WorldWideScience

Sample records for thermodynamically-controlled regulatory mechanism

  1. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.

    Science.gov (United States)

    Wu, Dan; Li, Ang; Ma, Fang; Yang, Jixian; Xie, Yutong

    2016-07-01

    Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.

  2. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  3. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  4. Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems

    International Nuclear Information System (INIS)

    Tu Zhanchun

    2014-01-01

    Thermodynamics is an old subject. The research objects in conventional thermodynamics are macroscopic systems with huge number of particles. In recent 30 years, thermodynamics of small systems is a frontier topic in physics. Here we introduce nonequilibrium statistical mechanics and stochastic thermodynamics of small systems. As a case study, we construct a Canot-like cycle of a stochastic heat engine with a single particle controlled by a time-dependent harmonic potential. We find that the efficiency at maximum power is 1 - √T c /T h , where Tc and Th are the temperatures of cold bath and hot bath, respectively. (author)

  5. A primer on thermodynamic-based models for deciphering transcriptional regulatory logic.

    Science.gov (United States)

    Dresch, Jacqueline M; Richards, Megan; Ay, Ahmet

    2013-09-01

    A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  7. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  8. An introduction to thermodynamics and statistical mechanics

    CERN Document Server

    Saxena, A K

    2016-01-01

    An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)

  9. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  10. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    International Nuclear Information System (INIS)

    Marasini, Carlotta; Galeno, Lauretta; Moran, Oscar

    2012-01-01

    Highlights: ► CFTR mutations produce cystic fibrosis. ► Chloride transport depends on the regulatory domain phosphorylation. ► Regulatory domain is intrinsically disordered. ► Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and β-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of α-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two conditions, monitoring the changes of the mean residue ellipticity measured at 222 nm as a function of temperature

  11. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  12. Statistical mechanics and the foundations of thermodynamics

    International Nuclear Information System (INIS)

    Martin-Loef, A.

    1979-01-01

    These lectures are designed as an introduction to classical statistical mechanics and its relation to thermodynamics. They are intended to bridge the gap between the treatment of the subject in physics text books and the modern presentations of mathematically rigorous results. We shall first introduce the probability distributions, ensembles, appropriate for describing systems in equilibrium and consider some of their basic physical applications. We also discuss the problem of approach to equilibrium and how irreversibility comes into the dynamics. We then give a detailed description of how the law of large numbers for macrovariables in equilibrium is derived from the fact that entropy is an extensive quantity in the thermodynamic limit. We show in a natural way how to split the energy changes in an thermodynamical process into work and heat leading to a derivation of the first and second laws of thermodynamics from the rules of thermodynamical equilibrium. We have elaborated this part in detail because we feel it is quite satisfactory, that the establishment of the limit of thermodynamic functions as achieved in the modern development of the mathematical aspects of statistical mechanics allows a more general and logically clearer presentation of the bases of thermodynamics. We close these lectures by presenting the basic facts about fluctuation theory. The treatment aims to be reasonably self-contained both concerning the physics and mathematics needed. No knowledge of quantum mechanics is presupposed. Since we spent a large part on mathematical proofs and give many technical facts these lectures are probably most digestive for the mathematically inclined reader who wants to understand the physics of the subject. (HJ)

  13. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    Science.gov (United States)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  14. Modern Thermodynamics with Statistical Mechanics

    CERN Document Server

    Helrich, Carl S

    2009-01-01

    With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...

  15. Statistical mechanics and the foundations of thermodynamics

    International Nuclear Information System (INIS)

    Loef, A.M.

    1979-01-01

    An introduction to classical statistical mechanics and its relation to thermodynamics is presented. Emphasis is put on getting a detailed and logical presentation of the foundations of thermodynamics based on the maximum entropy principles which govern the values taken by macroscopic variables according to the laws of large numbers

  16. Positive Nonlinear Dynamical Group Uniting Quantum Mechanics and Thermodynamics

    OpenAIRE

    Beretta, Gian Paolo

    2006-01-01

    We discuss and motivate the form of the generator of a nonlinear quantum dynamical group 'designed' so as to accomplish a unification of quantum mechanics (QM) and thermodynamics. We call this nonrelativistic theory Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermodynamic equilibrium (TE) states it reduces to the same mathematics, and for zero entropy stat...

  17. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  18. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    Science.gov (United States)

    Spencer, William C; Deneris, Evan S

    2017-01-01

    The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling

  19. Dual Nature of Translational Control by Regulatory BC RNAs ▿

    Science.gov (United States)

    Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri

    2011-01-01

    In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783

  20. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    International Nuclear Information System (INIS)

    Fajar, D M; Khotimah, S N; Khairurrijal

    2016-01-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine. (paper)

  1. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    Science.gov (United States)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  2. Thermodynamic mechanism of density anomaly of liquid water

    Directory of Open Access Journals (Sweden)

    Makoto eYasutomi

    2015-03-01

    Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.

  3. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  4. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  5. Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family

    Directory of Open Access Journals (Sweden)

    Dallakyan Sargis

    2008-08-01

    Full Text Available Abstract Background Gram-negative bacteria use periplasmic-binding proteins (bPBP to transport nutrients through the periplasm. Despite immense diversity within the recognized substrates, all members of the family share a common fold that includes two domains that are separated by a conserved hinge. The hinge allows the protein to cycle between open (apo and closed (ligated conformations. Conformational changes within the proteins depend on a complex interplay of mechanical and thermodynamic response, which is manifested as an increase in thermal stability and decrease of flexibility upon ligand binding. Results We use a distance constraint model (DCM to quantify the give and take between thermodynamic stability and mechanical flexibility across the bPBP family. Quantitative stability/flexibility relationships (QSFR are readily evaluated because the DCM links mechanical and thermodynamic properties. We have previously demonstrated that QSFR is moderately conserved across a mesophilic/thermophilic RNase H pair, whereas the observed variance indicated that different enthalpy-entropy mechanisms allow similar mechanical response at their respective melting temperatures. Our predictions of heat capacity and free energy show marked diversity across the bPBP family. While backbone flexibility metrics are mostly conserved, cooperativity correlation (long-range couplings also demonstrate considerable amount of variation. Upon ligand removal, heat capacity, melting point, and mechanical rigidity are, as expected, lowered. Nevertheless, significant differences are found in molecular cooperativity correlations that can be explained by the detailed nature of the hydrogen bond network. Conclusion Non-trivial mechanical and thermodynamic variation across the family is explained by differences within the underlying H-bond networks. The mechanism is simple; variation within the H-bond networks result in altered mechanical linkage properties that directly affect

  6. Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family.

    Science.gov (United States)

    Mottonen, James M; Xu, Minli; Jacobs, Donald J; Livesay, Dennis R

    2009-05-15

    We compare various predicted mechanical and thermodynamic properties of nine oxidized thioredoxins (TRX) using a Distance Constraint Model (DCM). The DCM is based on a nonadditive free energy decomposition scheme, where entropic contributions are determined from rigidity and flexibility of structure based on distance constraints. We perform averages over an ensemble of constraint topologies to calculate several thermodynamic and mechanical response functions that together yield quantitative stability/flexibility relationships (QSFR). Applied to the TRX protein family, QSFR metrics display a rich variety of similarities and differences. In particular, backbone flexibility is well conserved across the family, whereas cooperativity correlation describing mechanical and thermodynamic couplings between the residue pairs exhibit distinctive features that readily standout. The diversity in predicted QSFR metrics that describe cooperativity correlation between pairs of residues is largely explained by a global flexibility order parameter describing the amount of intrinsic flexibility within the protein. A free energy landscape is calculated as a function of the flexibility order parameter, and key values are determined where the native-state, transition-state, and unfolded-state are located. Another key value identifies a mechanical transition where the global nature of the protein changes from flexible to rigid. The key values of the flexibility order parameter help characterize how mechanical and thermodynamic response is linked. Variation in QSFR metrics and key characteristics of global flexibility are related to the native state X-ray crystal structure primarily through the hydrogen bond network. Furthermore, comparison of three TRX redox pairs reveals differences in thermodynamic response (i.e., relative melting point) and mechanical properties (i.e., backbone flexibility and cooperativity correlation) that are consistent with experimental data on thermal stabilities

  7. Thermodynamics and statistical mechanics an integrated approach

    CERN Document Server

    Hardy, Robert J

    2014-01-01

    This textbook brings together the fundamentals of the macroscopic and microscopic aspects of thermal physics by presenting thermodynamics and statistical mechanics as complementary theories based on small numbers of postulates. The book is designed to give the instructor flexibility in structuring courses for advanced undergraduates and/or beginning graduate students and is written on the principle that a good text should also be a good reference. The presentation of thermodynamics follows the logic of Clausius and Kelvin while relating the concepts involved to familiar phenomena and the mod

  8. Regulatory accessibility and social influences on state self-control.

    Science.gov (United States)

    vanDellen, Michelle R; Hoyle, Rick H

    2010-02-01

    The current work examined how social factors influence self-control. Current conceptions of state self-control treat it largely as a function of regulatory capacity. The authors propose that state self-control might also be influenced by social factors because of regulatory accessibility. Studies 1 through 4 provide evidence that individuals' state self-control is influenced by the trait and state self-control of salient others such that thinking of others with good trait or state self-control leads to increases in state self-control and thinking of others with bad trait or state self-control leads to decreases in state self-control. Study 5 provides evidence that the salience of significant others influences both regulatory accessibility and state self-control. Combined, these studies suggest that the effects of social influences on state self-control occur through multiple mechanisms.

  9. Information Thermodynamics of Cytosine DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Robersy Sanchez

    Full Text Available Cytosine DNA methylation (CDM is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise" induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1 the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2 whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic

  10. Thermodynamics and statistical mechanics an integrated approach

    CERN Document Server

    Shell, M Scott

    2015-01-01

    Learn classical thermodynamics alongside statistical mechanics with this fresh approach to the subjects. Molecular and macroscopic principles are explained in an integrated, side-by-side manner to give students a deep, intuitive understanding of thermodynamics and equip them to tackle future research topics that focus on the nanoscale. Entropy is introduced from the get-go, providing a clear explanation of how the classical laws connect to the molecular principles, and closing the gap between the atomic world and thermodynamics. Notation is streamlined throughout, with a focus on general concepts and simple models, for building basic physical intuition and gaining confidence in problem analysis and model development. Well over 400 guided end-of-chapter problems are included, addressing conceptual, fundamental, and applied skill sets. Numerous worked examples are also provided together with handy shaded boxes to emphasize key concepts, making this the complete teaching package for students in chemical engineer...

  11. Mechanics, waves and thermodynamics an example-based approach

    CERN Document Server

    Jain, Sudhir Ranjan

    2016-01-01

    The principles of classical physics, though superseded in specific fields by such theories as quantum mechanics and general relativity, are still of great importance in a broad range of applications. The book presents fundamental concepts of classical physics in a coherent and logical manner. It discusses important topics including the mechanics of a single particle, kinetic theory, oscillations and waves. Topics including the kinetic theory of gases, thermodynamics and statistical mechanics are discussed, which are normally not present in the books on classical physics. The fundamental concepts of energy, momentum, mass and entropy are explained with examples. Discussion on concepts of thermodynamics is presented along with the simplified explanation on Caratheodory's axioms. It covers chapters on wave motion and statistical physics, useful for the graduate students. Each concept is supported with real-life applications on several concepts including impulse and collision, Bernoulli's equation, and friction.

  12. Regulatory mechanisms of apoptosis in regularly dividing cells

    Directory of Open Access Journals (Sweden)

    Ribal S Darwish

    2010-08-01

    Full Text Available Ribal S DarwishDepartment of Anesthesiology, Division of Critical Care Medicine, University of Maryland Medical Center, Baltimore, Maryland, USAAbstract: The balance between cell survival and death is essential for normal development and homeostasis of organisms. Apoptosis is a distinct type of cell death with ultrastructural features that are consistent with an active, inherently controlled process. Abnormalities and ­dysregulation of apoptosis contribute to the pathophysiology of multiple disease processes. Apoptosis is strictly regulated by several positive and negative feedback mechanisms that regulate cell death and determine the final outcome after cell exposure to apoptotic stimuli. Mitochondria and caspases are central components of the regulatory mechanisms of ­apoptosis. Recently, noncaspase pathways of apoptosis have been explored through the studies of ­apoptosis-inducing factor and endonuclease G. Multiple difficulties in the apoptosis research relate to apoptosis detection and imaging. This article reviews current understanding of the regulatory mechanisms of apoptosis.Keywords: caspases, apoptosis-inducing factor, apoptosis inhibitory proteins, cytochrome c, mitochondria 

  13. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  14. Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B₂) Biosynthesis in Bacteria.

    Science.gov (United States)

    Birkenmeier, Markus; Mack, Matthias; Röder, Thorsten

    2015-10-01

    In this study, we applied a coupled in silico thermodynamic and probabilistic metabolic control analysis methodology to investigate the control mechanisms of the commercially relevant riboflavin biosynthetic pathway in bacteria. Under the investigated steady-state conditions, we found that several enzyme reactions of the pathway operate far from thermodynamic equilibrium (transformed Gibbs energies of reaction below about -17 kJ mol(-1)). Using the obtained thermodynamic information and applying enzyme elasticity sampling, we calculated the distributions of the scaled concentration control coefficients (CCCs) and scaled flux control coefficients (FCCs). From the statistical analysis of the calculated distributions, we inferred that the control over the riboflavin producing flux is shared among several enzyme activities and mostly resides in the initial reactions of the pathway. More precisely, the guanosine triphosphate (GTP) cyclohydrolase II activity, and therefore the bifunctional RibA protein of Bacillus subtilis because it catalyzes this activity, appears to mainly control the riboflavin producing flux (mean FCCs = 0.45 and 0.55, respectively). The GTP cyclohydrolase II activity and RibA also exert a high positive control over the riboflavin concentration (mean CCCs = 2.43 and 2.91, respectively). This prediction is consistent with previous findings for microbial riboflavin overproducing strains.

  15. Mechanical breakdown in the nuclear multifragmentation phenomena. Thermodynamic analysis

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Cherevko, K.V.; Sysoev, V.M.

    2012-01-01

    Based on a similarity of the Van der Waals and nucleon-nucleon interaction the known thermodynamic relations for ordinary liquids are used to analyze the possible decay channels in the proton induced nuclear multifragmentation phenomena. The main features of the different phase trajectories in the P-V plane are compared with the experimental data on multifragmentation. It allowed choosing the phase trajectories with the correct qualitative picture of the phenomena. Based on the thermodynamic analysis of the proton-induced multifragmentation phenomena the most appropriate decay channel corresponding to the realistic phase trajectory is chosen. Macroscopic analysis of the suggested decay channel is done in order to check the possibility of the mechanical breakdown of the heated system. Based on a simple thermodynamic model preliminary quantitative calculations of corresponding macroscopic parameters (energy, pressure) are done and therefore the model verification on macroscopic level is held. It is shown that on macroscopic level the chosen decay channel through the mechanical breakdown meets the necessary conditions for describing the proton-induced multifragmentation phenomena

  16. Criteria of exemption of regulatory control for radioactive material

    International Nuclear Information System (INIS)

    Marco A. Medrano Lopez

    1991-01-01

    Being based on the information contained in the 10 CFR Part 20, of the section 20.301 until the 20.306 where the mechanisms by means of which can prepare the waste of low level are indicated. While the Nuclear Regulatory Commission (NRC) it amended in the year of 1985 the Act of Politics on Low level Wastes, in particular the section 10 of the amendment of the Act, relative to the concept BRC treats those groups of radioactive waste in that their activity contents are so low that they could be exempt of the regulatory control, either liberating them toward the environment or to exempt people or organizations of the regulatory control

  17. Statistical Mechanics and Black Hole Thermodynamics

    OpenAIRE

    Carlip, Steven

    1997-01-01

    Black holes are thermodynamic objects, but despite recent progress, the ultimate statistical mechanical origin of black hole temperature and entropy remains mysterious. Here I summarize an approach in which the entropy is viewed as arising from ``would-be pure gauge'' degrees of freedom that become dynamical at the horizon. For the (2+1)-dimensional black hole, these degrees of freedom can be counted, and yield the correct Bekenstein-Hawking entropy; the corresponding problem in 3+1 dimension...

  18. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  19. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-07-01

    Full Text Available Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.

  1. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  2. Thermodynamic restrictions on linear reversible and irreversible thermo-electro-magneto-mechanical processes

    Directory of Open Access Journals (Sweden)

    Sushma Santapuri

    2016-10-01

    Full Text Available A unified thermodynamic framework for the characterization of functional materials is developed. This framework encompasses linear reversible and irreversible processes with thermal, electrical, magnetic, and/or mechanical effects coupled. The comprehensive framework combines the principles of classical equilibrium and non-equilibrium thermodynamics with electrodynamics of continua in the infinitesimal strain regime.In the first part of this paper, linear Thermo-Electro-Magneto-Mechanical (TEMM quasistatic processes are characterized. Thermodynamic stability conditions are further imposed on the linear constitutive model and restrictions on the corresponding material constants are derived. The framework is then extended to irreversible transport phenomena including thermoelectric, thermomagnetic and the state-of-the-art spintronic and spin caloritronic effects. Using Onsager's reciprocity relationships and the dissipation inequality, restrictions on the kinetic coefficients corresponding to charge, heat and spin transport processes are derived. All the constitutive models are accompanied by multiphysics interaction diagrams that highlight the various processes that can be characterized using this framework. Keywords: Applied mathematics, Materials science, Thermodynamics

  3. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  4. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  5. The Cellular and Molecular Mechanisms of Immuno-suppression by Human Type 1 Regulatory T cells

    Directory of Open Access Journals (Sweden)

    Silvia eGregori

    2012-02-01

    Full Text Available The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1 cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well-known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation.

  6. Principles of thermodynamics and statistical mechanics

    CERN Document Server

    Lawden, D F

    2005-01-01

    A thorough exploration of the universal principles of thermodynamics and statistical mechanics, this volume explains the applications of these essential rules to a multitude of situations arising in physics and engineering. It develops their use in a variety of circumstances-including those involving gases, crystals, and magnets-in order to illustrate general methods of analysis and to provide readers with all the necessary background to continue in greater depth with specific topics.Author D. F. Lawden has considerable experience in teaching this subject to university students of varied abili

  7. Alkylation of Chlorobenzene. An Experiment Illustrating Kinetic versus Thermodynamic Control.

    Science.gov (United States)

    Kolb, Kenneth; And Others

    1988-01-01

    Describes an experiment which illustrates the kinetic versus thermodynamic control of chemical reactions for organic chemistry students. Considers the laboratory procedures including the isolation of both the kinetic and thermodynamic products. (CW)

  8. Thermodynamics of the near field

    International Nuclear Information System (INIS)

    Apps, J.A.

    1985-01-01

    The near field is normally taken to mean the part of the geologic setting of a repository that is affected by mechanical or thermal perturbations resulting from repository excavations and emplacement of radioactive waste. The near-field host rocks, the waste package, and the intervening backfill constitute a series of engineered and natural barriers that should be designed to initially prevent and subsequently control radionuclide release. Nuclear Regulatory Commission regulations 10 CFR part 60 specify that the waste package must not allow any release of radionuclides for at least 300 years, and preferably 1000 years. Thereafter, the release rate of any radionuclide is not to exceed on part in 100,000 per year of the inventory that is calculated to be present 1000 years after closure. In this paper, the author briefly outlines recent developments and identifies important fundamental research in thermodynamics and related areas that is needed to resolve some of the current uncertainties

  9. Regulatory control of fuel design and manufacturing

    International Nuclear Information System (INIS)

    1994-01-01

    The regulatory control of the design and manufacturing of the nuclear fuel and of the control rods aims to ensure conformance to set requirements during normal operating conditions, anticipated operational transients and postulated accident conditions. The regulatory control of design, manufacturing, receiving inspections and the start of operation of the nuclear fuel are specified in the guide. The regulatory control procedure also applies to the control rods and the shield elements

  10. Thermodynamic state ensemble models of cis-regulation.

    Directory of Open Access Journals (Sweden)

    Marc S Sherman

    Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.

  11. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  12. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Samantha A. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Appel, Aaron M. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Linehan, John C. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Wiedner, Eric S. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA

    2017-10-23

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma

    Science.gov (United States)

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R.; Gartlgruber, Moritz; Herrmann, Carl; Agarwal, Saurabh; Helsmoortel, Hetty H.; Althoff, Kristina; Molenaar, Jan J.; Cheung, Belamy B.; Schulte, Johannes H.; Benoit, Yves; Shohet, Jason M.; Westermann, Frank; Marshall, Glenn M.; Vandesompele, Jo; De Preter, Katleen; Speleman, Frank

    2016-01-01

    LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3′UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefor establishing a MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promotor, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underlines the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process. PMID:26123663

  14. A thermodynamically influenced control for potato storage | Ndiema ...

    African Journals Online (AJOL)

    The results obtained show that the modified control achieved reduced mass loss by about 5% while the fan energy input was reduced by up to 10%. It is therefore possible to achieve improved control of the potato storage condition by modifying the controls to operate on the basis of thermodynamic state diagrams.

  15. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  16. Criteria of exemption of regulatory control for radioactive material; Criterios de exencion del control regulatorio para material radiactivo

    Energy Technology Data Exchange (ETDEWEB)

    Medrano Lopez, Marco A [Gerencia de Seguridad Radiologica, Instituto Nacional de Investigaciones Nucleares, Salazar (Mexico)

    1991-07-01

    Being based on the information contained in the 10 CFR Part 20, of the section 20.301 until the 20.306 where the mechanisms by means of which can prepare the waste of low level are indicated. While the Nuclear Regulatory Commission (NRC) it amended in the year of 1985 the Act of Politics on Low level Wastes, in particular the section 10 of the amendment of the Act, relative to the concept BRC treats those groups of radioactive waste in that their activity contents are so low that they could be exempt of the regulatory control, either liberating them toward the environment or to exempt people or organizations of the regulatory control.

  17. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  18. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  19. Realistic thermodynamic and statistical-mechanical measures for neural synchronization.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2014-04-15

    Synchronized brain rhythms, associated with diverse cognitive functions, have been observed in electrical recordings of brain activity. Neural synchronization may be well described by using the population-averaged global potential VG in computational neuroscience. The time-averaged fluctuation of VG plays the role of a "thermodynamic" order parameter O used for describing the synchrony-asynchrony transition in neural systems. Population spike synchronization may be well visualized in the raster plot of neural spikes. The degree of neural synchronization seen in the raster plot is well measured in terms of a "statistical-mechanical" spike-based measure Ms introduced by considering the occupation and the pacing patterns of spikes. The global potential VG is also used to give a reference global cycle for the calculation of Ms. Hence, VG becomes an important collective quantity because it is associated with calculation of both O and Ms. However, it is practically difficult to directly get VG in real experiments. To overcome this difficulty, instead of VG, we employ the instantaneous population spike rate (IPSR) which can be obtained in experiments, and develop realistic thermodynamic and statistical-mechanical measures, based on IPSR, to make practical characterization of the neural synchronization in both computational and experimental neuroscience. Particularly, more accurate characterization of weak sparse spike synchronization can be achieved in terms of realistic statistical-mechanical IPSR-based measure, in comparison with the conventional measure based on VG. Copyright © 2014. Published by Elsevier B.V.

  20. Constitutive, Institutive and Up-Regulation of Carotenogenesis Regulatory Mechanism via In Vitro Culture Model System and Elicitors

    International Nuclear Information System (INIS)

    Rashidi Othman; Fatimah Azzahra Mohd Zaifuddin; Norazian Mohd Hassan

    2015-01-01

    Phyto hormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes. (author)

  1. Separation of atropisomers by chiral liquid chromatography and thermodynamic analysis of separation mechanism

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-06-01

    Full Text Available In the pharmaceutical industry, the analysis of atropisomers is of considerable interest from a scientific and regulatory perspective. The compound of interest contains two stereogenic axes due to the hindered rotation around the single bonds connecting the aryl groups, which results in four potential configurational isomers (atropisomers. The separation of the four atropisomers is achieved on a derivatized β-cyclodextrin bonded stationary phase. Further investigation shows that low temperature conditions, including sample preparation (−70 °C, sample storage (−70 °C, and chromatographic separation (6 °C, were critical to preventing interconversion. LC-UV-Laser Polarimetric analysis identified peak 1/2 as a pair of enantiomers and peak 3/4 as another. Thermodynamic analysis of the retention data indicated that the separation of the pairs of enantiomers is primarily enthalpy controlled as indicated by the positive slope of the van’t Huff plot. The difference in absolute Δ (Δ H, ranged from 2.20 kJ/mol to 2.42 kJ/mol.

  2. Thermodynamic and mechanical properties of curved interfaces : a discussion of models

    NARCIS (Netherlands)

    Oversteegen, M.

    2000-01-01

    Although relatively much is known about the physics of curved interfaces, several models for these kind of systems seem conflicting or internally inconsistent. It is the aim of this thesis to derive a rigorous framework of thermodynamic and mechanical expressions and study their relation to

  3. Safety culture as a matter of regulatory control and regulatory effectiveness

    International Nuclear Information System (INIS)

    Camargo, C.T.M.; Furieri, E.B.; Arrieta, L.A.I.; Almeida, C.U.C.

