the magnetocaloric element were evaluated to test sealing and cooling performance. The cooling tests were performed by providing a magnetic field using an electromagnet. A test jig was constructed between the poles of an electromagnet to maintain a steady temperature during the test. Cooling tests were performed on the magnetocaloric element at ambient temperatures ranging from 258 to 280 K using a magnetic field of 1.2 T. Experimental results showed a maximum temperature change of 7 K on the magnetocaloric element alone at an ambient temperature of 258 K. Cooling tests of the fully integrated coolers were also performed. A solution of anti-freeze fluid (propylene glycol) and water was used as the coolant. The temperature of the working fluid decreased by 4.6 and 9 K for the glass and Si intermediate layers, respectively, confirming that the thermal conductivity of the materials is also an important factor in cooler performance. (Author)

  20. Design and fabrication of non-instrumented capsule

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, Jeong Young; Kim, Joon Yeon; Lee, Sung Ho; Ji, Dae Young; Kim, Suk Hoon; Ahn, Sung Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    The use of non-instrumented capsule designed and fabricated in this time is for the evaluation of material irradiation performance, it is to be installed in the inner core of HANARO. The design process of non-instrumented capsule was accomplished by the decision of the quality of material and the shape, thermal analysis, structural analysis. The temperature of the specimen and the stress in capsule during irradiation test was calculated by the thermal analysis and the structural analysis. GGENGTC code and ABAQUS code were used for the calculation of non-instrumented capsule. In case of installing the capsule in irradiation hole, the coolant flow rate and the pressure drop in the hole is changed, which will affect the coolant flow rate of the fuel region. Eventually the coolant flow rate outside capsule have to be restricted to the allowable range. In order to obtain the required pressure drop, the flow rate control mechanism, end plate and orifice ring were used in this test. The test results are compared with 36-element fuel pressure drop data which AECL performed by the SCTR facility.

  1. Design and fabrication of non-instrumented capsule

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, Jeong Young; Kim, Joon Yeon; Lee, Sung Ho; Ji, Dae Young; Kim, Suk Hoon; Ahn, Sung Ho

    1995-04-01

    The use of non-instrumented capsule designed and fabricated in this time is for the evaluation of material irradiation performance, it is to be installed in the inner core of HANARO. The design process of non-instrumented capsule was accomplished by the decision of the quality of material and the shape, thermal analysis, structural analysis. The temperature of the specimen and the stress in capsule during irradiation test was calculated by the thermal analysis and the structural analysis. GGENGTC code and ABAQUS code were used for the calculation of non-instrumented capsule. In case of installing the capsule in irradiation hole, the coolant flow rate and the pressure drop in the hole is changed, which will affect the coolant flow rate of the fuel region. Eventually the coolant flow rate outside capsule have to be restricted to the allowable range. In order to obtain the required pressure drop, the flow rate control mechanism, end plate and orifice ring were used in this test. The test results are compared with 36-element fuel pressure drop data which AECL performed by the SCTR facility

  2. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  3. Assessment of thermodynamic models for the design, analysis and optimisation of gas liquefaction systems

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper...... are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use....... They demonstrate as well that particular caution should be exercised when extrapolating the results of the conventional thermodynamic models to the actual conception of the gas liquefaction chain....

  4. Modular Approach to Designing Computer Cultural Systems: Culture as a Thermodynamic Machine

    Directory of Open Access Journals (Sweden)

    Leland Gilsen

    2015-01-01

    Full Text Available Culture is a complex non-linear system. In order to design computer simulations of cultural systems, it is necessary to break the system down into sub-systems. Human culture is modular. It consists of sets of people that belong to economic units. Access to, and control over matter, energy and information is postulated as the key to development of cultural simulations. Because resources in the real world are patchy, access to and control over resources is expressed in two related arenas: economics (direct control and politics (non-direct control. The best way to create models for cultural ecology/economics lies in an energy-information-economic paradigm based on general systems theory and an understanding of the "thermodynamics" of ecology, or culture as a thermodynamic machine.

  5. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Sun, Leming

    In this dissertation, we first reviewed the naturally occurring nanoparticles and their limitations (Chapter 1). We then discussed the need and the parameters to design and fabricate bio-inspired tunable nanoparticles for wound healing, Alzheimer's disease (AD) diagnosis and progression monitoring. Tunable nanoparticles enhanced adhesive was inspired from the self-assembly processes, nanocomposite and chemical structures. Fluorescent peptide nanoparticles were inspired from the biological peptide self-assembly and naturally occurring fluorescent proteins. Then we reported the development of an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives inspired from the strong adhesive produced by English ivy in Chapter 2. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive were proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. Using a bio-inspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels in Chapter 3. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing; when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites; which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose derived stem cells (ADSCs), and compared to other therapeutic

  6. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  7. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Mehdizadeh, Arash; Al-Sarawi, Said; Abbott, Derek; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi

    2013-01-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  8. The design, fabrication and installation of cable routing mockups in support of Spacelab 2

    Science.gov (United States)

    1981-01-01

    From flight and mockup drawings of Spacelab 2 (SL 2) experiments and hardware, shop ready mockup drawings were produced. Floor panels were the first items considered for fabrication. Cold plate and orthogrid mockups were designed and fabricated. Experiment and other hardware mockups were fabricated of aluminum or plywood, depending on size and configuration. Eighty-three cable routing bracket mockups were fabricated of aluminum and delivered for painting.

  9. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  10. Design and fabrication of micro X-ray diffraction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-15

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 {mu} m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 {mu} m in radial direction of the rim of an irradiated fuel sample and a fuel cladding.

  11. Mechanical design and fabrication of a 425-MHz H- buncher

    International Nuclear Information System (INIS)

    Wilson, N.G.; Precechtel, D.

    1987-01-01

    A beam buncher has been designed, fabricated, and installed on the accelerator test stand (ATS) to match the 2-MeV output beam of a 425-MHz H - radio-frequency quadrupole (RFQ) into a 425-MHz drift-tube linac (DTL). The buncher configuration provides integral-matching permanent-magnet quadrupoles (PMQ) at the exit of the RFQ and one βλ across the buncher accelerating gap; a third PMQ is the first DTL half-cell magnet. Located between the second and third PMQs is a 50-Ω, capacitively coupled, beam-sensing pickup loop. Cooling channels are provided in each of the brazed OFHC copper wall sections. Vacuum pumping of the buncher is provided by a cryogenic refrigerator vacuum pump through an array of small-diameter holes in the buncher cavity wall. Mechanical features of the buncher, the brazing and electron-beam welding of the solid-copper buncher structure, and the beam pickup loop are described in this paper. The buncher has been tuned, installed, and operated at full power on the ATS

  12. Design and fabrication of micro X-ray diffraction system

    International Nuclear Information System (INIS)

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-01

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 μ m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 μ m in radial direction of the rim of an irradiated fuel sample and a fuel cladding

  13. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  14. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    Science.gov (United States)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  15. Design and Fabrication of 1 × 2 Nanophotonic Switch

    Directory of Open Access Journals (Sweden)

    Asaf Shahmoon

    2010-01-01

    Full Text Available We present the design and the fabrication of a novel 1×2 nanophotonic switch. The switch is a photonic T-junction in which a gold nano particle is being positioned in the junction using the tip of an atomic force microscope (AFM. The novelty of this 1×2 switch is related to its ability to control the direction of wave that propagates along a photonic structure. The selectivity of the direction is determined by a gold nanoparticle having dimension of a few tens of nanometer. This particle can be shifted. The shift of the gold nano particle can be achieved by applying voltage or by illuminating it with a light source. The shifts of the particle, inside the air gap, direct the input beam ones to the left output of the junction and once to its right output. Three types of simulations have been done in order to realize the photonic T-junction, and they are as follows: photonic crystal structures, waveguide made out of PMMA, and a silicon waveguide.

  16. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    Science.gov (United States)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  17. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  18. Design and Evaluation of Photo-Induced Biofeedback Fabric for the Enhancement in Sleeping Sense

    OpenAIRE

    Chu, Wei-Cheng; Lin, Hsin-Ju; Chiu, Shu-Ping

    2013-01-01

    Based on overcoming the sleeping obstacle for people, the purpose of this study is to design a photo-induced biofeedback fabric which is a kind of optical fiber fabric with the function of enhancing sleeping sense and to evaluate its effect. The fabrics with two layers including background layer and pattern layer were designed firstly. The pattern layers with 3 kinds of wavelengths of sine waves and the light controller with 3 kinds of flashing frequencies were then prepared. Guiding the ligh...

  19. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    Science.gov (United States)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  20. Design and fabrication of diffractive optical elements with MATLAB

    National Research Council Canada - National Science Library

    Bhattacharya, Shanti (Professor in Optics); Vijayakumar, Anand

    2017-01-01

    ... their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented...

  1. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  2. Wireless implantable passive strain sensor: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Umbrecht, F; Wägli, P; Dechand, S; Hierold, Ch; Gattiker, F; Neuenschwander, J; Sennhauser, U

    2010-01-01

    This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10 −5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1–5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.

  3. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    Science.gov (United States)

    Maser, Adam Charles

    More electric aircraft systems, high power avionics, and a reduction in heat sink capacity have placed a larger emphasis on correctly satisfying aircraft thermal management requirements during conceptual design. Thermal management systems must be capable of dealing with these rising heat loads, while simultaneously meeting mission performance. Since all subsystem power and cooling requirements are ultimately traced back to the engine, the growing interactions between the propulsion and thermal management systems are becoming more significant. As a result, it is necessary to consider their integrated performance during the conceptual design of the aircraft gas turbine engine cycle to ensure that thermal requirements are met. This can be accomplished by using thermodynamic subsystem modeling and simulation while conducting the necessary design trades to establish the engine cycle. However, this approach also poses technical challenges associated with the existence of elaborate aircraft subsystem interactions. This research addresses these challenges through the creation of a parsimonious, transparent thermodynamic model of propulsion and thermal management systems performance with a focus on capturing the physics that have the largest impact on propulsion design choices. This modeling environment, known as Cycle Refinement for Aircraft Thermodynamically Optimized Subsystems (CRATOS), is capable of operating in on-design (parametric) and off-design (performance) modes and includes a system-level solver to enforce design constraints. A key aspect of this approach is the incorporation of physics-based formulations involving the concurrent usage of the first and second laws of thermodynamics, which are necessary to achieve a clearer view of the component-level losses across the propulsion and thermal management systems. This is facilitated by the direct prediction of the exergy destruction distribution throughout the system and the resulting quantification of available

  4. Design and fabrication of a biomimetic gyroscope inspired by the fly's haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, Robert Anton; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2012-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly's haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and their drive mode has been characterized. First measurements indicate excitable gyropscopes with natural

  5. Design and fabrication of a biomimetic gyroscope inspired by the fly’s haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, Robert Anton; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly’s haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and partially characterized. First measurements indicate excitable gyropscopes with natural frequencies in the

  6. Assessment of thermodynamic models for the design, analysis and optimisation of gas liquefaction systems

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    Highlights: • Six thermodynamic models used for evaluating gas liquefaction systems are compared. • Three gas liquefaction systems are modelled, assessed and optimised for each equation of state. • The predictions of thermophysical properties and energy flows are significantly different. • The GERG-2008 model is the only consistent one, while cubic, virial and statistical equations are unsatisfying. - Abstract: Natural gas liquefaction systems are based on refrigeration cycles – they consist of the same operations such as heat exchange, compression and expansion, but they have different layouts, components and working fluids. The design of these systems requires a preliminary simulation and evaluation of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper presents a thorough comparison of six equations of state widely used in the academia and industry, including the GERG-2008 model, which has recently been adopted as an ISO standard for natural gases. These models are used to (i) estimate the thermophysical properties of a Danish natural gas, (ii) simulate, and (iii) optimise liquefaction systems. Three case studies are considered: a cascade layout with three pure refrigerants, a single mixed-refrigerant unit, and an expander-based configuration. Significant deviations are found between all property models, and in all case studies. The main discrepancies are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use. They demonstrate as well that

  7. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  8. SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Aliza Aini Md Ralib

    2014-12-01

    Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry.  Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators.  Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging.  Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi  gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur

  9. Design and fabrication of advanced hybrid circuits for high energy physics

    International Nuclear Information System (INIS)

    Haller, G.M.; Moss, J.; Freytag, D.R.; Nelson, D.; Yim, A.; Lo, C.C.

    1987-10-01

    Current design and fabrication techniques of hybrid devices are explained for the Drift Chamber and the Liquid Argon Calorimeter for the Stanford Linear Collider Large Detector (SLD) at SLAC. Methods of developing layouts, ranging from hand-cut templates to advanced designs utilizing CAD tools with special hybrid design software were applied. Physical and electrical design rules for good yield and performance are discussed. Fabrication and assembly of the SLD hybrids are described. 7 refs., 10 figs

  10. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  11. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  12. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2015-12-01

    activities is expected to lead to new devices/ systems /composite materials useful for the USAMRMC. 15. SUBJECT TERMS Functional materials, integrated...fabrication, nanobiotechnology, multifunctional, dimensional integration, nanocomposites, sensor technology, thermoelectrics, solar cells, photovoltaics ...loop measured in the presence of an AC field, and can be increased by tuning several parameters, such as the nanoparticles’ size , saturation

  13. Microfluidic Fabrication Solutions for Tailor-Designed Fiber Suspensions

    Directory of Open Access Journals (Sweden)

    Helene Berthet

    2016-11-01

    Full Text Available Fibers are widely used in different industrial processes, for example in paper manufacturing or lost circulation problems in the oil industry. Recently, interest towards the use of fibers at the microscale has grown, driven by research in bio-medical applications or drug delivery systems. Microfluidic systems are not only directly relevant for lab-on-chip applications, but have also proven to be good model systems to tackle fundamental questions about the flow of fiber suspensions. It has therefore become necessary to provide fiber-like particles with an excellent control of their properties. We present here two complementary in situ methods to fabricate controlled micro-fibers allowing for an embedded fabrication and flow-on-a-chip platform. The first one, based on a photo-lithography principle, can be used to make isolated fibers and dilute fiber suspensions at specific locations of interest inside a microchannel. The self-assembly property of super-paramagnetic colloids is the principle of the second fabrication method, which enables the fabrication of concentrated suspensions of more flexible fibers. We propose a flow gallery with several examples of fiber flow illustrating the two methods’ capabilities and a range of recent laminar flow results.

  14. Design, fabrication, and characterization of a solenoid system to ...

    Indian Academy of Sciences (India)

    system to generate magnetic field for an ECR proton source. S K JAIN .... The bore of the solenoid coils was fabricated using high voltage glass epoxy. Each ... sure drop and flow, the inlet and outlet connections were provided. ... stability of an ECR plasma source, as any small change in the distribution of the axial magnetic.

  15. Design and Fabrication of Microfiber Containing Gold Nanoparticles

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Wang, Guanghui; Hu, Dora Juan Juan

    2010-01-01

    We present a simple fabrication method for embedding gold nanoparticles (GNPs) in a microfiber with two main advantages. The GNPs are positioned within the microfiber securing maximum enhancement of the electrical field and protection of the GNPs from the surroundings; moreover incoupling losses...

  16. Multilayer optics for x-ray analysis: design - fabrication - application

    International Nuclear Information System (INIS)

    Dietsch, R.; Holz, Th.; Bruegemann, L.

    2002-01-01

    Full text: The use of multilayer optics induced a decisive extension of opportunities in laboratory based X-ray analysis. With the growing number of different applications, more and more dedicated X-ray optics are required, optimized for the spectral range they are intended to be used for. Both the characteristic of the used X-ray source and the design of the multilayer optics finally define the performance of the conditioned incident beam for the application. In any case, qualified spacer and absorber materials have to be selected for the deposition of the multilayer in respect to the designated X-ray wavelength. X-ray optical devices based on uniform multilayers have the advantage of a wide acceptance angle but show chromatic aberrations. This effect can be avoided by synthesizing a multilayer with a lateral thickness gradient. The gradient ensures that any beam of a certain wavelength emitted from an infinite narrow X-ray source impinging the multilayer optics fulfills the Bragg condition. Three different types of curvature of laterally graded multilayer mirrors are used for X-ray analysis experiments: parabolic, elliptic and planar, which result in parallel, focusing and divergent beam conditions, respectively. Furthermore, the X-ray beam characteristics: intensity, monochromasy, divergence, beam width and brilliance can be additionally conditioned by combining one multilayer optics with either a different optic and/or with a crystal monochromator. The deposition of nanometer-multilayers, used as X-ray optical components, result in extraordinary requirements of the deposition process concerning precision, reproducibility and long term stability. Across a stack of more than 150 individual layers with thicknesses in the range between 1 to 10 nm, a variation of single layer thickness considerably lower than σ D = 0.1 nm and an interface roughness below σ R = 0.25 nm have to be achieved. Thickness homogeneity Δd/d -8 have to be guaranteed across macroscopic

  17. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  18. Design, fabrication, and test of a composite material wind turbine rotor blade

    Science.gov (United States)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  19. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    Science.gov (United States)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  20. An electrostatic lower stator axial gap wobble motor: design and fabrication

    NARCIS (Netherlands)

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; van Baar, J.J.J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1995-01-01

    The fabrication, initial modelling and first results of an electrostatic lower stator axial gap wobble motor are presented. The four mask fabrication process is based on polysilicon surface micromachining techniques. Three to twelve stator pole wobble motor designs have been realized with rotor

  1. Design, modeling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester

    NARCIS (Netherlands)

    Altena, G.; Hohlfeld, D.; Elfrink, R.; Goedbloed, M.H.; Schaijk, R. van

    2011-01-01

    This paper reports on the design, modelling, fabrication and characterization of an electret-based MEMS electrostatic energy harvester with an elegant and robust process flow. The fabrication is based on a SOI wafer with self-aligned electrodes of the variable capacitor. The output current of the

  2. Design and fabrication of advanced EUV diffractive elements

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2003-11-16

    As extreme ultraviolet (EUV) lithography approaches commercial reality, the development of EUV-compatible diffractive structures becomes increasingly important. Such devices are relevant to many aspects of EUV technology including interferometry, illumination, and spectral filtering. Moreover, the current scarcity of high power EUV sources makes the optical efficiency of these diffractive structures a paramount concern. This fact has led to a strong interest in phase-enhanced diffractive structures. Here we describe recent advancements made in the fabrication of such devices.

  3. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2008-01-01

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed

  4. Computer-Aided Design Method of Warp-Knitted Jacquard Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Li Xinxin

    2016-06-01

    Full Text Available Based on a further study on knitting and jacquard principles, this paper presents a mathematical design model to make computer-aided design of warp-knitted jacquard spacer fabrics more efficient. The mathematical model with matrix method employs three essential elements of chain notation, threading and Jacquard designing. With this model, the processing to design warp-knitted jacquard spacer fabrics with CAD software is also introduced. In this study, the sports shoes which have separated functional areas according to the feet structure and characteristics of movement are analysed. The results show the different patterns on Jacquard spacer fabrics that are seamlessly stitched with jacquard technics. The computer-aided design method of warp-knitted jacquard spacer fabrics is efficient and simple.

  5. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics

    Directory of Open Access Journals (Sweden)

    Giegerich Robert

    2004-08-01

    Full Text Available Abstract Background The general problem of RNA secondary structure prediction under the widely used thermodynamic model is known to be NP-complete when the structures considered include arbitrary pseudoknots. For restricted classes of pseudoknots, several polynomial time algorithms have been designed, where the O(n6time and O(n4 space algorithm by Rivas and Eddy is currently the best available program. Results We introduce the class of canonical simple recursive pseudoknots and present an algorithm that requires O(n4 time and O(n2 space to predict the energetically optimal structure of an RNA sequence, possible containing such pseudoknots. Evaluation against a large collection of known pseudoknotted structures shows the adequacy of the canonization approach and our algorithm. Conclusions RNA pseudoknots of medium size can now be predicted reliably as well as efficiently by the new algorithm.

  6. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  7. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.

    Science.gov (United States)

    Sasaki, Kaichi; Tenjimbayashi, Mizuki; Manabe, Kengo; Shiratori, Seimei

    2016-01-13

    Inspired by the special wettability of certain natural life forms, such as the high water repellency of lotus leaves, many researchers have attempted to impart superhydrophobic properties to fabrics in academic and industrial contexts. Recently, a new switching system of wettability has inspired a strong demand for advanced coatings, even though their fabrication remains complex and costly. Here, cotton fabrics with asymmetric wettability (one face with natural superhydrophilicity and one face with superhydrophobicity) were fabricated by one-step spraying of a mixture of biocompatible commercial materials, hydrophobic SiO2 nanoparticles and ethyl-α-cyanoacrylate superglue. Our approach involves controlling the permeation of the fabric coatings by changing the distance between the fabric and the sprayer, to make one side superhydrophobic and the other side naturally superhydrophilic. As a result, the superhydrophobic side, with its high mechanical durability, exhibited a water contact angle of 154° and sliding angle of 16°, which meets the requirement for self-cleaning ability of surfaces. The opposite side exhibited high water absorption ability owing to the natural superhydrophilic property of the fabric. In addition, the designed cotton fabrics had blood absorption and clotting abilities on the superhydrophilic side, while the superhydrophobic side prevented water and blood permeation without losing the natural breathability of the cotton. These functions may be useful in the design of multifunctional fabrics for medical applications.

  8. Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators

    International Nuclear Information System (INIS)

    Cao, Yue; Gao, Yike; Zheng, Ya; Dai, Yiping

    2016-01-01

    Highlights: • A GT-ORC combined cycle with recuperators was designed. • The effect of the ORC turbine inlet pressure on the combined cycle was examined. • Toluene was a more suitable working fluid for the GT-ORC combined cycle. • The GT-ORC combined cycle performed better than the GT-Rankine combined cycle. • The sensitivity analysis to the ambient temperature was completed. - Abstract: Gas turbines are widely used in distributed power generation because of their high efficiency, low pollution and low operational cost. To further utilize the waste heat from gas turbines, an organic Rankine cycle (ORC) was proposed as the bottoming cycle for gas turbines in this paper. Two recuperators were coupled with the combined cycle to increase the thermal efficiency, and aromatics were chosen as the working fluid for the bottoming cycle. This paper focused on the optimum design and thermodynamic analysis of the gas turbine and ORC (GT-ORC) combined cycle. Results showed that the net power and thermal efficiency of the ORC increased with the ORC turbine inlet pressure and achieved optimum values at a specific pressure based on the optimum criteria. Furthermore, compared with the GT-Rankine combined cycle, the GT-ORC combined cycle had better thermodynamic performance. Toluene was a more suitable working fluid for the GT-ORC combined cycle. Moreover, ambient temperature sensitivity simulations concluded that the GT-ORC combined cycle had a maximum thermal efficiency and the combined cycle net power was mainly determined by the topping gas turbine cycle.

  9. Design and fabrication of zeolite macro- and micromembranes

    Science.gov (United States)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  10. Design and fabrication procedures of Super-Phenix fuel elements

    International Nuclear Information System (INIS)

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  11. Design, Fabrication and Test of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, Christine

    2002-01-01

    This paper presents the design fabrication and test of a full scale copper tubular combustion chamber as an enabling technology for future application in a high thrust upper-stage expander-cycle engine...

  12. Design and fabrication of an automatic dual axis solar tracker by ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Vol. 9, No. 2, 2017, pp. ... All rights reserved. Design and fabrication of an automatic dual axis solar tracker by using LDR ..... It may be like a wiper of the car. Nomenclature. LDR.