    2002-01-01

    More than 15 years have passed since the term 'safety culture' was introduced by the International Nuclear Safety Advisory Group (INSAG), and although the concept now is widely accepted, practical applications and characteristics have been disseminated mainly for nuclear power plant operating organizations. There is still a lack of international guidance on the use of safety culture as a regulatory matter and on the application of the concept within regulatory organizations. This work explores the meaning of safety culture in two different fields: as an element of safety management systems it shall be a matter of regulatory control; as a complementary tool for quality management it should be used to enhance regulatory effectiveness. Brazilian recent experience on regulating nuclear power reactors provide some examples on how the concept of safety culture may influence regulatory strategies and regulatory management. (author)

  4. Thermodynamical aspects of modeling the mechanical response of granular materials

    International Nuclear Information System (INIS)

    Elata, D.

    1995-01-01

    In many applications in rock physics, the material is treated as a continuum. By supplementing the related conservation laws with constitutive equations such as stress-strain relations, a well-posed problem can be formulated and solved. The stress-strain relations may be based on a combination of experimental data and a phenomenological or micromechanical model. If the model is physically sound and its parameters have a physical meaning, it can serve to predict the stress response of the material to unmeasured deformations, predict the stress response of other materials, and perhaps predict other categories of the mechanical response such as failure, permeability, and conductivity. However, it is essential that the model be consistent with all conservation laws and consistent with the second law of thermodynamics. Specifically, some models of the mechanical response of granular materials proposed in literature, are based on intergranular contact force-displacement laws that violate the second law of thermodynamics by permitting energy generation at no cost. This diminishes the usefulness of these models as it invalidates their predictive capabilities. [This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  5. A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics.

    Science.gov (United States)

    Feng, Lihui; Rutherford, Steven T; Papenfort, Kai; Bagert, John D; van Kessel, Julia C; Tirrell, David A; Wingreen, Ned S; Bassler, Bonnie L

    2015-01-15

    Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  7. Thermodynamics and statistical mechanics

    CERN Document Server

    Landsberg, Peter T

    1990-01-01

    Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.

  8. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  9. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  10. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  11. Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms.

    Science.gov (United States)

    Chastanet, Arnaud; Losick, Richard

    2011-11-01

    The response regulator Spo0A governs multiple developmental processes in Bacillus subtilis, including most conspicuously sporulation. Spo0A is activated by phosphorylation via a multicomponent phosphorelay. Previous work has shown that the Spo0A protein is not rate limiting for sporulation. Rather, Spo0A is present at high levels in growing cells, rapidly rising to yet higher levels under sporulation-inducing conditions, suggesting that synthesis of the response regulator is subject to a just-in-time control mechanism. Transcription of spo0A is governed by a promoter switching mechanism, involving a vegetative, σ(A)-recognized promoter, P(v), and a sporulation σ(H)-recognized promoter, P(s), that is under phosphorylated Spo0A (Spo0A∼P) control. The spo0A regulatory region also contains four (including one identified in the present work) conserved elements that conform to the consensus binding site for Spo0A∼P binding sites. These are herein designated O(1), O(2), O(3), and O(4) in reverse order of their proximity to the coding sequence. Here we report that O(1) is responsible for repressing P(v) during the transition to stationary phase, that O(2) is responsible for repressing P(s) during growth, that O(3) is responsible for activating P(s) at the start of sporulation, and that O(4) is dispensable for promoter switching. We also report that Spo0A synthesis is subject to a posttranscriptional control mechanism such that translation of mRNAs originating from P(v) is impeded due to RNA secondary structure whereas mRNAs originating from P(s) are fully competent for protein synthesis. We propose that the opposing actions of O(2) and O(3) and the enhanced translatability of mRNAs originating from P(s) create a highly sensitive, self-reinforcing switch that is responsible for producing a burst of Spo0A synthesis at the start of sporulation.

  12. Regulatory Coherence and Standardization Mechanisms in the Trans-Pacific Partnership

    Directory of Open Access Journals (Sweden)

    Cai Phoenix X. F.

    2016-12-01

    Full Text Available This article posits a new taxonomy and framework for assessing regulatory coherence in the new generation of mega-regional, cross-cutting free trade agreements. Using the Trans-Pacific Partnership as the primary example, this article situates the rise of regulatory coherence within the current trade landscape, provides clear definitions of regulatory coherence, and argues that the real engine of regulatory coherence lies in the work of international standard setting organizations. This work has been little examined in the current literature. The article provides a detailed examination of the mechanics by which the Trans-Pacific Partnership promotes regulatory standardization and concludes with some normative implications and calls for future research.

  13. Optimal protocols and optimal transport in stochastic thermodynamics.

    Science.gov (United States)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-24

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  14. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  15. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  16. Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals

    NARCIS (Netherlands)

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, G.Q.

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli,

  17. Regulatory controls for NORM contamination: Emerging issues and strategies

    International Nuclear Information System (INIS)

    Wennerberg, Linda

    1992-01-01

    Naturally occurring and accelerator-produced radioactive material (NORM) faces the increasing likelihood of federal or state regulatory control. Public concern and limited preliminary survey data fuel the debate over the necessity, approach, and jurisdiction of a NORM regulatory strategy. This debate requires the resolution of technical controversies and potentially competing state and federal agency interests. An additional facet of the debate is the impact of regulation upon traditionally non-nuclear industries, such as oil and gas production. Regulatory response has been initiated in several states, such as Louisiana's controls on equipment used in oil and gas production, to control specific industrial activities which generate NORM. A more comprehensive, generic federal strategy to control NORM contamination is also under review by the Environmental Protection Agency. This paper will detail the emerging technical issues, federal and state regulatory strategies under consideration, and evaluate the efficacy of selected regulatory approaches. (author)

  18. Removal of regulatory controls for materials and sites

    International Nuclear Information System (INIS)

    2004-01-01

    Issues with the removal of regulatory controls are very important on the agenda of the regulatory authorities dealing with radioactive waste management (RWM). These issues arise prominently in decommissioning and in site remediation, and decisions can be very wide ranging having potentially important economic impacts and reaching outside the RWM area. The RWMC Regulators Forum started to address these issues by holding a topical discussion at its meeting in March 2003. Ths present document collates the national regulatory positions in the area of removal of regulatory controls. A summary of the national positions is also provided. The document is up to date to April 2004. (authors)

  19. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  20. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  1. Thermodynamic and mechanical properties of TiC from ab initio calculation

    International Nuclear Information System (INIS)

    Dang, D. Y.; Fan, J. L.; Gong, H. R.

    2014-01-01

    The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature, while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.

  2. The regulatory control of radioactive sources in Argentina

    International Nuclear Information System (INIS)

    Rojkind, Roberto Hector

    1997-01-01

    Argentina has been conducting nuclear activities for more than forty years, and as early as in 1956 established a Regulatory Authority. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations had been set in Argentina, before the accident in Goiania. The conclusions drawn from that accident encouraged in Argentina the improvement of some regulatory procedures and helped to enhance the quality of the regulatory process. Therefore, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain improved. Some lessons learned in Argentina from the accident in Goiania and the main characteristics of an effective enforcement program helpful to prevent radiological accidents in industrial, medical, research and teaching uses of radioactive sources are presented. (author)

  3. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  4. Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum-mechanical methods

    DEFF Research Database (Denmark)

    Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel

    2011-01-01

    Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradiol...

  5. How thermodynamic environments control stratocumulus microphysics and interactions with aerosols

    International Nuclear Information System (INIS)

    Andersen, Hendrik; Cermak, Jan

    2015-01-01

    Aerosol–cloud interactions are central to climate system changes and depend on meteorological conditions. This study identifies distinct thermodynamic regimes and proposes a conceptual framework for interpreting aerosol effects. In the analysis, ten years (2003–2012) of daily satellite-derived aerosol and cloud products are combined with reanalysis data to identify factors controlling Southeast Atlantic stratocumulus microphysics. Considering the seasonal influence of aerosol input from biomass burning, thermodynamic environments that feature contrasting microphysical cloud properties and aerosol–cloud relations are classified. While aerosol impact is stronger in unstable environments, it is mostly confined to situations with low aerosol loading (aerosol index AI ≲ 0.15), implying a saturation of aerosol effects. Situations with high aerosol loading are associated with weaker, seasonally contrasting aerosol-droplet size relationships, likely caused by thermodynamically induced processes and aerosol swelling. (letter)

  6. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  7. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  8. The regulatory control of radioactive sources in Argentina

    International Nuclear Information System (INIS)

    Rojkind, R.H.

    1998-01-01

    Argentina has been conducting nuclear activities for more than forty years, and had established a Regulatory Authority as early as in 1956. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations were in force in Argentina before the accident in Goiania. The conclusions drawn from the Goiania accident encouraged the Argentine authorities to improve some regulatory procedures and helped to enhance the quality of the regulatory process. As a result, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain have improved. Lessons learned in Argentina from the accident in Goiania are presented as well as the main characteristics of an effective enforcement programme to prevent radiological accidents when radioactive sources are used for industrial, medical, research and teaching purposes. (author)

  9. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  10. Low-income minority fathers' control strategies and children's regulatory skills

    Science.gov (United States)

    Malin, Jenessa L.; Cabrera, Natasha J.; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith

    2015-01-01

    The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24-months and children's regulatory skills at pre-kindergarten (pre-K). Using a sample of low-income minority families with 2-year-olds from the Early Head Start Evaluation Research Program (n = 71) we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24-months (e.g., regulatory behavior and regulatory language), and children's sustained attention and emotion regulation at pre-kindergarten. There were three main findings. First, fathers' overwhelmingly use commands (e.g., do that) to promote compliance in their 24-month old children. Second, children's vocabulary skills predict fathers' regulatory behaviors during a father-child interaction, whereas children's gender predicts fathers' regulatory language during an interaction. Third, controlling for maternal supportiveness, fathers' regulatory behaviors at 24-months predict children's sustained attention at pre-kindergarten whereas fathers' regulatory language at 24-months predicts children's emotion regulation at pre-kindergarten. Our findings highlight the importance of examining paternal contributions to children's regulatory skills. PMID:25798496

  11. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik

    2014-06-01

    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  12. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  13. An Introduction to Thermodynamics and Statistical Mechanics - 2nd Edition

    Science.gov (United States)

    Stowe, Keith

    2003-03-01

    This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities, in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics - the study of small systems interacting with huge reservoirs. The changes to this second edition have been made after more than 10 years classroom testing and student feedback. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd numbered problems, and solutions to even problems are available to instructors at www.cambridge.org/9780521865579. The entire book has been re-written and now covers more topics It has a greater number of homework problems which range in difficulty from warm-ups to challenges It is concise and has an easy reading style

  14. The regulatory control of radioactive sources in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Rojkind, Roberto Hector [Autoridade Regulatoria Nuclear, Buenos Aires (Argentina)

    1997-12-31

    Argentina has been conducting nuclear activities for more than forty years, and as early as in 1956 established a Regulatory Authority. Procedures for compliance monitoring and enforcement have been in use in the regulatory control of radioactive sources, and regulatory standards and regulations had been set in Argentina, before the accident in Goiania. The conclusions drawn from that accident encouraged in Argentina the improvement of some regulatory procedures and helped to enhance the quality of the regulatory process. Therefore, the effectiveness of the control of spent radioactive sources has gradually increased, and enforcement actions to prevent radioactive sources ending up in the public domain improved. Some lessons learned in Argentina from the accident in Goiania and the main characteristics of an effective enforcement program helpful to prevent radiological accidents in industrial, medical, research and teaching uses of radioactive sources are presented. (author) 9 refs; e-mail: rrojkind at sede.arn.gov.br

  15. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  16. Thermodynamically consistent data-driven computational mechanics

    Science.gov (United States)

    González, David; Chinesta, Francisco; Cueto, Elías

    2018-05-01

    In the paradigm of data-intensive science, automated, unsupervised discovering of governing equations for a given physical phenomenon has attracted a lot of attention in several branches of applied sciences. In this work, we propose a method able to avoid the identification of the constitutive equations of complex systems and rather work in a purely numerical manner by employing experimental data. In sharp contrast to most existing techniques, this method does not rely on the assumption on any particular form for the model (other than some fundamental restrictions placed by classical physics such as the second law of thermodynamics, for instance) nor forces the algorithm to find among a predefined set of operators those whose predictions fit best to the available data. Instead, the method is able to identify both the Hamiltonian (conservative) and dissipative parts of the dynamics while satisfying fundamental laws such as energy conservation or positive production of entropy, for instance. The proposed method is tested against some examples of discrete as well as continuum mechanics, whose accurate results demonstrate the validity of the proposed approach.

  17. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    % for the human network. The high controllability (low number of drivers needed to control the system) in yeast, mouse and human is due to the presence of internal loops in their regulatory networks where the TFs regulate each other in a circular fashion. We refer to these internal loops as circular control...... motifs (CCM). The E. coli transcriptional regulatory network, which does not have any CCMs, shows a hierarchical structure of the transcriptional regulatory network in contrast to the eukaryal networks. The presence of CCMs also has influence on the stability of these networks, as the presence of cycles...

  18. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  19. A balance of activity in brain control and reward systems predicts self-regulatory outcomes

    OpenAIRE

    Lopez, Richard B.; Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.

    2017-01-01

    Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily lif...

  20. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  1. Regulatory Accessibility and Social Influences on State Self-Control

    OpenAIRE

    vanDellen, Michelle R.; Hoyle, Rick H.

    2009-01-01

    The current work examined how social factors influence self-control. Current conceptions of state self-control treat it largely as a function of regulatory capacity. The authors propose that state self-control might also be influenced by social factors because of regulatory accessibility. Studies 1 through 4 provide evidence that individuals’ state self-control is influenced by the trait and state self-control of salient others such that thinking of others with good trait or state self-contro...

  2. Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara

    evolved numerous mechanisms to controlgene expression in response to specific environmental signals. In addition to two-component systems, small regulatory RNAs (sRNAs) have emerged as major regulators of gene expression. The majority of sRNAs bind to mRNA and regulate their expression. They often have...... multiple targets and are incorporated into large regulatory networks and the RNA chaper one Hfq in many cases facilitates interactions between sRNAs and their targets. Some sRNAs also act by binding to protein targets and sequestering their function. In this PhD thesis we investigated the transcriptional....... Detailed insights into the mechanisms through which P. putida responds to different stress conditions and increased understanding of bacterial adaptation in natural and industrial settings were gained. Additionally, we identified genome-wide transcription start sites, andmany regulatory RNA elements...

  3. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  4. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  5. Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms

    International Nuclear Information System (INIS)

    Aziz, M.J.

    1997-01-01

    A thermodynamic formalism is developed for illuminating the predominant point defect mechanism of self- and impurity diffusion in silicon and is used to provide a rigorous basis for point defect-based interpretation of diffusion experiments in biaxially strained epitaxial layers in the Si endash Ge system. A specific combination of the hydrostatic and biaxial stress dependences of the diffusivity is ±1 times the atomic volume, depending upon whether the predominant mechanism involves vacancies or interstitials. Experimental results for Sb diffusion in biaxially strained Si endash Ge films and ab initio calculations of the activation volume for Sb diffusion by a vacancy mechanism are in quantitative agreement with no free parameters. Key parameters are identified that must be measured or calculated for a quantitative test of interstitial-based mechanisms. copyright 1997 American Institute of Physics

  6. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Dongdong Gu

    2017-10-01

    Full Text Available Selective laser melting (SLM additive manufacturing (AM technology has become an important option for the precise manufacturing of complex-shaped metallic parts with high performance. The SLM AM process involves complicated physicochemical phenomena, thermodynamic behavior, and phase transformation as a high-energy laser beam melts loose powder particles. This paper provides multiscale modeling and coordinated control for the SLM of metallic materials including an aluminum (Al-based alloy (AlSi10Mg, a nickel (Ni-based super-alloy (Inconel 718, and ceramic particle-reinforced Al-based and Ni-based composites. The migration and distribution mechanisms of aluminium nitride (AlN particles in SLM-processed Al-based nanocomposites and the in situ formation of a gradient interface between the reinforcement and the matrix in SLM-processed tungsten carbide (WC/Inconel 718 composites were studied in the microscale. The laser absorption and melting/densification behaviors of AlSi10Mg and Inconel 718 alloy powder were disclosed in the mesoscale. Finally, the stress development during line-by-line localized laser scanning and the parameter-dependent control methods for the deformation of SLM-processed composites were proposed in the macroscale. Multiscale numerical simulation and experimental verification methods are beneficial in monitoring the complicated powder-laser interaction, heat and mass transfer behavior, and microstructural and mechanical properties development during the SLM AM process.

  7. Stochastic control and the second law of thermodynamics

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.

    1979-01-01

    The second law of thermodynamics is studied from the point of view of stochastic control theory. We find that the feedback control laws which are of interest are those which depend only on average values, and not on sample path behavior. We are lead to a criterion which, when satisfied, permits one to assign a temperature to a stochastic system in such a way as to have Carnot cycles be the optimal trajectories of optimal control problems. Entropy is also defined and we are able to prove an equipartition of energy theorem using this definition of temperature. Our formulation allows one to treat irreversibility in a quite natural and completely precise way.

  8. Thermodynamic Mechanism for the Evasion of Antibody Neutralization in Flaviviruses

    Science.gov (United States)

    2015-01-01

    Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of mutations on the thermodynamics of protein conformational fluctuations. We applied this method to the envelope protein domain III (ED3) of two medically important flaviviruses: West Nile and dengue 2. We determined an intimate relationship between the susceptibility of a residue to thermodynamic perturbations and epitope location. This relationship allows the successful identification of the primary epitopes in each ED3, despite their high sequence and structural similarity. Mutations that allow the ED3 to evade detection by the antibody either increase or decrease conformational fluctuations of the epitopes through local effects or long-range interactions. Spatially distant interactions originate in the redistribution of conformations of the ED3 ensembles, not through a mechanically connected array of contiguous amino acids. These results reconcile previous observations of evasion of neutralization by mutations at a distance from the epitopes. Finally, we established a quantitative correlation between subtle changes in the conformational fluctuations of the epitope and large defects in antibody binding affinity. This correlation suggests that mutations that allow viral growth, while reducing neutralization, do not generate significant structural changes and underscores the importance of protein fluctuations and long-range interactions in the mechanism of antibody-mediated neutralization resistance. PMID:24950171

  9. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  10. Behavioural ratings of self-regulatory mechanisms and driving behaviour after an acquired brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Ulleberg, Pål; Schultheis, Maria T; Lundqvist, Anna; Schanke, Anne-Kristine

    2014-01-01

    To explore whether measurements of self-regulatory mechanisms and cognition predict driving behaviour after an acquired brain injury (ABI). Consecutive follow-up study. At baseline participants included 77 persons with stroke and 32 persons with a traumatic brain injury (TBI), all of whom completed a multidisciplinary driving assessment (MDA). A follow-up cohort of 34 persons that succeeded the MDA was included. Baseline measurements: Neuropsychological tests and measurements of self-regulatory mechanisms (BRIEF-A and UPPS Impulsive Behaviour Scale), driving behaviour (DBQ) and pre-injury driving characteristics (mileage, compensatory driving strategies and accident rates). Follow-up measurements: Post-injury driving characteristics were collected by mailed questionnaires from the participants who succeeded the MDA. A MDA, which included a medical examination, neuropsychological testing and an on-road driving test, was considered in the decision for or against granting a driver's license. Self-regulatory mechanisms and driving behaviour were examined for research purposes only. At baseline, self-regulatory mechanisms were significantly associated to aberrant driving behaviour, but not with neuropsychological data or with the outcome of the on-road driving test. Aspects of self-regulation were associated to driving behaviour at follow-up. It is recommended that self-regulatory measurements should regularly be considered in the driving assessments after ABI.

  11. Regulatory control of the use of contractors by operating organizations. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    2000-09-01

    This report arises from the eighth series of peer discussions on regulatory practices entitled 'Regulatory control of the use of contractors by operating organizations'. Senior regulators from 19 Member States participated in two peer group discussions in March 2000 and May 2000. This report gives an account of the outcomes of these meetings and of practical suggestions put forward by senior regulators. These suggestions do not necessarily reflect the views of the governments of the nominating Member States, the organizations they belong to, or the International Atomic Energy Agency. The objective of this document is to share experience between regulatory bodies and provide practical suggestions for controlling the use of contractors and subcontractors by the operating organizations during all stages, especially operation, of a nuclear power plant, so as to ensure that the quality of work and services delivered is commensurate with the safety importance of the activities and that these are carried out in a manner that will not adversely affect the safe or reliable operation of the facility. These documented practical suggestions and experiences are the result of a series of peer discussions at the IAEA in 2000. It is considered that the manner in which control is exercised, and the various challenges connected to this control, are highly dependent upon the legislative framework, maturity of the nuclear programme, the size of the national nuclear industry and the culture in each country. The report is structured so that it covers the subject matter under the following main headings: Legal Provisions, Regulatory Strategy and Requirements; Regulatory Approaches for Controlling the Use of Contractors; Types of Contracts; Practical Suggestions

  12. Low-income, minority fathers' control strategies and their children's regulatory skills.

    Science.gov (United States)

    Malin, Jenessa L; Cabrera, Natasha J; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith L

    2014-01-01

    The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24 months, and children's regulatory skills at prekindergarten (pre-K). Using a sample of low-income, minority families with 2-year-olds from the Early Head Start Research and Evaluation Project (n = 71), we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24 months (e.g., regulatory behavior and regulatory language), and children's sustained attention and emotion regulation at prekindergarten. There were three main findings. First, fathers overwhelmingly used commands (e.g., "Do that.") to promote compliance in their 24-month-old children. Second, children's vocabulary skills predicted fathers' regulatory behaviors during a father-child interaction whereas children's gender predicted fathers' regulatory language during an interaction. Third, controlling for maternal supportiveness, fathers' regulatory behaviors at 24 months predicted children's sustained attention at pre-K whereas fathers' regulatory language at 24 months predicted children's emotion regulation at pre-K. Our findings highlight the importance of examining paternal contributions to children's regulatory skills. © 2014 Michigan Association for Infant Mental Health.

  13. Regulatory aspects of criticality control in Australia

    International Nuclear Information System (INIS)

    Zimin, Sergei

    2003-01-01

    With the creation of Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) the Australian approach to criticality safety was revisited. Consistency with international best practices is required by the Act that created ARPANSA and this was applied to practices in criticality safety adopted in other countries. This required extensive regulatory efforts both in auditing the major Australian Nuclear Operator, Australian Nuclear Science and Technology Organisation (ANSTO), and assessing the existing in Australia criticality safety practices and implementing the required changes using the new legislative power of ARPANSA. The adopted regulatory approach is formulated through both the issued by ARPANSA licenses for nuclear installations (including reactors, fuel stores and radioactive waste stores) and the string of new regulatory documents, including the Regulatory Assessment Principles and the Regulatory Assessment Guidelines for criticality safety. The main features of the adopted regulation include the requirements of independent peer-review, ongoing refresher training coupled with annual accreditation and the reliance on the safe design rather than on an administrative control. (author)

  14. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  15. Relating Deformation and Thermodynamics: An Opportunity for Rethinking Basic Concepts of Continuum Mechanics

    Directory of Open Access Journals (Sweden)

    Giuseppe Guzzetta

    2013-06-01

    Full Text Available In order to treat deformation as one of the processes taking place in an irreversible thermodynamic transformation, two main conditions must be satisfied: (1 strain and stress should be defined in such a way that the modification of the symmetry of these tensorial quantities reflects that of the structure of the actual material of which the deforming ideal continuum is the counterpart; and (2 the unique decomposition of the above tensors into the algebraic sum of an isotropic and an anisotropic part with different physical meanings should be recognized. The first condition allows the distinction of the energy balance in irrotational and rotational deformations; the second allows the description of a thermodynamic transformation involving deformation as a function of both process quantities, whose values depend on the specific transition, or path, between two equilibrium states, and of state quantities, which describe equilibrium states of a system quantitatively. One of the main conclusions that can be drawn is that, dealing with deformable materials, the quantities that must appear in thermodynamic equations cannot be tensorial quantities, such as the stress tensor and the infinitesimal or finite strain tensor usually considered in continuum mechanics (or, even worse, their components. The appropriate quantities should be invariants involved by the strain and stress tensors here defined. Another important conclusion is that, from a thermodynamic point of view, the consideration of the measurable volume change occurring in an isothermal deformation does not itself give any meaningful information.

  16. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    Science.gov (United States)

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  17. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  18. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics.

    Directory of Open Access Journals (Sweden)

    Gennady M Verkhivker

    Full Text Available Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2

  19. Radiation practices and regulatory control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The general principles to be observed in the regulatory control of ionizing radiation use and practices are specified in the guide. It also takes into account of additions and alterations needed for for compliance with the European Union (EU) directives that have not been mentioned in other STUK/ST-guides. (6 refs.).

  20. Radiation practices and regulatory control

    International Nuclear Information System (INIS)

    1997-01-01

    The general principles to be observed in the regulatory control of ionizing radiation use and practices are specified in the guide. It also takes into account of additions and alterations needed for for compliance with the European Union (EU) directives that have not been mentioned in other STUK/ST-guides. (6 refs.)