  13. Current status on detail design and fabrication techniques development of ITER blanket shield block in Korea

    International Nuclear Information System (INIS)

    Kim, Duck Hoi; Cho, Seungyon; Ahn, Mu-Young; Lee, Eun-Seok; Jung, Ki Jung

    2007-01-01

    The allocation of components and systems to be delivered to ITER on an in-kind basis, was agreed between the ITER Parties. Among parties, Korea agreed to procure inboard blanket modules 1, 2 and 6, which consists of FW and shield block. Regarding shield block the detail design and Fabrication techniques development have been undertaken in Korea. Especially manufacturing feasibility study on shield block had been performed and some technical issues for the fabrication were selected. Based on these results, fabrication techniques using EB welding are being developed. Meanwhile, the detail design of inboard standard module has been carried out. The optimization of flow driver design to improve the cooling performance was executed. And, thermo-hydraulic analysis on half block of inboard standard module was performed. In this study, current status and some results from Fabrication techniques development on ITER blanket shield block are described. The detail design activity and results on shield block are also introduced herein. (orig.)

  14. Design and Fabrication of 850 and 980 nm Vertical Cavity Surface Emitting Laser

    National Research Council Canada - National Science Library

    Das, N

    2004-01-01

    .... VCSELs on GaAs substrates were grown by the molecular beam epitaxy technique. In this report we present detailed procedures to design and fabricate 850-nm top-emitting and 980-nm bottom-emitting VCSELs...

  15. Design to fabrication integration and material craftsmanship - A performance driven stone architecture design system based on material, structural and fabrication constraints and criteria

    NARCIS (Netherlands)

    Mostafavi, S.; Tanti, M.

    2014-01-01

    This paper presents a computational design methodology through describing of a case study on stone building system. In addition to establishing a performance driven form-finding methodology, the objective is to redefine local craftsmanship methods as industrial fabrication techniques in order to

  16. Simulation-aided design and fabrication of nanoprobes for scanning probe microscopy

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Chang, Day-Bin

    2011-01-01

    We proposed and demonstrated a flexible and effective method to design and fabricate scanning probes for atomic force microscopy applications. Computer simulations were adopted to evaluate design specifications and desired performance of atomic force microscope (AFM) probes; the fabrication processes were guided by feedback from simulation results. Through design-simulation-fabrication iterations, tipless cantilevers and tapping mode probes were successfully made with errors as low as 2% in designed resonant frequencies. For tapping mode probes, the probe tip apex achieved a 10 nm radius of curvature without additional sharpening steps; tilt-compensated probes were also fabricated for better scanning performance. This method provides AFM users improved probe quality and practical guidelines for customized probes, which can support the development of novel scanning probe microscopy (SPM) applications. -- Research highlights: → We developed a design-simulation-fabrication strategy for customized AFM/SPM probes and demonstrated the results of tipless cantilever, sharpened probe tip, and tilt-compensated probe. → This simulation-aided method improved the geometry control and performance prediction of AFM probes; the error in resonant frequency was reduced to ∼2%. → Integration of simulation in design and fabrication of AFM probes expedites development of new probes and consequently promotes novel SPM applications.

  17. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, phase 2. Volume 3: Design, fabrication, and site drawing

    Science.gov (United States)

    1983-03-01

    The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.

  18. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  19. Novel silicon stripixel detector: concept, simulation, design, and fabrication

    International Nuclear Information System (INIS)

    Li, Z.

    2004-01-01

    A novel detector concept has been developed in this work that has the necessary properties to provide two-dimensional (2-D) position sensitivity with a moderate number of readout electronic channels and single-sided detector fabrication process. The concept is based on interleaved pixel electrodes arranged in a projective X-Y readout, which makes possible position encoding with minimum number of channels. In further discussions, we refer to this concept as 'stripixel' detector, as it combines the 2-D position resolution of a pixel electrode geometry with the simplicity of the projective readout of a double-sided strip detector. For DC coupled detectors with large pitches (>20 μm), individual pixels are divided into X- and Y-cell that can be interleaved by many different schemes that ensure the charge sharing between them. This type of stripixel detectors is called interleaved stripixel detectors. When the detector pitch goes down (<20 μm), the X and Y-pixel may not have to be interleaved, and they can be connected in an alternating way to X-Y strip readout. This type of stripixel detectors is called alternating stripixel detectors (ASD). For ASD, a position resolution better than 1 μm in two dimensions can be achieved by determining the centroid of the charge collected on pixel electrodes with a granularity in the range of 5-6 μm. For AC coupled detectors, no interleaving scheme may be needed, and there may be no limit on the pitch size, i.e. it may go from pitches in the order of microns, to hundreds of microns or even mm's. This electrode granularity does not pose difficult demands on the lithography and the fabrication technology. This novel detector concept can be applied to any semiconductor detectors/sensors, such as Si, Ge, GaAs, SiC, diamond, etc

  20. Design and fabrication of a radially-fed implosion heating coil

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Dickinson, J.M.; Melton, J.G.; Nunnally, W.C.

    1977-01-01

    A radially-fed implosion heating coil has been designed and fabricated at the Los Alamos Scientific Laboratory. The M arshall coil is a copper-plate-on-epoxy-substrate coil designed to utilize up to 200- kV to produce a 1-T magnetic field in a 20-cm bore with a risetime of no more than 250-ns. The design and fabrication process of this coil and the design of the high-voltage stand for the Marshall coil are discussed

  1. Design, fracture control, fabrication, and testing of pressurized space-vehicle structures

    Science.gov (United States)

    Babel, H. W.; Christensen, R. H.; Dixon, H. H.

    1974-01-01

    The relationship between analysis, design, fabrication, and testing of thin shells is illustrated by Saturn S-IVB, Thor, Delta, and other single-use and reusable large-size cryogenic aluminum tankage. The analyses and design to meet the design requirements are reviewed and include consideration of fracture control, general instability, and other failure modes. The effect of research and development testing on the structure is indicated. It is shown how fabrication and nondestructive and acceptance testing constrain the design. Finally, qualification testing is reviewed to illustrate the extent of testing used to develop the Saturn S-IVB.

  2. Mechanical design and fabrication processes for the ALS third-harmonic cavities

    International Nuclear Information System (INIS)

    Franks, M.; Henderson, T.; Hernandez, K.; Otting, D.; Plate, D.; Rimmer, R.

    1999-01-01

    It is planned to install five third-harmonic (1.5 GHz) RF Cavities in May/June 1999 as an upgrade to the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL). This paper presents mechanical design features, their experiences in using electronic design models to expedite the manufacturing process, and the fabrication processes employed to produce these cavities for the ALS. They discuss some of the lessons learned from the PEP-II RF Cavity design and fabrication, and outline the improvements incorporated in the new design. They also report observations from the current effort

  3. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002

  4. Design and Fabrication of a Free-Form Reciprocal Roof

    DEFF Research Database (Denmark)

    Parigi, Dario

    2015-01-01

    The paper presents the framework and the design and construction process of a freeform reciprocal pavilion realized during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2014, at Aalborg University. The workshop didactic...... of relations between design parameters and a wide array of measurable performances. Due to the reciprocal structures geometric complexity, the shape generation process is handled using the Reciprocalizer, a software tool developed by the author that embeds in a computational environment the constructional...... logic of reciprocal structures. It enables to engage in real time in iterative processes that allows unfolding the geometric complexity and turn it into a source of inspiration for expanding the design space and triggering the development of unique, adapted and integrated design solutions. Reciprocal...

  5. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  6. Advances in target design and fabrication for experiments on NIF

    Directory of Open Access Journals (Sweden)

    Obrey K.

    2013-11-01

    Full Text Available The ability to build target platforms for National Ignition Facility (NIF is a key feature in LANL's (Los Alamos National Laboratory Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main material focus. One important characterization metric the physics' have determined is that the knowledge of density gradients in foams is important. We are making strides in not only locating these density gradients in aerogels and foams as a result of how they are manufactured and machined but also quantifying the density within the foam using 3D confocal micro x-ray fluorescence (μXRF imaging and 3D x-ray computed tomography (CT imaging. In addition, collaborative efforts between General Atomics (GA and LANL in the characterization of the NIF Ignition beryllium capsule have shown that the copper in the capsule migrates radially from the capsule center.

  7. Workstation Table Engineering Model Design, Development, Fabrication, and Testing

    Science.gov (United States)

    2012-05-01

    This research effort is focused on providing a workstation table design that will reduce the risk of occupant injuries due to secondary impacts and to compartmentalize the occupants to prevent impacts with other objects and/or passengers seated acros...

  8. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2014-10-01

    The aim of this project is to design a biocompatible package that will deliver the artificial platelets and other hemostatic accelerants (i.e...Encapsulation of magnetic particles within poly(N-isopropylacrylamide) (PNIPAM) via a process known as emulsion polymerization [34,35,38] has...deliver the package ” to the targeted wound site as discussed in the next section. Design of the platelet delivery system This project focusses on

  9. Estimation and Uncertainty Analysis of Flammability Properties for Computer-aided molecular design of working fluids for thermodynamic cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety......, there is no information about the reliability of the data. Furthermore, the global optimality of the GC parameters estimation is often not ensured....

  10. The design and fabrication of two portal vein flow phantoms by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  11. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    Science.gov (United States)

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  12. Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor.

    Science.gov (United States)

    Sun, Yonghai; Yeow, John T W; Jaffray, David A

    2013-10-25

    A low density vertically aligned carbon nanotube-based field-emission cathode with a ballast resistor and coaxial gate is designed and fabricated. The ballast resistor can overcome the non-uniformity of the local field-enhancement factor at the emitter apex. The self-aligned fabrication process of the coaxial gate can avoid the effects of emitter tip misalignment and height non-uniformity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An electrostatic lower stator axial gap wobble motor: design and fabrication

    OpenAIRE

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; van Baar, J.J.J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1995-01-01

    The fabrication, initial modelling and first results of an electrostatic lower stator axial gap wobble motor are presented. The four mask fabrication process is based on polysilicon surface micromachining techniques. Three to twelve stator pole wobble motor designs have been realized with rotor radii of 50 and 100 micrometer. A theoretical model predicts torque generations in the nNm range at high electrostatic fields. Motors have typically been operated between 10 and 20 Volts. Initial exper...

  14. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  15. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-01-01

    According to the high gain obtained in a lossy silicon substrate and the compatibility of the custom MEMS process with the state of the art standard CMOS process, it is believed that the design of this antenna can lead to efficient and low cost reconfigurable millimeter-wave System-on-Chip (SoC) solution.

  16. Design, fabrication and SNOM investigation of plasmonic devices

    DEFF Research Database (Denmark)

    Malureanu, Radu; Zenin, Vladimir A.; Andryieuski, Andrei

    2016-01-01

    Surface plasmon-polaritons are a possible solution for on-chip transportation and manipulation of information. Although there are several possibilities for designing the plasmonic waveguides, the two major caveats for all of them are the coupling to/from external sources and the losses they exhib...

  17. Design and fabrication of a wind turbine blade | Laryea | Ghana ...

    African Journals Online (AJOL)

    Dimensions and weights were measured to determine the possibilities of its performance. Factors that affect the spinning of the blade include the weight, blade count and its aerodynamic features. The new blades are assumed to be more reliable and efficient than wholly wood design. The calculated wind speed and power ...

  18. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  19. Design, fabrication and characterization of a novel gas microvalve using micro- and fine-machining

    NARCIS (Netherlands)

    Fazal, I.; Louwerse, M.C.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2006-01-01

    In this paper, we present the design, fabrication and characterization of a novel gas microvalve realized by combining micro- and fine-machining techniques. The design is for high flow rates at high pressure difference between inlet and outlet, burst pressure of up to 15 bars. There is no power

  20. Design and fabrication of soft x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Masaru; Sasai, Hiroyuki; Sano, Kazuo [Shimadzu Corp., Production Engineering Laboratory, Kyoto (Japan)

    2000-03-01

    Soft x-ray photoelectron spectroscopic technology is important for measuring the chemical status of material surface in the LSI manufacturing process. We report on non-spherical mirrors focusing laser-induced plasma soft x-ray to fine sample surface. We designed toric and ellipsoidal mirror as soft x-ray condensing means, simulated focusing image, manufactured mirror surface on fused quartz substrate, and measured form accuracy. (author)

  1. Design and fabrication of shielding for gamma spectrometry

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-05-01

    To have a system of gamma spectrometry in the Radiological Mobile Unit No. 1 (UMOR-1) was designed and manufactured an armor-plating appropriate to this, to make analysis of radioactive samples in place in the event of a radiological emergency, besides being able to give support to the Management of Radiological Safety, and even to give service of sample analysis of other Institutions. (Author)

  2. Wind Turbine design and fabrication to power street lights

    Directory of Open Access Journals (Sweden)

    Khan Mohammad

    2017-01-01

    Full Text Available The objective of this work was to design and build a wind turbine which can be used to power small street lights. Considering the typical wind speeds in Abu Dhabi, UAE and ease of construction, the design of the wind turbine was chosen to be Sea Hawk design from vertical axis wind turbine category. A three phase AC generator was used for its availability over the DC motors within the region. A 12V battery was used for storage and a charge controller was used for controlling the charge flow into the battery and for controlling the turbine rotation when the battery is fully charged. The blades used in the turbine were made of foam board according to the NACA 0018 airfoil shape with a chord length of 15cm. The connecting shaft was made of stainless steel. Structural analysis and CFD analysis were performed along with other calculations. Testing was executed to calculate the voltage output from the turbine at different wind speeds. The maximum voltage the turbine produced at 6.4 m/s wind speed was 2.4Vand the rotational speed of the turbine was 60.3 rpm.

  3. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them

  4. Sensors advancements in modeling, design issues, fabrication and practical applications

    CERN Document Server

    Mukhopadhyay, Subhash Chandra

    2008-01-01

    Sensors are the most important component in any system and engineers in any field need to understand the fundamentals of how these components work, how to select them properly and how to integrate them into an overall system. This book has outlined the fundamentals, analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors, electromagnetic, capacitive, ultrasonic, vision, Terahertz, displacement, fibre-optic and so on. The book: addresses the identification, modeling, selection, operation and integration of a wide variety of se

  5. Ceramic Prototypes – Design, Computation, and Digital Fabrication

    Directory of Open Access Journals (Sweden)

    M. Bechthold

    2016-12-01

    Full Text Available Research in ceramic material systems at Harvard University has introduced a range of novel applications which combine digital manufacturing technologies and robotics with imaginative design and engineering methods. Prototypes showcase the new performative qualities of ceramics and the integration of this material in today’s construction culture. Work ranges from daylight control systems to structural applications and a robotic tile placement system. Emphasis is on integrating novel technologies with tried and true manufacturing methods. The paper describes two distinct studies – one on 3D print-ing of ceramics, the other on structural use of large format thin tiles.

  6. Design and Fabrication of a 1 THz Backward Wave Amplifier

    DEFF Research Database (Denmark)

    Paoloni, Claudio; Di Carlo, Aldo; Brunetti, Francesca

    2011-01-01

    , to get a level of output power to enable applications at these frequencies. The OPTHER (Optically driven THz amplifier) project, funded by the European Community, is on the road to realize the first 1 THz vacuum tube amplifier. Technology at the state of the art has been used for the realization...... of the parts with dimensions supporting THz frequencies. A backward wave amplifier configuration is chosen to make the parts realizable. A carbon nanotube cold cathode has been considered for electron generation. A thermionic micro electron gun is designed to test the tube. A novel slow-wave structure (SWS...

  7. Thermodynamic analysis of combined cycle under design/off-design conditions for its efficient design and operation

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Xie, Angjun; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • Based on the PG9351FA gas turbine, two gas-steam combined cycles are redesigned. • Analysis of detailed off-design characteristics of the combined cycle main parts. • Suggestions for improving design and operation performance of the combined cycle. • Higher design efficiency has higher off-design efficiency in general PR range. • High pressure ratio combined cycles possess good off-design performance. - Abstract: To achieve a highly efficient design and operation of combined cycles, this study analyzed in detail the off-design characteristics of the main components of three combined cycles with different compressor pressure ratios (PRs) based on real units. The off-design model of combined cycle was built consisting of a compressor, a combustor, a gas turbine, and a heat recovery steam generator (HRSG). The PG9351FA unit is selected as the benchmark unit, on the basis of which the compressor is redesigned with two different PRs. Then, the design/off-design characteristics of the three units with different design PRs and the interactive relations between topping and bottoming cycles are analyzed with the same turbine inlet temperature (TIT). The results show that the off-design characteristics of the topping cycle affect dramatically the combined cycle performance. The variation range of the exergy efficiency of the topping cycle for the three units is between 11.9% and 12.4% under the design/off-design conditions. This range is larger than that of the bottoming cycle (between 9.2% and 9.5%). The HRSG can effectively recycle the heat/heat exergy of the gas turbine exhaust. Comparison among the three units shows that for a traditional gas-steam combined cycle, a high design efficiency results in a high off-design efficiency in the usual PR range. The combined cycle design efficiency of higher pressure ratio is almost equal to that of the PG9351FA, but its off-design efficiency is higher (maximum 0.42%) and the specific power decreases. As for

  8. Design and fabrication of a 50 MWt prototypical MHD coal-fired combustor

    International Nuclear Information System (INIS)

    Albright, J.; Braswell, R.; Listvinsky, G.; McAllister, M.; Myrick, S.; Ono, D.; Thom, H.

    1992-01-01

    A prototypical 50 MWt coal-fired combustor has been designed and fabricated as part of the Magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) Program. This is a DOE-funded program to develop a prototypical MHD power train to be tested at the Component Development and Integration Facility (CDIF) in Butte, Montana. The prototypical combustor is an outgrowth of the 50 MWt workhorse combustor which has previously been tested at the CDIF. In addition to meeting established performance criteria of the existing 50 MWt workhorse combustor, the prototypical combustor design is required to be scaleable for use at the 250 MWt retrofit level. This paper presents an overview of the mechanical design of the prototypical combustor and a description of its fabrication. Fabrication of the 50 MWt prototypical coal-fired combustor was completed in February 1992 and hot-fire testing is scheduled to begin in May 1992

  9. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  10. How to avoid errors in the design and fabrication of transportation packages

    International Nuclear Information System (INIS)

    Raske, D.T.

    1996-01-01

    The purpose of this paper is to discuss the errors and omissions most often identified when reviewing the design and fabrication of a packaging to transport high-level radioactive materials. The design and fabrication criteria recommended by the U.S. Department of Energy, Office of Facility Safety Analysis, for containment vessels of Type B commercial packagings containing high-level radioactive materials is based on the requirements of Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. However, most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; as a result, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging that constitutes the basis for evaluating the packaging for certification

  11. Design, fabrication and quality assurance of pressure vessels

    International Nuclear Information System (INIS)

    Kimura, Ichiro; Miki, Masao; Yamazaki, Tsuneji; Tanaka, Yoshikazu; Sato, Misao

    1978-01-01

    The production facilities, design and manufacturing technologies, and quality assurance in the Toyo Works, Ehime Manufactory, Sumitomo Heavy Industries, Ltd., which manufactures pressure vessels, are described, and especially the actual example of non-destructive tests is shown. The Toyo Works was completed in April, 1973, to manufacture large structures such as pressure vessels, offshore structures and bridges. The total area of the site is 535,000 m 2 , that of factory buildings is 33,600 m 2 , and the outdoor assembling yard is 114,800 m 2 . The large dry dock and main installations such as 12,000 tf hydraulic press, an annealing furnace, a heat treating furnace, a quenching tank, a horizontal boring machine, 6 m vertical lathe, various welding machines, 8 MeV X-ray apparatus, sand blasting and pickling facilities, and two 160 t cranes for shipment are arranged so as to enable smooth flow of production. The standards for chemical pressure vessels in various countries are compared, and considerably high allowable stress is adopted in Europe. The design and stress analysis of pressure vessels are carried out in accordance with ASME Section 8, Div. 1 or Div. 2. As for the materials, attention must be paid to the change of properties due to heat and strain, temper brittleness, low temperature toughness and so on. The quality assurance system must be established to observe the requirements of standards. (Kako, I.)

  12. Design and Fabrication of Soft Morphing Ray Propulsor: Undulator and Oscillator.

    Science.gov (United States)

    Kim, Hyung-Soo; Lee, Jang-Yeob; Chu, Won-Shik; Ahn, Sung-Hoon

    2017-03-01

    A soft morphing ray propulsor capable of generating an undulating motion in its pectoral fins was designed and fabricated. The propulsor used shape memory alloy for actuation, and the body was made with soft polymers. To determine the effects of undulation in the fins, two models that differed in terms of the presence of undulation were fabricated using different polymer materials. The experimental models were tested with a dynamometer to measure and compare thrust tendencies. Thrust measurements were conducted with various fin beat frequencies. Using the experimental data, the concept of an optimized standalone version of the ray robot was suggested and its prototype was fabricated. The fabricated robot was able to swim as fast as 0.26 body length per second and 38% more efficient than other smart material-based ray-like underwater robots.

  13. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  14. Advances in nanotheranostics I design and fabrication of theranosic nanoparticles

    CERN Document Server

    2016-01-01

    This book highlights the recent advances in nanotheranostics from basic research to potential applications, and discusses the modular design and engineering of multiplex nanoparticles including gold nanostructures, luminescent nanoparticles, dendrimers and liposomes. Each chapter demonstrates multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy as new modalities for cancer theranostics. This comprehensive book presents expert views on the latest developments in theranostic nanomedicine. It focuses on potential theranostic applications of multifunctional nanoparticles ranging from identifying noninvasively cancer cells by molecular detection, and visualizing in vivo drug delivery by means of contrast enhanced imaging, to destroying cancer cell s with minimal side effects via selective accumulation at tumor sites, and real-time monitoring therapeutic effectiveness. It also presents an interdisciplinary survey of nanotheranostics and as such is a valuable reso...

  15. Advances in nanotheranostics I. Design and fabrication of theranosic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhifei (ed.) [Peking Univ., Beijing (China). College of Engineering

    2016-07-01

    This book highlights the recent advances in nanotheranostics from basic research to potential applications, and discusses the modular design and engineering of multiplex nanoparticles including gold nanostructures, luminescent nanoparticles, dendrimers and liposomes. Each chapter demonstrates multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy as new modalities for cancer theranostics. This comprehensive book presents expert views on the latest developments in theranostic nanomedicine. It focuses on potential theranostic applications of multifunctional nanoparticles ranging from identifying noninvasively cancer cells by molecular detection, and visualizing in vivo drug delivery by means of contrast enhanced imaging, to destroying cancer cell s with minimal side effects via selective accumulation at tumor sites, and real-time monitoring therapeutic effectiveness. It also presents an interdisciplinary survey of nanotheranostics and as such is a valuable resource for researchers and students in related fields.

  16. Frontiers in Planar Lightwave Circuit Technology Design, Simulation, and Fabrication

    CERN Document Server

    Janz, Siegfried; Tanev, Stoyan

    2005-01-01

    This book is the result of the NATO Advanced Research Workshop on Frontiers in Planar Lightwave Circuit Technology, which took place in Ottawa, Canada from September 21-25, 2004. Many of the world’s leading experts in integrated photonic design, theory and experiment were invited to give lectures in their fields of expertise, and participate in discussions on current research and applications, as well as the new directions planar lightwave circuit technology is evolving towards. The sum of their contributions to this book constitutes an excellent record of many key issues and scientific problems in planar lightwave circuit research at the time of writing. In this volume the reader will find detailed overviews of experimental and theoretical work in high index contrast waveguide systems, micro-optical resonators, nonlinear optics, and advanced optical simulation methods, as well as articles describing emerging applications of integrated optics for medical and biological applications.

  17. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  18. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    International Nuclear Information System (INIS)

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode R , a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  19. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zukun [Los Alamos National Laboratory

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  20. Design and fabrication of composite wing panels containing a production splice

    Science.gov (United States)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  1. Lessons learned from MELOX plant operation and support to design of new MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Tourre, Joel; Gattegno, Robert; Guay, Philippe; Bariteau, Jean-Pierre

    2005-01-01

    AREVA is participating in the design of the US MOX Fuel Fabrication Facility (MFFF). To support this project and allow the U.S. Department of Energy (DOE) client to reap full benefit from the MELOX operating experience, AREVA, through COGEMA and its engineering subsidiary SGN have implemented a rigorous process to prudently apply MELOX Lessons Learned to the MFFF design. This paper describes the Lessons Learned process, how the process supports the advancement of fuel fabrication technology and, how the results of the process are benefiting the client. (author)

  2. Advances in Design and Fabrication of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2016-01-01

    The paper presents the advances in design and fabrication of free-form Reciprocal Structures, and their application a during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2015, at Aalborg University. Two new factors were...... introduced and tested: a new version of the software Reciprocalizer, and an evolution of the Reciprocalizer Robot. The workshop didactic framework Performance Aided/Assisted Design (PAD) is presented....

  3. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum

  4. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  5. KHIC's experience in the design and fabrication of nuclear components

    International Nuclear Information System (INIS)

    Suh, S.-C.

    1992-01-01

    Since 1980, Korea Heavy Industries ampersand Construction Company, Ltd. (KHIC) has specialized in the design and equipment supply for nuclear power facilities in Korea. In April 1987, KHIC became the prime contractor for the construction of Yonggwang 3 ampersand 4 (YGN 3 ampersand 4) nuclear power project. Accordingly, KHIC's technological self-reliance capability for the manufacturing processes of the primary system equipment and components has increased from 18% during the initial stage of Yonggwang 1 ampersand 2 (YGN 1 ampersand 2) project to 63% for YGN 3 ampersand 4 project. Self-reliance capability for the secondary system equipment and components has increased from 28% to 84% during the same period of time as well. The ultimate goal is to achieve complete and total assurance that our products are of the finest quality in the nuclear industry in the world market. Henceforth, we will be able to guarantee complete customer satisfaction and reliability of our products with safety assurance and leading edge technology

  6. Atlas transmission line/transition design and fabrication status

    CERN Document Server

    Ballard, E O; Davis, H A; Elizondo, J M; Gribble, R F; Nielsen, K E; Parker, G V; Ricketts, R L; Valdez, G A

    1999-01-01

    Atlas is a pulsed-power facility under development at Los Alamos National Laboratory to drive high-energy density experiments. Design has been completed for this new generation pulsed-power machine consisting of an azimuthal array of 24, 240-kV Marx modules and transmission lines supplying current to the load region at the machine center. The transmission line consists of a cable header, load protection switch, and tri-plate assembly interfacing to the center transition section. The cable header interface to the Marx module provides a mechanism to remove the Marx module for maintenance without removing other components of the transmission line. The load protection switch provides a mechanism for protecting the load during charging of the Marx in the event of a pre-fire condition. The aluminum tri-plate is a low-inductance transmission line that carries radial current flow from the Marx energy storage system at the machine periphery toward the load. All transmission line components are oil insulated except the...

  7. Thermodynamic analysis and system design of a novel split cycle engine concept

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.

    2016-01-01

    The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.

  8. Detailed Design and Fabrication Method of the ITER Vacuum Vessel Ports

    International Nuclear Information System (INIS)

    Hee-Jae Ahn; Kwon, T.H.; Hong, Y.S.

    2006-01-01

    The engineering design of the ITER vacuum vessel (VV) has been progressed by the ITER International Team (IT) with the cooperation of several participant teams (PT). The VV and ports are the components allocated to Korea for the construction of the ITER. Hyundai Heavy Industries has been involved in the structural analysis, detailed design and development of the fabrication method of the upper and lower ports within the framework of the ITER transitional arrangements (ITA). The design of the port structures has been investigated to validate and to improve the conceptual designs of the ITER IT and other PT. The special emphasis was laid on the flange joint between the port extension and the in-port plug to develop the design of the upper port. The modified design with a pure friction type flange with forty-eight pieces of bolts instead of the tangential key is recommended. Furthermore, the alternative flange designs developed by the ITER IT have been analyzed in detail to simplify the lip seal maintenance into the port flange. The structural analyses of the lower RH port have been also performed to verify the capacity for supporting the VV. The maximum stress exceeds the allowable value at the reinforcing block and basement. More elaborate local models have been developed to mitigate the stress concentration and to modify the component design. The fabrication method and the sequence of the detailed fabrication for the ports are developed focusing on the cost reduction as well as the simplification. A typical port structure includes a port stub, a stub extension and a port extension with a connecting duct. The fabrication sequence consists of surface treatment, cutting, forming, cleaning, welding, machining, and non-destructive inspection and test. Tolerance study has been performed to avoid the mismatch of each fabricated component and to obtain the suitable tolerances in the assembly at the shop and site. This study is based on the experience in the fabrication of

  9. Computational Design and Discovery of Ni-Based Alloys and Coatings: Thermodynamic Approaches Validated by Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Kui [Pennsylvania State University; Gleeson, Brian [University of Pittsburgh; Shang, Shunli [Pennsylvania State University; Gheno, Thomas [University of Pittsburgh; Lindwall, Greta [Pennsylvania State University; Zhou, Bi-Cheng [Pennsylvania State University; Liu, Xuan [Pennsylvania State University; Ross, Austin [Pennsylvania State University

    2018-04-23

    This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities, which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.

  10. Improving the thermodynamic efficiency of steam turbine condensers with partial tube replacement and an advanced tube bundle design

    International Nuclear Information System (INIS)

    Drosdziok, A.; Zorner, W.

    1989-01-01

    Many different problems have been experienced with power plant condensers all over the world. It has become apparent that plant availability and cost-effectiveness are significantly influenced by the thermodynamic design of the condensers and the materials selected. This paper reports that by refitting older condensers in operating plants it has proven possible to improve thermodynamic efficiency by changing the tube bundle design. In conjunction with the replacement of the cooper-bearing tubing in these condensers, which became necessary because of the introduction of high AVT (All Volatile Treatment) conditioning in the secondary circuit, it has generally been possible to fulfil the requirements imposed on the condensers without a deterioration of plant efficiency. By experience, best results have been obtained by replacing the condenser bundle with an advanced tube bundle design. Apart from solving all problems, this further improves the thermodynamic efficiency of the condensers. In nuclear power plants constructed by the Siemens KWU Group the condensers are tailored to present-day requirements

  11. Design and fabrication methods of FW/blanket, divertor and vacuum vessel for ITER

    International Nuclear Information System (INIS)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Ibbott, C.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Tivey, R.; Utin, Y.; Yamada, M.

    2000-01-01

    Design has progressed on the vacuum vessel, FW/blanket and Divertor for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design [K. Ioki et al., J. Nucl. Mater. 258-263 (1998) 74]. Design and fabrication methods of the components have been improved to achieve ∼50% reduction of the construction cost. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the Engineering Design Activities (EDAs) are still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed

  12. Design and fabrication methods of FW/blanket, divertor and vacuum vessel for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.deiokik@ipp.mpg.de; Barabash, V.; Cardella, A.; Elio, F.; Ibbott, C.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Tivey, R.; Utin, Y.; Yamada, M

    2000-12-01

    Design has progressed on the vacuum vessel, FW/blanket and Divertor for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design [K. Ioki et al., J. Nucl. Mater. 258-263 (1998) 74]. Design and fabrication methods of the components have been improved to achieve {approx}50% reduction of the construction cost. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the Engineering Design Activities (EDAs) are still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed.

  13. Design and fabrication methods of FW/blanket, divertor and vacuum vessel for ITER

    Science.gov (United States)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Ibbott, C.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Miki, N.; Onozuka, M.; Sannazzaro, G.; Tivey, R.; Utin, Y.; Yamada, M.

    2000-12-01

    Design has progressed on the vacuum vessel, FW/blanket and Divertor for the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER. The basic functions and structures are the same as for the 1998 ITER design [K. Ioki et al., J. Nucl. Mater. 258-263 (1998) 74]. Design and fabrication methods of the components have been improved to achieve ˜50% reduction of the construction cost. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R&D performed so far during the Engineering Design Activities (EDAs) are still applicable. Further cost reduction methods are also being investigated and additional R&D is being performed.

  14. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  15. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.de; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H

    2001-11-01

    Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable.

  16. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

    International Nuclear Information System (INIS)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H.

    2001-01-01

    Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable

  17. Design and fabrication of self-powered micro-harvesters rotating and vibrated micro-power systems

    CERN Document Server

    Pan, C T; Lin, Liwei; Chen, Ying-Chung

    2013-01-01

    Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with

  18. Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry

    Science.gov (United States)

    Krieger, Helga; Gries, Thomas; Stapleton, Scott E.

    2018-02-01

    Automation of the preforming process brings up two opposing requirements for the used engineering fabric. On the one hand, the fabric requires a sufficient drapeability, or low shear stiffness, for forming into double-curved geometries; but on the other hand, the fabric requires a high form stability, or high shear stiffness, for automated handling. To meet both requirements tailored non-crimp fabrics (TNCFs) are proposed. While the stitching has little structural influence on the final part, it virtually dictates the TNCFs local capability to shear and drape over a mold during preforming. The shear stiffness of TNCFs is designed by defining the local stitching geometry. NCFs with chain stitch have a comparatively high shear stiffness and NCFs with a stitch angle close to the symmetry stitch angle have a very low shear stiffness. A method to design the component specific local stitching parameters of TNCFs is discussed. For validation of the method, NCFs with designed tailored stitching parameters were manufactured and compared to benchmark NCFs with uniform stitching parameters. The designed TNCFs showed both, generally a high form stability and in locally required zones a good drapeability, in drape experiments over an elongated hemisphere.

  19. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    Science.gov (United States)

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Design, fabrication and testing of a 5-Hz acoustic exciter system

    Science.gov (United States)

    Lundy, D. H.; Robinson, G. D.

    1973-01-01

    A 5-Hz acoustic excitation system was designed, fabricated and checked out for use in the modulation of a stagnant gas volume contained in an absorption cell. A detailed system description of the test equipment, both mechanical and electronic, and an operating procedure are included. Conclusions are also presented.

  1. Design and fabrication of a 100 GHz channel-drop filter

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Evgenya I [Los Alamos National Laboratory; Earley, Lawrence M [Los Alamos National Laboratory; Heath, Cynthia E [Los Alamos National Laboratory; Shchegolkov, Dmitry Y [Los Alamos National Laboratory

    2008-01-01

    We have designed and are fabricating a novel passive mm-wave spectrometer based on a Photonic Band Gap (PBG) channel-drop filter (CDF). There is a need for a compact wide-band versatile and configurable mm-wave spectrometer for applications in mm-wave communications, radio astronomy, and radar receivers for remote sensing and nonproliferation.

  2. Design and fabrication of a eccentric wheels based motorised alignment mechanism for cylindrical accelerator components

    International Nuclear Information System (INIS)

    Mundra, G.; Jain, V.; Karmarkar, Mangesh; Kotaiah, S.

    2006-01-01

    Precision alignment mechanisms with long term stability are required for accelerator components. For some of the components motorised and remotely operable alignment mechanism are required. An eccentric wheel mechanism based alignment system is very much suitable for such application. One such alignment system is designed, a prototype is machined/fabricated for SFDTL type accelerating structure and preliminary trial experiments have been done. (author)

  3. Design, Fabrication, and Measurement of Two-Dimensional Photonic Crystal Slab Waveguides

    International Nuclear Information System (INIS)

    Chao, Zhang; Xuan, Tang; Xiao-Yu, Mao; Kai-Yu, Cui; Lei, Cao; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    Two-dimensional photonic crystal slab waveguides on SOI wafer are designed and fabricated. Photonic band gap, band gap guided mode, and index guided mode are observed by measuring the transmission spectra. The experimental results are in good agreement with the theoretical ones

  4. Design, Fabrication, and Testing of Active Skin Antenna with 3D Printing Array Framework

    Directory of Open Access Journals (Sweden)

    Jinzhu Zhou

    2017-01-01

    Full Text Available An active skin antenna with structural load-bearing and electromagnetic functions is usually installed in the structural surface of mobile vehicles such as aircrafts, warships, and high-speed train. This paper presents the design, fabrication, and testing of a novel active skin antenna which consists of an encapsulation shell, antenna skin, and RF and beam control circuits. The antenna skin which consists of the facesheet, honeycomb, array framework, and microstrip antenna elements was designed by using Bayesian optimization, in order to improve the design efficiency. An active skin antenna prototype with 32 microstrip antenna elements was fabricated by using a hybrid manufacturing method. In this method, 3D printing technology was applied to fabricate the array framework, and the different layers were bonded to form the final antenna skin by using traditional composite process. Some experimental testing was conducted, and the testing results validate the feasibility the proposed antenna skin structure. The proposed design and fabrication technique is suitable for the development of conformal load-bearing antenna or smart skin antenna installed in the structural surface of aircraft, warships, and armored vehicles.

  5. Integrated optical serializer designed and fabricated in a generic InP based technology

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2012-01-01

    This work presents design and characterization results of an optical pulse serializer, realized as an Application Specific Photonic Integrated Circuit (ASPIC) in a novel, generic InPbased technology and fabricated in a multi-project wafer run. The measurement results show high-speed (32 Gbit/s)

  6. Design of an engineered safeguards system for a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Winblad, A.E.; McKnight, R.P.; Fienning, W.C.; Fenchel, B.R.

    1977-06-01

    Several Engineered Safeguards System concepts and designs are described that provide increased protection against a wide spectrum of adversary threats. An adversary sequence diagram that outlines all possible adversary paths through the safeguards elements in a mixed-oxide fuel fabrication facility is shown. An example of a critical adversary path is given

  7. ASME Code requirements for multi-canister overpack design and fabrication

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified

  8. Design, fabrication and cold tests of a super ferric octupole corrector for the LHC

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Calero, J.; Laurent, G.; Russenschuck, S.; Siegel, N.; Traveria, M.; Aguirre, P.; Etxeandia, J.; Garcia, J.

    1996-01-01

    In the corrections scheme of the LHC it is planed to install octupole corrector magnets in the short straight section of the lattice. Initially these correctors were distributed windings on the cold bore tube nested in the tuning quadrupoles. The latter being suppressed a new compact super ferric design was chosen for the octupole prototype, suitable for a two-in-one configuration. This prototype was designed by CERN and CEDEX/Spain, built at INDAR/Spain and tested at CEDEX. The paper reports on the design of the prototype, describes the fabrication and assembly and presents the measurement results. Special interest has been taken to design a simple and compact magnet, easy to fabricate and training free below nominal field. First results show the feasibility of the solution wich will be finally confirmed by magnetic measurement. (Author) 4 refs

  9. Design and Fabrication of Serpentine Tube Type Sodium to Air Heat Exchangers for PFBR SGDHR Circuits

    International Nuclear Information System (INIS)

    Pai, Aravinda; Mitra, T.K.; Loganathan, T.; Kumar, Prabhat

    2013-01-01

    Conclusion: • The design, manufacture and construction of components should employ proven techniques and it should be possible to conduct analysis of the design as may be necessary for the purpose of demonstrating adequate integrity at any specified time throughout the plant life. • The important fabrication rules are use of high standard of materials, use of high quality welding during all the stages of manufacture supported by a quality assurance program which ensures full approval of procedures and provides verification of compliance with the procedures & practices. • Very high standard quality control and quality assurance during design, material procurement, forming, welding, fabrication, handling and testing has given confidence on trouble free service from Sodium to Air Heat Exchangers for the design service life of 40 years

  10. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  11. Involvement of Thermodynamic Cycle Analysis in a Concurrent Approach to Reciprocating Engine Design

    Directory of Open Access Journals (Sweden)

    J. Macek

    2001-01-01

    Full Text Available A modularised approach to thermodynamic optimisation of new concepts of volumetric combustion engines concerning efficiency and emissions is outlined. Levels of primary analysis using a computerised general-change entropy diagram and detailed multizone, 1 to 3-D finite volume methods are distinguished. The use of inverse algorithms based on the same equations is taken into account.

  12. Integration of ecological and thermodynamic concepts in the design of sustainable energy landscapes

    NARCIS (Netherlands)

    Stremke, S.; Koh, J.

    2011-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Whereas nature presents strategies to sustain on the basis of renewables, the Laws of Thermodynamics can help to increase efficiency in energy use. In previous

  13. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    Science.gov (United States)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  14. Design and fabrication of food irradiators and economics of food irradiation

    International Nuclear Information System (INIS)

    Bongirwar, D.R.

    1994-01-01

    A number of design and fabrication aspects of food irradiation facilities have been evolved during past few years. These concepts are basically aimed at providing compact and optimal energy efficient designs for processing of foods. This paper discusses the economics of food irradiation applications and the effects of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital cost with annual operating costs and annual through puts. 6 figs

  15. Design, fabrication, and test of a steel spar wind turbine blade

    Science.gov (United States)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  16. Design, fabrication and comparison of two power combiners: cylindrical and coaxial cavities

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2017-08-01

    Full Text Available Resonant structure is one of the proposed methods in combining power in RF systems of  RF accelerators. In this structure, fabrication of RF power divider or combiner using coaxial and cylindrical cavity is important. In this study, two combiners, in the same frequency band, are designed and fabricated; and their results are compared. The experimental results confirmed the simulation results and showed that compared with cyclical cavity, the power combiner with coaxial cavity is smaller, more easily adjustable, and is more suitable for use in RF systems of RF accelerators

  17. Comparison of Jacket Production Processes Designed by Fabric Materials and Leather

    Directory of Open Access Journals (Sweden)

    Emine Utkun

    2011-02-01

    Full Text Available Leather and leather products industry has shown a significant improvement in export area, as a result of intensive shuttle trades and demand that comes from crumbling Eastern Bloc countries in 1990's. This development has caused capacity increasing and thus makes large investments in this sector. Leather garment industry differs from woven or fabrics industry at various points. Differantation seems in raw materials features such as size, thickness, biological, chemical or physical homogenity. Due to the natural structure, leather shows different attributes in different regions. This study examines the diversity of production processes of leather and fabric designed jacket.

  18. Fabrication of small mock-ups reflecting the design features of the ITER semi-prototype

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Choi, Byoung-Kwon; Park, Jeong-Yong; Kim, Suk-Kwon; Lee, Dong Won; Kim, Byoung Yoon

    2012-01-01

    The ITER semi-prototype was designed to qualify the manufacturing technology for the ITER blanket first wall. However, its fabrication is expected to face great difficulty due to a design complexity. Even though joining technology for different materials such as beryllium, CuCrZr, and stainless steel (SS) was developed during the first stage of qualification, the joining is still a key issue for the fabrication of the semi-prototype. In this study, small mock-ups (SMU) were fabricated to realize and verify the manufacturing of the semi-prototype reflecting the described design features. The joining of multiple beryllium tiles on the angled CuCrZr surface was confirmed with SMU no. 1. Six beryllium tiles were joined using hot isostatic pressing (HIP), and slitting was then performed to form multiple tiles. In SMU no. 2, HIP was performed two times in order to facilitate the cooling channels at the CuCrZr/SS interface, and to join the beryllium tiles on CuCrZr/SS. The method used to form a pressure boundary for the complex cooling channels was also developed by fabricating the SMU no. 3. The SMUs confirmed the applicability of the HIP for the manufacturing of the semi-prototype.

  19. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.

    Science.gov (United States)

    Boyd, Darryl A; Shields, Adam R; Howell, Peter B; Ligler, Frances S

    2013-08-07

    Microfluidic systems have advantages that are just starting to be realized for materials fabrication. In addition to the more common use for fabrication of particles, hydrodynamic focusing has been used to fabricate continuous polymer fibers. We have previously described such a microfluidics system which has the ability to generate fibers with controlled cross-sectional shapes locked in place by in situ photopolymerization. The previous fiber fabrication studies produced relatively simple round or ribbon shapes, demonstrated the use of a variety of polymers, and described the interaction between sheath-core flow-rate ratios used to control the fiber diameter and the impact on possible shapes. These papers documented the fact that no matter what the intended shape, higher flow-rate ratios produced rounder fibers, even in the absence of interfacial tension between the core and sheath fluids. This work describes how to fabricate the next generation of fibers predesigned to have a much more complex geometry, as exemplified by the "double anchor" shape. Critical to production of the pre-specified fibers with complex features was independent control over both the shape and the size of the fabricated microfibers using a two-stage hydrodynamic focusing system. Design and optimization of the channels was performed using finite element simulations and confocal imaging to characterize each of the two stages theoretically and experimentally. The resulting device design was then used to generate thiol-ene fibers with a unique double anchor shape. Finally, proof-of-principle functional experiments demonstrated the ability of the fibers to transport fluids and to interlock laterally.

  20. Design, fabrication and installation of irradiation facilities -Advanced nuclear material development-

    International Nuclear Information System (INIS)

    Kim, Yong Seong; Lee, Jeong Yeong; Lee, Seong Ho; Ji, Dae Yeong; Kim, Seok Hoon; An, Seong Ho; Kim, Dong Hoon; Seok, Ho Cheon; Kim, Joon Yeon; Yang, Seong Hong

    1994-07-01

    The objective of this study is to design and construct the steady state fuel test loop and non-instrumented capsules to be installed in KMRR. The principle contents of this project are to design, fabricate the steady-state fuel test loop and non-instrumented capsule to be installed in KMRR for nuclear technology development. This project will be completed in 1996, so preparation of design criteria for fuel test loop have been performed in 1993 as the first year of the first phase in implementing this project. Also design and pressure drop test of non-instrumented capsule have been performed in 1993

  1. Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor

    International Nuclear Information System (INIS)

    Zhou, Youzheng; Wang, Zheyao; Wang, Chaonan; Ruan, Wenzhou; Liu, Litian

    2009-01-01

    This paper presents the design, fabrication and characterization of a silicon dioxide piezoresistive microcantilever immunosensor fabricated on silicon-on-insulator (SOI) wafers. The microcantilever consists of two strips of single crystalline silicon piezoresistors sandwiched in between two silicon dioxide layers. A theoretical model for the laminated microcantilever with a discontinuous layer is deduced using classic laminated beam theory. A two-step release method combining anisotropic and isotropic etching is developed to suspend the microcantilever, and the fabrication results show an excellent yield. The residual stress-induced free bending of the microcantilever and the stress caused by self-heating of the piezoresistors are discussed. The microcantilever sensor is characterized as an immunosensor using specific binding of antigen and antibody. These methods and some conclusions are also applicable to the development of other piezoresistive sensors that use laminated structures

  2. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    Science.gov (United States)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  3. Design and fuel fabrication processes for the AC-3 mixed-carbide irradiation test

    International Nuclear Information System (INIS)

    Latimer, T.W.; Chidester, K.M.; Stratton, R.W.; Ledergerber, G.; Ingold, F.