  1. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  2. New perspectives in thermodynamics

    International Nuclear Information System (INIS)

    Serrin, J.

    1986-01-01

    The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics

  3. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions

    Directory of Open Access Journals (Sweden)

    Jan Dolfing

    2017-12-01

    Full Text Available Souring is the undesirable production of hydrogen sulfide (H2S in oil reservoirs by sulfate-reducing bacteria (SRB. Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB. Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2 and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection.

  4. Influence of thermodynamic mechanism of inter- facial adsorption on purifying air-conditioning engineering under intensification of electric field

    Directory of Open Access Journals (Sweden)

    Chen Yun-Yu

    2016-12-01

    Full Text Available As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.

  5. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  6. A balance of activity in brain control and reward systems predicts self-regulatory outcomes.

    Science.gov (United States)

    Lopez, Richard B; Chen, Pin-Hao A; Huckins, Jeremy F; Hofmann, Wilhelm; Kelley, William M; Heatherton, Todd F

    2017-05-01

    Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants' food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters' control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. © The Author (2017). Published by Oxford University Press.

  7. Development and implementation of the regulatory control of sources in Latin American Model Project countries

    International Nuclear Information System (INIS)

    Ferruz Cruz, P.

    2001-01-01

    After a general assessment of the situation regarding radiation safety and the radiation protection infrastructure in Latin American countries, several of them were invited to participate in a Model Project oriented, in some cases, towards establishing a mechanism for national regulatory control of radiation sources, and in others, towards upgrading their national control programme. All these activities aimed at reaching an effective and sustainable radiation protection infrastructure based on international basic safety standards. The paper presents a general overview of the current situation with regard to radiation protection within the Model Project countries in Latin America after almost five years of activities. It includes: the implementation of regulatory issues; the control of occupational, medical and public exposures; emergency response and waste safety issues. The paper also presents some lessons learned during implementation concerning the numerous activities involved in this interregional project. (author)

  8. Mixed 2D molecular systems: Mechanic, thermodynamic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Beno, Juraj [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Weis, Martin [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)], E-mail: Martin.Weis@stuba.sk; Dobrocka, Edmund [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04-SK Bratislava (Slovakia); Hasko, Daniel [International Laser Centre, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)

    2008-08-15

    Study of Langmuir monolayers consisting of stearic acid (SA) and dipalmitoylphosphatidylcholine (DPPC) molecules was done by surface pressure-area isotherms ({pi}-A), the Maxwell displacement current (MDC) measurement, X-ray reflectivity (XRR) and atomic force microscopy (AFM) to investigate the selected mechanic, thermodynamic and dielectric properties based on orientational structure of monolayers. On the base of {pi}-A isotherms analysis we explain the creation of stable structures and found optimal monolayer composition. The dielectric properties represented by MDC generated monolayers were analyzed in terms of excess dipole moment, proposing the effect of dipole-dipole interaction. XRR and AFM results illustrate deposited film structure and molecular ordering.

  9. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  10. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis.

    Science.gov (United States)

    Qi, Xin; Fichthorn, Kristen A

    2017-10-19

    Though many experimental studies have documented that certain solution-phase additives can play a key role in the shape-selective synthesis of metal nanocrystals, the origins and mechanisms of this shape selectivity are still unclear. One possible role of such molecules is to thermodynamically induce the equilibrium shape of a nanocrystal by altering the interfacial free energies of the facets. Using a multi-scheme thermodynamic integration method that we recently developed [J. Chem. Phys., 2016, 145, 194108], we calculate the solid-liquid interfacial free energies γ sl and investigate the propensity to achieve equilibrium shapes in such syntheses. We first apply this method to Ag(100) and Ag(111) facets in ethylene glycol solution containing polyvinylpyrrolidone (PVP), to mimic the environment in polyol synthesis of Ag nanocrystals. We find that although PVP has a preferred binding to Ag(100), its selectivity is not sufficient to induce a thermodynamic preference for {100}-faceted nanocubes, as has been observed experimentally. This indicates that PVP promotes Ag nanocube formation kinetically rather than thermodynamically. We further quantify the thermodynamic influence of adsorbed solution-phase additives for generic molecules, by building a γ sl ratio/nanocrystal shape map as a function of zero-temperature binding energies. This map can be used to gauge the efficacy of candidate additive molecules for producing targeted thermodynamic nanocrystal shapes. The results indicate that only additives with a strong facet selectivity can impart significant thermodynamic-shape change. Therefore, many of the nanocrystals observed in experiments are likely kinetic products.

  11. Regulatory control of radiation sources in Slovakia

    International Nuclear Information System (INIS)

    Auxtova, L.

    2001-01-01

    In Slovakia, there are two regulatory authorities. Regulatory control of the utilization of nuclear energy, based on the Slovak National Council's law No. 130/1998 on the peaceful uses of nuclear energy, is exercised by the Nuclear Regulatory Authority of the Slovak Republic. The second regulatory authority - the Ministry of Health - is empowered by law No. 72/1994 on the protection of human health to license radiation sources and is responsible for radiation protection supervision (there are nearly 3000 establishments with sealed sources, radiation generators and unsealed sources in Slovakia). Pursuant to a new radiation protection regulation based on international standards, radiation sources are to be categorized in six classes according to the associated exposure and contamination hazards. A national strategy for improving the safety of radiation sources over their life-cycle and for the management of disused and orphan sources is being prepared for governmental approval. (author)

  12. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  13. Delegação e controle político das agências reguladoras no Brasil Delegation and political control of the regulatory agencies in Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Meirelles

    2006-08-01

    Full Text Available A partir de um esforço de sistematização dos mecanismos de controle político previstos no modelo institucional originalmente concebido para as agências reguladoras, este artigo avalia os mecanismos de controle político presentes no arcabouço institucional das agências reguladoras independentes (ARIs brasileiras e analisa as alterações relacionadas ao controle político introduzidas pelo projeto de lei encaminhado pelo governo ao Congresso em 12 de abril de 2004. Após contextualizar o debate sobre o controle político das ARIs no Brasil, o artigo discute as relações entre delegação e responsabilização. Em seguida, na busca de um parâmetro para avaliar o modelo brasileiro de agências reguladoras (ARs, identifica os instrumentos de controle político utilizados na experiência americana. Finalmente, avalia a realidade institucional atual das ARIs brasileiras e comenta as contribuições do recente projeto de lei em relação ao controle político das agências.This article systematizes the political control mechanisms provided by the institutional model originally conceived for the regulatory agencies in order to assess the political control mechanisms in the institutional framework of the Brazilian independent regulatory agencies (IRAs and analyze the political control changes introduced by the law proposed by the government to Congress in April 12, 2004. After putting into context the debate on political control over the Brazilian IRAs, the article discusses the relationship between delegation and accountability. Then, so as to find a parameter for assessing the Brazilian regulatory agency model, it identifies the political control mechanisms used by the American experience. Finally, it assesses the current institutional situation of the Brazilian IRAs and comments on the contribution of the recent law proposal in relation to agency political control.

  14. Regulatory control of radiation sources in the Philippines

    International Nuclear Information System (INIS)

    Daroy, Rosita R.

    1995-01-01

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI's regulatory functions are presented. (author)

  15. An alternative formulation of classical mechanics based on an analogy with thermodynamics

    International Nuclear Information System (INIS)

    Teruel, Ginés R Pérez

    2013-01-01

    We study new Legendre transforms in classical mechanics and investigate some of their general properties. The behaviour of the new functions is analysed under coordinate transformations. When invariance under different kinds of transformations is considered the new formulation is found to be completely equivalent to the usual Lagrangian formulation, recovering well-established results such as conservation of angular momentum. Furthermore, a natural generalization of the Poisson bracket is found to be inherent to the formalism introduced. On the other hand, we find that with a convenient redefinition of the Lagrangian, L ' =-L, it is possible to establish an exact one-to-one mathematical correspondence between the thermodynamic potentials and the new potentials of classical mechanics. (paper)

  16. Regulatory control of maintenance activities in Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Calvo, J.C.; Caruso, G.

    2000-01-01

    The main maintenance objective is to assure that the safety features of structures, components and systems of nuclear power plants are kept as designed. Therefore, there is a direct relationship between safety and maintenance. Owing to the above mentioned, maintenance activities are considered a relevant regulatory issue for the Argentine Nuclear Regulatory Authority (ARN). This paper describes the regulatory control to maintenance activities of Argentine nuclear power plants. It also addresses essential elements for maintenance control, routine inspections, special inspections during planned outages, audits and license conditions and requirements. (author)

  17. Regulatory control of radiation sources in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Daroy, Rosita R

    1996-12-31

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI`s regulatory functions are presented. (author). Paper presented during the IAEA Regional (RCA) Workshop on System of Notification, Registration, Licensing, and Control of Radiation Sources and Installations, Jakarta, Indonesia, 24-28 April 1995. 6 refs., 2 figs., 12 tabs.

  18. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  19. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  20. Thermodynamic control of anvil cloud amount

    Science.gov (United States)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  1. A low pressure thermodynamic cycle for electric power generation without mechanical compressor

    International Nuclear Information System (INIS)

    Proto, G.; Lenti, R.

    1996-01-01

    According to the 2 nd thermodynamic law there is no compulsion to have an expansion from high pressure level to atmospheric pressure, the only reason relying upon the minimization of the plant volumetry which is just one of the overall cost parameters. A thermodynamic cycle without rotating machinery does exist in avionic applications like the RAMJET, in which air flowing at supersonic speed is compressed in a convergent duct before being heated in the combustion chamber and then expanded to a much higher MACH number. The concept discussed here, however, is referred to a physical principle of different nature. In fact the inlet air flow is quasi static, while the propelling kinetic energy is the residual energy following the gas combustion, expansion, cooling in Supersonic Flow and ultimately its fluidic compression in a convergent duct. The concept theoretically relies upon the so called 'Simple T 0 change' transformation, according to which, in a Supersonic Flow at constant cross section and without mechanical dissipation, a decrease in the gas stagnation temperature (T 0 ) will turn into an increase of its stagnation pressure. The paper discusses the feasibility of such a process, focusing on a specific conceptual application to a subatmospheric pressure, high temperature Brayton cycle getting to the conclusion that, even with the materials technology limitations, there is the potential for significant improvement of the actual thermodynamic cycle efficiency. (author). 6 figs.,1 tab., 2 refs

  2. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  3. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  4. LOW-INCOME, MINORITY FATHERS’ CONTROL STRATEGIES AND THEIR CHILDREN'S REGULATORY SKILLS

    OpenAIRE

    Malin, Jenessa L.; Cabrera, Natasha J.; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith Lee

    2014-01-01

    The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24-months and children's regulatory skills at pre-kindergarten (pre-K). Using a sample of low-income minority families with 2-year-olds from the Early Head Start Evaluation Research Program (n = 71) we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24-months (e.g., regulatory behavior and regulatory language), an...

  5. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.

    Science.gov (United States)

    Zhang, Yingtong; Navarro, Eusebio; Cánovas-Márquez, José T; Almagro, Lorena; Chen, Haiqin; Chen, Yong Q; Zhang, Hao; Torres-Martínez, Santiago; Chen, Wei; Garre, Victoriano

    2016-06-07

    previously unknown regulatory mechanism that represses carotenoid biosynthesis independently and in parallel to crgA. The use of a mucoral model such as M. circinelloides can allow the identification of the regulatory mechanisms that control carotenoid biosynthesis, which can then be manipulated to generate tailored strains of biotechnological interest. Mutants in the repressor crgA and in the newly identified regulatory mechanism generated in this work accumulate high levels of β-carotene and are candidates for further improvements in biotechnological β-carotene production.

  6. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  7. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  8. Regulatory aspects of low doses control in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1997-01-01

    In the present paper are described the status of regulatory aspects of low doses control as well as the existing procedures for their implementation in Albania. According to new Radiological Protection Act, approved by Parliament in 1995, the establishment of the infrastructures in radiation protection area is in course, accompanied by the installation and functioning of new equipment for low dose control. Based in many years experience it is concluded that personal doses of the workers added by practices in Albania are 1/10 of dose Emits. Some particular cases of overexposured workers were investigated. Last times the elements of the optimisation procedures (QA and QC) are outlined in the frame of improving regulatory aspects of low doses control. (author)

  9. The plant cytoskeleton controls regulatory volume increase.

    Science.gov (United States)

    Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter

    2013-09-01

    The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  11. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  12. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  13. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease.

    Science.gov (United States)

    Shooshtari, Parisa; Huang, Hailiang; Cotsapas, Chris

    2017-07-06

    Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  15. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    International Nuclear Information System (INIS)

    Davoodi, J.; Ahmadi, M.; Rafii-Tabar, H.

    2010-01-01

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu 3 Pd and CuPd 3 ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  16. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Cinar, Can

    2013-01-01

    Highlights: • Thermodynamic analysis of Stirling engine with rhombic-drive mechanism was performed. • The analysis was performed for smooth and grooved displacer cylinders. • The convective heat transfer coefficient was predicted using the experimental results. • The experimental results was compared with the theoretical results. - Abstract: This paper presents a theoretical investigation on kinematic and thermodynamic analysis of a beta type Stirling engine with rhombic-drive mechanism. Variations in the hot and cold volumes of the engine were calculated using kinematic relations. Two different displacer cylinders were investigated: one of them had smooth inner surface and the other had axial slots grooved into the cylinder to increase the heat transfer area. The effects of the slots grooved into the displacer cylinder inner surface on the performance were calculated using nodal analysis in Fortran. The effects of working fluid mass on cyclic work were investigated using 200, 300 and 400 W/m 2 K convective heat transfer coefficients for smooth and grooved displacer cylinders. The variation of engine power with engine speed was obtained by using the same convective heat transfer coefficients and isothermal conditions. The convective heat transfer coefficient was predicted as 104 W/m 2 K using the experimental results measured from the prototype engine under atmospheric conditions. The variation in cyclic work determined by the experimental study was also compared with the theoretical results obtained for different convective heat transfer coefficients and isothermal conditions

  17. Correlation between thermodynamic and mechanical properties in Ta-W

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Sandra; Mueller, Stefan [Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg (Germany)

    2015-07-01

    Varying an alloy's concentration or alloying constituents strongly influences its structural and mechanical properties. Modern simulation methods like density functional theory in combination with the cluster expansion make the whole configurational space accessible. This way, also metastable structures may be considered, which are experimentally difficult to obtain. Recent results for several face-centered cubic (fcc) binary metal alloys suggest a linear correlation between thermodynamic stability and elastic properties at a fixed stoichiometry. This study aims to investigate the generality of these findings by considering a similar correlation for binary body-centered cubic (bcc) alloys. As a model system, Ta-W was chosen due to its simple phase diagram with solid solution in the whole concentration range. Interestingly, the elastic constants c{sub 44} and c{sub 12} show an opposing trend to that observed for fcc alloys: Energetically favorable structures are mechanically weaker than those further away from the ground-state line. This phenomenon may be related to the anomalous behavior of c{sub 44} with increasing pressure or temperature, which has been reported in the literature for Ta-W. We will discuss the interesting behavior of Ta-W with regard to its electronic structure.

  18. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  19. Thermodynamic evolution far from equilibrium

    Science.gov (United States)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  20. Regulatory Control of Radioactive Sources in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.; Martin, J.L., E-mail: mrm@csn.es [Nuclear Safety Council, Madrid (Spain)

    2011-07-15

    The arrangements for the regulatory control of the safety and security of sealed radioactive sources in Spain are described. Emphasis is given to the situations which are most likely to result in the loss of control of sources and on the procedures introduced to reduce the likelihood of losses in these cases. Finally, the strategy for locating sources which have been lost from control (orphan sources) is described. (author)

  1. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  2. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  3. Regulatory control, nuclear safety regulation and waste management in Spain

    International Nuclear Information System (INIS)

    Martin, A.

    2000-01-01

    This article presents the challenges that faces the spanish regulatory authority. The deregulation of electricity industry imposes severe changes in nuclear power economics and forces nuclear power to compete with other sources of electricity. A pressure is perceived for regulatory effectiveness primarily since the cost of regulation is a component of the cost of the product. This effectiveness gain in regulatory control will be reached through systematic strategic analysis, formulation and implementation. The regulatory aspects of plant life extension and of waste management are examined

  4. A constitutive model for magnetostriction based on thermodynamic framework

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2016-01-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.

  5. Regulatory control of radiation sources and radioactive materials in the Czech Republic

    International Nuclear Information System (INIS)

    Drabova, D.; Prouza, Z.

    2001-01-01

    The paper describes legal and regulatory provisions for radiation protection and safe use of sources of ionizing radiation in the Czech Republic with special emphasis on aspects of bringing activities under regulatory control and releasing them from it. It covers the development of a new legal framework, the work of the regulatory body, an overview of sources in use and provisions to achieve effective regulatory control of facilities and releases of radioactive material into the environment. Also, it describes reported unusual events with a proposed scheme for their classification and evaluation. (author)

  6. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  7. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  8. Regulatory Framework for Controlling the Research Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2009-01-01

    Decommissioning is one of important stages in construction and operation of research reactors. Currently, there are three research reactors operating in Indonesia. These reactors are operated by the National Nuclear Energy Agency (BATAN). The age of the three research reactors varies from 22 to 45 years since the reactors reached their first criticality. Regulatory control of the three reactors is conducted by the Nuclear Energy Regulatory Agency (BAPETEN). Controlling the reactors is carried out based on the Act No. 10/1997 on Nuclear Energy, Government Regulations and BAPETEN Chairman Decrees concerning the nuclear safety, security and safeguards. Nevertheless, BAPETEN still lack of the regulation, especially for controlling the decommissioning project. Therefore, in the near future BAPETEN has to prepare the regulations for decommissioning, particularly to anticipate the decommissioning of the oldest research reactors, which probably will be done in the next ten years. In this papers author give a list of regulations should be prepared by BAPETEN for the decommissioning stage of research reactor in Indonesia based on the international regulatory practice

  9. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  10. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  11. Investigation of thermodynamic and mechanical properties of AlyIn1-yP alloys by statistical moment method

    Science.gov (United States)

    Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Tuyen, Nguyen Viet; Hai, Tran Thi; Hieu, Ho Khac

    2018-03-01

    The thermodynamic and mechanical properties of III-V zinc-blende AlP, InP semiconductors and their alloys have been studied in detail from statistical moment method taking into account the anharmonicity effects of the lattice vibrations. The nearest neighbor distance, thermal expansion coefficient, bulk moduli, specific heats at the constant volume and constant pressure of the zincblende AlP, InP and AlyIn1-yP alloys are calculated as functions of the temperature. The statistical moment method calculations are performed by using the many-body Stillinger-Weber potential. The concentration dependences of the thermodynamic quantities of zinc-blende AlyIn1-yP crystals have also been discussed and compared with those of the experimental results. Our results are reasonable agreement with earlier density functional theory calculations and can provide useful qualitative information for future experiments. The moment method then can be developed extensively for studying the atomistic structure and thermodynamic properties of nanoscale materials as well.

  12. Authority Defied : Need for Cognitive Closure Influences Regulatory Control When Resisting Authority

    NARCIS (Netherlands)

    Damen, Tom G. E.; van Leeuwen, Matthijs L.; Dijksterhuis, Ap; van Baaren, Rick B.

    The present studies examined whether differences in need for cognitive closure (NCC) were related to differences in regulatory control when confronted with authority. In two studies, levels of regulatory control were measured when participants resisted (Study 1; N = 46) or prepared to resist the

  13. Authority Defied: Need for Cognitive Closure Influences Regulatory Control When Resisting Authority

    NARCIS (Netherlands)

    Damen, T.G.E.; Leeuwen, M.L. van; Dijksterhuis, A.J.; Baaren, R.B. van

    2014-01-01

    The present studies examined whether differences in need for cognitive closure (NCC) were related to differences in regulatory control when confronted with authority. In two studies, levels of regulatory control were measured when participants resisted (Study 1; N = 46) or prepared to resist the

  14. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    Energy Technology Data Exchange (ETDEWEB)

    Davoodi, J., E-mail: jdavoodi@znu.ac.ir [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Ahmadi, M. [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Rafii-Tabar, H. [Department of Medical Physics and Biomedical Engineering and Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2010-06-25

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu{sub 3}Pd and CuPd{sub 3} ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  15. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    . The functionality on the P4-ATPase complex is essential for several cellular processes, such as vesicle-mediated transport. However, the specific role of flippase activity in vesicle biogenesis and the regulatory mechanism behind this process is still poorly understood. In these studies, we identified...... affordable alternative using a microscope-based cytometer. This system can simultaneously provide information on flippase activity and expression levels. Taken together, the findings described in this thesis provide new tools for P4-ATPase characterization and valuable insights into the regulation...

  16. An Overview of a Continuum Mechanic Approach to a Thermodynamic Model of Failure

    National Research Council Canada - National Science Library

    Palazotto, A

    1998-01-01

    .... An overview of the thermodynamic definitions, concepts, and principles will be presented. This overview of the thermodynamics is necessary to provided the background needed to understand the damage model, which is based on thermodynamic principles...

  17. [Regulatory Mechanisms of PD-L1 Expression and Its Role in Immune Evasion].

    Science.gov (United States)

    Kataoka, Keisuke

    2017-11-01

    Immune checkpoint blockade therapy using anti-PD-1 or anti-PD-L1 antibodies can unleash anti-tumor immunity and induce durable remission in a variety ofhuman cancers. However, the regulatory mechanisms of PD-L1 expression mediating immune evasion ofcancer cells have not been fully elucidated, including the genetic alterations causing PD-L1 overexpression. Recently, we have reported a novel genetic mechanism ofimmune evasion associated with structural variations(SVs)disrupting the 3'-untranslated region(UTR)ofthe PD-L1 gene in various malignancies, such as aggressive lymphomas and gastrointestinal cancers. Despite a heterogenous nature ofthese SVs, they are closely associated with a marked upregulation of PD-L1 expression, which augments tumor growth and escape from anti-tumor immunity. Here we present an overview of the regulatory mechanisms of PD-L1 expression in cancer cells, highlighting the genetic mechanisms of PD-L1 constitutive activation, with specific focus on PD-L1 3'-UTR disruption.

  18. Regulatory design for RES-E support mechanisms: Learning curves, market structure, and burden-sharing

    International Nuclear Information System (INIS)

    Batlle, C.; Pérez-Arriaga, I.J.; Zambrano-Barragán, P.

    2012-01-01

    Drawing from relevant experiences in power systems around the world, this paper offers a review of existing policy support mechanisms for RES-E, with a detailed analysis of their regulatory implications. While recent studies provide an account of current RES-E support systems, in this paper we focus on some of the impacts these mechanisms have on the overall energy market structure and its performance. Given the rising importance of RES-E in systems everywhere, these impacts should no longer be overlooked. - Highlights: ► This paper offers a critical review of RES-E support mechanisms and their regulatory implications. ► The discussion focuses on how the different schemes impact the performance of the energy markets. ► We propose to redesign of current RES-E mechanisms to optimize incentives and market performance. ► Our recommendation is also to gradually move from price-based mechanisms to auctions.

  19. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  20. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  1. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  2. Will There Be Future Deceleration? A Study of Particle Creation Mechanism in Nonequilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Supriya Pan

    2015-01-01

    Full Text Available The paper deals with nonequilibrium thermodynamics based on adiabatic particle creation mechanism with the motivation of considering it as an alternative choice to explain the recent observed accelerating phase of the universe. Using Friedmann’s equations, it is shown that the deceleration parameter (q can be obtained from the knowledge of the particle production rate (Γ. Motivated by thermodynamical point of view, cosmological solutions are evaluated for the particle creation rates in three cosmic phases, namely, inflation, matter dominated era, and present late time acceleration. The deceleration parameter (q is expressed as a function of the redshift parameter (z, and its variation is presented graphically. Also, statefinder analysis has been presented graphically in three different phases of the universe. Finally, two noninteracting fluids with different particle creation rates are considered as cosmic substratum, and deceleration parameter (q is evaluated. Whether more than one transition of q is possible or not is examined by graphical representations.

  3. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  4. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    Science.gov (United States)

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  5. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  6. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  7. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  8. Regulatory control for safe usage of radiation sources in India

    International Nuclear Information System (INIS)

    Ghosh, P.K.; Sonawane, A.U.

    1998-01-01

    The widespread applications of radioactive materials and radiation generating equipment in the field of industry, medicine agriculture and research in India necessitated the establishment of an efficient regulatory framework and consequently the Atomic Energy Regulatory Board (AERB) was constituted to exercise regulatory control over the safe usage of the radioactive materials and the radiation generating equipment. The Atomic Energy Act, 1962 and the Radiation Protection Rules, 1971 promulgated under the Act forms the basis of radiation safety in India and Chairman, AERB is the Competent Authority to enforce the regulatory provisions of the Radiation Protection Rules, 1971, for safe use of radiation source in the country. AERB has published a number of documents such as Radiation Surveillance Procedures, Standards, Codes, Guides and Manuals for safe use and handling of radioactive materials and radiation generating equipment. Apart from nuclear fuel cycle documents, these publications pertain to industrial radiography, medical application of radiation, transport of radioactive material, industrial gamma irradiators, X-ray units etc. AERB safety related publications are based on international standards e.g. BSS, IAEA, ICRP, ISO etc. This paper outlines the methodology of regulatory control exercised by AERB for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  9. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems

    OpenAIRE

    Chen, Yvonne Y.; Jensen, Michael C.; Smolke, Christina D.

    2010-01-01

    RNA molecules perform diverse regulatory functions in natural biological systems, and numerous synthetic RNA-based control devices that integrate sensing and gene-regulatory functions have been demonstrated, predominantly in bacteria and yeast. Despite potential advantages of RNA-based genetic control strategies in clinical applications, there has been limited success in extending engineered RNA devices to mammalian gene-expression control and no example of their application to functional res...

  10. Thermodynamics for Chemists, Physicists and Engineers

    CERN Document Server

    Hołyst, Robert

    2012-01-01

    Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...

  11. Regulatory BC1 RNA in Cognitive Control

    Science.gov (United States)

    Iacoangeli, Anna; Dosunmu, Aderemi; Eom, Taesun; Stefanov, Dimitre G.; Tiedge, Henri

    2017-01-01

    Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and…

  12. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  13. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  14. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  15. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  16. The regulatory control of ionizing radiation sources in Lithuania

    International Nuclear Information System (INIS)

    Mastauskas, A.; Ziliukas, J.; Morkunas, G.

    1998-01-01

    The Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for radiation protection of the public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources, which includes keeping the registry, investigating persons arrested while illegally carrying or in possession of radioactive material, decision making and control of users of radioactive sources. The computer based registry contains a directory of more than 24,000 sources and some 800 users in research, medicine and industry. Most of these sources are found in smoke detectors and X ray equipment. The potentially most dangerous sources for therapy and industry (sealed and unsealed) are also listed in this registry. Problems connected with the regulatory control of radioactive sources in Lithuania are presented and their solution is discussed. (author)

  17. On the application of thermodynamics of corrosion for service life design of concrete structures

    DEFF Research Database (Denmark)

    Küter, Andre; Geiker, Mette Rica; Møller, Per

    2010-01-01

    There are unexploited possibilities in the application of thermodynamics of corrosion for service life design (SLD) of concrete structures. Thermodynamics provides means for insightful descriptions of corrosion mechanisms and of corrosion protection mechanisms. Strategies for corrosion protection...... of the application of thermodynamics for SLD and gives examples of two applications: description of corrosion processes and design of countermeasures. Emphasis is set on chloride induced corrosion....... can be based on thermodynamically consistent corrosion mechanisms and evaluation of existing and design of new countermeasures can be performed using thermodynamics. Similarly, materials concepts for embedded electrodes can be designed using thermodynamics. The present paper provides a brief outline...

  18. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  19. Characterization of a putative cis-regulatory element that controls transcriptional activity of the pig uroplakin II gene promoter

    International Nuclear Information System (INIS)

    Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi; Cho, Ssang-Goo; Park, Chankyu; Oh, Jae-Wook; Song, Hyuk; Kim, Jae-Hwan; Kim, Jin-Hoi

    2011-01-01

    Highlights: → The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. → The core promoter was located in the 5F-1. → Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. → These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, but little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.

  20. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  1. Electronic, thermodynamics and mechanical properties of LaB6 from first-principles

    Science.gov (United States)

    Ivashchenko, V. I.; Turchi, P. E. A.; Shevchenko, V. I.; Medukh, N. R.; Leszczynski, Jerzy; Gorb, Leonid

    2018-02-01

    Up to date, the electronic structure properties of amorphous lanthanum hexaboride, a-LaB6, were not yet investigated, and the thermodynamic and mechanical properties of crystalline lanthanum hexaboride (c-LaB6) were studied incompletely. The goal of this work was to fill these gaps in the study of lanthanum hexaborides. The electronic and phonon structures, thermodynamic and mechanical properties of both crystalline and amorphous lanthanum hexaborides (c-LaB6, a-LaB6, respectively) were investigated within the density functional theory. An amorphyzation of c-LaB6 gives rise to the metal - semiconductor transition. The thermal conductivity decreases on going from c-LaB6 to a-LaB6. The elastic moduli, hardness, ideal tensile and shear strengths of a-LaB6 are significantly lower compared to those of the crystalline counterpart, despite the formation of the icosahedron-like boron network in the amorphous phase. For c-LaB6, the stable boron octahedrons are preserved after the failure under tensile and shear strains. The peculiarity in the temperature dependence of heat capacity, Cp(T), at 50 K is explained by the availability of a sharp peak at 100 cm-1 in the phonon density of states of c-LaB6. An analysis of the Fermi surface indicates that this peak is not related to the shape of the Fermi surface, and is caused by the vibration of lanthanum atoms. In the phonon spectrum of a-LaB6, the peak at 100 cm-1 is significantly broader than in the spectrum of c-LaB6, for which reason the anomaly in the Cp(T) dependence of a-LaB6 does not appear. The calculated characteristics are in good agreement with the available experimental data.

  2. Exploring associations between self-regulatory mechanisms and neuropsychological functioning and driver behaviour after brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Johansen, Hans J; Ulleberg, Pål; Lundqvist, Anna; Schanke, Anne-Kristine

    2018-04-01

    The objective of this prospective one-year follow-up study was to explore the associations between self-regulatory mechanisms and neuropsychological tests as well as baseline and follow-up ratings of driver behaviour. The participants were a cohort of subjects with stroke and traumatic brain injury (TBI) who were found fit to drive after a multi-disciplinary driver assessment (baseline). Baseline measures included neuropsychological tests and ratings of self-regulatory mechanisms, i.e., executive functions (Behavior Rating Inventory of Executive Function-Adult Version; BRIEF-A) and impulsive personality traits (UPPS Impulsive Behavior Scale). The participants rated pre-injury driving behaviour on the Driver Behaviour Qestionnaire (DBQ) retrospectively at baseline and after one year of post-injury driving (follow-up). Better performance on neuropsychological tests was significantly associated with more post-injury DBQ Violations. The BRIEF-A main indexes were significantly associated with baseline and follow-up ratings of DBQ Mistakes and follow-up DBQ Inattention. UPPS (lack of) Perseverance was significantly associated with baseline DBQ Inattention, whereas UPPS Urgency was significantly associated with baseline DBQ Inexperience and post-injury DBQ Mistakes. There were no significant changes in DBQ ratings from baseline (pre-injury) to follow-up (post-injury). It was concluded that neuropsychological functioning and self-regulatory mechanisms are related to driver behaviour. Some aspects of driver behaviour do not necessarily change after brain injury, reflecting the influence of premorbid driving behaviour or impaired awareness of deficits on post-injury driving behaviour. Further evidence is required to predict the role of self-regulatory mechanisms on driver behaviour and crashes or near misses.

  3. Optima and bounds for irreversible thermodynamic processes

    International Nuclear Information System (INIS)

    Hoffmann, K.H.

    1990-01-01

    In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method

  4. Regulatory control analysis and design for sewer systems

    DEFF Research Database (Denmark)

    Mollerup, Ane Loft; Mikkelsen, Peter Steen; Thornberg, Dines

    2015-01-01

    A systematic methodology for regulatory control analysis and design is adapted for sewer system operation and evaluated. The main challenge with adapting the methodology is the handling of the stochastic and transient nature of the rainfall disturbances, inherent to sewer system operation...

  5. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  6. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  7. Critical protein GAPDH and its regulatory mechanisms in cancer cells

    International Nuclear Information System (INIS)

    Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described

  8. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  9. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    Science.gov (United States)

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    -called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  11. Continuous improvement of the regulatory framework for the control of medical exposure

    International Nuclear Information System (INIS)

    Larcher, Ana M.; Ortiz Lopez, Pedro; Arias, Cesar; Marechal, Maria H.; Hernandez Alvarez, Ramon; Ferrer Garcia, Natividad; Castaneda Mucino, Antonia; Faller, Blanca

    2008-01-01

    One of the key elements to guide the improvement of the regulatory control is the availability of a self-assessment tool for regulatory performance. Although there is general guidance on self-assessment for regulators and users (IAEA), there is a need for more specific advice on how to address challenges and difficulties faced by regulatory bodies, when regulating radiation protection of patients. Examples of these challenges are the need for regulatory initiatives, in cooperation with health and education authorities, professional bodies and equipment suppliers, and to put in place necessary elements that are beyond responsibility of individual user of radiation, to enable them compliance with safety standards. Purpose: Within the programme of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, a project to develop such a self-assessment tool for the regulatory control of medical exposure has been designed. Method: National experiences in transposing and enforcing the international radiation safety standards, as to how the requirements are included in national regulations are reviewed. Further, difficulties to the implementation of safety requirements are analyzed and a self-assessment approach and possible regulatory solutions a are presented. Results and discussion: In this study the following documents are being produced: 1) transposition of international requirements into national regulations in the six countries of the Forum, 2) difficulties to implement and enforce the requirements, 3) guidance on self-assessment of regulatory framework for medical exposure, 4) suggested contribution to the revision of international radiation safety standards. (author)

  12. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    NARCIS (Netherlands)

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic

  13. Cost-benefit and regulatory decision making

    International Nuclear Information System (INIS)

    Harvie, J.

    1996-01-01

    The Atomic Energy Control Board is investigating the feasibility of developing methods for factoring cost-benefit considerations into its regulatory decision-making. This initiative results, in part, from the federal government policy requiring cost-benefit considerations to be taken into account in regulatory processes, and from the recommendations of an Advisory Panel on Regulatory Review in 1993, submitted to the Minister of Natural Resources Canada. One of these recommendations stated: 'that mechanisms be developed to examine cost benefit issues and work towards some consensus of opinion among stake holders: a task force on the subject could be an appropriate starting point'. (author)

  14. Licensing and regulatory control of nuclear power plants in Canada

    International Nuclear Information System (INIS)

    Atchison, R.J.

    1975-01-01

    The paper discusses the safety philosophy adopted in Canada, the safety criteria and regulatory requirements necessary for the application of this philosophy to reactor design and operation, and finally the means by which compliance with Board requirements is effected. It is emphasized that the effectiveness of regulatory control depends not only on the underlying philosophy but also on the detailed way in which it is applied. (orig./HP) [de

  15. High-risk medical devices, children and the FDA: regulatory challenges facing pediatric mechanical circulatory support devices.

    Science.gov (United States)

    Almond, Christopher S D; Chen, Eric A; Berman, Michael R; Less, Joanne R; Baldwin, J Timothy; Linde-Feucht, Sarah R; Hoke, Tracey R; Pearson, Gail D; Jenkins, Kathy; Duncan, Brian W; Zuckerman, Bram D

    2007-01-01

    Pediatric mechanical circulatory support is a critical unmet need in the United States. Infant- and child-sized ventricular assist devices are currently being developed largely through federal contracts and grants through the National Heart, Lung, and Blood Institute (NHLBI). Human testing and marketing of high-risk devices for children raises epidemiologic and regulatory issues that will need to be addressed. Leaders from the US Food and Drug Administration (FDA), NHLBI, academic pediatric community, and industry convened in January 2006 for the first FDA Workshop on the Regulatory Process for Pediatric Mechanical Circulatory Support Devices. The purpose was to provide the pediatric community with an overview of the federal regulatory process for high-risk medical devices and to review the challenges specific to the development and regulation of pediatric mechanical circulatory support devices. Pediatric mechanical circulatory support present significant epidemiologic, logistic, and financial challenges to industry, federal regulators, and the pediatric community. Early interactions with the FDA, shared appreciation of challenges, and careful planning will be critical to avoid unnecessary delays in making potentially life-saving devices available for children. Collaborative efforts to address these challenges are warranted.

  16. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  17. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong [Chongqing Jiaotong Univ., Chongqing (China). College of Materials Science and Engineering; Tang, Bin [Chongqing City Management College, Chongqing (China). Inst. of Finance and Trade; Gao, Tao [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-09-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C{sub V} and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  18. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    International Nuclear Information System (INIS)

    Yang, Rong; Tang, Bin; Gao, Tao

    2017-01-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C_V and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  19. Regulating the path from legacy recognition, through recovery to release from regulatory control.

    Science.gov (United States)

    Sneve, Malgorzata Karpow; Smith, Graham

    2015-04-01

    Past development of processes and technologies using radioactive material led to construction of many facilities worldwide. Some of these facilities were built and operated before the regulatory infrastructure was in place to ensure adequate control of radioactive material during operation and decommissioning. In other cases, controls were in place but did not meet modern standards, leading to what is now considered to have been inadequate control. Accidents and other events have occurred resulting in loss of control of radioactive material and unplanned releases to the environment. The legacy from these circumstances is that many countries have areas or facilities at which abnormal radiation conditions exist at levels that give rise to concerns about environmental and human health of potential interest to regulatory authorities. Regulation of these legacy situations is complex. This paper examines the regulatory challenges associated with such legacy management and brings forward suggestions for finding the path from: legacy recognition; implementation, as necessary, of urgent mitigation measures; development of a longer-term management strategy, through to release from regulatory control. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  1. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Deepak A. Deshpande

    2018-01-01

    Full Text Available Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+ signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3 and CD38-cyclic ADP-ribose (CD38/cADPR are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.

  2. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Science.gov (United States)

    Deshpande, Deepak A.; Guedes, Alonso G. P.; Graeff, Richard; Dogan, Soner; Subramanian, Subbaya; Walseth, Timothy F.

    2018-01-01

    Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+) signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3) and CD38-cyclic ADP-ribose (CD38/cADPR) are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed. PMID:29576747

  3. Regulatory control of low level radiation exposure in Tanzania

    International Nuclear Information System (INIS)

    Nyanda, A.M.; Muhogora, W.E.

    1997-01-01

    In Tanzania, the radiation protection law was issued in 1983. Under this law, the National Radiation Commission is responsible for safe uses of ionizing radiation. The regulatory control of the resulting doses from the uses of radiation sources in medicine, industry, research and teaching is presented. The system of control reflects the existing interactions between the National Radiation Commission and users through the established radiation protection infrastructure. From the national dose registry data, it is found that the highest annual individual doses over 10 years ago, came from less than 5% of total monitored workers and were in the range 10 - 15 mSv y -1 . The experienced radiation levels in uncontrolled areas of potential workplaces is less than 1 μSv h -1 . The possibility for associating such low dose levels to the effectiveness of the existing regulatory dose control framework is discussed. Despite of this achievement, the need to improve further the radiation protection and safety programs is found necessary. (author)

  4. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  5. Authority defied: need for cognitive closure influences regulatory control when resisting authority.

    Science.gov (United States)

    Damen, Tom G E; van Leeuwen, Matthijs L; Dijksterhuis, Ap; van Baaren, Rick B

    2014-08-01

    The present studies examined whether differences in need for cognitive closure (NCC) were related to differences in regulatory control when confronted with authority. In two studies, levels of regulatory control were measured when participants resisted (Study 1; N = 46) or prepared to resist the influence attempt of an authority figure (Study 2; N = 50). Results showed that resisting the influence attempt from a high-authority figure was more depleting for participants higher in NCC compared to individuals lower in NCC. However, when they were given instructions and time to prepare the act of resistance, individuals high in NCC actually showed an increase in regulatory control. Authority is usually viewed as a general principle of influence; however, the present studies suggest that there are individual differences that influence how people may experience interactions with authorities. © 2013 Wiley Periodicals, Inc.

  6. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  7. Introduction to the thermodynamics of solids

    International Nuclear Information System (INIS)

    Ericksen, J.L.

    1992-01-01

    This book addresses issues of thermodynamics associated with solids from a unique point of view. Professor Ericksen provides a perspective of thermodynamics which is based in material science and solid mechanics, and attempts to apply basic thermodynamics to a wide range of phenomena. The book is not written as a text-book, as it does not contain example problems or exercises, is directed primarily at researchers in solids. The author states that much of the book is controversial, and that many of his treatments of thermodynamics are not traditional. The author's assessment is accurate on both counts. However, there are several reasons to believe that many of the issues raised in the book are not so much controversial, but rather simply not well described, either by the author or by thermodynamicists, in general. The primary references for much of the thermodynamics in the book are historic in nature, and certainly worthy of consideration, but only a few current references are provided

  8. Continuous Improvement of the Regulatory Framework for the Control of Medical Exposure

    International Nuclear Information System (INIS)

    Larcher, A.M.; Ortiz lopez, Pedro; Arias, Cesar; Marechal, Maria H.; Hernandez Alvarez, Ramon; Ferrer Garcia, Natividad; Castaneda Mucino, Antonia; Faller, Blanca

    2011-01-01

    Background: One of the key elements to guide the improvement of the regulatory control is the availability of a self-assessment tool for regulatory performance. Although there is general guidance on self-assessment for regulators and users (IAEA), there is a need for specific advice on how to address challenges and difficulties faced by regulatory bodies, when regulating radiation protection of patients. Examples of these challenges are the need of regulatory initiatives, in cooperation with health and education authorities, professional bodies and equipment suppliers, and to put in place necessary elements that are beyond responsibility of individual users of radiation, to enable them compliance with safety standards. Purpose: within the programme of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, a project to develop such a self assessment tool for the regulatory control of medical exposure has been designed. Method: national experiences in transposing and enforcing the international radiation safety standards, as to how the requirements are included in national regulations are reviewed. Further, difficulties to the implementation of safety requirements are included in national regulations are analyzed and a self assessment approach and possible regulatory solutions are presented. Results and discussion: in tis study the following documents are being produced: 1) Transposition of international requirements into national regulations in the six countries of the Forum, 2) difficulties to implement and enforce the requirements, 3) guidance on self assessment of regulatory framework for medical exposure, 4) suggested contribution to the revision of international radiation safety standards. (authors)

  9. [Neuronal and hormonal regulatory mechanisms of tears production and secretion].

    Science.gov (United States)

    Mrugacz, Małgorzata; Zywalewska, Nella; Bakunowicz-Lazarczyk, Alina

    2005-01-01

    The ocular surface, tear film, lacrimal glands act as a functional unit to preserve the quality of the refractive surface of the eye, and to resist injury and protect the eye against bodily and environmental conditions. Homeostasis of this functional unit involves neuronal and hormonal regulatory mechanisms. The eye appears to be a target organ for sex hormones particulary the androgen, as they modulate the immune system and trophic functions of the lacrimal and Meibomian glands.

  10. Dual RNA regulatory control of a Staphylococcus aureus virulence factor.

    Science.gov (United States)

    Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice

    2014-04-01

    In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.

  11. Adolescent threat-related interpretive bias and its modification: the moderating role of regulatory control

    NARCIS (Netherlands)

    Salemink, E.; Wiers, R.W.

    2012-01-01

    Dual process models describe psychopathology as the consequence of an imbalance between a fast, impulsive system and a regulatory control system and have recently been applied to anxiety disorders. The aim of the current study was to specifically examine the role of a regulatory control system in

  12. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  13. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    International Nuclear Information System (INIS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-01-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  14. Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements

    Science.gov (United States)

    Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.

    2016-01-01

    The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646

  15. The thermodynamic solar energy; Le solaire thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  16. Regulatory issues of digital instrumentation and control system in Lungmen project

    International Nuclear Information System (INIS)

    Chuang, C.F.; Chou, H.P.

    2004-01-01

    The Lungmen Nuclear Power Station (LNPS) is currently under construction in Taiwan, which consists of 2 advanced boiling water reactor (ABWR) units. The instrumentation and control (IC) systems of the LNPS are based on the state-of-the-art modernized fully integrated digital design. These IC systems possess many advantages and distinguished features comparing to traditional analog IC systems, they enjoy set-point stability, self-diagnostic and automatic testing ability, fault tolerance and avoidance, low power requirements, data handling and storage capability, as well as enhanced human-machine interfaces. This paper presents regulatory overviews, regulatory requirements, current major regulatory issues, as well as the areas of regulatory concerns and the lessons learned on the digital IC systems in the Lungmen Project

  17. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  18. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.

    Science.gov (United States)

    Saunders, Lindsay R; McClay, David R

    2014-04-01

    Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.

  19. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  20. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  1. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    Science.gov (United States)

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  2. Clarifying the link between von Neumann and thermodynamic entropies

    Science.gov (United States)

    Deville, Alain; Deville, Yannick

    2013-01-01

    The state of a quantum system being described by a density operator ρ, quantum statistical mechanics calls the quantity - kTr( ρln ρ), introduced by von Neumann, its von Neumann or statistical entropy. A 1999 Shenker's paper initiated a debate about its link with the entropy of phenomenological thermodynamics. Referring to Gibbs's and von Neumann's founding texts, we replace von Neumann's 1932 contribution in its historical context, after Gibbs's 1902 treatise and before the creation of the information entropy concept, which places boundaries into the debate. Reexamining von Neumann's reasoning, we stress that the part of his reasoning implied in the debate mainly uses thermodynamics, not quantum mechanics, and identify two implicit postulates. We thoroughly examine Shenker's and ensuing papers, insisting upon the presence of open thermodynamical subsystems, imposing us the use of the chemical potential concept. We briefly mention Landau's approach to the quantum entropy. On the whole, it is shown that von Neumann's viewpoint is right, and why Shenker's claim that von Neumann entropy "is not the quantum-mechanical correlate of thermodynamic entropy" can't be retained.

  3. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  4. Quantum thermodynamic cycles and quantum heat engines. II.

    Science.gov (United States)

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  5. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Thigarajah, Rushani; Edvinsson, Lars

    2014-01-01

    BACKGROUND AND PURPOSE: Increased expression of endothelin receptor type B (ETBR), a vasoactive receptor, has recently been implied in the reduced cerebral blood flow and exacerbated neuronal damage after ischemia-reperfusion (I/R). The study explores the regulatory mechanisms of ETBR to identify...... drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy. METHODS: We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (Mit...... the ETBR mRNA and protein levels. It also significantly reduced the ETBR mediated cerebrovascular contractility. Detailed analysis indicated that ERK1/2 mediated phosphorylation of Sp1 might be essential for ETBR transcription. CONCLUSION: Transcription factor Sp1 regulates the ETBR mediated...

  6. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  7. The Thermodynamic Machinery of Life

    CERN Document Server

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  8. Competent authority regulatory control of the transport of radioactive material

    International Nuclear Information System (INIS)

    1987-04-01

    The purpose of this guide is to assist competent authorities in regulating the transport of radioactive materials and to assist users of transport regulations in their interactions with competent authorities. The guide should assist specifically those countries which are establishing their regulatory framework and further assist countries with established procedures to harmonize their application and implementation of the IAEA Regulations. This guide specifically covers various aspects of the competent authority implementation of the IAEA Regulations for the Safe Transport of Radioactive Material. In addition, physical protection and safeguards control of the transport of nuclear materials as well as third party liability aspects are briefly discussed. This is because they have to be taken into account in overall transport regulatory activities, especially when establishing the regulatory framework

  9. Cost-benefit considerations in regulatory decision-making

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1996-01-01

    The Atomic Energy Control Board is investigating the feasibility of developing methods for factoring cost-benefit considerations into its regulatory decision-making. This initiative results, in part, from the federal government policy requiring cost-benefit considerations to be taken into account in regulatory processes, and from the recommendations of an Advisory Panel on Regulatory Review in 1993, submitted to the Minister of Natural Resources Canada. One of these recommendations stated: 'that mechanisms be developed to examine cost-benefit issues and work towards some consensus of opinion among stakeholders; a task force on the subject could be an appropriate starting point'. (author)

  10. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    International Nuclear Information System (INIS)

    Keefe, Peter D

    2012-01-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  11. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    Science.gov (United States)

    Keefe, Peter D.

    2012-11-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  12. Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations

    Science.gov (United States)

    Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav

    2018-01-01

    Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).

  13. Theory and practice in engineering thermodynamics

    International Nuclear Information System (INIS)

    Polak, P.

    1983-01-01

    The book is a new approach to engineering thermodynamics for students of mechanical engineering at diploma and degree levels. There is an explanation of the basic principles of thermodynamics, followed by several chapters illustrating these principles as applied to piston engines, the gas turbine, steam power, and refrigerators and heat pumps. The book aims to introduce some key features of theory and current practice in a way that students will find interesting

  14. Thermodynamics of 2D string theory

    International Nuclear Information System (INIS)

    Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University

    2003-01-01

    We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)

  15. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  16. Small Systems and Limitations on the Use of Chemical Thermodynamics

    Science.gov (United States)

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  17. Regulatory systems for the control of land remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, J.; Vijgen, J.; Summersgill, M.

    2003-07-01

    One of the recurring themes in looking at land remediation over the last decade has been identifying and overcoming barriers to the use of innovative, sustainable technologies, whilst still ensuring that there are no adverse environmental impacts from their use. In parallel with this, the regeneration of brownfield sites has increasingly needed effective and economic solutions that leave the site without the stigma of being associated with contamination and waste disposal. Regulatory controls are often identified as one of the main barriers to both of these objectives. Previously, the focus of attention in the study of regulatory controls relating to land contamination has largely been on regimes that trigger the need for clean-up. These may be pollution control legislation or land-use planning controls. However, the focus of this paper will be on the controls on the selection and implementation of the remediation technologies and processes themselves. It will look in particular at the European-wide controls on waste management, pollution prevention and environmental impact assessment. The UK work is being carried out by a working group involving: landowners; developers; public sector regeneration agencies; house-builders; industry; insurers; technology providers; professional advisers; local government authorities; and national government regulators and policy-makers. This multi-stakeholder approach has facilitated the identification of practical, legal, financial and administrative issues to assist in developing new solutions. (orig.)