    1992-01-01

    The AC-3 test was a cooperative U.S./Swiss irradiation test of 91 wire-wrapped helium-bonded U-20% Pu carbide fuel pins irradiated to 8.3 at % peak burnup in the Fast Flux Test Facility. The test consisted of 25 pins that contained spherepac fuel fabricated by the Paul Scherrer Institute (PSI) and 66 pins that contained pelletized fuel fabricated by the Los Alamos National Laboratory. Design of AC-3 by LANL and PSI was begun in 1981, the fuel pins were fabricated from 1983 to 1985, and the test was irradiated from 1986 to 1988. The principal objective of the AC-3 test was to compare the irradiation performance of mixed-carbide fuel pins that contained either pelletized or sphere-pac fuel at prototypic fluence and burnup levels for a fast breeder reactor

  4. Tailoring design and fabrication of capacitive RF MEMS switches for K-band applications

    Science.gov (United States)

    Quaranta, Fabio; Persano, Anna; Capoccia, Giovanni; Taurino, Antonietta; Cola, Adriano; Siciliano, Pietro; Lucibello, Andrea; Marcelli, Romolo; Proietti, Emanuela; Bagolini, Alvise; Margesin, Benno; Bellutti, Pierluigi; Iannacci, Jacopo

    2015-05-01

    Shunt capacitive radio-frequency microelectromechanical (RF MEMS) switches were modelled, fabricated and characterized in the K-band domain. Design allowed to predict the RF behaviour of the switches as a function of the bridge geometric parameters. The modelled switches were fabricated on silicon substrate, using a surface micromachining approach. In addition to the geometric parameters, the material structure in the bridge-actuator area was modified for switches fabricated on the same wafer, thanks to the removal/addition of two technological steps of crucial importance for RF MEMS switches performance, which are the use of the sacrificial layer and the deposition of a floating metal layer on the actuator. Surface profilometry analysis was used to check the material layer structure in the different regions of the bridge area as well as to investigate the mechanical behaviour of the moveable bridge under the application of a loaded force. The RF behaviour of all the fabricated switches was measured, observing the impact on the isolation of the manipulation of the bridge size and of the variations in the fabrication process.

  5. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  6. Design and Fabrication Challenges for Millimeter-Scale Three-Dimensional Phononic Crystals

    Directory of Open Access Journals (Sweden)

    Frieder Lucklum

    2017-11-01

    Full Text Available While phononic crystals can be theoretically modeled with a variety of analytical and numerical methods, the practical realization and comprehensive characterization of complex designs is often challenging. This is especially important for the nearly limitless possibilities of periodic, three-dimensional structures. In this contribution, we take a look at these design and fabrication challenges of different 3D phononic elements based on recent research using additive manufacturing. Different fabrication technologies introduce specific limitations in terms of, e.g., material choices, minimum feature size, aspect ratios, or support requirements that have to be taken into account during design and theoretical modeling. We discuss advantages and disadvantages of additive technologies suitable for millimeter and sub-millimeter feature sizes. Furthermore, we present comprehensive experimental characterization of finite, simple cubic lattices in terms of wave polarization and propagation direction to demonstrate the substantial differences between complete phononic band gap and application oriented directional band gaps of selected propagation modes.

  7. DESIGN AND FABRICATION OF THE BEAM POSITION MONITOR FOR THE PEFP LINAC

    Directory of Open Access Journals (Sweden)

    HYEOK-JUNG KWON

    2013-08-01

    Full Text Available The beam position monitor (BPM is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  8. Optimal design and fabrication of three-dimensional calibration specimens for scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoning; Luo Tingting; Chen Yuhang; Huang Wenhao [Department of Precision Machinery and Instrumentation, University of Science and Technology of China, 230026 Hefei (China); Piaszenski, Guido [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)

    2012-05-15

    Micro-/nano-scale roughness specimens are highly demanded to synthetically calibrate the scanning probe microscopy (SPM) instrument. In this study, three-dimensional (3D) specimens with controllable main surface evaluation parameters were designed. In order to improve the design accuracy, the genetic algorithm was introduced into the conventional digital filter method. A primary 3D calibration specimen with the dimension of 10 {mu}m x 10 {mu}m was fabricated by electron beam lithography. Atomic force microscopy characterizations demonstrated that the statistical and spectral parameters of the fabricated specimen match well with the designed values. Such a kind of 3D specimens has the potential to calibrate the SPM for applications in quantitative surface evaluations.

  9. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    Science.gov (United States)

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  10. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  11. Algebraic modeling and thermodynamic design of fan-supplied tube-fin evaporators running under frosting conditions

    International Nuclear Information System (INIS)

    Ribeiro, Rafael S.; Hermes, Christian J.L.

    2014-01-01

    In this study, the method of entropy generation minimization (i.e., design aimed at facilitating both heat, mass and fluid flows) is used to assess the evaporator design (aspect ratio and fin density) considering the thermodynamic losses due to heat and mass transfer, and viscous flow processes. A fully algebraic model was put forward to simulate the thermal-hydraulic behavior of tube-fin evaporator coils running under frosting conditions. The model predictions were validated against experimental data, showing a good agreement between calculated and measured counterparts. The optimization exercise has pointed out that high aspect ratio heat exchanger designs lead to lower entropy generation in cases of fixed cooling capacity and air flow rate constrained by the characteristic curve of the fan. - Highlights: • An algebraic model for frost accumulation on tube-fin heat exchangers was advanced. • Model predictions for cooling capacity and air flow rate were compared with experimental data, with errors within ±5% band. • Minimum entropy generation criterion was used to optimize the evaporator geometry. • Thermodynamic analysis led to slender designs for fixed cooling capacity and fan characteristics

  12. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2013-05-01

    Full Text Available This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  13. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.

    Science.gov (United States)

    Qu, Peng; Qu, Hongwei

    2013-05-02

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  14. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    Science.gov (United States)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  15. Design and fabrication of continuous-profile diffractive micro-optical elements as a beam splitter.

    Science.gov (United States)

    Feng, Di; Yan, Yingbai; Jin, Guofan; Fan, Shoushan

    2004-10-10

    An optimization algorithm that combines a rigorous electromagnetic computation model with an effective iterative method is utilized to design diffractive micro-optical elements that exhibit fast convergence and better design quality. The design example is a two-dimensional 1-to-2 beam splitter that can symmetrically generate two focal lines separated by 80 microm at the observation plane with a small angle separation of +/- 16 degrees. Experimental results are presented for an element with continuous profiles fabricated into a monocrystalline silicon substrate that has a width of 160 microm and a focal length of 140 microm at a free-space wavelength of 10.6 microm.

  16. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    International Nuclear Information System (INIS)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules

  17. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    Science.gov (United States)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover

  18. Design and Fabrication of Radiation Shielded Micro X-Ray Diffraction System

    International Nuclear Information System (INIS)

    Park, Yang Soon; Han, Sun Ho; Ha, Kyeong Yeong; Jee, Kwang Yong

    2006-12-01

    It has been observed that microstructure changes occur at the radial edge of pellet(rim) of the fuel at a high burn-up and extended fuel cycle. The thickness of a rim is some hundreds of micrometers. Despite its narrow range, a rim would affect the behaviour of nuclear fuel. To determine lattice parameter with micro-XRD at intervals as small as 30 - 50 μm in radial direction of irradiated fuel samples, a radiation shielded micro-XRD system was designed and fabricated. This report describes the concept, shielding analysis, the structural design and the fabrication of a radiation shielded glove box for micro-XRD system. This radiation shielded micro-XRD system will be used for analysis of lattice parameter change and the phase distribution at intervals as small as 30 - 50 μm in radial direction of the rim of an irradiated fuel sample and a fuel cladding

  19. Design consideration for dc SQUIDs fabricated in deep sub-micron technology

    International Nuclear Information System (INIS)

    Ketchen, M.B.

    1991-01-01

    Design rules for scaling dc SQUID junctions to optimize SQUID performance have been well known for over a decade, and verified down to the sub-micron regime. Practical SQUIDs having well coupled input coils of usable inductance have generally been fabricated at the 2-5 μm level of lithography. Other technologies, silicon in particular, are now routinely practiced at the 0.5 μm level of lithography with impressive demonstrations at the 0.1-0.25 μm level not uncommon. In this paper the implications of applying such fabrication capability to advance dc SQUID technology are explored. In particular the issues of scaling practical dc SQUIDs down to the 0.1-0.25 μm regime are examined, using as a prototype design the basic washer SQUID with a spiral input coil

  20. Design and fabrication of an AT-cut quartz phononic Lamb wave resonator

    International Nuclear Information System (INIS)

    Hung, Chia-Hao; Liu, Ting-Wei; Wu, Tsung-Tsong; Wang, Wei-Shan; Esashi, Masayoshi; Lin, Yu-Ching; Sun, Jia-Hong; Chen, Yung-Yu

    2013-01-01

    This paper presents results on the design and fabrication of an AT-cut quartz Lamb wave resonator with phononic crystal (PC) reflective gratings. The deep reactive ion etching process with a laboratory-made etcher was utilized to fabricate PC structures of the AT-cut quartz Lamb wave resonator. The finite element method was adopted to calculate the PC band structure, effective reflective distance from the PC boundary and further the resonant modes and admittance of the phononic Lamb wave resonant cavity. Through the comparison studies between the experimental and simulated results, a design process for the AT-cut quartz phononic Lamb wave resonator was proposed. It is noted that by using the phononic reflectors, the size of the Lamb wave resonator can be reduced significantly. (paper)

  1. Design and Fabrication of Radiation Shielded Micro X-Ray Diffraction System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Han, Sun Ho; Ha, Kyeong Yeong; Jee, Kwang Yong

    2006-12-15

    It has been observed that microstructure changes occur at the radial edge of pellet(rim) of the fuel at a high burn-up and extended fuel cycle. The thickness of a rim is some hundreds of micrometers. Despite its narrow range, a rim would affect the behaviour of nuclear fuel. To determine lattice parameter with micro-XRD at intervals as small as 30 - 50 {mu}m in radial direction of irradiated fuel samples, a radiation shielded micro-XRD system was designed and fabricated. This report describes the concept, shielding analysis, the structural design and the fabrication of a radiation shielded glove box for micro-XRD system. This radiation shielded micro-XRD system will be used for analysis of lattice parameter change and the phase distribution at intervals as small as 30 - 50 {mu}m in radial direction of the rim of an irradiated fuel sample and a fuel cladding.

  2. Design and fabrication of a vacuum ultraviolet monochromator using Seya-Namioka mount

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Sarma, Y.A.; Meenakshi Raja Rao, P.; Bhattacharya, S.S.

    1983-01-01

    The design and fabrication of a one meter vacuum ultraviolet monochromator in the Seya-Namioka mounting is described. The monochromator consists of a concave replica grating (1200 grooves/mm) blazed at 1500 A. The grating rotates about a vertical axis through the center of grating by means of sine drive mechanism. An EMI 6256 photomultiplier coupled with a VUV scintillator, sodium salicylate, is used to detect the radiation. (author)

  3. Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India

    International Nuclear Information System (INIS)

    Aziz, T; Chendvankar, S R; Mohanty, G B; Patil, M R; Rao, K K; Rani, Y R; Rao, Y P P; Behnamian, H; Mersi, S; Naseri, M

    2014-01-01

    This paper reports the design, fabrication and characterization of single-sided silicon microstrip sensors with integrated biasing resistors and coupling capacitors, produced for the first time in India. We have first developed a prototype sensor on a four-inch wafer. After finding suitable test procedures for characterizing these AC coupled sensors, we fine-tuned various process parameters in order to produce sensors of the desired specifications

  4. Design and fabrication of multigrid X-ray collimators. [For airborne x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Acton, L W; Joki, E G; Salmon, R J [Lockheed Missiles and Space Co., Palo Alto, Calif. (USA). Lockheed Palo Alto Research Lab.

    1976-08-01

    Multigrid X-ray collimators continue to find wide application in space research. This paper treats the principles of their design and fabrication and summarizes the experience obtained in making and flying thirteen such collimators ranging in angular resolution from 10 to 0.7 arc min FWHM. Included is a summary of a survey of scientist-users and industrial producers of collimator grids regarding grid materials, precision, plating, hole quality and results of acceptance testing.

  5. Design, fabrication, and testing of the PIACE-R1 machine

    International Nuclear Information System (INIS)

    Goto, S.; Uyama, T.; Yokota, T.; Takano, H.; Ohsaki, O.; Masuda, K.; Koyanagi, E.; Sanada, Y.

    1979-01-01

    The design, fabrication and testing of the coil and collector system for the PIACE-R1 (Plasma Injection and Compression Experiments-Race Track 1) are described in this paper. In particular, the eddy current analysis, collector insulation, and stress analysis for determining the coil configuration and arrangement are presented in detail. The purpose of the machine is to obtain thermonuclear plasmas. 5 refs

  6. The mechanical design and fabrication of a ridge-loaded waveguide for an RFQ

    International Nuclear Information System (INIS)

    Valdiviez, R.; Roybal, P.; Clark, B.; Martinez, F.; Casillas, D.; Gonzales, G.; Tafoya, J.

    1998-01-01

    A Radio Frequency Quadrupole (RFQ) accelerator with an RF power input of 2 MW and an H + beam output current of 100 mAmps at 6.7 MeV, continuous duty factor utilizes twelve nearly identical ridge-loaded waveguides. The ridge-loaded, vacuum waveguides couple the RF power to the RFQ accelerating cavity. The mechanical design and fabrication of the ridge-loaded waveguides are the topics of this paper

  7. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  8. Design and fabrication of composite blades for the Mod-1 wind turbine generator

    Science.gov (United States)

    Batesole, W. R.; Gunsallus, C. T.

    1981-01-01

    The design, tooling, fabrication, quality control, and testing phases carried out to date, as well as testing still planned are described. Differences from the 150 foot blade which were introduced for cost and manufacturing improvement purposes are discussed as well as the lightning protection system installed in the blades. Actual costs and manhours expended for Blade No. 2 are provided as a base, along with a projection of costs for the blade in production.

  9. Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2

    Directory of Open Access Journals (Sweden)

    Gabriel González

    2015-01-01

    Full Text Available In this article nickel interdigital capacitors were fabricated on top of silicon substrates. The capacitance of the interdigital capacitor was optimized by coating the electrodes with a 60 nm layer of HfO2. An analytical solution of the capacitance was compared to electromagnetic simulations using COMSOL and with experimental measurements. Results show that modeling interdigital capacitors using Finite Element Method software such as COMSOL is effective in the design and electrical characterization of these transducers.

  10. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G.

    2002-01-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  11. Design of a quality assurance system in the nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Garcia Rojas Palacios, L.

    1992-01-01

    A)For the first time a project on nuclear fuel fabrication is going to be lead in this country. For this reason the work is oriented to establish a quality assurance system for the different stages of fuel fabrication. C) The work of this thesis was developed first by means of an analysis of quality philosophies of Deming, Ishikawa, Juran and Crosby from which several important points were stracted to be used in the designed quality system. Metrology and normalization are so important for quality control that a study of them is made considering definitions, unit systems and type of errors (for Metrology) as well as standards for quality systems, qualification, destructive and non destructive tests, shipment, packing for nuclear power plants. With the standards as a basis, the working strategy for the system was reached, as well as the design of control cards and the design of documents for inspection control, personnel and its documentation and finally the diagrams for each one of the fabrication stages

  12. Design and fabrication of a MEMS chevron-type thermal actuator

    Energy Technology Data Exchange (ETDEWEB)

    Baracu, Angela, E-mail: angela.baracu@imt.ro [Laboratory of Modeling, Simulation and CAD, National Institute for R and D in Microtechnologies - IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania and University Politehnica of Bucharest (Romania); Voicu, Rodica; Müller, Raluca; Avram, Andrei [Laboratory of Modeling, Simulation and CAD, National Institute for R and D in Microtechnologies - IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Bucharest (Romania); Pustan, Marius, E-mail: marius.pustan@omt.utcluj.ro; Chiorean, Radu, E-mail: marius.pustan@omt.utcluj.ro; Birleanu, Corina, E-mail: marius.pustan@omt.utcluj.ro; Dudescu, Cristian, E-mail: marius.pustan@omt.utcluj.ro [Laboratory of Micro and Nano Systems, Technical University of Cluj-Napoca, Bd. Muncii, no. 103-105, 400641 Cluj-Napoca (Romania)

    2015-02-17

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. The design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.

  13. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    Science.gov (United States)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  14. Design and fabrication of a micro parallel mechanism system using MEMS technologies

    Science.gov (United States)

    Chin, Chi-Te

    A parallel mechanism is seen as an attractive method of fabricating a multi-degree of freedom micro-stage on a chip. The research team at Arizona State University has experience with several potential parallel mechanisms that would be scaled down to micron dimensions and fabricated by using the silicon process. The researcher developed a micro parallel mechanism that allows for planar motion having two translational motions and one rotational motion (e.g., x, y, theta). The mask design shown in Appendix B is an example of a planar parallel mechanism, however, this design would only have a few discrete positions given the nature of the fully extended or fully retracted electrostatic motor. The researcher proposes using a rotary motor (comb-drive actuator with gear chain system) coupled to a rack and pinion for finer increments of linear motion. The rotary motor can behave as a stepper motor by counting drive pulses, which is the basis for a simple open loop control system. This system was manufactured at the Central Regional MEMS Research Center (CMEMS), National Tsing-Hua University, and supported by the National Science Council, Taiwan. After the microstructures had been generated, the proceeding devices were released and an experiment study was performed to demonstrate the feasibility of the proposed micro-stage devices. In this dissertation, the micro electromechanical system (MEMS) fabrication technologies were introduced. The development of this parallel mechanism system will initially focus on development of a planar micro-stage. The design of the micro-stage will build on the parallel mechanism technology, which has been developed for manufacturing, assembly, and flight simulator applications. Parallel mechanism will give the maximum operating envelope with a minimum number of silicon levels. The ideally proposed mechanism should comprise of a user interface, a micro-stage and a non-silicon tool, which is difficult to accomplish by current MEMS technology

  15. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design

    International Nuclear Information System (INIS)

    Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R.

    2016-01-01

    N-methylol dimethyl phosphono propionamide (MDPA) is one of the most utilized fire resistant (FR) finishes for cotton fabrics, utilized as part of a formulation with trimethylol melamine (TMM) to acquire better crosslinking and enhanced FR properties. The system parameters of the finishing treatment were upgraded for better FR properties and low mechanical loss to the fabric by the response surface methodology utilizing Box-Behnken statistical designed experimental strategy. The impacts of concentration on the cotton fabric’s properties (fire resistance and mechanical properties) were assessed with the regression equations. The optimum conditions by predicting the FR reagents focusing intact mechanical properties of the fabric were additionally studied. It was found that the parameters of crosslinking agents in the FR formulation have a prime role in the general FR properties of the cotton fabrics. The R-squared estimations of the considerable number of responses were above 92%, demonstrating the level of relationship between the predicted values by the Box-Behnken frameworks and the real test results.

  16. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  17. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    Science.gov (United States)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  18. Design and fabrication of radial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Malik, T.N.; Zafar, S.; Raja, U.N.

    2013-01-01

    Presently alternate energy resources are replacing conventional energy sources to produce electrical power to minimize the usage of fossil fuels. Wind power is one of the potential alternate energy resources and is being exploited and deployed actively. The wind energy system is basically composed of two core components: wind turbine and electrical generator. This paper presents the design and fabrication of permanent magnet generator for direct drive wind turbine applications. Radial flux permanent magnet generator (RFPMG) producing three phase alternating current voltage has been designed subject to satisfying the features of low operating shaft speed, higher power density , higher current density, cost effectiveness and compact structure. RFPMG design focuses on usage of neodymium permanent magnets for excitation instead of electromagnets to minimize the excitation arrangement challenges and losses. A 300 W prototype RFPMG has been fabricated. The performance of the generator has been evaluated on specially designed wind tunnel. The generator is directly coupled with wind turbine shaft to eliminate the gearbox losses. No load and load tests show that the performance of the machine is up to the mark. The improved design parameters of power density and current density are 73.2 W/kg and 5.9 A/mm 2 respectively. The same machine output has been rectified using bridge rectifier for battery charging application. The desired output voltages are obtained at minimum shaft speed of the generator. Thus the design of generator confirms its application with small scale domestic wind turbines produci ng direct current supply. (author)

  19. Design and fabrication of an actively cooled Langmuir probe for long pulse applications

    International Nuclear Information System (INIS)

    Paterson, J.A.; Biagi, L.A.; Ehlers, K.W.; Koehler, G.W.

    1985-11-01

    The details of the mechanical design and fabrication for a Langmuir Probe for the continuous monitoring of plasma density are given. The probe was designed for use as a diagnostic tool in the development of long pulse positive ion plasma sources for use on neutral beam systems. The essential design feature of this probe is the incorporation of two electrically isolated cooling water circuits which actively cool the probe tip and probe jacket. The electrical isolation is required to prevent drain currents from the probe body disturbing the measurement of the probe tip current and thereby the plasma density measurement. The successful realization of the design requires precision components and vacuum tight ceramic to refractory metal brazes. To date this design has successfully operated in steady-state in plasma densities up to 250 mA/cm 2 and surface heat fluxes of 25 W/cm 2

  20. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    Science.gov (United States)

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  1. Design Optimization of Microalloyed Steels Using Thermodynamics Principles and Neural-Network-Based Modeling

    Science.gov (United States)

    Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh

    2018-06-01

    The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.

  2. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  3. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  4. Design, fabrication and commissioning of motorized scanning bed mechanism for shadow shield whole body counting system

    International Nuclear Information System (INIS)

    Arun, B.; Varalakshimi, S.; Manohari, M.; Mathiyarasu, R.

    2012-01-01

    A new scanning bed mechanism for shadow shield counting system is designed, fabricated and commissioned at RSD, IGCAR. The present motorized scanning bed mechanism has varying scan speeds, state of art limit sensors, smooth bed movement, touch screen based software controlled operation parameters with UPS power back-up. In view of the improved personnel safety the entire system has been designed to operate with low voltage power supply (24V). The evaluation demonstrated that the incorporation of the new motorized scanning mechanism has not affected the counting performance of the shadow shield wholebody counting system. (author)

  5. Design, fabrication and erection of steel structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety Standard for Civil Engineering Structures Important to Safety of Nuclear Facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design, fabrication and erection of steel structures important to safety

  6. Design and fabrication of microwave flat lenses using a novel dry powder dot deposition system

    International Nuclear Information System (INIS)

    Good, Brandon L; Roper, David A Jr; Simmons, Shaun; Mirotznik, Mark S

    2015-01-01

    We describe a new methodology for creating flat lenses operating in the microwave spectrum using a custom designed additive manufacturing system. This method utilizes a novel dry powder 3D printing system to achieve graded index lenses integrated within a structural composite. We also describe a new iterative dot patterning algorithm to achieve a desired graded dielectric distribution, and we compare the iterative dot patterning algorithm to other dot patterning techniques. Computational and experimental results are provided validating the design and fabrication process. (paper)

  7. Design, fabrication, and dynamic testing of a V-groove radiator mechanical development unit

    Science.gov (United States)

    Petrick, S. Walter; Bard, Steven

    1988-01-01

    This paper describes the design, fabrication, and dynamic testing of a V-groove radiator development unit. The intended goal was to survive the dynamic environment of the Mars Observer mission. The development unit was designed to achieve a temperature of 80 K with a heat load of about 80 milliwatts. An analysis was performed to predict the thermal performance of the development unit. The radiator with a mass mockup of a Gamma Ray Spectrometer detector, the most massive of the candidate Mars Observer instrument detectors (1.7 Kg), passed vibration and acoustic testing to the Mars Observer requirements in effect at that time.

  8. Thermodynamically Based Equation of State for Shock Wave Studies : Application to the Design of Experiments on Tin

    International Nuclear Information System (INIS)

    Buy, Francois; Voltz, Christophe; Llorca, Fabrice

    2006-01-01

    This work is devoted to the evaluation of complex behavior of metals under shock wave loading. It presents a methodology for the design of specific experiments performed for validation of models and the evaluation of a multiphase equation of state for tin. This material has been selected because of the numerous works completed during the past years on its equation of state. We focus on the solid diagram which presents two solid phases. A thermodynamically based equation of state is developed which gives the opportunity to search for singularities which could be activated under particular shock wave loading. In the temperature -- pressure diagram, the superimposed Hugoniot and release paths make apparent a double shock, release shock configurations. We propose the design and the VISAR results of a calibrated shock -- reshock test for investigating the validity and the efficiency of the model for predicting the thermodynamical state of tin (phases mixing, temperature...). Comparison between numerical and experimental data shows the good accuracy of the results given by the EOS

  9. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  10. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  11. Thermodynamic and economic analysis of a partially-underground tower-type boiler design for advanced double reheat power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Yang, Zhiping

    2015-01-01

    An increasing number of tower-type boilers have been selected for advanced double reheat power plants, due to the uniform flue gas profile and the smooth steam temperature increase. The tall height and long steam pipelines lengths will however, result in dramatic increases in the difficulty of construction, as well as increased power plant investment cost. Given these factors, a novel partially-underground tower-type boiler design has been proposed in this study, which has nearly half of the boiler embedded underground, thereby significantly reducing the boiler height and steam pipeline lengths. Thermodynamic and economic analyses were quantitatively conducted on a 1000 MW advanced double reheat steam cycle. Results showed that compared to the reference power plant, the power plant with the proposed tower-type boiler design could reduce the net heat rate by 18.3 kJ/kWh and could reduce the cost of electricity (COE) by $0.60/MWh. The study also investigated the effects of price fluctuations on the cost-effectiveness of the reference power plant, for both the conventional and the proposed tower-type boilers designs, and found that the double reheat power plant with the proposed tower-type boiler design would be even more competitive and price-effective when the coal price and the investment costs increase. The research of this paper may provide a promising tower-type boiler design for advanced double reheat power plants with lower construction complexity and better cost-effectiveness. - Highlights: • A partially-underground tower-type boiler in double reheat power plants is proposed. for double reheat power plants is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Better energetic efficiency and greater economic benefits are achieved. • The impacts of price fluctuations on the economic feasibility are discussed

  12. Design and fabrication of facial prostheses for cancer patient applying computer aided method and manufacturing (CADCAM)

    Science.gov (United States)

    Din, Tengku Noor Daimah Tengku; Jamayet, Nafij; Rajion, Zainul Ahmad; Luddin, Norhayati; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana

    2016-12-01

    Facial defects are either congenital or caused by trauma or cancer where most of them affect the person appearance. The emotional pressure and low self-esteem are problems commonly related to patient with facial defect. To overcome this problem, silicone prosthesis was designed to cover the defect part. This study describes the techniques in designing and fabrication for facial prosthesis applying computer aided method and manufacturing (CADCAM). The steps of fabricating the facial prosthesis were based on a patient case. The patient was diagnosed for Gorlin Gotz syndrome and came to Hospital Universiti Sains Malaysia (HUSM) for prosthesis. The 3D image of the patient was reconstructed from CT data using MIMICS software. Based on the 3D image, the intercanthal and zygomatic measurements of the patient were compared with available data in the database to find the suitable nose shape. The normal nose shape for the patient was retrieved from the nasal digital library. Mirror imaging technique was used to mirror the facial part. The final design of facial prosthesis including eye, nose and cheek was superimposed to see the result virtually. After the final design was confirmed, the mould design was created. The mould of nasal prosthesis was printed using Objet 3D printer. Silicone casting was done using the 3D print mould. The final prosthesis produced from the computer aided method was acceptable to be used for facial rehabilitation to provide better quality of life.

  13. Design and fabrication of irradiation testing capsule for research reactor materials

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu

    2012-01-01

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed

  14. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  15. Design impacts of safeguards and security requirements for a US MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Rinard, P.M.; Thomas, K.E.; Zack, N.R.; Jaeger, C.D.

    1998-01-01

    The disposition of plutonium that is no longer required for the nation's defense is being structured to mitigate risks associated with the material's availability. In the 1997 Record of Decision, the US Government endorsed a dual-track approach that could employ domestic commercial reactors to effect the disposition of a portion of the plutonium in the form of mixed oxide (MOX) reactor fuels. To support this decision, the Office of Materials Disposition requested preparation of a document that would review US requirements for safeguards and security and describe their impact on the design of a MOX fuel fabrication facility. The intended users are potential bidders for the construction and operation of the facility. The document emphasizes the relevant DOE Orders but also considers the Nuclear Regulatory Commission (NRC) requirements. Where they are significantly different, the authors have highlighted this difference and provided guidance on the impact to the facility design. Finally, the impacts of International Atomic Energy Agency (IAEA) safeguards on facility design are discussed. Security and materials control and accountability issues that influence facility design are emphasized in each area of discussion. This paper will discuss the prepared report and the issues associated with facility design for implementing practical, modern safeguards and security systems into a new MOX fuel fabrication facility

  16. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    Directory of Open Access Journals (Sweden)

    Jiawen Chen

    2018-03-01

    Full Text Available A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device.

  17. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  18. Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition

    Science.gov (United States)

    Chien Dang, Mau; Son Nguyen, Dat; Dung Dang, Thi My; Tedjini, Smail; Fribourg-Blanc, Eric

    2014-06-01

    The passive RFID tag with an added sensing function is of interest to many applications. In particular, applications where RFID tagging is already considered to be the next step, such as food items, are a specific target. This paper demonstrates a flexible RFID tag sensor fabricated using a low cost technique with an added zero-cost sensing function. It is more specifically applied to the sensing of degradable food, in particular beef meat in our demonstrated example. To reach this, the antenna is designed in such a way to be sensitive to the variation of the dielectric permittivity of the meat over time. The design of the sensing tag as well as its fabrication process are described. The fabrication involves inkjet printing of a silver nanoparticle based ink on a commercial low cost PET film to create a seed layer. It is followed by a copper electrodeposition step on top of the silver pattern to complete the tag to obtain the desired thickness and conductivity of the tag antenna. The results of the electrical tests showed that with the inkjet printing-electrodeposition combination it is possible to produce flexible electrically conductive patterns for practical RFID applications. The tag was then tested in close-to-real-world conditions and it is demonstrated that it can provide a sensing function to detect the consumption limit of the packaged beef.

  19. Design and Evaluation of Photo-Induced Biofeedback Fabric for the Enhancement in Sleeping Sense

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Chu

    2013-01-01

    Full Text Available Based on overcoming the sleeping obstacle for people, the purpose of this study is to design a photo-induced biofeedback fabric which is a kind of optical fiber fabric with the function of enhancing sleeping sense and to evaluate its effect. The fabrics with two layers including background layer and pattern layer were designed firstly. The pattern layers with 3 kinds of wavelengths of sine waves and the light controller with 3 kinds of flashing frequencies were then prepared. Guiding the light into the optical fiber, it will emit out of the optical fiber and stimulate our visual system to change the form of brain wave. Finally, EEG and sleeping scale were applied to evaluate the effect of enhancing sleeping sense. The results were shown that human’s brain wave can be changed from sober status to shallow-sleeping status and the effect of enhancing sleeping sense can be achieved for all pattern layers in frequencies of 0, 5 and 10 Hz. Furthermore, female is more significant than male and participants age from 30 to 49 are the most significant. Besides, the stronger the participant’s stress is, the more significant the sleeping sense is.

  20. Design, evaluation, and fabrication of low-cost composite blades for intermediate-size wind turbines

    Science.gov (United States)

    Weingart, O.

    1981-01-01

    Low cost approaches for production of 60 ft long glass fiber/resin composite rotor blades for the MOD-OA wind turbine were identified and evaluated. The most cost-effective configuration was selected for detailed design. Subelement and subscale specimens were fabricated for testing to confirm physical and mechanical properties of the composite blade materials, to develop and evaluate blade fabrication techniques and processes, and to confirm the structural adequacy of the root end joint. Full-scale blade tooling was constructed and a partial blade for tool and process tryout was built. Then two full scale blades were fabricated and delivered to NASA-LeRC for installation on a MOD-OA wind turbine at Clayton, New Mexico for operational testing. Each blade was 60 ft. long with 4.5 ft. chord at root end and 2575 lbs weight including metal hub adapter. The selected blade configuration was a three cell design constructed using a resin impregnated glass fiber tape winding process that allows rapid wrapping of primarily axially oriented fibers onto a tapered mandrel, with tapered wall thickness. The ring winder/transverse filament tape process combination was used for the first time on this program to produce entire rotor blade structures. This approach permitted the complete blade to be wound on stationary mandrels, an improvement which alleviated some of the tooling and process problems encountered on previous composite blade programs.

  1. Fabrication and performance analysis of a DEA cuff designed for dry-suit applications

    International Nuclear Information System (INIS)

    Ahmadi, S; Camacho Mattos, A; Barbazza, A; Soleimani, M; Boscariol, P; Menon, C

    2013-01-01

    A method for manufacturing a cylindrical dielectric elastomer actuator (DEA) is presented. The cylindrical DEA can be used in fabricating the cuff area of dry-suits where the garment is very tight and wearing the suit is difficult. When electrically actuated, the DEA expands radially and the suit can be worn more comfortably. In order to study the performance of the DEA, a customized testing setup was designed, and silicone-made cuff samples with different material stiffnesses were tested. Analytical and FEM modeling were considered to evaluate the experimental output. The results revealed that although the stiffness of the DEA material has a direct relationship with the radial constrictive pressure caused by mechanically stretching the DEA, it has a minor effect on the actuation pressure. It was also found that stacking multiple layers of the DEA to fabricate a laminated structure enabled the attainment of a desired variation of pressure required for the implementation of an electrically tunable cuff. (paper)

  2. CMOS sensors in 90 nm fabricated on high resistivity wafers: Design concept and irradiation results

    International Nuclear Information System (INIS)

    Rivetti, A.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Costa, M.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rousset, J.; Silvestrin, L.; Wyss, J.

    2013-01-01

    The LePix project aims at improving the radiation hardness and the readout speed of monolithic CMOS sensors through the use of standard CMOS technologies fabricated on high resistivity substrates. In this context, high resistivity means beyond 400Ωcm, which is at least one order of magnitude greater than the typical value (1–10Ωcm) adopted for integrated circuit production. The possibility of employing these lightly doped substrates was offered by one foundry for an otherwise standard 90 nm CMOS process. In the paper, the case for such a development is first discussed. The sensor design is then described, along with the key challenges encountered in fabricating the detecting element in a very deep submicron process. Finally, irradiation results obtained on test matrices are reported

  3. Design, fabrication and test of double-wall vacuum vessel for JT-60U

    International Nuclear Information System (INIS)

    Uchikawa, Takashi; Ioki, Kimihiro; Ninomiya, Hiromasa.

    1994-01-01

    A double-wall vacuum vessel was designed and fabricated for JT-60U (an upgraded machine of JT-60), which has a plasma current up to 6 MA and a large plasma volume (100 m 3 ). A new concept of Inconel 625 all-welded structure was adopted to the vessel, that comprises an inner plate, square tubes and an outer plate. The vacuum vessel with a multi-arc D-shaped cross section was fabricated by using hot-sizing press. The electromagnetic and structural analysis has been performed for plasma disruption loads. Dynamic responses of the vessel were measured during plasma disruptions, and the observed displacement had a good agreement with the result of FEM analysis. (author)

  4. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  5. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  6. Computational thermodynamics and genetic algorithms to design affordable γ′-strengthened nickel–iron based superalloys

    International Nuclear Information System (INIS)

    Tancret, F

    2012-01-01

    Computational thermodynamics based on the CALPHAD approach (Thermo-Calc software) are used to design creep-resistant and affordable superalloys for large-scale applications such as power plants. Cost is reduced by the introduction of iron and by avoiding the use of expensive alloying elements such as Nb, Ta, Mo, Co etc. Strengthening is ensured by the addition of W, and of Al and Ti to provoke the precipitation of γ′. However, the addition of iron reduces the maximum possible volume fraction of γ′. The latter is maximized automatically using a genetic algorithm during simulation, while keeping the alloys free of undesirable phases at high temperatures. New superalloys with 20 wt% Cr are designed, with Fe content up to 37 wt%. They should be forgeable, weldable, oxidation resistant and significantly cheaper than existing alloys with equivalent properties. (paper)

  7. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication

    Science.gov (United States)

    Bilgin, Mehmet Selim; Baytaroğlu, Ebru Nur; Erdem, Ali; Dilber, Erhan

    2016-01-01

    The aim of this review was to investigate usage of computer-aided design/computer-aided manufacture (CAD/CAM) such as milling and rapid prototyping (RP) technologies for removable denture fabrication. An electronic search was conducted in the PubMed/MEDLINE, ScienceDirect, Google Scholar, and Web of Science databases. Databases were searched from 1987 to 2014. The search was performed using a variety of keywords including CAD/CAM, complete/partial dentures, RP, rapid manufacturing, digitally designed, milled, computerized, and machined. The identified developments (in chronological order), techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication are summarized. Using a variety of keywords and aiming to find the topic, 78 publications were initially searched. For the main topic, the abstract of these 78 articles were scanned, and 52 publications were selected for reading in detail. Full-text of these articles was gained and searched in detail. Totally, 40 articles that discussed the techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication and the articles were incorporated in this review. Totally, 16 of the papers summarized in the table. Following review of all relevant publications, it can be concluded that current innovations and technological developments of CAD/CAM and RP allow the digitally planning and manufacturing of removable dentures from start to finish. As a result according to the literature review CAD/CAM techniques and supportive maxillomandibular relationship transfer devices are growing fast. In the close future, fabricating removable dentures will become medical informatics instead of needing a technical staff and procedures. However the methods have several limitations for now. PMID:27095912

  8. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Energy Technology Data Exchange (ETDEWEB)

    Balpande, Suresh S., E-mail: balpandes@rknec.edu [Ph.D.. Scholar, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India); Pande, Rajesh S. [Professor, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India)

    2016-04-13

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  9. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Science.gov (United States)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  10. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    International Nuclear Information System (INIS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-01-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  11. Design of Ag-Ge-Zn braze/solder alloys: Experimental thermodynamics and surface properties

    Directory of Open Access Journals (Sweden)

    Delsante S.

    2017-01-01

    Full Text Available The experimental investigation of the Ag-Ge-Zn phase diagram was performed by using combined microstructural and Differential Scanning Calorimeter (DSC analyses. The samples were subjected to thermal cycles by a heat-flux DSC apparatus with heating and cooling rate of 0.5 or 0.3°C/min. The microstructure of the samples, both after annealing and after DSC analysis, was studied by optical and scanning electron microscopy coupled with EDS (Energy Dispersive Spectroscopy analysis. Considering the slow heating and cooling rate adopted, the isothermal section at room temperature was established. No ternary compounds were observed. On the basis of the experimental investigations the invariant reactions were identified. Combining the thermodynamic data on the Ag-Ge, Ag-Zn and Ge-Zn liquid phases by means of Butler’s model the surface tension of Ag-Ge-Zn alloys was calculated.

  12. Design and fabrication of the prototype superconducting quadrupole for the CERN LHC project

    International Nuclear Information System (INIS)

    Baze, J.M.; Cacaut, D.; Jacquemin, J.P.; Lyraud, C.; Michez, C.; Pabot, Y.; Perot, J.; Rifflet, J.M.; Toussaint, J.C.; Vedrine, P.

    1992-01-01

    Within the framework of the LHC R and D program, CERN and CEA/Saclay have established a collaboration to carry out, amongst others, the design, building and testing of a superconducting LHC prototype quadrupole at the Saclay laboratory. The cold mass of this quadrupole is presently under construction at Saclay. The quadrupole design features a twin aperture configuration, a gradient design features a twin aperture configuration, a gradient of 250T/m, a length of 3m and a free coil aperture of 56mm. European industries participate in this project by delivering components and fabrication the tooling according to specifications prepared by Saclay. This paper gives details of the magnet design and construction. Coil winding will start in summer 1991 and the first prototype should be assembled and ready for testing by mid 1992

  13. Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

    Directory of Open Access Journals (Sweden)

    Tae-Won Kim

    2013-09-01

    Full Text Available Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.

  14. 100-kW hingeless metal wind turbine blade design, analysis and fabrication

    Science.gov (United States)

    Donham, R. E.; Schmidt, J.; Linscott, B. S.

    1975-01-01

    The design, fabrication and analysis of aluminum wind turbine rotor blades is discussed. The blades are designed to meet criteria established for a 100-kilowatt wind turbine generator operating between 8 and 60-mile-per-hour speeds at 40 revolutions per minute. The design wind speed is 18 miles per hour. Two rotor blades are used on a new facility which includes a hingeless hub and its shaft, gearbox, generator and tower. Experience shows that, for stopped rotors, safe wind speeds are strongly dependent on blade torsional and bending rigidities which the basic D spar structural blade design provides. The 0.25-inch-thick nose skin is brake/bump formed to provide the basic 'D' spar structure for the tapered, twisted blades. Adequate margins for flutter and divergence are predicted from the use of existing, correlated stopped rotor and helicopter rotor analysis programs.

  15. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    International Nuclear Information System (INIS)

    Walker Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.; Bruffey, Stephanie H.

    2015-01-01

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ?100 L/h (1.67 L/min), (2) an external temperature of ?50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  16. Design and Fabrication of a Direct Natural Convection Solar Dryer for Tapioca

    Directory of Open Access Journals (Sweden)

    Diemuodeke E. OGHENERUONA

    2011-06-01

    Full Text Available Based on preliminary investigations under controlled conditions of drying experiments, a direct natural convection solar dryer was designed and fabricated to dry tapioca in the rural area. This paper describes the design considerations followed and presents the results of MS excel computed results of the design parameters. A minimum of 7.56 m2 solar collector area is required to dry a batch of 100 kg tapioca in 20 hours (two days drying period. The initial and final moisture content considered were 79 % and 10 % wet basis, respectively. The average ambient conditions are 32ºC air temperatures and 74 % relative humidity with daily global solar radiation incident on horizontal surface of 13 MJ/m2/day. The weather conditions considered are of Warri (lat. 5°30’, long. 5°41’, Nigeria. A prototype of the dryer so designed was fabricated with minimum collector area of 1.08 m2. This prototype dryer will be used in experimental drying tests under various loading conditions.

  17. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  18. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  19. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results

    International Nuclear Information System (INIS)

    Ghosh, G.; Olson, G.B.

    2007-01-01

    An optimal integration of modern computational tools and efficient experimentation is presented for the accelerated design of Nb-based superalloys. Integrated within a systems engineering framework, we have used ab initio methods along with alloy theory tools to predict phase stability of solid solutions and intermetallics to accelerate assessment of thermodynamic and kinetic databases enabling comprehensive predictive design of multicomponent multiphase microstructures as dynamic systems. Such an approach is also applicable for the accelerated design and development of other high performance materials. Based on established principles underlying Ni-based superalloys, the central microstructural concept is a precipitation strengthened system in which coherent cubic aluminide phase(s) provide both creep strengthening and a source of Al for Al 2 O 3 passivation enabled by a Nb-based alloy matrix with required ductile-to-brittle transition temperature, atomic transport kinetics and oxygen solubility behaviors. Ultrasoft and PAW pseudopotentials, as implemented in VASP, are used to calculate total energy, density of states and bonding charge densities of aluminides with B2 and L2 1 structures relevant to this research. Characterization of prototype alloys by transmission and analytical electron microscopy demonstrates the precipitation of B2 or L2 1 aluminide in a (Nb) matrix. Employing Thermo-Calc and DICTRA software systems, thermodynamic and kinetic databases are developed for substitutional alloying elements and interstitial oxygen to enhance the diffusivity ratio of Al to O for promotion of Al 2 O 3 passivation. However, the oxidation study of a Nb-Hf-Al alloy, with enhanced solubility of Al in (Nb) than in binary Nb-Al alloys, at 1300 deg. C shows the presence of a mixed oxide layer of NbAlO 4 and HfO 2 exhibiting parabolic growth

  20. Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester

    Science.gov (United States)

    Fernandes, Egon; Martin, Blake; Rua, Isabel; Zarabi, Sid; Debéda, Hélène; Nairn, David; Wei, Lan; Salehian, Armaghan

    2018-03-01

    This paper details a power solution for smart grid applications to replace batteries by harvesting the electromagnetic energy from a current-carrying wire. A MEMS piezoelectromagnetic energy harvester has been fabricated using PZT screen-printing technology with a centrally-supported meandering geometry. The energy harvesting device employs a symmetric geometry to increase its power output by reducing the effects of the torsional modes and the resultant overall strain nodes in the system subsequently reduce the complexities for the electrode fabrication. The unit is modelled using COMSOL to determine mode shapes and frequency response functions. A 12.7 mm by 14.7 mm unit is fabricated by screen-printing 75 μm-thick PZT on a stainless steel substrate and then experimentally tested to validate the FEA results. Experimentally, the harvester is shown to produce 9 μW from a wire carrying 7 A while operating at a distance of 6.5 mm from the wire. The design of the current work results in a greater normalized power density than other MEMS based piezoelectromagnetic devices and shows great potential relative to larger devices that use bulk or thin film piezoelectrics.

  1. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    Science.gov (United States)

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  2. A Virtual Pivot Point MEMS Actuator with Externally Mounted Mirror: Design, Fabrication and Characterization

    Directory of Open Access Journals (Sweden)

    T. M. Fahim AMIN

    2014-12-01

    Full Text Available In this paper, the design, fabrication, and characterization of a virtual pivot point micro electromechanical systems (MEMS electrostatic actuator with externally mounted mirror is presented. The point of rotation of the movable arm of the actuator is distant from the physical actuator. This is a requirement for certain applications, such as an external cavity laser in Littman configuration. A maximum rotational radius of 5 mm from the virtual pivot point was achieved. A detailed analytical analysis for the displacement of the structure is presented. The dynamic characterization of the device with a finite element analysis simulation shows that the resonance frequency of the in-plane rotational mode is well separated from that of the out-of-plane bending mode, confirming high in-plane stability. The devices were fabricated on a silicon-on-insulator wafer with device layer thickness of 100 µm. Thin mirrors were fabricated by dicing a 100 µm thick silicon wafer. A resonance frequency of about 5.9 ´ 102 Hz for the maximum sized mounted mirror (1.7 mm ´ 100 µm ´ 1.0 mm was determined by optical characterization.

  3. Design and fabrication of a novel self-powered solid-state neutron detector

    Science.gov (United States)

    LiCausi, Nicholas

    There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three

  4. Design and fabrication of a large rectangular magnetic cusp plasma source for high intensity neutral beam injectors

    International Nuclear Information System (INIS)

    Biagi, L.A.; Berkner, K.H.; Ehlers, K.W.; Paterson, J.A.; Porter, J.R.

    1979-11-01

    The design and fabrication techniques for a large, rectangular magnetic bucket plasma source are described. This source is compatible with the accelerator structures for the TFTR and DIII neutral-beam systems

  5. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  6. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  8. Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM

    Directory of Open Access Journals (Sweden)

    Di Wang

    2016-07-01

    Full Text Available In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient’s body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient’s surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.