  18. National Program Initiative to Prevent Illicit Trafficking for Radioactive Materials Out of Regulatory Control at the Border

    International Nuclear Information System (INIS)

    Suharyanta, S.

    2016-01-01

    The existing function of regulatory authority in a country which use a lot of radioactive sources is important key. The regulatory body has to in a position independence from other operators and nuclear research centre activities, so that their justification on Regulatory objective of safety and security can be achieved. The essential function of regulatory authority has to be represented such as development regulations, perform review and assessment, inspection and enforcement, and emergency preparedness and response functions. Under regulatory object coverage is divided into two clusters i.e. licensed nuclear installation and radiation facilities clusters,. There is other regulatory object is radioactive material out of regulatory control. This kind object is new option in the county and there for need priority policy judgement. This paper will discuss the Regulatory infrastructure and functions and it focused on the experience about National Programme Initiative to Prevent Illicit Trafficking for Radioactive Materials out of Regulatory Control at the Border. Regulatory Infrastructure and Functions. In Indonesia the independent regulatory authority ''called BAPETEN'' has been established since early 2000 based on the Act No. 10 year 1997, independent from operator organization and other nuclear research centre. Organization structure of BAPETEN has defined main divisions dealing with developing regulations, perform review and assessments, inspection and enforcement, and emergency preparedness and response, and also covered assessment function as a backup technical support division as a think-tank functions. Regulatory objects are nuclear installations such as three research reactors, Fuel fabrication facility, Isotope production facility, and waste storage facility for spent fuel and dis-used radioactive sources is running well. Recently, Regulatory of radioactive sources out of regulatory control is a new challenges, they need strengthened

  19. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    Science.gov (United States)

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  2. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation

    Directory of Open Access Journals (Sweden)

    Kisakye AN

    2016-11-01

    Full Text Available Angela N Kisakye,1 Raymond Tweheyo,1 Freddie Ssengooba,1 George W Pariyo,2 Elizeus Rutebemberwa,1 Suzanne N Kiwanuka1 1Department of Health Policy Planning and Management, Makerere University School of Public Health, Kampala, Uganda; 2Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Background: A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. Methods: A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Results: Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1 organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs; 2 prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3 contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4 multifaceted work interventions being implemented in most settings; 5 the possibility of using financial and incentive regulatory mechanisms

  3. Development of a Stirling System Dynamic Model with Enhanced Thermodynamics

    Science.gov (United States)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-02-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  4. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  5. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  6. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.

    Science.gov (United States)

    Absmeier, Eva; Becke, Christian; Wollenhaupt, Jan; Santos, Karine F; Wahl, Markus C

    2017-01-02

    RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.

  7. Regulatory philosophy and requirements for radiation control in Canadian uranium mine-mill facilities

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    With the point made that radiation exposure is one of the health hazards of uranium mining and accordingly has to be controlled, the Canadian regulatory philosophy is outlined as it pertains to the uranium mining industry. Two extremes in regulatory approach are examined, and the joint regulatory process is explained. Two examples of poor management performance are given, and the role of mine unions in the regulatory process is touched upon. The development of new regulations to cover ventilation and employee training is sketched briefly. The author concludes with a general expression of objectives for the eighties which include improved personal dosimetry

  8. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  9. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  10. Eating on impulse: Implicit attitudes, self-regulatory resources, and trait self-control as determinants of food consumption.

    Science.gov (United States)

    Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao

    2015-12-01

    Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Regulatory Design of Capacity Remuneration Mechanisms in Regional and Low-Carbon Electric Power Markets

    NARCIS (Netherlands)

    Mastropietro, P.

    2016-01-01

    Capacity remuneration mechanisms (CRMs) are “climbing” regulatory agendas in all liberalised power sectors, especially in the European Union. CRMs are introduced to improve system reliability and to minimise power shortages to an economically efficient extent. These schemes will have a central role

  12. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions.

    Directory of Open Access Journals (Sweden)

    Pedro Saa

    2015-04-01

    Full Text Available Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol, a transition region (-2> ΔGr >-20 kJ/mol and a constant elasticity region (ΔGr <-20 kJ/mol. We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only

  13. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  14. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  15. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  16. Molecular thermodynamics using fluctuation solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela

    . The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...

  17. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  18. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    Science.gov (United States)

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  19. Research of thermal dynamic characteristics for variable load single screw refrigeration compressor with different capacity control mechanism

    International Nuclear Information System (INIS)

    Wang, Zengli; Wang, Zhenbo; Wang, Jun; Jiang, Wenchun; Feng, Quanke

    2017-01-01

    Highlights: • Theoretical models of SSRC under part-load condition have been established. • The experiment of SSRC performance under part-load condition was conducted. • Thermal dynamic characteristic of SSRC under part-load condition was gained. • Economy and reliability of SSRC under part-load condition was analyzed. - Abstract: In the single screw refrigeration compressor (SSRC), the capacity control mechanism is normally employed to meet the actual required cooling capacity under different load conditions. In this paper, theoretical calculation models describing the working process of the SSRC with the single slide valve capacity control mechanism (SVCCM) and SSRC with the frequency conversion regulating mechanism (FCRM) are established to research the thermal dynamic characteristics for variable load SSRC under part-load conditions. Experimental investigation on a SSRC under part-load conditions is also carried out to verify the theoretical calculation models. By using these validated models, the thermodynamic performances and dynamic characteristics of the SSRC with different capacity control mechanism under part-load conditions have been analyzed and compared. Through the comparison, the economical efficiency and reliability of the SSRC with different capacity control mechanism were obtained. All of these works can provide the basis for the later optimization design for the variable load single screw refrigeration compressor.

  20. Nuclear security recommendations on nuclear and other radioactive material out of regulatory control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this publication is to provide guidance to States in strengthening their nuclear security regimes, and thereby contributing to an effective global nuclear security framework, by providing: - Recommendations to States and their competent authorities on the establishment or improvement of the capabilities of their nuclear security regimes, for carrying out effective strategies to deter, detect and respond to a criminal act, or an unauthorized act, with nuclear security implications, involving nuclear or other radioactive material that is out of regulatory control; - Recommendations to States in support of international cooperation aimed at ensuring that any nuclear or other radioactive material that is out of regulatory control, whether originating from within the State or from outside that State, is placed under regulatory control and the alleged offenders are, as appropriate, prosecuted or extradited

  1. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  2. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  3. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    1988-04-01

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  4. Participation of mechanical oscillations in thermodynamics of crystals with superlattice

    International Nuclear Information System (INIS)

    Jacjimovski K, S.; Mirjanicj Lj, D.; Shetrajchicj P, J.

    2012-01-01

    The superlattice, consisting of two periodically repeating films, is analyzed in proposal paper. Due to the structural deformations and small thickness, the acoustic phonons do not appear in these structures. The spontaneous appearance of phonons is possible in an ideal structure only. Therefore the thermodynamical analysis of phonon subsystems is the first step in investigations of superlattice properties. Internal energy as well as specific heat will be analyzed, too. Low-temperature behavior of these quantities will be compared to the corresponding quantities of bulk structures and of thin films. The general conclusion is that the main thermodynamic characteristics of superlattices are considerably lower than those of the bulk structure. Consequently, their superconductive characteristics are better than the superconductive characteristics of corresponding bulk structures. Generally considered, the application field of superlattices is wider than that of bulk structures and films. (Author)

  5. Memory functions reveal structural properties of gene regulatory networks

    Science.gov (United States)

    Perez-Carrasco, Ruben

    2018-01-01

    Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492

  6. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Durmayaz, A. [Istanbul Technical University (Turkey). Department of Mechanical Engineering; Sogut, O.S. [Istanbul Technical University, Maslak (Turkey). Department of Naval Architecture and Ocean Engineering; Sahin, B. [Yildiz Technical University, Besiktas, Istanbul (Turkey). Department of Naval Architecture; Yavuz, H. [Istanbul Technical University, Maslak (Turkey). Institute of Energy

    2004-07-01

    The irreversibilities originating from finite-time and finite-size constraints are important in the real thermal system optimization. Since classical thermodynamic analysis based on thermodynamic equilibrium do not consider these constraints directly, it is necessary to consider the energy transfer between the system and its surroundings in the rate form. Finite-time thermodynamics provides a fundamental starting point for the optimization of real thermal systems including the fundamental concepts of heat transfer and fluid mechanics to classical thermodynamics. In this study, optimization studies of thermal systems, that consider various objective functions, based on finite-time thermodynamics and thermoeconomics are reviewed. (author)

  7. Strengthening the regulatory control of consumer goods through international harmonization

    International Nuclear Information System (INIS)

    Yus Rusdian Akhmad

    2013-01-01

    The International Atomic Energy Agency (IAEA) is currently working on a recommendation in the form of guidelines for regulating consumer goods. Preparation of this document has a significant dimension of international issues, especially in terms of the application of the principles of justification and application of the concept of exemption. International harmonization among regulators ranging from the regional to the global level is a central issue and considering the complex issues that arise in addition to covering the scientific aspects also involve consideration of the legal aspects or values espoused by any State which may differ from one another. PERKA BAPETEN on consumer goods is still in the preparation stage so that the discussion of the material will be useful for improving the quality of the regulation in time. There is a significant gap of understanding to the related materials by the parties concerned (between local and international parties were among the local party). This paper intends to propose the understanding and views on radiation protection and regulatory control for consumer goods and hopely could contributed significantly to strengthening its regulatory control which is primarily through a reduction in the gap of understanding to the related concept that potentially multi perceptions and encourage stronger cooperation among regulatory bodies. (author)

  8. Alternative approaches to pollution control and waste management: Regulatory and economic instruments

    International Nuclear Information System (INIS)

    Bernstein, J.D.

    1993-01-01

    The purpose of the paper is to present an overview of the most common strategies and policy instruments (that is, regulatory and economic) used in developed and developing countries to achieve pollution control and waste management objectives. Although this topic has been at the center of theoretical controversy both within and outside the World Bank, the paper is not intended to contribute to this debate. Rather, its purpose is to explore how regulatory and economic instruments are used to control air and water pollution, protect ground water, and manage solid and hazardous wastes. The paper is directed to policy makers at the national, state, and local levels of government, as well as to other parties responsible for pollution control and waste management programs

  9. "Mysteries" of the First and Second Laws of Thermodynamics

    Science.gov (United States)

    Battino, Rubin

    2007-01-01

    The thermodynamic concepts of First and Second Laws with respect to the entropy function are described using atoms and molecules and probability as manifested in statistical mechanics. The First Law is conceptually understood as [Delta]U = Q + W and the Second Law of Thermodynamics and the entropy function have provided the probability and…

  10. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  11. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  12. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation

    Science.gov (United States)

    Kisakye, Angela N; Tweheyo, Raymond; Ssengooba, Freddie; Pariyo, George W; Rutebemberwa, Elizeus; Kiwanuka, Suzanne N

    2016-01-01

    Background A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. Methods A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Results Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1) organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs); 2) prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3) contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4) multifaceted work interventions being implemented in most settings; 5) the possibility of using financial and incentive regulatory mechanisms in LMICs; 6) health intervention mechanisms reducing absenteeism when integrated with exercise programs; and 7) attendance by legislation during emergencies being criticized for violating human rights in the United States and not being effective in curbing absenteeism. Conclusion Most countries have applied multiple strategies to mitigate health care

  13. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation.

    Science.gov (United States)

    Kisakye, Angela N; Tweheyo, Raymond; Ssengooba, Freddie; Pariyo, George W; Rutebemberwa, Elizeus; Kiwanuka, Suzanne N

    2016-01-01

    A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1) organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs); 2) prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3) contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4) multifaceted work interventions being implemented in most settings; 5) the possibility of using financial and incentive regulatory mechanisms in LMICs; 6) health intervention mechanisms reducing absenteeism when integrated with exercise programs; and 7) attendance by legislation during emergencies being criticized for violating human rights in the United States and not being effective in curbing absenteeism. Most countries have applied multiple strategies to mitigate health care worker absenteeism. The success of these

  14. Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides

    International Nuclear Information System (INIS)

    Mintz, M.H.

    1976-06-01

    This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)

  15. Fluid thermodynamics control thermal weakening during earthquake rupture.

    Science.gov (United States)

    Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.

    2017-12-01

    Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault

  16. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  17. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Science.gov (United States)

    van Lingen, Henk J; Plugge, Caroline M; Fadel, James G; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH

  18. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Directory of Open Access Journals (Sweden)

    Henk J van Lingen

    Full Text Available Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA. Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2, has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT, which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without

  19. TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.

    Science.gov (United States)

    Pal, Sikander; Kisko, Mushtak; Dubos, Christian; Lacombe, Benoit; Berthomieu, Pierre; Krouk, Gabriel; Rouached, Hatem

    2017-10-01

    Identifying transcription factor (TFs) cooperation controlling target gene expression is still an arduous challenge. The accuracy of current methods at genome scale significantly drops with the increase in number of genes, which limits their applicability to more complex genomes, like animals and plants. Here, we developed an algorithm, TransDetect, able to predict TF combinations controlling the expression level of a given gene. TransDetect was used to identify novel TF modules regulating the expression of Arabidopsis ( Arabidopsis thaliana ) phosphate transporter PHO1;H3 comprising MYB15, MYB84, bHLH35, and ICE1. These TFs were confirmed to interact between themselves and with the PHO1;H3 promoter. Phenotypic and genetic analyses of TF mutants enable the organization of these four TFs and PHO1;H3 in a new gene regulatory network controlling phosphate accumulation in zinc-dependent manner. This demonstrates the potential of TransDetect to extract directionality in nondynamic transcriptomes and to provide a blueprint to identify gene regulatory network involved in a given biological process. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Thermodynamics in rotating systems—analysis of selected examples

    International Nuclear Information System (INIS)

    Güémez, J; Fiolhais, M

    2014-01-01

    We solve a set of selected exercises on rotational motion requiring a mechanical and thermodynamical analysis. When non-conservative forces or thermal effects are present, a complete study must use the first law of thermodynamics together with Newton’s second law. The latter is here better expressed in terms of an ‘angular’ impulse–momentum equation (Poinsot–Euler equation), or, equivalently, in terms of a ‘rotational’ pseudo-work–energy equation. Thermodynamical aspects in rotational systems, when e.g. frictional forces are present or when there is a variation of the rotational kinetic energy due to internal sources of energy, are discussed. (paper)

  1. Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Grmela, M.

    2013-01-01

    Roč. 87, č. 1 (2013), s. 1-9 ISSN 1539-3755 Institutional support: RVO:61388998 Keywords : gemneric * non- equilibrium thermodynamics * coupling Subject RIV: BJ - Thermodynamics Impact factor: 2.326, year: 2013 http://link.aps.org/doi/10.1103/PhysRevE.87.012141

  2. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes

    OpenAIRE

    Bon?ina, Matja?; Podlipnik, ?rtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-01-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolini...

  3. A general approach for controlling transcription and probing epigenetic mechanisms: application to the CD4 locus.

    Science.gov (United States)

    Wan, Mimi; Kaundal, Ravinder; Huang, Haichang; Zhao, Jiugang; Yang, Xiaojun; Chaiyachati, Barbara H; Li, Sicong; Chi, Tian

    2013-01-15

    Synthetic regulatory proteins such as tetracycline (tet)-controlled transcription factors are potentially useful for repression as well as ectopic activation of endogenous genes and also for probing their regulatory mechanisms, which would offer a versatile genetic tool advantageous over conventional gene targeting methods. In this study, we provide evidence supporting this concept using Cd4 as a model. CD4 is expressed in double-positive and CD4 cells but irreversibly silenced in CD8 cells. The silencing is mediated by heterochromatin established during CD8 lineage development via transient action of the Cd4 silencer; once established, the heterochromatin becomes self-perpetuating independently of the Cd4 silencer. Using a tet-sensitive Cd4 allele harboring a removable Cd4 silencer, we found that a tet-controlled repressor recapitulated the phenotype of Cd4-deficient mice, inhibited Cd4 expression in a reversible and dose-dependent manner, and could surprisingly replace the Cd4 silencer to induce irreversible Cd4 silencing in CD8 cells, thus suggesting the Cd4 silencer is not the (only) determinant of heterochromatin formation. In contrast, a tet-controlled activator reversibly disrupted Cd4 silencing in CD8 cells. The Cd4 silencer impeded this disruption but was not essential for its reversal, which revealed a continuous role of the silencer in mature CD8 cells while exposing a remarkable intrinsic self-regenerative ability of heterochromatin after forced disruption. These data demonstrate an effective approach for gene manipulation and provide insights into the epigenetic Cd4 regulatory mechanisms that are otherwise difficult to obtain.

  4. A flexible regulatory framework

    International Nuclear Information System (INIS)

    Silvennoinen, T.

    2000-01-01

    Regulatory reform of the Finnish electricity market meant opening up potentially competitive parts of the electricity sector to competition and eliminating all unnecessary forms of regulation covering generation, wholesale supply, retail supply, and foreign trade in electricity. New types of control and regulatory mechanisms and institutions were set up for those parts of the electricity industry that were excluded from competition, such as network operations. Network activities now have to be licensed, whereas no licence is needed for generation or supply. A new sector-specific regulatory authority was established in 1995 to coincide with the implementation of the Electricity Market Act, known as the Electricity Market Authority. This is responsible for regulating network activities and retail supply to captive customers. The core function of the authority, which employs some 14 people, is to promote the smooth operation of the Finnish electricity market and to oversee the implementation of the Electricity Market Act and its provisions. Its most important duties are linked to overseeing the process by which network companies price their electricity. As price regulation no longer exists, all the companies in the electricity sector set their tariffs independently, even network companies. The job of controlling the pricing of network services is handed by the Electricity Market Authority, following the principles of competition control. Pricing control takes place ex post - after a pricing system has been adopted by a company and concentrates on individual cases and companies. There is no ex ante system of setting or approving prices and tariffs by the regulator. The tariffs and pricing of network services can be evaluated, however, by both the Electricity Market Authority and the Finnish Competition Authority, which have overlapping powers as regards the pricing of network activities. The Finnish regulatory framework can be described as a system of light

  5. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  6. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  7. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  8. Regulatory dendritic cells in autoimmunity: A comprehensive review.

    Science.gov (United States)

    Liu, Juan; Cao, Xuetao

    2015-09-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    Science.gov (United States)

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  10. Modular arrangement of regulatory RNA elements.

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  11. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    Science.gov (United States)

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  13. The effects of age, glucose ingestion and gluco-regulatory control on episodic memory.

    Science.gov (United States)

    Riby, Leigh Martin; Meikle, Andrew; Glover, Cheryl

    2004-09-01

    Previous research has been inconclusive regarding the impact of glucose ingestion and gluco-regulatory control on cognitive performance in healthy older adults. The aim of this research was to determine whether glucose specifically enhanced episodic memory in an older population. In addition, the link between individual differences in glucose regulation and the magnitude of the enhancement effect was examined. A within subjects, counterbalanced, crossover design was used with 20 participants (60-80 year olds), each serving as his/her control. Episodic memory was tested by presenting unrelated paired associates followed by immediate and delayed cued recall, and delayed recognition, under single and dual task conditions. In addition, a battery of cognitive tests was administered, including tests of semantic memory, working memory and speed of processing. Glucose ingestion was found to largely facilitate performance of episodic memory. Furthermore, subsidiary analyses found that gluco-regulatory efficiency predicted episodic memory performance in both control and glucose conditions. A boost in performance after glucose ingestion was particularly seen in the episodic memory domain. Notably, strong evidence was provided for the utility of gluco-regulatory control measures as indicators of cognitive decline in the elderly.

  14. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  15. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  16. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    Science.gov (United States)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from

  17. Thermodynamic formalism the mathematical structures of equilibrium statistical mechanics

    CERN Document Server

    Ruelle, David

    2004-01-01

    Reissued in the Cambridge Mathematical Library, this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. Background material on physics has been collected in appendices to help the reader. Supplementary work is provided in the form of exercises and problems that were "open" at the original time of writing.

  18. U.S. Nuclear Regulatory Commission bases for control of solid materials

    International Nuclear Information System (INIS)

    Meck, R.A.; Cardille, F.P.; Feldman, C.; Gnugnoli, G.N.; Huffert, A.M.; Klementowicz, S.P.

    2002-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is considering whether to proceed with rulemaking on the control of solid materials with very low levels of associated radioactivity. The current implementation of clearance by NRC licensees is the context for the decision. Inputs to the decision include information gathering efforts of the Commission in the areas of public workshops, dose assessments and inventories, the recommendations of the National Academies' National Research Council (NAs) on regulatory alternatives, and participation in international efforts by the International Atomic Energy Agency (IAEA). (author)

  19. Hamiltonian mechanics limits microscopic engines

    Science.gov (United States)

    Anglin, James; Gilz, Lukas; Thesing, Eike

    2015-05-01

    We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').

  20. Activation of counter-regulatory mechanisms in a rat renal acute rejection model

    Directory of Open Access Journals (Sweden)

    Salomon Daniel R

    2008-02-01

    Full Text Available Abstract Background Microarray analysis provides a powerful approach to identify gene expression alterations following transplantation. In patients the heterogeneity of graft specimens, co-morbidity, co-medications and the challenges in sample collection and preparation complicate conclusions regarding the underlying mechanisms of graft injury, rejection and immune regulation. Results We used a rat kidney transplantation model with strict transplant and sample preparation procedures to analyze genome wide changes in gene expression four days after syngeneic and allogeneic transplantation. Both interventions were associated with substantial changes in gene expression. After allogeneic transplantation, genes and pathways related to transport and metabolism were predominantly down-regulated consistent with rejection-mediated graft injury and dysfunction. Up-regulated genes were primarily related to the acute immune response including antigen presentation, T-cell receptor signaling, apoptosis, interferon signaling and complement cascades. We observed a cytokine and chemokine expression profile consistent with activation of a Th1-cell response. A novel finding was up-regulation of several regulatory and protective genes after allogeneic transplantation, specifically IL10, Bcl2a1, C4bpa, Ctla4, HO-1 and the SOCS family. Conclusion Our data indicate that in parallel with the predicted activation of immune response and tissue injury pathways, there is simultaneous activation of pathways for counter regulatory and protective mechanisms that would balance and limit the ongoing inflammatory/immune responses. The pathophysiological mechanisms behind and the clinical consequences of alterations in expression of these gene classes in acute rejection, injury and dysfunction vs. protection and immunoregulation, prompt further analyses and open new aspects for therapeutic approaches.

  1. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  2. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  3. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  4. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  5. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  6. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  7. Thermodynamic and mechanical effects of disulfide bonds in CXCLl7 chemokine

    Science.gov (United States)

    Singer, Christopher

    Chemokines are a family of signaling proteins mainly responsible for the chemotaxis of leukocytes, where their biological activity is modulated by their oligomerization state. Here, the dynamics and thermodynamic stability are characterized in monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines. The effects of dimerization and disulfide bond formation are investigated using computational methods that include molecular dynamics (MD) simulations and the Distance Constraint Model (DCM). A consistent picture emerges for the effect of dimerization and role of the Cys5-Cys31 and Cys7- Cys47 disulfide bonds. Surprisingly, neither disulfide bond is critical for maintaining structural stability in the monomer or dimer, although the monomer is destabilized more than the dimer upon removal of disulfide bonds. Instead, it is found that disulfide bonds influence the native state dynamics as well as modulates the relative stability between monomer and dimer. The combined analysis elucidates how CXCL7 is mechanically stable as a monomer, and how upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present in each domain, and the homodimer is least stable relative to its two monomers. These results suggest the highly conserved disulfide bonds in chemokines facilitate a structural mechanism for distinguishing functional characteristics between monomer and dimer.

  8. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    Science.gov (United States)

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  9. T-regulatory cells in chronic rejection versus stable grafts.

    Science.gov (United States)

    Al-Wedaie, Fatima; Farid, Eman; Tabbara, Khaled; El-Agroudy, Amgad E; Al-Ghareeb, Sumaya M

    2015-04-01

    Studying regulatory T cells in kidney allograft acceptance versus chronic rejection may help in the understanding of more mechanisms of immune tolerance and, in the future, may enable clinicians to induce immune tolerance and decrease the use of immunosuppressive drugs. The aim of the current study was to evaluate regulatory T cells in kidney transplant patients with stable graft versus transplant with biopsy-proven chronic rejection. The 3 groups that were studied included: kidney transplanted patients with no rejection episodes (n = 43); transplanted patients with biopsy-proven renal rejection (n = 27); and healthy age-matched nontransplanted individuals as controls (n = 42).The percentage of regulatory T cells (CD4+CD25+Foxp3+) in blood was determined by flow cytometry. The regulatory T cell percentage was significantly lower in chronic rejection patients than control or stable graft groups. No significant difference was observed in regulatory T cell percentage between the stable graft and control groups. In the stable graft group, patients on rapamycin had a significantly higher regulatory T cell percentage than patients on cyclosporine. No effect of donor type, infection, or duration after transplant was observed on regulatory T cell percentage. The results of the current study are consistent with previous studies addressing the function of regulatory T cells in inducing immunotolerance after kidney transplant. Considering the established role of regulatory T cells in graft maintenance and our observation of high regulatory T cell percentage in patients receiving rapamycin than cyclosporine, we recommend including rapamycin when possible in immunosuppressive protocols. The findings from the current study on the chronic rejection group support ongoing research of having treatment with regulatory T cells, which may constitute a novel, efficient antirejection therapy in the future.