  9. Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM).

    Science.gov (United States)

    Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang

    2016-07-22

    In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient's body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient's surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.

  10. Understanding the significance variables for fabrication of fish gelatin nanoparticles by Plackett-Burman design

    Science.gov (United States)

    Subara, Deni; Jaswir, Irwandi; Alkhatib, Maan Fahmi Rashid; Noorbatcha, Ibrahim Ali

    2018-01-01

    The aim of this experiment is to screen and to understand the process variables on the fabrication of fish gelatin nanoparticles by using quality-design approach. The most influencing process variables were screened by using Plackett-Burman design. Mean particles size, size distribution, and zeta potential were found in the range 240±9.76 nm, 0.3, and -9 mV, respectively. Statistical results explained that concentration of acetone, pH of solution during precipitation step and volume of cross linker had a most significant effect on particles size of fish gelatin nanoparticles. It was found that, time and chemical consuming is lower than previous research. This study revealed the potential of quality-by design in understanding the effects of process variables on the fish gelatin nanoparticles production.

  11. PopupCAD: a tool for automated design, fabrication, and analysis of laminate devices

    Science.gov (United States)

    Aukes, Daniel M.; Wood, Robert J.

    2015-05-01

    Recent advances in laminate manufacturing techniques have driven the development of new classes of millimeter-scale sensorized medical devices, robots capable of terrestrial locomotion and sustained flight, and new techniques for sensing and actuation. Recently, the analysis of laminate micro-devices has focused more manufacturability concerns and not on mechanics. Considering the nature of such devices, we draw from existing research in composites, origami kinematics, and finite element methods in order to identify issues related to sequential assembly and self-folding prior to fabrication as well as the stiffness of composite folded systems during operation. These techniques can be useful for understanding how such devices will bend and flex under normal operating conditions, and when added to new design tools like popupCAD, will give designers another means to develop better devices throughout the design process.

  12. Design and fabrication of the vacuum vessel for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Chipley, K.K.; Frey, G.N.

    1985-01-01

    The vacuum vessel for the Advanced Toroidal Facility (ATF) is a heavily contoured and very complex formed vessel that is specifically designed to allow for maximum plasma volume in a pure stellarator arrangement. The design of the facility incorporates an internal vessel that is closely fitted to the two helical field coils following the winding law theta = 1/6phi. Metallic seals have been incorporated throughout the system to minimize impurities. The vessel has been fabricated utilizing a comprehensive set of tooling fixtures specifically designed for the task of forming 6-mm stainless steel plate to the complex shape. Computer programs were used to develop a series of ribs that essentially form an internal mold of the vessel. Plates were press-formed with multiple compound curves, fitted to the fixture, and joined with full-penetration welds. 7 refs., 8 figs

  13. Design and fabrication of Radio Frequency Quadrupole (RFQ) Accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Ahuja, R.; Kothari, A.; Safvan, C.P.; Kumar, Sugam; Ram Sankar, P.

    2013-01-01

    As part of the accelerator augmentation program at Inter-University Accelerator Centre (IUAC), a high current injector (HCI) is being developed to inject high currents of highly charged ions into the superconducting LINAC. The ion beams produced by the Electron Cyclotron Resonance (ECR) based PKDELIS ion source will be injected into a Radio Frequency Quadrupole Accelerator (RFQ). The RFQ focuses and accelerates the ion beam. For the development of the RFQ Accelerator, a prototype of nearly half length was successfully built at IUAC to test the RF, thermal and mechanical design. The prototype is designed for 30 kW power at 48.5 MHz. This paper presents the mechanical design, fabrication and assembly of the final 2.5 m long RFQ. (author)

  14. Design, Fabrication and Integration of a NaK-Cooled Circuit

    International Nuclear Information System (INIS)

    Garber, Anne; Godfroy, Thomas

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned for use with lithium. Due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped NaK circuit. (authors)

  15. Fabrication of computationally designed scaffolds by low temperature 3D printing

    International Nuclear Information System (INIS)

    Castilho, Miguel; Dias, Marta; Fernandes, Paulo; Pires, Inês; Gouveia, Barbara; Rodrigues, Jorge; Gbureck, Uwe; Groll, Jürgen; Vorndran, Elke

    2013-01-01

    The development of artificial bone substitutes that mimic the properties of bone and simultaneously promote the desired tissue regeneration is a current issue in bone tissue engineering research. An approach to create scaffolds with such characteristics is based on the combination of novel design and additive manufacturing processes. The objective of this work is to characterize the microstructural and the mechanical properties of scaffolds developed by coupling both topology optimization and a low temperature 3D printing process. The scaffold design was obtained using a topology optimization approach to maximize the permeability with constraints on the mechanical properties. This procedure was studied to be suitable for the fabrication of a cage prototype for tibial tuberosity advancement application, which is one of the most recent and promising techniques to treat cruciate ligament rupture in dogs. The microstructural and mechanical properties of the scaffolds manufactured by reacting α/β-tricalcium phosphate with diluted phosphoric acid were then assessed experimentally and the scaffolds strength reliability was determined. The results demonstrate that the low temperature 3D printing process is a reliable option to create synthetic scaffolds with tailored properties, and when coupled with topology optimization design it can be a powerful tool for the fabrication of patient-specific bone implants. (paper)

  16. Mixed logic style adder circuit designed and fabricated using SOI substrate for irradiation-hardened experiment

    Science.gov (United States)

    Yuan, Shoucai; Liu, Yamei

    2016-08-01

    This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.

  17. Design and fabrication of the active feedback control coils for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Du Shijun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)], E-mail: dsj@ipp.ac.cn; Liu Xufeng [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2008-10-15

    As the active feedback control coils are located inside vacuum vessel, a reasonable design is important not only for safe operation of the coils but also for reliable operation of EAST (Experimental Advanced Superconducting Tokamak). There are some different characteristics from other coils in the design and fabrication of the coils, such as the insulation structure bearing the high baking temperature, the insulation joint with special flexible structure and the brazing method of the large size conductor inside vacuum vessel. All joints of coils are located outside the vacuum vessel for providing more connection. The conductors of the coils are designed inside the stainless steel tube and actively water cooled to prevent overheating. The ceramic rings with fiberglass tapes are used to separate the conductors and the steel tube. This insulation structure adopted in the coils can bear the high baking temperature of the vacuum vessel and its details are given in the paper. For protecting the hermetic and insulating property of the insulation joint, the small bellows is located on insulation joints to eliminate the forces on the insulator. In the fabrication, the coils are built in sections and then assembled together to form whole coils inside the vacuum vessel. The 8 kHz frequency induction heater is used to braze the conductors for cutting short brazing time and reducing heating area. The electromagnetic loads acting on the current leaders, the electrical parameters of the coil and the coil temperature are also analyzed in this paper.

  18. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    Science.gov (United States)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  19. Design and fabrication of the active feedback control coils for EAST

    International Nuclear Information System (INIS)

    Du Shijun; Liu Xufeng

    2008-01-01

    As the active feedback control coils are located inside vacuum vessel, a reasonable design is important not only for safe operation of the coils but also for reliable operation of EAST (Experimental Advanced Superconducting Tokamak). There are some different characteristics from other coils in the design and fabrication of the coils, such as the insulation structure bearing the high baking temperature, the insulation joint with special flexible structure and the brazing method of the large size conductor inside vacuum vessel. All joints of coils are located outside the vacuum vessel for providing more connection. The conductors of the coils are designed inside the stainless steel tube and actively water cooled to prevent overheating. The ceramic rings with fiberglass tapes are used to separate the conductors and the steel tube. This insulation structure adopted in the coils can bear the high baking temperature of the vacuum vessel and its details are given in the paper. For protecting the hermetic and insulating property of the insulation joint, the small bellows is located on insulation joints to eliminate the forces on the insulator. In the fabrication, the coils are built in sections and then assembled together to form whole coils inside the vacuum vessel. The 8 kHz frequency induction heater is used to braze the conductors for cutting short brazing time and reducing heating area. The electromagnetic loads acting on the current leaders, the electrical parameters of the coil and the coil temperature are also analyzed in this paper.

  20. Design of a micro-Wankel rotary engine for MEMS fabrication

    Science.gov (United States)

    Jiang, Kyle C.; Prewett, Philip D.; Ward, M. C. L.; Tian, Y.; Yang, H.

    2001-04-01

    This paper presents the design of a micro Wankel engine for deep etching micro fabrication. The micro engine design is part of a research program in progress to develop a micro actuator to supply torque for driving micro machines. To begin with, the research work concentrates on the micro Wankel engine powered by liquid CO2. Then, a Wankel internal combustion engines will be investigated. The Wankel engine is a planetary rotation engine. It is selected because of its largely 2D structure which is suitable for lithographic processes. The engine has been simplified and redesigned to suit the fabrication processes. In particular, the fuel inlet has been moved to the top cover of the housing from the side, and the outlet is made as a groove on the housing, so that the both parts can be etched. A synchronization valve is mounted on the engine to control the supply of CO2. One of advantages of the micro engines is their high energy density compared with batteries. A research study has been conducted in comparing energy densities of commonly used fuels. It shows that the energy densities of fuels for combustion engines are 10 - 30 times higher than that of batteries. The deigns of the micro Wankel engines have been tested for verification by finite element analysis, CAD assembly, and construction of a prototype, which proves the design is valid.

  1. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    Science.gov (United States)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  2. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    International Nuclear Information System (INIS)

    Takakuwa, J.

    2011-01-01

    A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to ∼1300 C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27-inch OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July. The Neutralized Drift Compression eXperiment (NDCX-II) is for the study of high energy density physics and inertial fusion energy research utilizing a lithium ion (Li+) beam with a current of 93 mA and a pulse length of 500 ns (compressed to 1 ns at the target). The injector is one of the most complicated sections of the NDCX-II accelerator demanding significant design and fabrication resources. It needs to accommodate a relatively large ion source (10.9 cm), a high heat load (3-4 kW) and specific beam optics developed from the physics model. Some specific design challenges are noted in this paper.

  3. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    Science.gov (United States)

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-07

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  4. Design, fabrication and erection of Queen Mall Bridge; Queen mall kyo no sekkei seisaku kasetsu

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Ishii, A.; Shinohara, T. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1997-12-20

    This paper describes design, fabrication and erection of Queen Mall Bridge, which is a new landmark in Minato-Mirai Yokohama. This bridge is two-span continuous cable stayed pedestrian bridge with a roof, and has a length 72.2 m, a width 18 m and a weight about 1,050 t. This bridge connects between the Queen`s Square and the second floor of Pacifico Yokohama. Achieving harmonious impression of the newly designed bridge in this area, glass roof was employed and all-weld method was applied to the in-site jointing of main girders and main tower in addition to the essential structural design. Since all-weld method was applied to the in-site jointing, highly accurate fabrication was considered during the in-site jointing. Due to the heavy traffic of the road below the bridge, the erection time was shortened under the severe erection conditions at night by large block method. Especially, accuracy control was considered for the whole shape management. Pre-assemble of all members was conducted just near the erection site, only 500 m away from the site, to shorten the construction time. 1 ref., 5 figs.

  5. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  6. Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India

    CERN Document Server

    Aziz, T; Mohanty, G.B.; Patil, M.R.; Rao, K.K.; Rani, Y.R.; Rao, Y.P.P.; Behnamian, H.; Mersi, S.; Naseri, M.

    2014-01-01

    This paper reports the design, fabrication and characterization of single-sided silicon microstrip sensors with integrated biasing resistors and coupling capacitors, produced for the first time in India. We have first developed a prototype sensor with different width and pitch combinations on a single 4-inch wafer. After finding test procedures for characterizing these AC coupled sensors, we have chosen an optimal width-pitch combination and also fine-tuned various process parameters in order to produce sensors with the desired specifications.

  7. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    Science.gov (United States)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  8. Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery

    Science.gov (United States)

    E Munson, C., IV; Gaimard, Q.; Merghem, K.; Sundaram, S.; Rogers, D. J.; de Sanoit, J.; Voss, P. L.; Ramdane, A.; Salvestrini, J. P.; Ougazzaden, A.

    2018-01-01

    GaN is a durable, radiation hard and wide-bandgap semiconductor material, making it ideal for usage with betavoltaic batteries. This paper describes the design, fabrication and experimental testing of 1 cm2 GaN-based betavoltaic batteries (that achieve an output power of 2.23 nW) along with a full model that accurately simulates the device performance which is the highest to date (to the best of our knowledge) for GaN-based devices with a 63Ni source.

  9. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  10. Design of desalination system based on multistage flash distillation (MSF) method : MSF desalination process and thermodynamics aspect

    International Nuclear Information System (INIS)

    Sunaryo, G.R.; Sumijanto; Latifah, S.N.

    1999-01-01

    During the development of making fresh water for supplying the potable water in Jakarta and eastern Indonesia, Indonesia Atomic Energy Agency (BATAN) has been developing the application of small power reactor for dual purposes,electricity and fresh water producing. One of the most popular method, because of the cheapest maintenance, is the Multi Stage Flash Distillation (MSF) which us study on designing the miniscale of MDF, the process fundamental aspects are the scale formation, degassing dissolved gas and diminishing foam, and from the thermodynamic aspect it is known that the total amount of heat required for MSF desalination is equal to free energy differences between water in solution and pure water times the ratio of total boiling temperature and the boiling temperature elevation with boiling temperature, where the range value is 35-40 kj/kg. Since the complex aspect of irreversible the heat required become 7 times higher as 240∼280 kj/kg

  11. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.

    Science.gov (United States)

    Gregor, Aleš; Filová, Eva; Novák, Martin; Kronek, Jakub; Chlup, Hynek; Buzgo, Matěj; Blahnová, Veronika; Lukášová, Věra; Bartoš, Martin; Nečas, Alois; Hošek, Jan

    2017-01-01

    The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold

  12. Learning from the Trenches of Embodiment Design : The Designing, Prototyping, and Fabricating a Large Interactive Display

    NARCIS (Netherlands)

    Verlinden, J.C.; Saakes, D.; Luxen, R.F.

    2015-01-01

    Background The advent of ubiquitous computing requires us to reconsider all aspects of industrial design engineering – to invent, package and optimize such products, services and experiences to society. This project was devised to bridge these in a compelling and magical prototype, called the

  13. Design and fabrication of a double-sided piezoelectric transducer for harvesting vibration power

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Tsai; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Kao, Kuo-Sheng [Department of Computer and Communication, Shu-Te University, Kaohsiung, Taiwan, ROC (China); Chu, Yu-Hsien [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Cheng, Chien-Chuan, E-mail: chengccc@dlit.edu.tw [Department of Electronic Engineering, De Lin Institute of Technology, Taipei, Taiwan, ROC (China)

    2013-02-01

    This investigation examines a means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer for vibration-energy harvesting applications. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of the SUS304 substrate. The titanium and platinum layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. The scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and a highly c-axis-preferring orientation. To fabricate a transducer with a low resonant frequency, a tip-mass of 0.5 g and a vibration-area of 1 cm{sup 2} are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.31 μW/cm{sup 2} is obtained from the transducers with a load resistance of 6 MΩ. The variation of the power output of ± 0.001% is obtained after 24-hour continuous test. - Highlights: ► A double-sided piezoelectric transducer is fabricated with the ZnO thin films. ► Vibrated frequency of a double-sided transducer is designed and presented. ► A maximum output power of 3.23 μW/cm{sup 2} is obtained under turbulent vibration.

  14. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER

    Science.gov (United States)

    Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2018-04-01

    The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.

  15. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    Science.gov (United States)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  16. [Design and fabrication of the custom-made titanium condyle by selective laser melting technology].

    Science.gov (United States)

    Chen, Jianyu; Luo, Chongdai; Zhang, Chunyu; Zhang, Gong; Qiu, Weiqian; Zhang, Zhiguang

    2014-10-01

    To design and fabricate the custom-made titanium mandibular condyle by the reverse engineering technology combined with selective laser melting (SLM) technology and to explore the mechanical properties of the SLM-processed samples and the application of the custom-made condyle in the temporomandibular joint (TMJ) reconstruction. The three-dimensional model of the mandibular condyle was obtained from a series of CT databases. The custom-made condyle model was designed by the reverse engineering software. The mandibular condyle was made of titanium powder with a particle size of 20-65 µm as the basic material and the processing was carried out in an argon atmosphere by the SLM machine. The yield strength, ultimate strength, bending strength, hardness, surface morphology and roughness were tested and analyzed. The finite element analysis (FEA) was used to analyze the stress distribution. The complex geometry and the surface of the custom-made condyle can be reproduced precisely by the SLM. The mechanical results showed that the yield strength, ultimate strength, bending strength and hardness were (559±14) MPa, (659±32) MPa, (1 067±42) MPa, and (212±4)HV, respectively. The surface roughness was reduced by sandblast treatment. The custom-made titanium condyle can be fabricated by SLM technology which is time-saving and highly digitized. The mechanical properties of the SLM sample can meet the requirements of surgical implant material in the clinic. The possibility of fabricating custom-made titanium mandibular condyle combined with the FEA opens new interesting perspectives for TMJ reconstruction.

  17. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  18. Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors

    Science.gov (United States)

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith

    2017-01-01

    Abstract Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self‐supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors towards high energy storage capability. Self‐supported homogeneous and heterogeneous nanoelectrodes in the forms of one‐dimensional (1D) nanoarrays, two‐dimensional (2D) nanoarrays, and three‐dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:29051862

  19. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors.

    Science.gov (United States)

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith; Lei, Yong

    2017-10-01

    Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self-supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors towards high energy storage capability. Self-supported homogeneous and heterogeneous nanoelectrodes in the forms of one-dimensional (1D) nanoarrays, two-dimensional (2D) nanoarrays, and three-dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed.

  20. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery

    Science.gov (United States)

    De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna

    2015-01-01

    In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%. PMID:26650236

  1. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use

    Science.gov (United States)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei

    2018-06-01

    In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.

  2. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  3. Design, fabrication and actuation of a MEMS-based image stabilizer for photographic cell phone applications

    International Nuclear Information System (INIS)

    Chiou, Jin-Chern; Hung, Chen-Chun; Lin, Chun-Ying

    2010-01-01

    This work presents a MEMS-based image stabilizer applied for anti-shaking function in photographic cell phones. The proposed stabilizer is designed as a two-axis decoupling XY stage 1.4 × 1.4 × 0.1 mm 3 in size, and adequately strong to suspend an image sensor for anti-shaking photographic function. This stabilizer is fabricated by complex fabrication processes, including inductively coupled plasma (ICP) processes and flip-chip bonding technique. Based on the special designs of a hollow handle layer and a corresponding wire-bonding assisted holder, electrical signals of the suspended image sensor can be successfully sent out with 32 signal springs without incurring damage during wire-bonding packaging. The longest calculated traveling distance of the stabilizer is 25 µm which is sufficient to resolve the anti-shaking problem in a three-megapixel image sensor. Accordingly, the applied voltage for the 25 µm moving distance is 38 V. Moreover, the resonant frequency of the actuating device with the image sensor is 1.123 kHz.

  4. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery.

    Science.gov (United States)

    De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna

    2015-11-14

    In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%.

  5. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  6. Design and fabrication of a foldable 3D silicon based package for solid state lighting applications

    International Nuclear Information System (INIS)

    Sokolovskij, R; Liu, P; Van Zeijl, H W; Mimoun, B; Zhang, G Q

    2015-01-01

    Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies. (paper)

  7. Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes.

    Science.gov (United States)

    Pandey, Abhijeet P; Karande, Kiran P; Sonawane, Raju O; Deshmukh, Prashant K

    2014-03-01

    In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study. A separate study was designed to investigate the robustness of the predicted design space. The particle size, %EE and %CE of the optimized CH-NLPs were 111.3 nm, 33.4% and 35.2%, respectively. The observed responses were in accordance with the predicted response, which confirms the suitability and robustness of the design space for CH-NLP formulation. In conclusion, optimization of the selected key variables will help minimize the problems related to size, %EE and %CE that are generally encountered when scaling up processes for NLP formulations. The robustness of the design space will help minimize both intra-batch and inter-batch variations, which are quite common in the pharmaceutical industry.

  8. Design and implementation of a cost-effective microscope for fabrication and imaging

    International Nuclear Information System (INIS)

    Trout, G; Basu, S

    2009-01-01

    The use of lasers and optical systems for advanced research and demonstrative purposes has traditionally been cost-prohibitive for many researchers. In this note, we present the design and optimization of a low-cost microscopy setup capable of imaging, fabrication or photopolymerization via multiphoton excitation of a photoactivator and the study of processes such as diffusion using fluorescence recovery after photobleaching (FRAP). The setup features a continuous wave (CW) Ar-ion laser, a pulsed Nd 3+ :YAG laser, an inverted microscope with a CCD camera and appropriate optics. The setup is cost-effective and puts a once-expensive setup within reach of more researchers interested in micron- and sub-micron-scale processes. (technical design note)

  9. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    Science.gov (United States)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  10. Recent advances in design and fabrication of on-chip micro-supercapacitors

    Science.gov (United States)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  11. Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration

    International Nuclear Information System (INIS)

    Naderi, Simin Mehdizadeh; Sina, Sedigheh; Karimipoorfard, Mehrnoosh; Lotfalizadeh, Fatemeh; Moradi, Hamed; Faghihi, Reza; Entezarmahdi, Mohammad

    2016-01-01

    A multipurpose anthropomorphic neck phantom was designed and fabricated for use in medical applications. The designed neck phantom is composed of seven elliptic cylindrical slices with a semi-major axis of 14 cm and a semi-minor axis of 12.5 cm, each having the thickness of 2 cm. The thyroid gland, bony part of the neck, and the windpipe were also built inside the neck phantom. For the purpose of medical dosimetry, some holes were drilled inside the phantom to accommodate the thermoluminescence dosemeters with different shapes and dimensions. For testing the quality of images in nuclear medicine, the thyroid gland was built separately to accommodate the radioactive iodine. Finally, the nuclear medicine images were obtained by inserting 131 I in both male and female thyroid parts. (authors)

  12. Design, Fabrication and Measurement of the First Rounded Damped Detuned Accelerator Structure (RDDS1)

    International Nuclear Information System (INIS)

    Wang, Juwen

    2000-01-01

    As a joint effort in the JLC/NLC research program, the authors have developed a new type of damped detuned accelerator structure with optimized round-shaped cavities (RDDS). This paper discusses some important R and D aspects of the first structure in this series (RDDS1). The design aspects covered are the cell design with sub-MHz precision, HOM detuning, coupling and damping technique and wakefield simulation. The fabrication issues covered are ultra-precision cell machining with micron accuracy, assembly and diffusion bonding technologies to satisfactorily meet bookshelf, straightness and cell rotational alignment requirements. The measurements described are the RF properties of single cavities and complete accelerator section, as well as wakefields from the ASSET tests at SLAC. Finally, future improvements are also discussed

  13. Design and fabrication of a hybrid maglev model employing PML and SML

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.

    2017-10-01

    A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.

  14. Design and fabrication of an optimum peripheral region for low gain avalanche detectors

    International Nuclear Information System (INIS)

    Fernández-Martínez, Pablo; Flores, D.; Hidalgo, S.; Greco, V.; Merlos, A.; Pellegrini, G.; Quirion, D.

    2016-01-01

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided.