  10. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    Full Text Available MicroRNAs (miRNAs are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1 three important (PAZ, Mid and PIWI domains exist in Argonaute which define the global dynamics of the protein; 2 the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3 it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+ plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA. Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  11. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Science.gov (United States)

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-07-29

    MicroRNAs (miRNAs) are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+)) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  12. Towards a thermodynamics of active matter.

    Science.gov (United States)

    Takatori, S C; Brady, J F

    2015-03-01

    Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  13. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-05-01

    Legislation and regulations giving birth to the Atomic Energy Control Board (AECB) are outlined, as well as current licencing procedures. The AECB bases its health and safety criteria on ICRP recommendations. R and D is funded to aid regulatory activity. Licencing activities cover uranium resource management, uranium mining and milling, nuclear generating stations, heavy water plants, and radioactive waste management. Safeguards, physical security, and international controls are also concerns of the AECB. (E.C.B.)

  14. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    The positively charged protein transduction domain of the HIV-1 TAT protein (TAT-PTD; residues 47-57 of TAT) rapidly translocates across the plasma membrane of living cells. This property is exploited for the delivery of proteins, drugs, and genes into cells. The mechanism of this translocation is, however, not yet understood. Recent theories for translocation suggest binding of the protein transduction domain (PTD) to extracellular glycosaminoglycans as a possible mechanism. We have studied the binding equilibrium between TAT-PTD and three different glycosaminoglycans with high sensitivity isothermal titration calorimetry and provide the first quantitative thermodynamic description. The polysulfonated macromolecules were found to exhibit multiple identical binding sites for TAT-PTD with only small differences between the three species as far as the thermodynamic parameters are concerned. Heparan sulfate (HS, molecular weight, 14.2 +/- 2 kDa) has 6.3 +/- 1.0 independent binding sites for TAT-PTD which are characterized by a binding constant K0 = (6.0 +/- 0.6) x 10(5) M(-1) and a reaction enthalpy deltaHpep0 = -4.6 +/- 1.0 kcal/mol at 28 degrees C. The binding affinity, deltaGpep0, is determined to equal extent by enthalpic and entropic contributions. The HS-TAT-PTD complex formation entails a positive heat capacity change of deltaCp0 = +135 cal/mol peptide, which is characteristic of a charge neutralization reaction. This is in contrast to hydrophobic binding reactions which display a large negative heat capacity change. The stoichiometry of 6-7 TAT-PTD molecules per HS corresponds to an electric charge neutralization. Light scattering data demonstrate a maximum scattering intensity at this stoichiometric ratio, the intensity of which depends on the order of mixing of the two components. The data suggest cross-linking and/or aggregation of HS-TAT-PTD complexes. Two other glycosaminoglycans, namely heparin and chondroitin sulfate B, were also studied with isothermal

  15. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  16. Call for Nominations The Nusselt Reynolds Prize Sponsored by Assembly of World Conferences on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics

    Science.gov (United States)

    Kasagi, Nobuhide

    2000-01-01

    The Nusselt Reynolds Prize has been established by the Assembly of World Conferences to commemorate outstanding contributions by Wilhelm Nusselt and Osborne Reynolds as experimentalists, researchers, educators, and authors. As many as three prizes may be bestowed at every World Conference, one in each of the areas of heat transfer, fluid mechanics, thermodynamics, or any combination of these.

  17. Regulatory infrastructure for the control of radiation sources in the Africa region: Status, needs and programmes

    International Nuclear Information System (INIS)

    Skornik, K.

    2001-01-01

    In recent years, several African countries have taken steps towards creating or strengthening legal, administrative and technical mechanisms for the regulation and control of peaceful uses of nuclear technology, and towards improving the effectiveness and sustainability of radiation protection measures based on international standards. This stems from a growing awareness that a proper national infrastructure is a prerequisite for the implementation of safety standards to achieve and maintain the desired level of protection and safety, particularly in such sectors as public health and industry. Also, other issues of global and regional interest, such as the control of radiation sources, including the handling of hazardous waste, and response capabilities in the case of a radiological emergency, have contributed to a better perception of risks associated with deficiencies in or lack of adequate national radiation protection control mechanisms. Too often, however, this awareness has not been matched with adequate progress in the establishment of a regulatory framework for the control of radiation sources. This paper presents a summary of the current status of radiation protection infrastructure in all African Member States. On a background of still existing weaknesses and challenges, an overview of the Agency's response to assistance needs and programmes in this field is discussed. (author)

  18. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk.

    Science.gov (United States)

    McCraty, Rollin; Shaffer, Fred

    2015-01-01

    Heart rate variability, the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operates on different time scales to adapt to environmental and psychological challenges. This article briefly reviews neural regulation of the heart and offers some new perspectives on mechanisms underlying the very low frequency rhythm of heart rate variability. Interpretation of heart rate variability rhythms in the context of health risk and physiological and psychological self-regulatory capacity assessment is discussed. The cardiovascular regulatory centers in the spinal cord and medulla integrate inputs from higher brain centers with afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. We also discuss the intrinsic cardiac nervous system and the heart-brain connection pathways, through which afferent information can influence activity in the subcortical, frontocortical, and motor cortex areas. In addition, the use of real-time HRV feedback to increase self-regulatory capacity is reviewed. We conclude that the heart's rhythms are characterized by both complexity and stability over longer time scales that reflect both physiological and psychological functional status of these internal self-regulatory systems.

  19. Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2017-06-01

    Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.

  20. Exemption from Regulatory Control of Goods Containing Small Amounts of Radioactive Material

    International Nuclear Information System (INIS)

    2012-01-01

    Small amounts of radioactive material may be added to various goods for functional reasons. Several such items are currently available for either professional or personal use. These include ionization chamber smoke detectors, thoriated-tungsten welding rods, luminous dials, electrical devices and electric discharge lamps. Some of these goods may be intended for particular types of market such as cinemas or other places to which the public may have access, but they are unlikely to be provided directly to members of the public. Other goods may be intended for wide scale use and therefore readily available on the market as consumer products through commercial outlets where personal and household products are normally purchased. Members of the public may be exposed to ionizing radiation as a consequence of activities such as transport, storage, use and disposal of such goods. The IAEA safety standards provide the basic requirements for regulatory control of such goods. The most relevant documents are the Governmental, Legal and Regulatory Framework for Safety and the International Basic Safety Standards (hereafter referred to as the BSS). These requirements include notification of a practice to the regulatory body and authorization of the practice by the regulatory body. Provision is made for the exemption of practices from these and other regulatory requirements based on general criteria given in the BSS or any exemption levels specified by the regulatory body on the basis of these criteria. The BSS, which are jointly sponsored by the IAEA and several other international organizations, apply to all facilities and all activities for peaceful purposes that give rise to exposure to radiation. In the interest of harmonization of approaches among Member States, some guidance on the application of the criteria for exemption has been provided in a number of Safety Guides, e.g. Regulatory Control of Radiation Sources, IAEA Safety Standards Series No. GS-G-1.5 (2004) and the

  1. Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms.

    Science.gov (United States)

    Lazuko, Svetlana S; Kuzhel, Olga P; Belyaeva, Lyudmila E; Manukhina, Eugenia B; Fred Downey, H; Tseilikman, Olga B; Komelkova, Maria V; Tseilikman, Vadim E

    2018-01-01

    Posttraumatic stress disorder (PTSD) is associated with myocardial injury, but changes in coronary regulatory mechanisms in PTSD have not been investigated. This study evaluated the effect of PTSD-inducing stress on coronary tone and its regulation by nitric oxide (NO) and voltage-gated K + channels. PTSD was induced by exposing rats to predator stress, 15 min daily for 10 days, followed by 14 stress-free days. Presence of PTSD was confirmed by the elevated plus-maze test. Coronary tone was evaluated from changes in coronary perfusion pressure of Langendorff isolated hearts. Predator stress induced significant decreases in coronary tone of isolated hearts and in blood pressure of intact rats. L-NAME, a non-selective NO synthase (NOS) inhibitor, but not S-MT, a selective iNOS inhibitor, and increased coronary tone of control rats. In PTSD rats, both L-NAME and S-MT increased coronary tone. Therefore, the stress-induced coronary vasodilation resulted from NO overproduction by both iNOS and eNOS. NOS induction was apparently due to systemic inflammation as evidenced by increased serum interleukin-1β and C-reactive protein in PTSD rats. Decreased corticosterone in PTSD rats may have contributed to inflammation and its effect on coronary tone. PTSD was also associated with voltage-gated K + channel dysfunction, which would have also reduced coronary tone.

  2. Regulatory control of nuclear safety in Finland. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of

  3. Regulatory control of nuclear safety in Finland. Annual report 1998

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of Kola and

  4. The 4th Thermodynamic Principle?

    International Nuclear Information System (INIS)

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-01-01

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible

  5. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  6. Thermodynamic limit and decoherence: rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Frasca, Marco [Via Erasmo Gattamelata 3, 00176 Rome (Italy)

    2007-05-15

    Time evolution operator in quantum mechanics can be changed into a statistical operator by a Wick rotation. This strict relation between statistical mechanics and quantum evolution can reveal deep results when the thermodynamic limit is considered. These results translate in a set of theorems proving that these effects can be effectively at work producing an emerging classical world without recurring to any external entity that in some cases cannot be properly defined. For a many-body system it has been recently shown that Gaussian decay of the coherence is the rule with a duration of recurrence more and more small as the number of particles increases. This effect has been observed experimentally. More generally, a theorem about coherence of bulk matter can be proved. All this takes us to the conclusion that a well defined boundary for the quantum to classical world does exist and that can be drawn by the thermodynamic limit, extending in this way the deep link between statistical mechanics and quantum evolution to a high degree.

  7. An efficient and rigorous thermodynamic library and optimal-control of a cryogenic air separation unit

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    2017-01-01

    -linear model based control to achieve optimal techno-economic performance. Accordingly, this work presents a computationally efficient and novel approach for solving a tray-by-tray equilibrium model and its implementation for open-loop optimal-control of a cryogenic distillation column. Here, the optimisation...... objective is to reduce the cost of compression in a volatile electricity market while meeting the production requirements, i.e. product flow rate and purity. This model is implemented in Matlab and uses the ThermoLib rigorous thermodynamic library. The present work represents a first step towards plant...

  8. Global parameter estimation for thermodynamic models of transcriptional regulation.

    Science.gov (United States)

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    Science.gov (United States)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  10. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  11. Nonholonomic mechanics and control

    CERN Document Server

    Murray, RM

    2015-01-01

    This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the...

  12. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics

    International Nuclear Information System (INIS)

    He, Yubao; Cao, Ruifeng; Huang, Hongyan; Qin, Jiang; Yu, Daren

    2017-01-01

    To avoid the inlet unstart at high equivalence ratio and increase the performance of scramjet with ram-mode, a flow control method of boundary-layer ejection is implemented based on the potential thermodynamic process in a turbo-pump supply system of fuel vapor within a cooling channel. The effect of ejection on overall scramjet performance is studied by taking the integration of measures including numerical simulation and stream thrust analysis. Results indicate that the critical backpressure is significantly increased as the ejection total pressure increased, thereby increasing the compression capacity and efficiency, and decreasing the irreversible losses of shock wave and viscous dissipation. For the ejection total pressure of P_t_,_e_j_e = 2.40–4.00 × 10"6 Pa, the critical backpressure ratio is quantitatively increased by 1.18–11.8% along with the utilization of ejection mass flow rate of about 88.0–100% overall mass flow rate of methane fuel gas, and simultaneously the total pressure ratio, kinetic efficiency is also increased by 7.32–13.1%, and 1.63–2.96%, respectively, while the dimensionless entropy increase is decreased by 14.5–26.8%. On this basis, the specific thrust, specific impulse, and total efficiency is increased by 2.84–4.69%, 2.80–4.68%, and 2.87–4.70%, respectively, which re-emphasizes that the boundary-layer ejection is an available fluid control method. - Highlights: • Pressure ratio affects cycle efficiency based on Brayton cycle analysis. • Ejection control concept is defined based on potential thermodynamic process. • Ejection increases compression capacity, efficiency and engine overall performance.

  14. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  15. Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps.

    Science.gov (United States)

    Marín-Hernández, Álvaro; Rodríguez-Zavala, José S; Del Mazo-Monsalvo, Isis; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Saavedra, Emma

    2016-01-01

    Glycolysis provides precursors for the synthesis of macromolecules and may contribute to the ATP supply required for the constant and accelerated cellular duplication in cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis in cancer cells allowed the identification of the main steps that control the glycolytic flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites hepatocarcinoma. It was also previously experimentally determined that simultaneous inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase (PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate (Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer glycolysis can be attained by blocking downstream non flux-controlling steps as long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are accumulated. Furthermore, experimental results and further modeling showed that oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it was also found that uncompetitive inhibition of the

  16. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  17. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  18. Organization and implementation of a national programme of regulatory control of sources in Estonia

    International Nuclear Information System (INIS)

    Filippova, I.

    1998-01-01

    The application of ionizing radiation and radioactive material in fields such as medicine, industry, teaching and research is constantly increasing. Consequently, any country using ionizing radiation and radioactive material in these applications must ensure that they are used safely. In order to achieve this goal a country must establish appropriate national infrastructure related to radiation protection and safety. This requires appropriate regulatory mechanism together with an enforcement ability. The national infrastructure adopted in a country will depend on the actual needs of the country, the size and the complexity of the regulated practices and sources, as well as on the regulatory tradition in the country. The national infrastructure in Estonia comprises of three main components: legislation, regulatory authority, resources. (author)

  19. An undergraduate exercise in the first law of relativistic thermodynamics

    International Nuclear Information System (INIS)

    Gueemez, J

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 Nuovo Cimento 42 722-54), which is similar to the formalism developed by van Kampen (1968 Phys. Rev. 173 295-301) and Hamity (1969 Phys. Rev. 187 1745-52). In this 4-vector Minkowski formalism mechanical and thermodynamical processes are described by the first law of thermodynamics expressed as ΔU μ = W μ + Q μ , in a Lorentz covariant way. This exercise is considered useful for undergraduate physics students interested in foundations of physics, with the only prerequisites in first courses in thermodynamics and special relativity.

  20. The regulatory control of radiation sources in Australia -- The challenges of a federal system

    International Nuclear Information System (INIS)

    Loy, J.; Colgan, P.

    2001-01-01

    The report refers to the challenges that Australia is facing, as a federal nation having a Commonwealth Government and six States and two territories, in establishing appropriate regulatory control of radiation sources. Information on the national inventory of radiation sources and existing regulatory infrastructure, including the system of notification, registration, licensing, inspection and enforcement, is explained in the report. The national provisions for the management of disused sources; the planning, preparedness and response to abnormal events and emergencies; the recovery of control over orphan sources; and education and training; are specifically emphasized. (author)

  1. The pressure dependence of structural, electronic, mechanical, vibrational, and thermodynamic properties of palladium-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Cansu [Balikesir Univ. (Turkey). Dept. of Physics

    2017-07-01

    The pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd{sub 2}TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young's modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd{sub 2}TiX (X=Ga, In).

  2. Unsolved problems in applying U.S. regulatory guides to control system equipment

    International Nuclear Information System (INIS)

    Stade, R.E.

    1978-01-01

    Two current problems encountered when designing control systems to the United States Regulatory Guide requirements are discussed. They are: 1) Level of surge voltages that should be specified when procuring solid state control and instrumentation systems and equipment. 2) The approach to be used qualifying equipment that must meet the aging requirements. (author)

  3. Studies for improvement of regulatory control on the radioactive effluent released from nuclear facilities

    International Nuclear Information System (INIS)

    Cheong, Jae Hak; Park, H. M.; Song, M. C.; Lee, K. H.; Jang, J. K.; Chun, J. K.; Jeong, K. H.

    2005-05-01

    This report contains the second-year results of the research project titled 'Studies for Improvement of Regulatory Control on the Radioactive Effluent Released from Nuclear Facilities' and mainly provides technical and strategic approaches to improve performance of regulatory control on the gaseous effluent released from domestic nuclear facilities. The main result contained here includes overview and technical bases of radioactive gaseous effluent control (Chapter 1), reconsideration of the sensitivity requirements for measurement of radioactivity in gaseous effluent sample (Chapter 2), uncertainty analysis of the calculated radioactivity in gaseous effluent (Chapter 3), and improvement of quantification method of noble gas releases (Chapter 4). In addition, analysis of the impact due to combined sampling of particulate from multiple release points (Chapter 5), comparison of domestic nuclear reactors gaseous effluent data to foreign PWRs (Chapter 6), standardized sampling technique for collection of gaseous tritium (Chapter 7), and application of Xe-133 equivalent concept to gaseous effluent control (Chapter 8) are also provided. As a whole, this report provides a generic approach to improve the performance of regulatory control on the gaseous effluent. Therefore, actual enforcement of the recommendations should be preceded by establishment of a series of action plans reflecting on the site- and facility-specific design and operational features

  4. Regulatory control of nuclear safety in Finland. Annual report 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-08-01

    The report describes regulatory control of the use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in Finland in 1997. Nuclear regulatory control ascertained that the operation of Finnish NPPs was in compliance with the conditions set out in operating licences and current regulations. In addition to NPP normal operation, STUK oversaw projects at the plant units relating to power uprating and safety improvements. STUK prepared statements for the Ministry of Trade and Industry about the applications for renewing the operating licenses of Loviisa and Olkiluoto NPPs. The most important items of supervision in nuclear waste management were studies relating to the final disposal of spent fuel from NPPs and the review of the licence application for a repository for low- and intermediate-level reactor waste from Loviisa NPP. Preparation of general safety regulations for the final disposal of spent nuclear fuel, to be published in the form of a Council of State Decision, was started. By safeguards control, the use of nuclear materials was verified to be in compliance with current regulations and that the whereabouts of every batch of nuclear material were always known. Nuclear material safeguards were stepped up to prevent illicit trafficking of nuclear materials and other radioactive materials. In co-operation with the Ministry for Foreign Affairs and the Institute of Seismology (University of Helsinki), preparations were undertaken to implement the Comprehensive Nuclear Test Ban Treaty (CTBT). For enforcement of the Treaty and as part of the international regulatory approach, STUK is currently developing laboratory analyses relating to airborne radioactivity measurements. The focus of co-operation funded by external sources was as follows: improvement of the safety of Kola and Leningrad NPPs, improvement of nuclear waste management in North-West Russia, development of the organizations of nuclear safety authorities in Eastern Europe and development

  5. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  6. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  7. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  8. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  9. Regulatory control of radiation sources in Germany

    International Nuclear Information System (INIS)

    Coy, K.

    1998-01-01

    The regulatory programme governing the safe use of radioisotopes in Germany is based on the federal legislation enacted as Atomic Energy Control Act (Atomgesetz) and Radiation Protection Ordinance (Strahlen-schutzverordnung) and its implementation by the competent authorities of the individual states. Despite this highly decentralized infrastructure of enforcement the basic principles of regulations described in this paper such as authorization criteria, conditions imposed as well as depth and intensity of inspection balanced according to the individual radiation hazard involved are harmonized to the greatest possible extent by regular coordination among the competent authorities as well as a series of technical regulations such as standards and guidelines. (author)

  10. Thermodynamic Model of Spatial Memory

    Science.gov (United States)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  11. Interrelation between results of individual dosimetric control and regulatory control in Cuba

    International Nuclear Information System (INIS)

    Diaz Bernal, E.D.; Jova Sed, L.A.; Capote Ferrera, E.; Lopez Bejerano, G.M.

    1997-01-01

    The increasing use of various applications of ionizing radiation in Cuba made it necessary to create a harmonic system of facilities that guarantees the radiological safety of radiation workers, the public and the environment. Therefore, in 1985 a Centre of Radiation Protection and Hygiene (CPHR) was created. Thereafter, in 1991, the regulatory function and the inspection of radiological and nuclear safety was assigned to the National Centre of Nuclear Safety. The introduction of this service has provided the regulatory body with a tool to control the existing situation with respect to registration and licensing. The results of the service in the period 1994-1996 and a comparison with previous years are given. The results obtained reflect that the system of supervision in general has guaranteed keeping levels of doses low. The dose values registered demonstrate the possibility to establish in the country as a does limit an annual average dose limit of 20 mSv which might rise to but shall on no account exceed 50 mSv per year without the need for costly investment and based on organizational measures

  12. First-Principles Investigations of the Structural, Anisotropic Mechanical, Thermodynamic and Electronic Properties of the AlNi2Ti Compound

    Directory of Open Access Journals (Sweden)

    Shuli Tang

    2018-02-01

    Full Text Available In this paper, the electronic, mechanical and thermodynamic properties of AlNi2Ti are studied by first-principles calculations in order to reveal the influence of AlNi2Ti as an interfacial phase on ZTA (zirconia toughened alumina/Fe. The results show that AlNi2Ti has relatively high mechanical properties, which will benefit the impact or wear resistance of the ZTA/Fe composite. The values of bulk, shear and Young’s modulus are 164.2, 63.2 and 168.1 GPa respectively, and the hardness of AlNi2Ti (4.4 GPa is comparable to common ferrous materials. The intrinsic ductile nature and strong metallic bonding character of AlNi2Ti are confirmed by B/G and Poisson’s ratio. AlNi2Ti shows isotropy bulk modulus and anisotropic elasticity in different crystallographic directions. At room temperature, the linear thermal expansion coefficient (LTEC of AlNi2Ti estimated by quasi-harmonic approximation (QHA based on Debye model is 10.6 × 10−6 K−1, close to LTECs of zirconia toughened alumina and iron. Therefore, the thermal matching of ZTA/Fe composite with AlNi2Ti interfacial phase can be improved. Other thermodynamic properties including Debye temperature, sound velocity, thermal conductivity and heat capacity, as well as electronic properties, are also calculated.

  13. Regulatory Strategy to Control Radon Exposure in Pakistan

    International Nuclear Information System (INIS)

    Younus, Irfan; Cho, Kun Woo

    2012-01-01

    Pakistan Nuclear Regulatory Authority (PNRA) was established in 2001 with one of the objectives to ensure the protection of workers, general public and the environment from the harmful effects of naturally occurring and artificially produced ionizing radiations by formulating and implementing the effective regulations. Radon is a naturally occurring odorless, colorless, tasteless, imperceptible to senses and chemically inert radioactive gas which is produced continuously from the natural decay of U-238, U-235 and Th-232 in most soils, rocks and water all over the earth. High levels of radon in the soil and rock are primarily responsible for indoor radon problems. Therefore when inhaled with air, there much probability that radon decay products will stay and decay in the lungs. If stayed in the lungs, the radiation may damage the cells causing lung cancer. Hence the radon problems have been taken seriously in most of the developed countries of the world. Radon reference levels for dwellings and workplaces have been set and the general public has been made alert of radon through newspapers and electronic media. In Pakistan, neither publicity campaign nor radon measurement and control programmes have been started countrywide. Rather small individual efforts for the sake of interest have been done to investigate the radon in some specific area or institution. This paper presents the regulatory strategy to control radon exposure for the sake of radiation protection of public and workers in Pakistan

  14. Gender Inequality and Reflexive Law: The Potential of different regulatory Mechanisms for making Employment Rights effective

    OpenAIRE

    Deakin, S.; McLaughlin, C.; Chai, D.H.

    2011-01-01

    We review the different regulatory mechanisms which have been used in the UK context to promote gender equality in employment over the past decade, including legal enforcement based on claimant-led litigation, collective bargaining, pay audits, and shareholder pressure. Evidence is drawn from case studies examining the effects of these different mechanisms on organisations in the public and private sectors, and from econometric analysis of the impact of stock market pressures on firms' human ...