  15. Design and fabrication of radiation shielded laser ablation ICP-MS system

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Yeong Keong; Han, Sun Ho; Park, Soon Dal; Park, Yang Soon; Jee, Kwang Yong; Kim, Won Ho

    2006-09-15

    In relation to high burn up and extended fuel cycle for the fuel cycle efficiency, we need to take chemical analysis of spent nuclear fuel for the integrity of nuclear fuel at high burn up. to measure the isotopic distribution of fission product in a high burn up nuclear fuel, radiation shielded laser ablation system was designed and fabricated. By probing the sample with a laser beam, micro sampling system for the mass analyzer was successfully developed. This report describes the structural design and the function of developed radiation shielded LA system. This system will be used for the analysis of isotopic distribution from core to rim of a spent nuclear fuel prepared from the hot-cell in PIE facility and/or an irradiated fuel from research reactor.

  16. Design, fabrication, and testing of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Gully, J.H.; Driga, M.D.; Grant, B.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1977-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. All components, including dual brush actuation systems, a room-temperature 2 x 10 6 A-t pulsed copper coil, two aluminum rotors with copper slip rings, low inductance return conductors, coaxial transmission line, four fast closing (30 μsec), megamp switches, hydrostatic journal bearings, squeeze film thrust bearings and a fiberglass reinforced epoxy structure have been fabricated and assembled. The detail design of machine components is presented. Preliminary testing, including rotor spin-ups, brush actuation, switch making, and pulsed field coil tests have been concluded. A low speed, short-circuit discharge of FDX has recently been conducted. Experimental data from these tests are compared with theoretical predictions

  17. Design and fabrication of an optimum peripheral region for low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Martínez, Pablo; Flores, D., E-mail: david.flores@imb-cnm.csic.es; Hidalgo, S.; Greco, V.; Merlos, A.; Pellegrini, G.; Quirion, D.

    2016-06-11

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided.

  18. Guided-mode resonant solar cells and flat-top reflectors: Analysis, design, fabrication and characterization

    Science.gov (United States)

    Khaleque, Tanzina

    This dissertation addresses the guided-mode resonance (GMR) effect and its applications. In particular, this study presents theoretical analysis and corresponding experiments on two important GMR devices that can be broadly described as GMR-enabled thin-film solar cells and flat-top reflectors. The GMR-induced enhanced absorption of input light is observed and quantified in a fabricated nano-patterned amorphous silicon (a-Si) thin-film. Compared to a reference homogeneous thin-film of a-Si, approximately 50% integrated absorbance enhancement is achieved in the patterned structure. This result motivates the application of these resonance effects in thin-film solar cells where enhanced solar absorbance is a crucial requirement. Light trapping in thin-film solar cells through the GMR effect is theoretically explained and experimentally demonstrated. Nano-patterned solar cells with 300-nm periods in one-dimensional gratings are designed, fabricated, and characterized. Compared to a planar reference solar cell, around 35% integrated absorption enhancement is observed over the 450--750-nm wavelength range. This light-management method results in enhanced short-circuit current density of 14.8 mA/cm 2, which is a ˜40% improvement over planar solar cells. The experimental demonstration proves the potential of simple and well-designed guided-mode resonant features in thin-film solar cells. In order to complement the research on GMR thin-film solar cells, a single-step, low-cost fabrication method for generating resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. The imprinted structures of both one and two dimensional nano-grating patterns with 300 nm period are fabricated. Thin films of indium-tin-oxide and silicon are deposited over patterned substrates and the absorbance of the films is measured. Around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm

  19. Design and Thermodynamic Analysis of a Steam Ejector Refrigeration/Heat Pump System for Naval Surface Ship Applications

    Directory of Open Access Journals (Sweden)

    Cüneyt Ezgi

    2015-12-01

    Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.

  20. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  1. Design and Fabrication of a Piezoresistive Pressure Sensor for Ultra High Temperature Environment

    International Nuclear Information System (INIS)

    Zhao, L B; Zhao, Y L; Jiang, Z D

    2006-01-01

    In order to solve the pressure measurement problem in the harsh environment, a piezoresistive pressure sensor has been developed, which can be used under high temperature above 200 deg. C and is able to endure instantaneous ultra high temperature (2000deg. C, duration≤2s) impact. Based on the MEMS (Micro Electro-Mechanical System) and integrated circuit technology, the piezoresistive pressure sensor's sensitive element was fabricated and constituted by silicon substrate, a thin buried silicon dioxide layer, four p-type resistors in the measuring circuit layer by boron ion implantation and photolithography, the top SiO2 layer by oxidation, stress matching Si3N4 layer, and a Ti-Pt-Au beam lead layer for connecting p-type resistors by sputtering. In order to decrease the leak-current influence to sensor in high temperature above 200deg. C, the buried SiO2 layer with the thickness 367 nm was fabricated by the SIMOX (Separation by Implantation of Oxygen) technology, which was instead of p-n junction to isolate the upper measuring circuit layer from Si substrate. In order to endure instantaneous ultra high temperature impact, the mechanical structure with cantilever and diaphragm and transmitting beam was designed. By laser welding and high temperature packaging technology, the high temperature piezoresistive pressure sensor was fabricated with range of 120MPa. After the thermal compensation, the sensor's thermal zero drift k 0 and thermal sensitivity drift k s were easy to be less than 3x10 -4 FS/deg. C. The experimental results show that the developed piezoresistive pressure sensor has good performances under high temperature and is able to endure instantaneous ultra high temperature impact, which meets the requirements of modern industry, such as aviation, oil, engine, etc

  2. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-07-08

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  3. Planar microlens with front-face angle: design, fabrication, and characterization

    Science.gov (United States)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  4. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al; Michael, Aron; Kwok, Chee-Yee

    2016-01-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  5. Design and Fabrication of the First Commercial-Scale Liquid Phase Methanol (LPMEOH) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOHT) process uses a slurry bubble column reactor to convert synthesis gas (syngas), primarily a mixture of carbon monoxide and hydrogen, to methanol. Because of its superior heat management the process can utilize directly the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or other hydrocarbon feedstocks. The LPMEOHM Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P., a partnership between Air Products and Chemicals, Inc. and Eastman Chemical Company, to produce methanol from coal-derived syngas. Construction of the LPMEOH~ Process Demonstration Plant at Eastman's chemicals-from-coal complex in Kingsport was completed in January 1997. Following commissioning and shakedown activities, the fwst production of methanol from the facility occurred on April 2, 1997. Nameplate capacity of 260 short tons per day (TPD) was achieved on April 6, 1997, and production rates have exceeded 300 TPD of methanol at times. This report describes the design, fabrication, and installation of the Kingsport LPMEOEFM reactor, which is the first commercial-scale LPMEOEPM reaetor ever built. The vessel is 7.5 feet in diameter and 70 feet tall with design conditions of 1000 psig at 600 `F. These dimensions represent a significant scale-up from prior experience at the DOE-owned Alternative Fuels Development Unit in LaPorte, Texas, where 18-inch and 22-inch diameter reactors have been tested successfidly over thousands of hours. The biggest obstacles discovered during the scale- up, however, were encountered during fabrication of the vessel. The lessons learned during this process must be considered in tailoring the design for future sites, where the reactor dimensions may grow by yet another factor of two.

  6. Surface plasmon resonance thermodynamic and kinetic analysis as a strategic tool in drug design. Distinct ways for phosphopeptides to plug into Src- and Grb2 SH2 domains

    NARCIS (Netherlands)

    de Mol, Nico J; Dekker, Frank J; Broutin, Isabel; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2005-01-01

    Thermodynamic and kinetic studies of biomolecular interactions give insight into specificity of molecular recognition processes and advance rational drug design. Binding of phosphotyrosine (pY)-containing peptides to Src- and Grb2-SH2 domains was investigated using a surface plasmon resonance

  7. Fabrication, test and performance of very large X-ray CCDs designed for astrophysical applications

    CERN Document Server

    Soltau, H; Meidinger, N; Stoetter, D; Strüder, L; Trümper, J E; Zanthier, C V; Braeuniger, H; Briel, U; Carathanassis, D; Dennerl, K; Engelhard, S; Haberl, F; Hartmann, R; Hartner, G; Hauff, D; Hippmann, H; Holl, P; Kendziorra, E; Krause, N; Lechner, P; Pfeffermann, E; Popp, M; Reppin, C; Seitz, H; Solc, P; Stadlbauer, T; Weber, U; Weichert, U

    2000-01-01

    A 6x6 cm sup 2 large X-ray CCD has been developed and fabricated at the Semiconductor Laboratory of the Max-Planck-Institut fuer Extraterrestrische Physik. The CCD has been designed for the focal plane cameras of two satellite missions. The concept is a fully depleted pn-CCD which is sensitive over the whole wafer thickness of about 300 mu m. It has been especially developed for X-ray detection delivering a high quantum efficiency over the energy range between 0.2 and 15 keV. A production yield of 27% was achieved. Seven good (almost) defect-free wafers were produced within the performance requirements, i.e. for temperatures below 180 K they show a homogeneous noise level smaller than 5 e sup - , a uniform spectral response with an energy resolution of 130 eV for Mn-K subalpha and a reduction of the sensitive area due to defects by less than 0.3%. Three CCDs have now been integrated in the flight cameras. The presentation comprises special aspects related with the fabrication of very large CCDs, a summary of ...

  8. Design and fabrication of capacitive interdigitated electrodes for smart gas sensors

    KAUST Repository

    Omran, Hesham

    2016-09-05

    In this paper, we study the design parameters of capacitive interdigitated electrodes (IDEs) and the effect of these parameters on the sensitivity of the IDEs when employed as a capacitive gas sensor. Finite element simulations using COMSOL Multiphysics were carried out to evaluate the sensitivity of the capacitive sensor. Simulations show that for permittivity-based sensing, the optimum thickness of the sensing film is slightly more than half the wavelength of the IDEs structure. On the other hand, sensing films that are thinner than half wavelength should be used if the required sensing mechanism is based on structural swelling. Increasing the IDEs metal thickness can increase the sensitivity by increasing the sidewall electric field, but this is only true if the sensing film is thick enough to completely fill the spacing between the electrodes. A simple and reliable IDEs structure and fabrication process are proposed. Physical dry etching provides good yield and fine resolution compared to liftoff technique. Fabricated and packaged prototype sensors are presented. © 2015 IEEE.

  9. Design and fabrication of resonator-quantum well infrared photodetector for SF6 gas sensor application

    Science.gov (United States)

    Sun, Jason; Choi, Kwong-Kit; DeCuir, Eric; Olver, Kimberley; Fu, Richard

    2017-07-01

    The infrared absorption of SF6 gas is narrowband and peaks at 10.6 μm. This narrowband absorption posts a stringent requirement on the corresponding sensors as they need to collect enough signal from this limited spectral bandwidth to maintain a high sensitivity. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency for more efficient signal collection. Since the resonant approach is applicable to narrowband as well as broadband, it is particularly suitable for this application. We designed and fabricated R-QWIPs for SF6 gas detection. To achieve the expected performance, the detector geometry must be produced according to precise specifications. In particular, the height of the diffractive elements and the thickness of the active resonator must be uniform, and accurately realized to within 0.05 μm. Additionally, the substrates of the detectors must be completely removed to prevent the escape of unabsorbed light in the detectors. To achieve these specifications, two optimized inductively coupled plasma etching processes were developed. Due to submicron detector feature sizes and overlay tolerance, we used an advanced semiconductor material lithography stepper instead of a contact mask aligner to pattern wafers. Using these etching techniques and tool, we have fabricated focal plane arrays with 30-μm pixel pitch and 320×256 format. The initial test revealed promising results.

  10. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes

    International Nuclear Information System (INIS)

    Gao, Dan; Wang, Weibiao; Liang, Zhongzhu; Liang, Jingqiu; Qin, Yuxin; Lv, Jinguang

    2016-01-01

    In this study, we design micro, flexible light-emitting diode (LED) array devices. Using theoretical calculations and finite element simulations, we analyze the deformation of the conventional single electrode bar. Through structure optimization, we obtain a three-dimensional (3D), chain-shaped electrode structure, which has a greater bending degree. The optimized electrodes not only have a bigger bend but can also be made to spin. When the supporting body is made of polydimethylsiloxane (PDMS), the maximum bending degree of the micro, flexible LED arrays (4  ×  1 arrays) was approximately 230 µ m; this was obtained using the finite element method. The device (4  ×  1 arrays) can stretch to 15%. This paper describes the fabrication of micro, flexible LED arrays using microelectromechancial (MEMS) technology combined with electroplating technology. Specifically, the isolated grooves are made by dry etching which can isolate and protect the light-emitting units. A combination of MEMS technology and wet etching is used to fabricate the large size spacing. (paper)

  11. Design and fabrication of a continuously tuned capacitor by microfluidic actuation

    Science.gov (United States)

    Habbachi, Nizar; Boussetta, Hatem; Boukabache, Ali; Adel Kallala, Mohamed; Pons, Patrick; Besbes, Kamel

    2018-03-01

    This paper presents the design and fabrication of a continuously tunable RF MEMS capacitor using micro fluidics as a tuning parameter. The impedance variation principle is based on the modification of the capacitor gap permittivity produced by the presence of deionized (DI) water and its displacement in a channel inserted between electrodes. In addition, the electric field distribution changes in an equiponderant way according to the DI water positions in the channel. This change modifies the capacitive coupling, the stored energy and, consequently, the self-resonant frequency. The fabrication process is based on two parts: metallic paths having a spiral form, and obtained by electroplating a 7 µm thick gold layer to constitute electrodes; and fluidic channels, realized by super imposing two SU-8 films. The measurements show a nonlinear variation of the capacitor value according to the water positions. The tuning range is very large, reaching to 4650% for capacitance, and 335% for resonant frequency. However, the quality factor reaches Q max  =  79 at 550 MHz if the capacitor is empty and decreases with the fluid displacement to Q min  =  3.13.

  12. Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack

    Science.gov (United States)

    Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed

    2017-12-01

    In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.

  13. DESIGN, FABRICATION AND TEST OF THE REACT AND WIND, NB(3)SN, LDX FLOATING COIL CONDUCTOR

    International Nuclear Information System (INIS)

    SMITH, B.A.; MICHAEL, P.C.; MINERVINI, J.V.; TAKAYASU, M.; SCHULTZ, J.H.; GREGORY, E.; PYON, T.; SAMPSON, W.B.; GHOSH, A.; SCANLAN, R.

    2000-01-01

    The Levitated Dipole Experiment (LDX) is a novel approach for studying magnetic confinement of a fusion plasma. In this approach, a superconducting ring coil is magnetically levitated for up to 8 hours a day in the center of a 5 meter diameter vacuum vessel. The levitated coil, with on-board helium supply, is called the gloating Coil (F-Coil). Although the maximum field at the coil is only 5.3 tesla, a react-and-wind Nb 3 Sn conductor was selected because the relatively high critical temperature will enable the coil to remain levitated while it warms from 5 K to 10 K. Since pre-reacted Nb 3 Sn tape is no longer commercially available, a composite conductor was designed that contains an 18 strand Nb 3 Sn Rutherford cable. The cable was reacted and then soldered into a structural copper channel that completes the conductor and also provides quench protection. The strain state of the cable was continuously controlled during fabrication steps such as: soldering into the copper channel, spooling, and coil winding, to prevent degradation of the critical current. Measurements of strand and cable critical currents are reported, as well as estimates of the effect of fabrication, winding and operating strains on critical current

  14. Design and fabrication of conductive polyaniline transducers via computer controlled direct ink writing

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2017-04-01

    The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.

  15. An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2017-01-01

    Full Text Available Current surgical treatments for meniscal tears suffer from subsequent degeneration of knee joints, limited donor organs and inconsistent post-treatment results. Three clinical scaffolds (Menaflex CMI, Actifit® scaffold and NUsurface® Meniscus Implant are available on the market, but additional data are needed to properly evaluate their safety and effectiveness. Thus, many scaffold-based research activities have been done to develop new materials, structures and fabrication technologies to mimic native meniscus for cell attachment and subsequent tissue development, and restore functionalities of injured meniscus for long-term effects. This study begins with a synopsis of relevant structural features of meniscus and goes on to describe the critical considerations. Promising advances made in the field of meniscal scaffolding technology, in terms of biocompatible materials, fabrication methods, structure design and their impact on mechanical and biological properties are discussed in detail. Among all the scaffolding technologies, additive manufacturing (AM is very promising because of its ability to precisely control fiber diameter, orientation, and pore network micro-architecture to mimic the native meniscus microenvironment.

  16. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    Science.gov (United States)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  17. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  18. Design, fabrication, and testing of a five megajoule homopolar motor-generator

    International Nuclear Information System (INIS)

    Weldon, W.F.; Driga, M.D.; Woodson, W.H.; Rylander, H.G.

    1976-01-01

    The current and future generations of controlled thermonuclear fusion experiments require large amounts of pulsed energy for heating and confinement of plasma. Kinetic energy storage with direct conversion to electrical power (i.e., homopolar machines) seems to be the most economically attractive solution for meeting these requirements. The University of Texas at Austin has a program intended to develop a design technology for homopolar machines to meet a broad spectrum of performance requirements in terms of stored energy and discharge times. The Energy Storage Group at the University of Texas at Austin has in the past ten months designed, fabricated, assembled and begun a thorough testing program on a second generation homopolar machine with a storage capacity of five megajoules. This machine, using room temperature field coils, solid electrical brushes, and hydrostatic bearings has been designed to deliver 42 volt pulses at current levels in excess of 150,000 amperes. The machine has been designed as a laboratory device with extremely stiff bearings, variable brush area as well as variable brush contact force, variable field strength for pulse shaping, and minicomputer controlled data acquisition, real time signature analysis and on line experiment control. A continuing program studying discharge characteristics, brush and rotor dynamics, machine losses, and system efficiencies is already underway and is currently funded through June, 1975

  19. Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

    Science.gov (United States)

    Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.

    2017-01-01

    Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.

  20. Thermodynamic model of a containment with pressure suppression pool for parametric studies to support the conceptual design

    International Nuclear Information System (INIS)

    Mueller, Pablo

    2004-01-01

    The aim of this work was to develop a model to simulate the evolution of the thermodynamic variables in a nuclear reactor containment with pressure suppression pool under accidental transients.We wanted a program able to give fast results, to facilitate the physical interpretation of the phenomena involved, and to make parametric studies.We did not pretend to get a precise result of a particular case.The program was made to be used as a design tool for the containment and to solve the interactions with the primary cooling system and the other security systems of the reactor, on a conceptual design context.The model consists on energy and mass balances on control volumes with liquid water, steam and a non-condensable gas like air.The dynamics of the system is shown with a base case during a loss of coolant accident.Sensibility and effects of varying some important parameters like volumes and heat and mass transfer coefficients are studied.Finally the results for the CAREM-25 reactor are compared with the codes CORAN, MELCOR 1.8.4 and CONTAIN 2.0 [es

  1. Phase equilibria for mixtures containing very many components. development and application of continuous thermodynamics for chemical process design

    International Nuclear Information System (INIS)

    Cotterman, R.L.; Bender, R.; Prausnitz, J.M.

    1984-01-01

    For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time

  2. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  3. Design and fabrication of a unique electromechanical machine for long-term fatigue testing

    International Nuclear Information System (INIS)

    Boling, K.W.

    1984-12-01

    An electromechanical machine has been designed and fabricated for performing long-term fatigue tests under conditions that simulate those in modern plants. The machine is now commercially available. Its advantages over current electrohydraulic machines are lower initial cost, minimum maintenance requirements, and greater reliability especially when performing long tests. The machine operates in closed-loop fashion by utilizing continuous feedback signals from the specimen extensometer or load cell, it is programmable for testing in strain or load control. The maximum ram rate is 0.056 mm/s (0.134 in./min), maximum ram travel is 102 mm (4 in.) and load capacity is +-44 (+-10 kips). Induction heating controls speciment temperatures to 1000 0 C

  4. PVDF core-free actuator for Braille displays: design, fabrication process, and testing

    Science.gov (United States)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.

    2011-04-01

    Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.

  5. Design and fabrication of an apparatus to study stress corrosion cracking

    International Nuclear Information System (INIS)

    Buscarlet, Carol

    1977-01-01

    In this research thesis, the author first gives a large overview of tests methods of stress corrosion cracking: definition and generalities, stress corrosion cracking in the laboratory (test methods with imposed deformation, load or strain rate, theories of hydrogen embrittlement, of adsorption, of film breaking, and electrochemical theories), stress corrosion cracking in alkaline environment (in light water reactors, of austenitic stainless steels), and conventional tests on polycrystals and monocrystals of stainless steels in sodium hydroxide. The next parts address the core of this research, i.e. the design of an autoclave containing a tensile apparatus, the fabrication of this apparatus, the stress application device, the sample environment, pressurization, control and command, preliminary tests in a melt salt, and the first cracking tests [fr

  6. Design and fabrication of three-dimensional polymer mode multiplexer based on asymmetric waveguide couplers

    Science.gov (United States)

    He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda

    2018-05-01

    A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.

  7. Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp

    Science.gov (United States)

    Zhou, Yi; Li, Gongping

    2018-05-01

    Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.

  8. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  9. Design and Fabrication of the Superconducting Bussystem for the Stellarator W7-X

    International Nuclear Information System (INIS)

    Sauer, M.; Giesen, B.; Charl, A.

    2006-01-01

    In the framework of cooperation with the Max-Planck-Institute for plasma physics (IPP) essential work packages of the superconducting stellarator Wendelstein 7-X (which is presently under construction at Greifswald, Germany) have been taken over by the Forschungszentrum Juelich (FZJ). One of these packages is the design, construction, qualification, manufacturing and assembly of the superconducting three-dimensional bussystem and its appropriate supports. An overall concept of the project was elaborated with the goal to optimize manufacturing steps, to simplify the system assembly and to provide easy transportation. In order to compensate the magnetic stray fields generated by the bus currents and to facilitate the bus assembly, a suitable bus topology was developed. For checking the geometry of the bent buses and to examine the buses assembly a 1:1 model of one W7-X section (72 o ) has been built. An insulation set up was developed and different samples have been fabricated. For qualification the insulation was examined as follows: - high voltage insulation checks including measurements of the Paschen firmness, - thermal tests and mechanical bending under cryo-temperatures at 77 K, - leakage and high pressure tests to simulate quench situations and - vacuum compatibilities of the materials and methods used. The design will be shown, calculation of magnetic fields and forces are presented. For series production of the 121 buses a production line has been installed. The fabrication process and its main appropriate steps will be presented: 1. Straightening of the superconductor on a rolling machine 2. Rounding on a special turning lathe, required to facilitate 3-dimensional bending 3. Bending on a 3-D-bending machine 4. Checking of geometry on the 1:1 model 5. Electrical insulation and conductive lacquer coat applied by hand 6. Vacuum and high voltage test at several pressure steps (Paschen test) inside bellow tube 7. Transportation in bundle of 6 buses to Greifswald

  10. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    Science.gov (United States)

    Held, J.; Gaspar, J.; Ruther, P.; Hagner, M.; Cismak, A.; Heilmann, A.; Paul, O.

    2010-02-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  11. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    International Nuclear Information System (INIS)

    Held, J; Gaspar, J; Ruther, P; Paul, O; Hagner, M; Cismak, A; Heilmann, A

    2010-01-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  12. Helium-cooled pebble bed test blanket module alternative design and fabrication routes

    International Nuclear Information System (INIS)

    Lux, M.