  15. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    Science.gov (United States)

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The regulatory mechanism in the U.S. lessons learned

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission is responsible for the regulation of the commercial uses of nuclear power in the United States in order to protect the public health and safety. The NRC has undertaken a number of initiatives to incorporate the experience gained from the over 25 years of commercial nuclear power plant operation. These initiatives are aimed at improving the regulatory structure currently in place by providing for a more predictable and stable regulatory environment and by more efficiently and effectively focusing the activities of utilities on the safe operation of their facilities. (author)

  17. Thymic versus induced regulatory T cells – who regulates the regulators?

    Directory of Open Access Journals (Sweden)

    Giovanni Antonio Maria Povoleri

    2013-06-01

    Full Text Available Physiological health must balance immunological responsiveness against foreign pathogens with tolerance towards self-components and commensals. Disruption of this balance causes autoimmune diseases/chronic inflammation, in case of excessive immune responses, and persistent infection/immunodeficiency if regulatory components are overactive. This homeostasis occurs at two different levels: at a resting state to prevent autoimmune disease, as autoreactive effector T-cells (Teffs are only partially deleted in the thymus, and during inflammation to prevent excessive tissue injury, contract the immune response and enable tissue repair. Adaptive immune cells with regulatory function (regulatory T-cells are essential to control Teffs. Two sets of regulatory T cell are required to achieve the desired control: those emerging de novo from embryonic/neonatal thymus (thymic or tTregs, whose function is to control autoreactive Teffs to prevent autoimmune diseases, and those induced in the periphery (peripheral or pTregs to acquire regulatory phenotype in response to pathogens/inflammation. The differentiation mechanisms of these cells determine their commitment to lineage and plasticity towards other phenotypes. tTregs, expressing high levels of IL-2 receptor alpha chain (CD25, and the transcription factor Foxp3, are the most important, since mutations or deletions in these genes cause fatal autoimmune diseases in both mice and men. In the periphery, instead, Foxp3+ pTregs can be induced from naïve precursors in response to environmental signals. Here, we discuss molecular signatures and induction processes, mechanisms and sites of action, lineage stability and differentiating characteristics of both Foxp3+ and Foxp3- populations of regulatory T cells, derived from the thymus or induced peripherally. We relate these predicates to programs of cell-based therapy for the treatment of autoimmune diseases and induction of tolerance to transplants.

  18. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    DEFF Research Database (Denmark)

    Nylandsted, J; Jäättelä, M; Hoffmann, E K

    2004-01-01

    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found...... that severe hypertonic stress greatly diminished the viability of murine fibrosarcoma cells (WEHI-902) and immortalized murine embryonic fibroblasts (iMEFs). This effect was attenuated markedly by Hsp70 over-expression. To determine whether the protective effect of Hsp70 was mediated via an effect on volume...... regulatory ion transport, we compared regulatory volume decrease (RVD) and increase (RVI) in control WEHI-902 cells and after increasing Hsp70 levels by heat shock or over-expression (WEHI-912). Hsp70 levels affected neither RVD, RVI nor the relative contributions of the Na(+)/H(+)-exchanger (NHE1) and Na...

  19. Thermodynamics and binding mechanism of polyphenon-60 with human lysozyme elucidated by calorimetric and spectroscopic techniques

    International Nuclear Information System (INIS)

    Yasmeen, Shama; Riyazuddeen

    2017-01-01

    Highlights: • Thermodynamics of the binding of Lys with polypenone-60 were studied. • The binding was found to be exothermic. • Polyphenon-60 quenches the fluorescence of Lys through static quenching. • Polyphenon-60 binds to Lys through hydrogen binding. • Conformational changes of Lys were studied using circular dichorism. - Abstract: Protein-drug interaction offer information of the structural features that determine the therapeutic effectiveness of drug and have become an attractive research field in life science, chemistry, and clinical medicine. Interaction of pharmacologically important antioxidant drug polyphenon-60 with human lysozyme (Lys) at physiological pH 7.4 has been studied by using calorimetric and various spectroscopic techniques. UV–visible spectroscopy results indicate the complex formation between Lys and polyphenon-60. The binding constant, quenching mechanism and the number of binding sites were determined by the fluorescence quenching spectra of Lys in presence of polyphenon-60. Fluorescence data indicate that the polyphenon-60 interact with Lys through static quenching mechanism with binding affinity of 2.9 × 10 4 M −1 . The average binding distance between drug and Lys was found to be 2.89 nm on the basis of the theory of Förster's energy transfer. Isothermal titration calorimetry (ITC) data reveals the thermodynamic investigations which suggest that the interaction of Lys and polyphenon-60 through exothermic process and enthalpy driven and also explore that the polyphenon-60 binds in both sites of Lys with high and low affinity. Hydrogen bonding (high affinity) and hydrophobic interactions (low affinity) are the major forces in stabilizing the drug protein complex. Far-UV CD and FTIR results deciphere the conformational alterations in the secondary structure of Lys.

  20. Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Bartholdy, Savani; Boysen, Elena; Musiat, Peter; Dalton, Bethan; Tiza, Meyzi; David, Anthony S; Campbell, Iain C; Schmidt, Ulrike

    2017-01-01

    Evidence suggests that pathological eating behaviours in bulimia nervosa (BN) are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC). Manipulation of this region with transcranial direct current stimulation (tDCS) may therefore alleviate symptoms of the disorder. This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN. Thirty-nine participants (two males) received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL), anode left/cathode right (AL/CR), and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded. AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised) when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States) improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation. These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN.

  1. Analysis of the decomposition gases from α and β-Cd(BH4)2 synthesized by temperature controlled mechanical milling

    DEFF Research Database (Denmark)

    Blanchard, Didier; Zatti, Matteo; Vegge, Tejs

    2013-01-01

    We present a comprehensive study on the controlled phase synthesis and thermal decomposition of Cd(BH2)4, a material for solid state hydrogen storage obtained via the metathesis reaction of LiBH4 with CdCl2. By adjusting the stochiometry of the reactants and controlling the mechanical milling vial...... temperature, we have isolated the tetragonal (P42mn) low temperature phase and the cubic (View the MathML source) high temperature phase of the cadmium borohydride. Cd(BH2)4 has a low thermodynamic stability and decomposes with fast kinetic at 348 K, when heated at 1 K min−1 against a backpressure of 1 bar H2...

  2. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes

    Directory of Open Access Journals (Sweden)

    Dasgupta Dipayan

    2005-05-01

    Full Text Available Abstract Background Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group. Results In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes. Conclusion The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

  3. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  4. Control of radioactive sources in industry through regulatory inspections

    International Nuclear Information System (INIS)

    Leocadio, J.C.; Ramalho, A.T.; Pinho, A.S.; Lourenco, M.M.J.; Nicola, M.S.; D'Avila, R.L.; Melo, I.F.; Cucco, A.C.S.

    2005-01-01

    In Brazil, the applications of ionizing radiation in industry are accomplished about 900 radioactive facilities, which handle approximately 3.000 radiation sources. The control of radioactive sources used in industrial installations authorized by the Brazilian Nuclear Energy Commission (CNEN) is accomplished by Servico de Radioprotecao na Industria Radiativa (SERIR) of the Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ, Brazil. This service carries out regulatory inspections in the practices of industrial radiography, nuclear gauges, industrial irradiators and oil wells logging. The frequency of inspections depends on the type of practice, ranging from a year to 5 years, depending on the risk involved. This paper presents a brief description of the situation of radiation safety in the use of radioactive sources in the industries of the country. The results obtained with regulatory inspections at industrial installations demonstrate that the conditions of safety and radiation protection in these facilities are satisfactory when compared with the technical regulations, both national and international

  5. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  6. Cognitive and Self-regulatory Mechanisms of Obesity Study (COSMOS): Study protocol for a randomized controlled weight loss trial examining change in biomarkers, cognition, and self-regulation across two behavioral treatments.

    Science.gov (United States)

    Hawkins, M A W; Colaizzi, Janna; Gunstad, John; Hughes, Joel W; Mullins, Larry L; Betts, Nancy; Smith, Caitlin E; Keirns, Natalie G; Vohs, Kathleen D; Moore, Shirley M; Forman, Evan M; Lovallo, William R

    2018-03-01

    Obesity is a global epidemic, yet successful interventions are rare. Up to 60% of people fail to achieve clinically meaningful, short-term weight loss (5-10% of start weight), whereas up to 72% are unsuccessful at achieving long-term weight loss (5-10% loss for ≥5years). Understanding how biological, cognitive, and self-regulatory factors work together to promote or to impede weight loss is clearly needed to optimize obesity treatment. This paper describes the methodology of the Cognitive and Self-regulatory Mechanisms of Obesity Study (the COSMOS trial). COSMOS is the first randomized controlled trial to investigate how changes in multiple biopsychosocial and cognitive factors relate to weight loss and one another across two weight loss treatments. The specific aims are to: 1) Confirm that baseline obesity-related physiological dysregulation is linked to cognitive deficits and poorer self-regulation, 2) Evaluate pre- to post-treatment change across time to assess individual differences in biomarkers, cognition, and self-regulation, and 3) Evaluate whether the acceptance-based treatment (ABT) group has greater improvements in outcomes (e.g., greater weight loss and less weight regain, improvements in biomarkers, cognition, and self-regulation), than the standard behavioral treatment group (SBT) from pre- to post-treatment and 1-year follow-up. The results of COSMOS will provide critical information about how dysregulation in biomarkers, cognition, and/or self-regulation is related to weight loss and whether weight loss treatments are differentially associated with these factors. This information will be used to identify promising treatment targets that are informed by biological, cognitive, and self-regulatory factors in order to advance obesity treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  8. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  9. Control-rod driving mechanism

    International Nuclear Information System (INIS)

    Jodoi, Takashi.

    1976-01-01

    Purpose: To prevent falling of control rods due to malfunction. Constitution: The device of the present invention has a scram function in particular, and uses principally a fluid pressure as a scram accelerating means. The control rod is held by upper and lower holding devices, which are connected by a connecting mechanism. This connecting mechanism is designed to be detachable only at the lower limit of driving stroke of the control rod so that there occurs no erroneous scram resulting from careless disconnection of the connecting mechanism. Further, scramming operation due to own weight of the scram operating portion such as control rod driving shaft may be effected to increase freedom. (Kamimura, M.)

  10. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  11. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  12. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    Energy Technology Data Exchange (ETDEWEB)

    Klabunde, Kenneth J. [Kansas State Univ., Manhattan, KS (United States)

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  13. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  14. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.

    Science.gov (United States)

    Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E

    2018-01-01

    DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.

  15. Genetic horoscopes: is it all in the genes? Points for regulatory control of direct-to-consumer genetic testing.

    Science.gov (United States)

    Patch, Christine; Sequeiros, Jorge; Cornel, Martina C

    2009-07-01

    The development of tests for genetic susceptibility to common complex diseases has raised concerns. These concerns relate to evaluation of the scientific and clinical validity and utility of the tests, quality assurance of laboratories and testing services, advice and protection for the consumer and the appropriate regulatory and policy response. How these concerns are interpreted and addressed is an ongoing debate. If the possibility of using the discoveries from genomic science to improve health is to be realised without losing public confidence, then improvements in the evaluation and mechanisms for control of supply of tests may be as important as the science itself.

  16. The thermodynamical foundation of electronic conduction in solids

    Science.gov (United States)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one

  17. The Neural Correlates of Self-Regulatory Fatigability During Inhibitory Control of Eye Blinking.

    Science.gov (United States)

    Abi-Jaoude, Elia; Segura, Barbara; Cho, Sang Soo; Crawley, Adrian; Sandor, Paul

    2018-05-30

    The capacity to regulate urges is an important human characteristic associated with a range of social and health outcomes. Self-regulatory capacity has been postulated to have a limited reserve, which when depleted leads to failure. The authors aimed to investigate the neural correlates of self-regulatory fatigability. Functional MRI was used to detect brain activations in 19 right-handed healthy subjects during inhibition of eye blinking, in a block design. The increase in number of blinks during blink inhibition from the first to the last block was used as covariate of interest. There was an increase in the number of eye blinks escaping inhibitory control across blink inhibition blocks, whereas there was no change in the number of eye blinks occurring during rest blocks. Inhibition of blinking activated a wide network bilaterally, including the inferior frontal gyrus, dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor area, and caudate. Deteriorating performance was associated with activity in orbitofrontal cortex, ventromedial prefrontal cortex, rostroventral anterior cingulate cortex, precuneus, somatosensory, and parietal areas. As anticipated, effortful eye-blink control resulted in activation of prefrontal control areas and regions involved in urge and interoceptive processing. Worsening performance was associated with activations in brain areas involved in urge, as well as regions involved in motivational evaluation. These findings suggest that self-regulatory fatigability is associated with relatively less recruitment of prefrontal cortical regions involved in executive control.

  18. Thermodynamics of ionic processes in solutions

    International Nuclear Information System (INIS)

    Krestov, G.A.

    1984-01-01

    The present nitions about the mechanism of solvation of atomic-molecular particles and the structure of electrolyte and non electrolyte solutions are given. From common positions a wide range of interrelated problems (general and thermodynamic characteristic of ions, thermodynamic characteristic of ion solvation and various ionic reactions in solutions, structural changes of the solvent in the above processes etc...) is considered. The latest scientific data including those on the effect on the thermodynamio properties of low temperatures, various impurities (air, water), large ions, peculiarities of the structure of solvent molecules reflected. Considerable attention is given to new conceptions definitions, structural notions as well as theoretical and experimental methods of obtaining quantitative characteristics of ion solvation

  19. An introduction to statistical thermodynamics

    CERN Document Server

    Hill, Terrell L

    1987-01-01

    ""A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level."" - Philosophical MagazineAlthough written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances.The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics a

  20. Thermodynamic fluctuations within the Gibbs and Einstein approaches

    International Nuclear Information System (INIS)

    Rudoi, Yurii G; Sukhanov, Alexander D

    2000-01-01

    A comparative analysis of the descriptions of fluctuations in statistical mechanics (the Gibbs approach) and in statistical thermodynamics (the Einstein approach) is given. On this basis solutions are obtained for the Gibbs and Einstein problems that arise in pressure fluctuation calculations for a spatially limited equilibrium (or slightly nonequilibrium) macroscopic system. A modern formulation of the Gibbs approach which allows one to calculate equilibrium pressure fluctuations without making any additional assumptions is presented; to this end the generalized Bogolyubov - Zubarev and Hellmann - Feynman theorems are proved for the classical and quantum descriptions of a macrosystem. A statistical version of the Einstein approach is developed which shows a fundamental difference in pressure fluctuation results obtained within the context of two approaches. Both the 'genetic' relation between the Gibbs and Einstein approaches and the conceptual distinction between their physical grounds are demonstrated. To illustrate the results, which are valid for any thermodynamic system, an ideal nondegenerate gas of microparticles is considered, both classically and quantum mechanically. Based on the results obtained, the correspondence between the micro- and macroscopic descriptions is considered and the prospects of statistical thermodynamics are discussed. (reviews of topical problems)

  1. An introduction to mechanical engineering, pt.2

    CERN Document Server

    Clifford, Michael

    2010-01-01

    An Introduction to Mechanical Engineering: Part 2 is an essential text for all second-year undergraduate students as well as those studying foundation degrees and HNDs. The text provides thorough coverage of the following core engineering topics:Fluid dynamicsThermodynamicsSolid mechanicsControl theory and techniquesMechanical power, loads and transmissionsStructural vibrationAs well as mechanical engineers, the text will be highly relevant to automotive, aeronautical/aerospace and general engineering students.The material in this book has full student and lecturer support on an accompanying w

  2. Family controlled firm, governance mechanisms and corporate performance: Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Eko Suyono

    2016-07-01

    Full Text Available This study investigates, firstly, the influence of family-controlled firm on corporate performance, and secondly, the influences of corporate governance mechanisms including control variable on corporate performance in the companies listed on the Indonesian Stock Exchange. By using five years (2009-2013 company data, this study used Ordinary Least Square (OLS regression to test the hypotheses. The results based on OLS, indicate that family controlled firms tend to have better performance than non Family controlled firms. Moreover, in regard to the link between governance variables and corporate performance, only managerial ownership exhibits a positive relation with corporate performance, for both proxies, i.e. Tobins Q and ROA. Yet, the rests of governance variables (i.e. institutional ownership, audit committee, board of directors and independent board of commissioners do not confirm the relationship with corporate performance. These findings have significant policy implications for the government, regulatory bodies, companies and other stakeholders including the investors in Indonesia to shape and implement an optimal governance system that can improve corporate performance.

  3. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young; Park, Myoung Ryoul; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Mauleon, Ramil; Wijaya, Edward; Bajic, Vladimir B.; Bruskiewich, Richard; de los Reyes, Benildo G

    2010-01-01

    -plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress

  4. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  5. The mutual co-implication of thermodynamics' first and second laws

    OpenAIRE

    Plastino, A.; Curado, E. M. F.

    2004-01-01

    In classical phenomenological thermodynamics the first and second laws can be regarded as independent statements. Statistical mechanics provides a microscopic substratum that explains thermodynamics in probabilistic terms via a microstate probability distribution ${p_i}$. We study here a hitherto unexplored microscopic connection between the two laws. Given an information measure (or entropic form), each of the two laws implies the other through the process $p_i \\to p_i+dp_i$.

  6. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  7. Kidney branching morphogenesis under the control of a ligand–receptor-based Turing mechanism

    International Nuclear Information System (INIS)

    Menshykau, Denis; Iber, Dagmar

    2013-01-01

    The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor–RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor–ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor–ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor–ligand systems. We propose that ligand–receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes. (paper)

  8. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.

    Science.gov (United States)

    Bazant, Martin Z

    2017-07-01

    Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations. The Glansdorff-Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler-Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

  9. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  10. Nonequilibrium thermodynamics of the Kovacs effect

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J. S.

    We present a thermodynamic theory of the Kovacs effect based on the idea that the configurational degrees of freedom of a glass-forming material are driven out of equilibrium with the heat bath by irreversible thermal contraction and expansion. We assume that the slowly varying configurational subsystem, i.e. the part of the system that is described by inherent structures, is characterized by an effective temperature, and contains a volume-related internal variable. We examine mechanisms by which irreversible dynamics of the fast, kinetic-vibrational degrees of freedom can cause the entropy and the effective temperature of the configurational subsystem to increase during sufficiently rapid changes in the bath temperature. We then use this theory to interpret the numerical simulations by Mossa and Sciortino (MS), who observe the Kovacs effect in more detail than is feasible in laboratory experiments. Our analysis highlights two mechanisms for the equilibration of internal variables. In one of these, an internal variable first relaxes toward a state of quasi-equilibrium determined by the effective temperature, and then approaches true thermodynamic equilibrium as the effective temperature slowly relaxes toward the bath temperature. In the other mechanism, an internal variable directly equilibrates with the bath temperature on intermediate timescales, without equilibrating with the effective temperature at any stage. Both mechanisms appear to be essential for understanding the MS results.

  11. Principles of thermodynamics

    CERN Document Server

    Kaufman, Myron

    2002-01-01

    Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.

  12. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process

    Directory of Open Access Journals (Sweden)

    Alexandre Vallée

    2017-11-01

    Full Text Available Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.

  13. Is neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Tania; Domingos, Tiago [Environment and Energy Section, DEM, Instituto Superior Tecnico, Avenida Rovisco Pais, 1, 1049-001 Lisboa (Portugal)

    2006-06-10

    The relation between Thermodynamics and Economics is a paramount issue in Ecological Economics. Two different levels can be distinguished when discussing it: formal and substantive. At the formal level, a mathematical framework is used to describe both thermodynamic and economic systems. At the substantive level, thermodynamic laws are applied to economic processes. In Ecological Economics, there is a widespread claim that neoclassical economics has the same mathematical formulation as classical mechanics and is therefore fundamentally flawed because: (1) utility does not obey a conservation law as energy does; (2) an equilibrium theory cannot be used to study irreversible processes. Here, we show that neoclassical economics is based on a wrong formulation of classical mechanics, being in fact formally analogous to equilibrium thermodynamics. The similarity between both formalisms, namely that they are both cases of constrained optimisation, is easily perceived when thermodynamics is looked upon using the Tisza-Callen axiomatisation. In this paper, we take the formal analogy between equilibrium thermodynamics and economic systems far enough to answer the formal criticisms, proving that the formalism of neoclassical economics has irreversibility embedded in it. However, the formal similarity between equilibrium thermodynamics and neoclassical microeconomics does not mean that economic models are in accordance with mass, energy and entropy balance equations. In fact, neoclassical theory suffers from flaws in the substantive integration with thermodynamic laws as has already been fully demonstrated by valuable work done by ecological economists in this field. (author)

  14. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  15. Modelling grain growth in the framework of Rational Extended Thermodynamics

    International Nuclear Information System (INIS)

    Kertsch, Lukas; Helm, Dirk

    2016-01-01

    Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena. (paper)

  16. Modelling grain growth in the framework of Rational Extended Thermodynamics

    Science.gov (United States)

    Kertsch, Lukas; Helm, Dirk

    2016-05-01

    Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.

  17. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  18. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  19. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations

    Science.gov (United States)

    Yang, Xiao-Yong; Lu, Yong; Zheng, Fa-Wei; Zhang, Ping

    2015-11-01

    Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 51071032).

  20. Experimental studies of the mechanisms and the kinetic and thermodynamic aspects of the uranium reduction by sedimentary organic materials from ligneous origin under diagenetic or hydrothermal conditions

    International Nuclear Information System (INIS)

    Nakashima, S.

    1984-01-01

    This research thesis reports experimental studies of fixation and reduction of the uranyl cation by sedimentary organic materials from ligneous origin in order to understand the mechanisms and quantitative aspects of these processes in diagenetic or hydrothermal conditions. Two fixation mechanisms have been identified. Reduction appears to be governed by the oxidation of hydroxyl functions and the dehydrogenation of aliphatic hydro-carbonated entities. A kinetic study of this reduction process is reported, as well as a simulation of these processes by simple organic compounds (alcohols, aliphatic hydrocarbons). The assessment of thermodynamic parameters of the reduction process is discussed, and the obtained thermodynamic data show that almost the totality of uranium present in natural waters precipitates under the form of uraninite in presence of lignite. The extension of the obtained results to all sedimentary organic materials is finally discussed [fr

  1. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  2. A semi-local quasi-harmonic model to compute the thermodynamic and mechanical properties of silicon nanostructures

    International Nuclear Information System (INIS)

    Zhao, H; Aluru, N R

    2007-01-01

    This paper presents a semi-local quasi-harmonic model with local phonon density of states (LPDOS) to compute the thermodynamic and mechanical properties of silicon nanostructures at finite temperature. In contrast to an earlier approach (Tang and Aluru 2006 Phys. Rev. B 74 235441), where a quasi-harmonic model with LPDOS computed by a Green's function technique (QHMG) was developed considering many layers of atoms, the semi-local approach considers only two layers of atoms to compute the LPDOS. We show that the semi-local approach combines the accuracy of the QHMG approach and the computational efficiency of the local quasi-harmonic model. We present results for several silicon nanostructures to address the accuracy and efficiency of the semi-local approach

  3. Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Maria Kekic

    Full Text Available Evidence suggests that pathological eating behaviours in bulimia nervosa (BN are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC. Manipulation of this region with transcranial direct current stimulation (tDCS may therefore alleviate symptoms of the disorder.This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN.Thirty-nine participants (two males received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL, anode left/cathode right (AL/CR, and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded.AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation.These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN.

  4. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    Reestablishing a well-balanced population of regulatory T cells (Tregs) and pathogenic T cells (Tpaths) is necessary for diabetic patients to regain glucose control. However, the molecular mechanisms modulating functional differentiation of Tpaths and Tregs remain unclear. In this study, we anal- ysed the gene expression ...

  5. Thermodynamic model for growth mechanisms of multiwall carbon nanotubes

    Science.gov (United States)

    Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.

    2006-12-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  6. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  7. Black hole thermodynamics based on unitary evolutions

    International Nuclear Information System (INIS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)

  8. Regulatory mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis).

    Science.gov (United States)

    Stager, Maria; Swanson, David L; Cheviron, Zachary A

    2015-03-01

    Small temperate birds reversibly modify their aerobic performance to maintain thermoregulatory homeostasis under seasonally changing environmental conditions and these physiological adjustments may be attributable to changes in the expression of genes in the underlying regulatory networks. Here, we report the results of an experimental procedure designed to gain insight into the fundamental mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis). We combined genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance from juncos exposed to four 6-week acclimation treatments that varied in temperature (cold, 3°C; warm, 24°C) and photoperiod (short day, 8 h light:16 h dark; long day, 16 h light:8 h dark). Cold-acclimated birds increased thermogenic capacity compared with warm-acclimated birds, and this enhanced performance was associated with upregulation of genes involved in muscle hypertrophy, angiogenesis, and lipid transport and oxidation, as well as with catabolic enzyme activities. These physiological changes occurred over ecologically relevant timescales, suggesting that birds make regulatory adjustments to interacting, hierarchical pathways in order to seasonally enhance thermogenic capacity. © 2015. Published by The Company of Biologists Ltd.

  9. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  10. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  11. Thermodynamics, diffusion and the Kirkendall effect in solids

    CERN Document Server

    Paul, Aloke; Vuorinen, Vesa; Divinski, Sergiy V

    2014-01-01

    Covering both basic and advanced thermodynamic and phase  principles,  as well as providing stability diagrams relevant for diffusion studies, Thermodynamics, Diffusion and the Kirkendall Effect in Solids maximizes reader insights into Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect. Recent advances in the area of interdiffusion will be introduced, while the many practical examples and large number of illustrations given will serve to aid researches working in this area in learning the practical evaluation of various diffusion parameters from experimental results. With a unique approach to the two main focal points in solid state transformations, energetics (thermodynamics) and kinetics (interdiffusion) are extensively studied and their combined use in practise is discussed. Recent developments in the area of Kirkendall effect, grain boundary diffusion and multicomponent diffusion are also covered extensively. This book will appe...