    2007-01-01

    According to first results of the recently started European DEMO study, a new blanket integration philosophy was developed applying so-called multi-module segments. These consist of a number of blanket modules flexibly mounted onto a common vertical manifold structure that can be used for replacing all modules in one segment at one time through vertical remote-handling ports. This principle gives new freedom in the design choices applied to the blanket modules itself. Based on the alternative design options considered for DEMO also the ITER test blanket module was newly analyzed. As a result of these activities it was decided to keep the major principles of the reference design like stiffening grid, breeder unit concept and perpendicular arrangement of pebble beds related to the First Wall because of the very positive results of thermo-mechanical and neutronics studies. The present paper gives an overview on possible further design optimization and alternative fabrication routes. One of the most significant improvements in terms of the hydraulic performance of the Helium cooled reactor can be reached with a new First Wall concept. That concept is based on an internal heat transfer enhancement technique and allows drastically reducing the flow velocity in the FW cooling channels. Small ribs perpendicular to the flow direction (transverse-rib roughness) are arranged on the inner surface of the First Wall cooling channels at the plasma side. In the breeder units cooling plates which are mostly parallel but bent into U-shape at the plasma-side are considered. In this design all flow channels are parallel and straight with the flow entering on one side of the parallel plate sections and exiting on the other side. The ceramic pebble beds are embedded between two pairs of such type of cooling plates. Different modifications could possibly be combined, whereby the most relevant discussed in this paper are (i) rib-cooled First Wall channels, (ii) U-bent cooling plates for

  13. Fabrication of lipidic nanocarriers of loratadine for facilitated intestinal permeation using multivariate design approach.

    Science.gov (United States)

    Verma, Samridhi; Singh, Sandeep Kumar; Verma, Priya Ranjan Prasad

    2016-01-01

    In this investigation, multivariate design approach was employed to develop self-nanoemulsifying drug delivery system (SNEDDS) of loratadine and to exploit its potential for intestinal permeability. Drug solubility was determined in various vehicles and existence of self-nanoemulsifying region was evaluated by phase diagram studies. The influence of formulation variables X1 (Capmul MCM C8) and X2 (Solutol HS15) on SNEDDS was assessed for mean globule sizes in different media (Y1-Y3), emulsification time (Y4) and drug-release parameters (Y5-Y6), to improve quality attributes of SNEDDS. Significant models were generated, statistically analyzed by analysis of variance and validated using the residual and leverage plots. The interaction, contour and response plots explicitly demonstrated the influence of one factor on the other and displayed trend of factor-effect on responses. The pH-independent optimized formulation was obtained with appreciable global desirability (0.9266). The strenuous act of determining emulsification time is innovatively replaced by the use of oil-soluble dye to produce visibly distinct globules that otherwise may be deceiving. TEM images displayed non-aggregated state of spherical globules (size < 25 nm) and also revealed the structural transitions occurring during emulsification. Optimized formulation exhibited non-Newtonian flow justified by the model-fit and also presented the stability to dilution effects and thermodynamic stress testing. The ex vivo permeation study using confocal laser scanning microscopy indicate strong potential of rhodamine 123-loaded loratadine-SNEDDS to inhibit P-gp efflux and facilitate intestinal permeation. To conclude, the effectiveness of design yields a stable optimized SNEDDS with enhanced permeation potential, which is expected to improve oral bioavailability of loratadine.

  14. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    Science.gov (United States)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  15. Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing.

    Science.gov (United States)

    Troia, Benedetto; Khokhar, Ali Z; Nedeljkovic, Milos; Reynolds, Scott A; Hu, Youfang; Mashanovich, Goran Z; Passaro, Vittorio M N

    2015-06-10

    In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 μm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved.

  16. Small Displacement, Long Life On-Orbit Compressor Design and Fabrication

    Science.gov (United States)

    Gerlach, C. R.; Schroeder, E. C.; Deffenbaugh, D. D.; Masetta, J. P.

    1989-01-01

    The focus is the generation of technology and fabrication of prototype hardware applicable to seven Space Station compressor system applications. The compressors are of the single acting reciprocating piston type and, in general, may be termed miniature in size compared with normal commercially available equipment. The initial technology development is focused on improved valve designs, and the control of pulsations and heating effects in order to increase compressor efficiency and reduce cycle temperatures, thus permitting significantly increased stage pressure ratios. The initial test compressor was successfully operated at pressure ratios of up to 50:1, and this significant extension of allowable pressure ratio will result in a reduction of the number of required stages and, hence, total hardware thereby reducing system weight and volume. These experiments have also identified the need to employ low shaft speeds, on the order of 250 to 500 rpm, to enhance heat transfer and increase life. The prototype compressor currently being designed, is to be driven by a low-speed brushless dc motor sealed in a case common to the compressor drive mechanism case. The compressor and motor case will communicate with stage suction pressure so that any minor gas leakage past the piston rings will be returned to the suction. Emphasis in this prototype design is being placed on simplicity, durability, commonality of components, and high efficiency.

  17. Quality control in the design, fabrication and operation of the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    2006-01-01

    The ITER magnets are a complex system involving interfaces between many advanced technologies (superconductors, forging/welding/machining of massive structures, cryogenics, composites and moulding, high voltage electrical), yet at the same time form part of the ITER 'basic machine' which is required to operate at the design parameters, broadly failure free, for the design life of the tokamak. This imposes special quality control problems for the ITER project integration by the ITER International Team (IT) through the design, fabrication and operation. The magnets are not a test bed for new technology but in spite of this must use it, successfully. There is little previous experience of such a system but full functionality is required from the start, with limited opportunity for adjustment. And, finally, costs and schedule must be contained. The procurement strategy for the machine, with magnet components being supplied 'in kind', requires particular attention to the specifications, scheduling and quality control (QC). Special issues here are the testing requirements on magnet components, especially before final installation but also at critical intermediate stages. Unnecessary or ineffective quality control procedures cause delay and high costs, and divert attention from critical items. The main points of the magnet QC programme are summarised, including the use of codes and standards, qualification, manufacturing quality assurance, commissioning and in-service inspection

  18. Design, fabrication and testing of a prototype stressed-shell fuel isolation container

    International Nuclear Information System (INIS)

    Crosthwaite, J.L.; Barrie, J.N.; Nuttall, K.

    1982-07-01

    Atomic Energy of Canada Limited is conducting and coordinating research into the development of engineered barriers for the disposal of unreprocessed irradiated fuel within a deep, stable geologic vault. In one approach, a containment shell of corrosion-resistant metal is proposed as the principal barrier to radionuclide release, giving a high probability of containment for at least 300 years, thus ensuring isolation of nearly all fission products for their hazardous lives. The simplest concept is the 'stressed-shell' container, designed with sufficient shell thickness to withstand the hydrostatic pressure within a 1000-m deep disposal vault postulated to have flooded with groundwater. This report describes the design, fabrication, analysis and hydrostatic testing of a full-scale stressed-shell prototype. The report concludes that the deformation and collapse performance of stressed-shell designs, based on short-term mechanical properties be modelled adequately by BOSOR 5, a commercially available stress-strain computer program. If the stressed-shell concept is retained as a viable fuel isolation concept, future analyses should include an assessment of the role of material creep on long-term container performance

  19. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  20. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector

    International Nuclear Information System (INIS)

    Ceylan, İlhan; Ergun, Alper

    2013-01-01

    Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C

  1. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  2. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  3. A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method

    Science.gov (United States)

    Chakraborty, Shankar; Chatterjee, Prasenjit

    2017-12-01

    Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.

  4. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  5. Guided-mode resonant filters and reflectors: Principles, design, and fabrication

    Science.gov (United States)

    Niraula, Manoj

    In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both

  6. Thermodynamic and Structure Guided Design of Statin Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Sarver, Ronald W.; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D.; Caspers, Nicole L.; Dunbar, James B.; Harris, Melissa S.; Hutchings, Richard H.; Kennedy, Robert M.; Larsen, Scott D.; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A.; Bainbridge, Graeme (Pfizer)

    2008-10-02

    Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2--7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC{sub 50} = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a {Delta}H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.

  7. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    Science.gov (United States)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  8. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design.

    Science.gov (United States)

    Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene

    2004-02-13

    The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.

  9. Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Stratos Galanopoulos

    2014-08-01

    Full Text Available We report on the design, modeling and fabrication by multi-photon polymerization of a complex medical fluidic device. The physical dimensions of the built micro-valve prototype are compared to those of its computer-designed model. Important fabrication issues such as achieving high dimensional resolution and ability to control distortion due to shrinkage are presented and discussed. The operational performance of both multi-photon and CAD-created models under steady blood flow conditions was evaluated and compared through computational fluid dynamics analysis.

  10. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Liao, Fang-Yi; Chen, Jian-Hong

    2013-01-01

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni 3 P at higher temperature. The resistivity of Ni–P films was tailored between 10 −5 and 10 −7 Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni 3 P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10 −5 to 10 −7 Ω m by plating and annealing

  11. Design, fabrication, and characterization of electroless Ni–P alloy films for micro heating devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bernard Haochih, E-mail: hcliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan (China); Liao, Fang-Yi; Chen, Jian-Hong [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan (China)

    2013-06-30

    In this work electroless nickel–phosphorous coatings were used as the micro heaters for scanning thermal microscopy. The deposition of Ni–P alloys not only simplified the microelectromechanical system fabrication steps but also provided flexibility in the tuning of the resistance of the heating elements. Ni–P films were plated on patterned silicon substrates and silicon with a silicon nitride film. The pre-deposition reactive ion etch (RIE) treatment caused a change in surface roughness that enhanced the adhesion of Ni–P coatings. Optimization of RIE parameters and pH values could achieve selective deposition of Ni–P, thus helped the lift-off of a serpentine circuit pattern. The chemical composition and microstructure of Ni–P films affect the electrical properties of micro heaters. Energy-dispersive X-ray spectroscopy identified the Ni–P composition and confirmed its insignificant level of oxidation. The high-temperature X-ray diffraction indicated that the as-deposited film was crystalline Ni, which later transformed into Ni{sub 3}P at higher temperature. The resistivity of Ni–P films was tailored between 10{sup −5} and 10{sup −7} Ω m via a post-deposition annealing, which also obtained a stable temperature coefficient of resistance. Consequently, the performance of micro heaters could be designed with a high degree of flexibility. - Highlights: • We developed a process to fabricate micro heater by Ni–P electroless plating. • Reactive ion etch caused oscillating surface roughness and affected Ni–P adhesion. • Ni{sub 3}P phase precipitates during annealing and reduces resistivity of Ni–P alloys. • Resistivity of Ni–P is tunable from 10{sup −5} to 10{sup −7} Ω m by plating and annealing.

  12. Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

    Science.gov (United States)

    Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John

    2017-06-01

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

  13. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  14. THE DESIGN, FABRICATION AND PRELIMINARY TESTING OF AN INDIGENOUS SINGLE SCREW EXTRUDER

    Directory of Open Access Journals (Sweden)

    FOLASAYO T. FAYOSE

    2017-10-01

    Full Text Available Developing countries including Nigeria have become dumping grounds of unserviceable and broken down imported machineries because of poor adaptation. Detailed study and design of machines to suit local conditions will prevent poor adaptation of imported machines and high initial costs. In this study, a single screw starch extruder was designed, fabricated and tested using locally available materials. The extruder is the dry type and it has 27.12 kg/s capacity, a compression ratio of 4.5: 1 and is powered by a 5.5 kW electric motor. It consists of a hopper, feeding screw, extruder screw rotating in a barrel and variable die, all made of stainless steel. A unit of the machine costs N 470, 390.00.00 as at April 2015. When used to process cassava flour, a maximum temperature of 114°C was attained through viscous dissipation, up to an actual screw speed of 98.96 rpm (1.65 Hz and extruder efficiency of 64%. Barrel temperature varied directly with extrusion time in a polynomial trend while actual extruder screw speed and efficiency varied inversely with extrusion time and it is best fitted with a polynomial trend.

  15. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  16. Mechanical design, fabrication, and test of biomimetic fish robot using LIPCA as artificial muscle

    Science.gov (United States)

    Wiguna, T.; Syaifuddin, M.; Park, Hoon C.; Heo, S.

    2006-03-01

    This paper presents a mechanical design, fabrication and test of biomimetic fish robot using the Lightweight Piezocomposite Curved Actuator (LIPCA). We have designed a mechanism for converting actuation of the LIPCA into caudal fin movement. This linkage mechanism consists of rack-pinion system and four-bar linkage. We also have tested four types of caudal fin in order to examine effect of different shape of caudal fin on thrust generation by tail beat. Subsequently, based on the caudal fin test, four caudal fins which resemble fish caudal fin shapes of ostraciiform, subcarangiform, carangiform and thunniform, respectively, are attached to the posterior part of the robotic fish. The swimming test using 300 V pp input with 1 Hz to 1.5 Hz frequency was conducted to investigate effect of changing tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. The maximum swimming speed was reached when the device was operated at its natural swimming frequency. At the natural swimming frequency 1 Hz, maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for ostraciiform-, subcarangiform-, carangiform- and thunniform-like caudal fins, respectively. Strouhal numbers, which are a measure of thrust efficiency, were calculated in order to examine thrust performance of the present biomimetic fish robot. We also approximated the net forward force of the robotic fish using momentum conservation principle.

  17. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  18. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production.

    Directory of Open Access Journals (Sweden)

    Ashley R Johnson

    Full Text Available Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing ("3D printing" technique called Continuous Liquid Interface Production (CLIP to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing. This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.

  19. Design, Fabrication and Installation of the Charcoal Filter Housing in RIPF

    International Nuclear Information System (INIS)

    Kim, Min Jin; Lim, I. C.; Bang, H. S.

    2008-05-01

    In the Hot Cell Bank 3 of the Radioisotope Production Facility, production and dispense of I-131 solution and capsule that are used for the diagnosis and treatment of thyroid cancer are made. The original charcoal filter housings installed in 1994 and were utilized until the leakage of a very small amount of radio-iodine was found due to the erroneous installation of the charcoal filter in the filter housing. Thus the production of I-131 was discontinued until the repair and performance testing of the filter housing and the inspection by the regulatory body were finished. Although the production of I-131 was resumed, there was a desire for installing the brand-new charcoal filter housing which has an intrinsically safe design and no possibility of leakage. This report describes the design, fabrication and installation of brand-new charcoal filter housing. And also were described the dismantlement of the old housings, the assessment of the structural integrity of the shielding concrete wall and the installation of the shielding doors

  20. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hun

    1996-02-15

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10{sup -7} m {center_dot} rad and 7.87 x 10{sup -9}A {center_dot} V{sup -3/2}, respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics.

  1. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    International Nuclear Information System (INIS)

    Kim, Su Hun

    1996-02-01

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10 -7 m · rad and 7.87 x 10 -9 A · V -3/2 , respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics

  2. Design, Fabrication and Characterization of an In Silico Cell Physiology lab for Bio Sensing Applications

    International Nuclear Information System (INIS)

    Haque, A ul; Rokkam, M; De Carlo, A R; Wereley, S T; Wells, H W; McLamb, W T; Roux, S J; Irazoqui, P P; Porterfield, D M

    2006-01-01

    In this paper, we report the design, fabrication and characterization of an In Silico cell physiology biochip for measuring Ca 2+ ion concentrations and currents around single cells. This device has been designed around specific science objectives of measuring real time multidimensional calcium flux patterns around sixteen Ceratopteris richardii fern spores in microgravity flight experiments and ground studies. The sixteen microfluidic cell holding pores are 150 by 150 μm each and have 4 Ag/AgCl electrodes leading into them. An SU-8 structural layer is used for insulation and packaging purposes. The In Silico cell physiology lab is wire bonded on to a custom PCB for easy interface with a state of the art data acquisition system. The electrodes are coated with a Ca 2+ ion selective membrane based on ETH-5234 ionophore and operated against an Ag/AgCl reference electrode. Initial characterization results have shown Nernst slopes of 30mv/decade that were stable over a number of measurement cycles. While this work is focused on technology to enable basic research on the Ceratopteris richardii spores, we anticipate that this type of cell physiology lab-on-a-chip will be broadly applied in biomedical and pharmacological research by making minor modifications to the electrode material and the measurement technique. Future applications include detection of glucose, hormones such as plant auxin, as well as multiple analyte detection on the same chip

  3. Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer

    Science.gov (United States)

    Holt, Nicholas; Zhou, Wenchao

    2018-03-01

    Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS' great promise as a competitive new method for digital production of printed electronics.

  4. Design and fabrication of a Czerny-Turner monochromator-cum-spectrograph

    International Nuclear Information System (INIS)

    Murty, M.V.R.K.; Shukla, R.P.; Bhattacharya, S.S.; Krishnamurthy, G.

    1987-01-01

    The design and fabrication of a Czerny-Turner monochromator cum spectrograph is described. It consists of a classically ruled grating having 1200 grooves/mm. The collimator is a concave spherical mirror having a radius of curvature 1.025 metre while the focusing element is a concave spherical mirror of radius of curvature 0.925 metre. The design of two unequal radii of curvature for collimating and focusing mirrors is chosen to eliminate the chromatic aberration at the wavelength of 5000A. The linear reciprocal dispersion on the focal surface is about 8A/mm. The resolution of the instrument at the coma corrected wavelength i.e. 5000A is 0.1A. The resolution at the other wavelengths is limited by the residual chromatic aberration which increases linearly with wavelength on either side of the 5000A. Therefore the resolution at the wavelength 2000A and 8000A is about 0.2A. 7 figures. (author)

  5. Design and fabrication of a CMOS-compatible MHP gas sensor

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-03-01

    Full Text Available A novel micro-hotplate (MHP gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO2 film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3% in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  6. Torsional strength of computer-aided design/computer-aided manufacturing-fabricated esthetic orthodontic brackets.

    Science.gov (United States)

    Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell

    2017-01-01

    To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.

  7. QA in the design and fabrication of the TMI-2 rail cask

    International Nuclear Information System (INIS)

    Hayes, G.R.

    1988-01-01

    EGandG Idaho, Inc., acting on behalf of the US Department of Energy, is responsible for transporting core debris from Three Mile Island-Unit 2 to the Idaho National Engineering Laboratory. Transportation of the debris is being accomplished using an NRC licensed container, called the NuPac 125-B. This paper describes the NuPac 125-B Rail Cask and the quality assurance (QA) requirements for that system. Also discussed are the QA roles of the various organizations involved in designing, building, inspecting and testing the NuPac 125-B. The paper presents QA/QC systems implemented during the design, procurement, and fabrication of the cask to assure compliance with all applicable technical codes, standards and regulations. It also goes beyond the requirements aspect and describes unique QA/QC measures employed to assure that the cask was built with minimum QA problems. Finally, the lessons learned from the NuPac 125-B project is discussed. 4 refs., 4 figs

  8. Design and implementation of a micron-sized electron column fabricated by focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Wicki, Flavio, E-mail: flavio.wicki@physik.uzh.ch; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-01-15

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV. - Highlights: • Electron optics • Scaling laws • Low-energy electrons • Coherent electron beams • Micron-sized electron column.

  9. Welding issues associated with design, fabrication and loading of spent fuel storage casks

    International Nuclear Information System (INIS)

    Battige, C.K. Jr.; Howe, A.G.; Sturz, F.C.

    1999-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has observed a number of welding issues associated with design, fabrication, and loading of spent fuel storage casks. These emerging welding-related issues involving a certain dry cask storage system have challenged the safety basis for which NRC approved the casks for storage of spent nuclear fuel. During closure welding, problems have been encountered with cracking. Although the cracks have been attributed to several causes including material suitability, joint restraint and residual stresses, NRC believes hydrogen-induced cracking is the most likely explanation. In light of these cracking events and the potential for flaws in any welding process, NRC sought verification of the corrective actions and the integrity of the lid closure welds before allowing additional casks to be loaded. As a result, the affected utility companies modified the closure welding procedures and developed an acceptable ultrasonic inspection (UT) method. In addition, the casks already loaded at three power reactor sites will require additional non-destructive examinations (NDE) to determine their suitability for continued use. NRC plans to evaluate the generic implications of this issue for current designs and for those in the licensing process. (author)

  10. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    G-S Huang

    2013-10-01

    Full Text Available Three-dimensional (3D cellular spheroids have recently emerged as a new trend to replace suspended single cells in modern cell-based therapies because of their greater regeneration capacities in vitro. They may lose the 3D structure during a change of microenvironment, which poses challenges to their translation in vivo. Besides, the conventional microporous scaffolds may have difficulty in accommodating these relatively large spheroids. Here we revealed a novel design of microenvironment for delivering and sustaining the 3D spheroids. Biodegradable scaffolds with macroporosity to accommodate mesenchymal stem cell (MSC spheroids were made by solid freeform fabrication (SFF from the solution of poly(D,L-lactide-co-glycolide. Their internal surface was modified with chitosan following air plasma treatment in order to preserve the morphology of the spheroids. It was demonstrated that human MSC spheroids loaded in SFF scaffolds produced a significantly larger amount of cartilage-associated extracellular matrix in vitro and in NOD/SCID mice compared to single cells in the same scaffolds. Implantation of MSC spheroid-loaded scaffolds into the chondral defects of rabbit knees showed superior cartilage regeneration. This study establishes new perspectives in designing the spheroid-sustaining microenvironment within a tissue engineering scaffold for in vivo applications.

  11. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang

    2009-08-01

    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  12. Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions

    International Nuclear Information System (INIS)

    He, Zhonglu; Zhang, Yufeng; Dong, Shengming; Ma, Hongting; Yu, Xiaohui; Zhang, Yan; Ma, Xuelian; Deng, Na; Sheng, Ying

    2017-01-01

    Highlights: • An ORC power plant driven by low grade heat source is set up. • Energy and exergy analysis at off-design conditions is conducted. • The twin screw expander performance is characterized. • An empirical model to predict the net power output and thermal efficiency. - Abstract: This paper deals with an experimental study on a 50-kW Organic Rankine cycle (ORC) power generation plant driven by low-grade heat source. Hot water boiler and solar-thermal system were used as the low-grade heat source providing hot water at temperature ranging from 65 to 95 °C. A twin screw compressor has been modified as the expansion machine in the ORC module and its expansion efficiency under variable operating conditions was tested in the experiments. This work was purposed to assess the ORC system and get the performance map at off-design operating conditions in a typical year from the view of the first and the second law of thermodynamics. The maximum electricity production and thermal efficiency were 46.5 kW and 6.52% respectively at the optimal operating condition. The highest exergetic efficiency reached 36.3% and the exergy analysis showed that evaporation pressure and condensation pressure were the key parameters to influence the exergy flow and exergetic efficiency. Furthermore, by fitting the actual plant data obtained in different months, an empirical model has been developed to predict the net power output and thermal efficiency with acceptable accuracy. Lastly, as an illustration, the empirical model is used to analyze the performance of the solar-driven ORC system.

  13. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  14. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  15. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  16. Design and fabrication of a low cost Darrieus vertical axis wing turbine system. Phase I. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-06-22

    The contract has two phases, a design phase and a fabrication and installation phase. Presented is the work completed in Phase I, the design phase. The Sandia 17 m was used as the background machine from which design information was drawn. By concentrating the modifications on an existing design, emphasis was focused on component cost reduction rather than selection of optimal configuration or operating modes. The resulting design is a stretched version of the Sandia 17 m preserving the same rotor diameter and many other good features, but in the meantime lighter in weight, larger in capacity, and anticipated to be more cost effective.

  17. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    Science.gov (United States)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  18. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  19. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    Science.gov (United States)

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  20. Design, fabrication and characterization of Computer Generated Holograms for anti-counterfeiting applications using OAM beams as light decoders.

    Science.gov (United States)

    Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo

    2017-12-21

    In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.