  12. Workshop on rules for exemption from regulatory control: Proceedings

    International Nuclear Information System (INIS)

    1989-04-01

    This conference report documents the proceedings of an International Workshop on the subject of exempting radiation sources and practices from regulatory control. The purpose of the workshop was to provide national regulatory authorities an opportunity to exchange information on their respective approaches and practices involving exemptions and to enhance international understanding and cooperation on the derivation and practical application of the underlying principles. In addition, input from the workshop was intended to assist the NRC in the development of a policy statement on this issue. The workshop was divided into five sessions. During the first four sessions, papers were presented which defined the relative terms and concepts, outlined the national situations and approaches to the establishment and development of exemption rules, identified and discussed the existing issues, and gave the status of the international guidelines on exemption rules. The fifth session was devoted to summarizing the workshop and identifying the areas of consensus, the outstanding issues and the areas for future work. Individual papers were processed separately for the data base

  13. A Thermodynamic Library for Simulation and Optimization of Dynamic Processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Jørgensen, John Bagterp

    2017-01-01

    Process system tools, such as simulation and optimization of dynamic systems, are widely used in the process industries for development of operational strategies and control for process systems. These tools rely on thermodynamic models and many thermodynamic models have been developed for different...... compounds and mixtures. However, rigorous thermodynamic models are generally computationally intensive and not available as open-source libraries for process simulation and optimization. In this paper, we describe the application of a novel open-source rigorous thermodynamic library, ThermoLib, which...... is designed for dynamic simulation and optimization of vapor-liquid processes. ThermoLib is implemented in Matlab and C and uses cubic equations of state to compute vapor and liquid phase thermodynamic properties. The novelty of ThermoLib is that it provides analytical first and second order derivatives...

  14. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  15. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  16. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    International Nuclear Information System (INIS)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; Comstock, Jennifer M.; Johnson, Karen L.

    2017-01-01

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.

  17. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  18. Use and regulatory control of dental X-ray installations

    International Nuclear Information System (INIS)

    1999-01-01

    In the guide the safety requirements concerning dental X-ray installations and their use, prerequisities for exemption from a safety licence, and regulatory control are presented. The guide applies to conventional dental X-ray installations, by which an image is created on an X-ray film or other image receptor placed inside the mouth, and panorama tomography installations for dentition and the cephalostats associated with these. The guide does not apply to multitechnique tomography installations intended for the special imaging of the skull or jaws

  19. Continuum Thermodynamics - Part II: Applications and Examples

    Science.gov (United States)

    Albers, Bettina; Wilmanski, Krzysztof

    The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...

  20. A thermodynamic derivation of the stress-strain relations for Burgers media and related substances

    NARCIS (Netherlands)

    Kluitenberg, G.A.

    1968-01-01

    A generalization is given of the author's thermodynamic theory for mechanical phenomena in continuous media. The developments are based on the general methods of non-equilibrium thermodynamics. Temperature effects are fully taken into account. It is assumed that several microscopic phenomena occur

  1. Had We But World Enough, and Time... But We Don't!: Justifying the Thermodynamic and Infinite-Time Limits in Statistical Mechanics

    Science.gov (United States)

    Palacios, Patricia

    2018-05-01

    In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior (i) also arises before we get to the limit and (ii) for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In fact, I will point out that even in cases where one can recover the limit behavior for finite t, i.e. before we get to the limit, one cannot recover this behavior for realistic time scales. I will claim that this leads us to reconsider the role that the rate of convergence plays in the justification of infinite limits and calls for a revision of the so-called Butterfield's principle.

  2. Had We But World Enough, and Time... But We Don't!: Justifying the Thermodynamic and Infinite-Time Limits in Statistical Mechanics

    Science.gov (United States)

    Palacios, Patricia

    2018-04-01

    In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior (i) also arises before we get to the limit and (ii) for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In fact, I will point out that even in cases where one can recover the limit behavior for finite t, i.e. before we get to the limit, one cannot recover this behavior for realistic time scales. I will claim that this leads us to reconsider the role that the rate of convergence plays in the justification of infinite limits and calls for a revision of the so-called Butterfield's principle.

  3. Notification: Implementation of Executive Order 13771, “Reducing Regulation and Controlling Regulatory Costs”

    Science.gov (United States)

    Project #OA&E-FY18-0177, April 10, 2018. The OIG plans to begin preliminary research on the Office of the Administrator's Office of Policy implementation of Executive Order 13771, Reducing Regulation and Controlling Regulatory Costs.

  4. Regulatory control of physical protection systems

    International Nuclear Information System (INIS)

    Rajdeep; Mayya, Y.S.

    2017-01-01

    The safety of facilities in BARC is under the regulatory oversight of BSC. The security architecture for these facilities incorporates multiple layers of Physical Protection Systems. The demands of safety may sometimes conflict with the needs of security. Realizing the need to identify these interfaces and extend the regulatory coverage to Physical Protection Systems, a Standing Committee named Physical Protection System Review Committee (PPSRC) has been constituted as a 2"n"d tier entity of BSC. PPSRC includes experts from various domains concerned with nuclear security, viz. physical protection systems, cyber security, radiation safety, security operations, technical services and security administration

  5. Micromechanical analysis of volumetric growth in the context of open systems thermodynamics and configurational mechanics. Application to tumor growth

    Science.gov (United States)

    Ganghoffer, J. F.; Boubaker, M. B.

    2017-03-01

    We adopt in this paper the physically and micromechanically motivated point of view that growth (resp. resorption) occurs as the expansion (resp. contraction) of initially small tissue elements distributed within a host surrounding matrix, due to the interfacial motion of their boundary. The interface motion is controlled by the availability of nutrients and mechanical driving forces resulting from the internal stresses that built in during the growth. A general extremum principle of the zero potential for open systems witnessing a change of their mass due to the diffusion of nutrients is constructed, considering the framework of open systems thermodynamics. We postulate that the shape of the tissue element evolves in such a way as to minimize the zero potential among all possible admissible shapes of the growing tissue elements. The resulting driving force for the motion of the interface sets a surface growth models at the scale of the growing tissue elements, and is conjugated to a driving force identified as the interfacial jump of the normal component of an energy momentum tensor, in line with Hadamard's structure theorem. The balance laws associated with volumetric growth at the mesoscopic level result as the averaging of surface growth mechanisms occurring at the microscopic scale of the growing tissue elements. The average kinematics has been formulated in terms of the effective growth velocity gradient and elastic rate of deformation tensor, both functions of time. This formalism is exemplified by the simulation of the avascular growth of multicell spheroids in the presence of diffusion of nutrients, showing the respective influence of mechanical and chemical driving forces in relation to generation of internal stresses.

  6. Model checking optimal finite-horizon control for probabilistic gene regulatory networks.

    Science.gov (United States)

    Wei, Ou; Guo, Zonghao; Niu, Yun; Liao, Wenyuan

    2017-12-14

    Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp), extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to express the impact of external stimuli, is considered to be more suitable for modeling small biological systems intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon. We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach. The approach based on probabilistic model checking for optimal control avoids explicit computation of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will be helpful for further utilization of the advances in formal verification techniques in system biology.

  7. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  8. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  9. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  10. Principles for the exemption of radiation sources and practices from regulatory control

    International Nuclear Information System (INIS)

    1988-01-01

    Radiation sources, including equipment and installations, which emit ionizing radiations, are potentially harmful to health and their use should therefore be regulated. Some types of radiation source, however, do not need to be subject to regulatory control, because they present such a low hazard that it would be a needless waste of time and effort to exercise control by a regulatory process and they can therefore be exempted from it. An Advisory Group Meeting was convened in Vienna in March 1988 sponsored jointly by the IAEA and NEA. This Safety Guide is the result of that meeting and represents a first international consensus on the subject of exemption principles. This document is issued as an IAEA Safety Guide since it recommends a procedure which might be followed in implementing the Basic Safety Standards (BSS) for Radiation Protection. Its purpose is to recommend a policy on exemptions from the BSS system of notification, registration and licensing. 15 refs

  11. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  12. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  13. Controlling fuel costs: Procurement strategies and regulatory standards

    International Nuclear Information System (INIS)

    Einhorn, H.A.; Levi, B.I.

    1992-01-01

    Since the oil price shocks and inflation of the 1970s, regulatory authorities and utilities have devoted considerable attention to controlling energy costs while maintaining reliable service. Although much of this concern has been directed towards capital cost containment, increasing scrutiny has been applied to a broad range of variable costs, especially to fuel procurement expenditures. With some 40% to 65% of the electric utility industry's annual operation and maintenance expenses paid to secure fuel supplies, even a small difference in fuel costs could have a substantial impact on costs to ratepayers. This increased attention to fuel cost containment can be expected to intensify as implementation of the 1990 amendments to the Clean Air Act affects fuel purchase decisions. To assure that fuel is purchased in a responsible and cost-effective manner, some state jurisdictions have initiated periodic reviews (audits) of the procurement practices that electric utilities follow when purchasing fuel. While a utility must demonstrate how it purchases fuel, there is wide variation in interest and scope of audits among jurisdictions. In this paper, the authors review: (1) the regulatory environment within which fuel procurement and audits occur, and (2) some particularly controversial issues that will receive increasing attention as the practice of conducting fuel procurement audits spreads

  14. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    Science.gov (United States)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  15. Consigned regulatory control and effect of the owner's welding quality under the EPC mode in Fangjiashan nuclear power project

    International Nuclear Information System (INIS)

    Wang Qun; Gu Tao; Wei Lianfeng; Li Hongjun

    2012-01-01

    Under EPC management mode, how to optimize resources allocation and realize effective management and control over key control points is a big difficulty facing the owner. From the owner's point of view, and through summary of practices, the paper introduces and analyses the mode and effect of consigned regulatory control over the weld quality of Fangjiashan nuclear power project. And some recognitions and point of views on popularization of specialized and consigned regulatory control are put forward. (authors)

  16. Specific features of the thermodynamics of superionic conductors

    International Nuclear Information System (INIS)

    Gurevich, Yu.Ya.; Kharkats, Yu.I.

    1982-01-01

    A review of theoretical and experimental investigations devoted to a study of thermodynamic aspects of the superionic conductivity phenomena for the recent decade is presented. A relation between a superionic conductivity and the disordering of one of the crystal sublattices, the phase transitions of the disordering caused by the point defects interaction, the mechanism of polymorphic transitions conjugated with a partial disordering are considered. The effect of an abrupt change of the ionic conductivity induced by electric field, the thermodynamics of the domain states in superionic conductors and the influence of pressure on phase transitions and ionic conductivity are analyzed

  17. Black-hole thermodynamics: Entropy, information and beyond

    Indian Academy of Sciences (India)

    We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally ...

  18. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  19. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  20. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes.

    Science.gov (United States)

    Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J

    2015-01-01

    Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.

  1. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    Science.gov (United States)

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  2. Assisting IAEA Member States to Strengthen Regulatory Control, Particularly in the Medical Area

    International Nuclear Information System (INIS)

    Johnston, P.

    2016-01-01

    As per its Statue and Mandate, IAEA is developing Safety Standards and is also providing assistance for their application in Member States. One target and very large audience of this programme is the community of national regulatory bodies for radiation safety, expected to be established in all 168 Member States. Ionizing radiation is being used throughout the world in medical practices and medical exposure is the most significant manmade source of exposure to the population from ionizing radiation. Radiation accidents involving medical uses have accounted for more injuries and early acute health effects than any other type of radiation accident, including accidents at nuclear facilities. With the constant emerging of new technologies using ionizing radiation for medical diagnostic and treatment, there are on-going challenges for Regulatory bodies. The presentation will highlight some figures related to the medical exposure worldwide, and then it will introduce the main safety standards and other publications developed specifically for Regulatory Bodies and focusing on medical practices. It will also highlight the most important and recent mechanisms (tools, peer reviews and advisory services, training courses, networks) that the Agency is offering to its Member States in order to cope with the main challenges worldwide, contributing thus to the efficiency and effectiveness of the regulatory oversight of medical facilities and activities. (author)

  3. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria.

    Science.gov (United States)

    Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-09-02

    In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome

  4. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  5. Control of Metastatic Progression by microRNA Regulatory Networks

    Science.gov (United States)

    Pencheva, Nora; Tavazoie, Sohail F.

    2015-01-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. These miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, while others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention. PMID:23728460

  6. Regulatory capital requirements and bail in mechanisms

    NARCIS (Netherlands)

    Joosen, B.P.M.; Haentjens, M.; Wessels, B.

    2015-01-01

    With the introduction of the Capital Requirements Regulation (CRR) in the European Union, the qualitative requirements for bank regulatory capital have changed. These changes aim at implementing in Europe the Basel III principles for better bank capital that is able to absorb losses of banks,

  7. Human Brain Networks: Spiking Neuron Models, Multistability, Synchronization, Thermodynamics, Maximum Entropy Production, and Anesthetic Cascade Mechanisms

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2014-07-01

    Full Text Available Advances in neuroscience have been closely linked to mathematical modeling beginning with the integrate-and-fire model of Lapicque and proceeding through the modeling of the action potential by Hodgkin and Huxley to the current era. The fundamental building block of the central nervous system, the neuron, may be thought of as a dynamic element that is “excitable”, and can generate a pulse or spike whenever the electrochemical potential across the cell membrane of the neuron exceeds a threshold. A key application of nonlinear dynamical systems theory to the neurosciences is to study phenomena of the central nervous system that exhibit nearly discontinuous transitions between macroscopic states. A very challenging and clinically important problem exhibiting this phenomenon is the induction of general anesthesia. In any specific patient, the transition from consciousness to unconsciousness as the concentration of anesthetic drugs increases is very sharp, resembling a thermodynamic phase transition. This paper focuses on multistability theory for continuous and discontinuous dynamical systems having a set of multiple isolated equilibria and/or a continuum of equilibria. Multistability is the property whereby the solutions of a dynamical system can alternate between two or more mutually exclusive Lyapunov stable and convergent equilibrium states under asymptotically slowly changing inputs or system parameters. In this paper, we extend the theory of multistability to continuous, discontinuous, and stochastic nonlinear dynamical systems. In particular, Lyapunov-based tests for multistability and synchronization of dynamical systems with continuously differentiable and absolutely continuous flows are established. The results are then applied to excitatory and inhibitory biological neuronal networks to explain the underlying mechanism of action for anesthesia and consciousness from a multistable dynamical system perspective, thereby providing a

  8. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun eHuang

    2015-09-01

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. In Epimedium, flavonoids have been demonstrated to be the main bioactive components (BCs. However, the molecular biosynthetic and regulatory mechanisms of flavonoid-derived BCs remain obscure. In this study, we isolated twelve structural genes and two putative transcription factors (TFs in the flavonoid pathway. Phytochemical analysis showed that the total content of four representative BCs (epimedin A, B, C and icariin decreased slightly or dramatically in two lines of E. sagittatum during leaf development. Transcriptional analysis revealed that two R2R3-MYB TFs (EsMYBA1 and EsMYBF1, together with a bHLH TF (EsGL3 and WD40 protein (EsTTG1, were supposed to coordinately regulate the anthocyanin and flavonol-derived BCs biosynthesis in leaves. Overexpression of EsFLS (flavonol synthase in tobacco resulted in increased flavonols content and decreased anthocyanins content in flowers. Moreover, EsMYB12 negatively correlated with the accumulation of the four BCs, and might act as a transcriptional repressor in the flavonoid pathway. Therefore, the anthocyanin pathway may coordinate with the flavonol-derived BCs pathway in Epimedium leaves. A better understanding of the flavonoid biosynthetic and regulatory mechanisms in E. sagittatum will facilitate functional characterization, metabolic engineering and molecular breeding studies of Epimedium species.

  9. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  10. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  11. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  12. Regulatory T cells and immunity to pathogens.

    Science.gov (United States)

    Rouse, Barry T; Suvas, Susmit

    2007-09-01

    Immune responses to pathogens are modulated by one or more types of cells that perform a regulatory function. Some cells with this function, such as CD4+ Foxp3+ natural regulatory T cells (nTreg), pre-exist prior to infections whereas others may be induced as a consequence of infection (adaptive Treg). With pathogens that have a complex pathogenesis, multiple types of regulatory cells could influence the outcome. One major property of Treg is to help minimize collateral tissue damage that can occur during immune reactions to a chronic infection. The consequence is less damage to the host but in such situations the pathogen is likely to establish persistence. In some cases, a fine balance is established between Treg responses, effector components of immunity and the pathogen. Treg responses to pathogens may also act to hamper the efficacy of immune control. This review discusses these issues as well as the likely mechanisms by which various pathogens can signal the participation of Treg during infection.

  13. Two inhibitory control training interventions designed to improve eating behaviour and determine mechanisms of change.

    Science.gov (United States)

    Allom, Vanessa; Mullan, Barbara

    2015-06-01

    Inhibitory control training has been shown to influence eating behaviour in the laboratory; however, the reliability of these effects is not yet established outside the laboratory, nor are the mechanisms responsible for change in behaviour. Two online Stop-Signal Task training interventions were conducted to address these points. In Study 1, 72 participants completed baseline and follow-up measures of inhibitory control, self-regulatory depletion, fat intake and body-mass index. Participants were randomly assigned to complete one of three Stop-Signal Tasks daily for ten days: food-specific inhibition--inhibition in response to unhealthy food stimuli only, general inhibition--inhibition was not contingent on type of stimuli, and control--no inhibition. While fat intake did not decrease, body-mass index decreased in the food-specific condition and change in this outcome was mediated by changes in vulnerability to depletion. In Study 2, the reliability and longevity of these effects were tested by replicating the intervention with a third measurement time-point. Seventy participants completed baseline, post-intervention and follow-up measures. While inhibitory control and vulnerability to depletion improved in both training conditions post-intervention, eating behaviour and body-mass index did not. Further, improvements in self-regulatory outcomes were not maintained at follow-up. It appears that while the training paradigm employed in the current studies may improve self-regulatory outcomes, it may not necessarily improve health outcomes. It is suggested that this may be due to the task parameters, and that a training paradigm that utilises a higher proportion of stop-signals may be necessary to change behaviour. In addition, improvements in self-regulation do not appear to persist over time. These findings further current conceptualisations of the nature of self-regulation and have implications for the efficacy of online interventions designed to improve eating

  14. Control of a mechanical gripper with a fuzzy controller

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-01-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  15. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  16. Balancing technical and regulatory concerns related to testing and control of performance assessment software

    International Nuclear Information System (INIS)

    Seitz, R.R.; Matthews, S.D.; Kostelnik, K.M.

    1990-01-01

    What activities are required to assure that a performance assessment (PA) computer code operates as it is intended? Answers to this question will vary depending on the individual's area of expertise. Different perspectives on testing and control of PA software are discussed based on interpretations of the testing and control process associated with the different involved parties. This discussion leads into the presentation of a general approach to software testing and control that address regulatory requirements. Finally, the need for balance between regulatory and scientific concerns is illustrated through lessons learned in previous implementations of software testing and control programs. Configuration control and software testing are required to provide assurance that a computer code performs as intended. Configuration control provides traceability and reproducibility of results produced with PA software and provides a system to assure that users have access to the current version of the software. Software testing is conducted to assure that the computer code has been written properly, solution techniques have been properly implemented, and the software is capable of representing the behavior of the specific system to be modeled. Comprehensive software testing includes: software analysis, verification testing, benchmark testing, and site-specific calibration/validation testing

  17. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  18. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  19. Nonequilibrium Thermodynamics of Driven Disordered Materials

    Science.gov (United States)

    Bouchbinder, Eran

    2011-03-01

    We present a nonequilibrium thermodynamic framework for describing the dynamics of driven disordered solids (noncrystalline solids near and below their glass temperature, soft glassy materials such as colloidal suspensions and heavily dislocated polycrystalline solids). A central idea in our approach is that the set of mechanically stable configurations, i.e. the part of the system that is described by inherent structures, evolves slowly as compared to thermal vibrations and is characterized by an effective disorder temperature. Our thermodynamics-motivated equations of motion for the flow of energy and entropy are supplemented by coarse-grained internal variables that carry information about the relevant microscopic physics. Applications of this framework to amorphous visco-plasticity (Shear-Transformation-Zone theory), glassy memory effects (the Kovacs effect) and dislocation-mediated polycrystalline plasticity will be briefly discussed.

  20. Control rod driving mechanism

    International Nuclear Information System (INIS)

    Ooshima, Yoshio.

    1983-01-01

    Purpose: To perform reliable scram operation, even if abnormality should occur in a system instructing scram operation in FBR type reactors. Constitution: An aluminum alloy member to be melt at a predetermined temperature (about 600sup(o)C) is disposed to a connection part between a control rod and a driving mechanism, whereby the control rod is detached from the driving mechanism and gravitationally fallen to the reactor core. (Ikeda, J.)

  1. Kinetics of water sorption of damaged bean grains: Thermodynamic properties

    Directory of Open Access Journals (Sweden)

    Paulo C. Corrêa

    Full Text Available ABSTRACT This study aims to determine the thermodynamic properties of damaged beans. Grains with initial moisture content of 53.85% (d.b. were used. A part of the grains was used to obtain the desorption isotherms, while another part was subjected to drying until a moisture content of 5.26% (d.b. was achieved; therefore, it was subjected to the adsorption process. To induce damage, a Stein breakage tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber whose temperatures were 20, 30, 40, and 50 ± 1 °C combined with a relative humidity of 30, 40, 50, 70, and 90 ± 3%. Although in the desorption process, damaged grains had a lower differential enthalpy compared with the control, the reverse behavior was observed in the adsorption process. Mechanical damage caused the formation of a greater number of available adsorption sites, resulting in higher differential entropy values in adsorption and lower values in desorption compared with the control. The mechanical damage had no effect on the Gibbs free energy.

  2. Validation of gamma irradiator controls for quality and regulatory compliance

    International Nuclear Information System (INIS)

    Harding, R.B.; Pinteric, F.J.A.

    1995-01-01

    Since 1978 the U.S. Food and Drug Administration (FDA) has had both the legal authority and the Current Good Manufacturing Practice (CGMP) regulations in place to require irradiator owners who process medical devices to produce evidence of Irradiation Process Validation. One of the key components of Irradiation Process Validation is the validation of the irradiator controls. However, it is only recently that FDA audits have focused on this component of the process validation. What is Irradiator Control System Validation? What constitutes evidence of control? How do owners obtain evidence? What is the irradiator supplier's role in validation? How does the ISO 9000 Quality Standard relate to the FDA's CGMP requirement for evidence of Control System Validation? This paper presents answers to these questions based on the recent experiences of Nordion's engineering and product management staff who have worked with several US-based irradiator owners. This topic - Validation of Irradiator Controls - is a significant regulatory compliance and operations issues within the irradiator suppliers' and users' community. (author)

  3. Thermodynamics of quark gas

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S. N.

    1980-07-01

    The application of quantum statistical mechanics to a system of particles consisting of quarks is considered. Realistic theoretical investigations have been underway to understand highly dense objects such as white dwarfs and neutron stars. The various possibilities in the case of very high densities such as 10/sup 15/ or 10/sup 16/ g/cm/sup 3/ are enumerated. The thermodynamics of a phase transition from neutron matter phase to quark matter phase is analysed. Preliminary results based on quantum chromodynamics and other phenomenological models are reported.

  4. Beyond heat baths II: framework for generalized thermodynamic resource theories

    Science.gov (United States)

    Yunger Halpern, Nicole

    2018-03-01

    Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family’s structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilárd’s engine and Landauer’s Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. An early version of this paper partially motivated the later development of noncommutative thermalization. This generalization expands the theories’ potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.

  5. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  6. Thermodynamic assessment of the K-Na and Cr-V system

    International Nuclear Information System (INIS)

    Odusote, Y.A.

    2008-01-01

    The assessment of the thermodynamic properties of K-Na and Cr-V molten alloys has been theoretically examined using a simple statistical mechanical model based on pairwise interaction to obtain higher-order conditional probabilities that describe the occupation of the neighbouring atoms in molten binary alloys. The optimised values of order energy ω obtained are used to describe a number of thermodynamic quantities computed for different concentrations in the alloys at 384 and 1550 K, respectively. The study shows that there is a tendency for homocoordination (like atoms pairing as nearest neighbour) in K-Na and the existence of heterocoordination in Cr-V at all concentrations. Thus, the consistency between calculated and reported experimental thermodynamic values enforces the legitimacy of the findings

  7. Regulatory control of nuclear safety in Finland. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final

  8. Regulatory control of nuclear safety in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final disposal facility for

  9. Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces

    Directory of Open Access Journals (Sweden)

    Rémi Tailleux

    2016-09-01

    Full Text Available In this paper, a theory for constructing quasi-neutral density variables γ directly in thermodynamic space is formulated, which is based on minimising the absolute value of a purely thermodynamic quantity J n . Physically, J n has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy cost of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of in-situ density on spiciness, in a description of water masses based on γ, spiciness and pressure. Mathematically, minimising | J n | in thermodynamic space is showed to be equivalent to maximising neutrality in physical space. The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that epineutral dispersion is best understood as the aggregate effect of many individual non-neutral stirring events (being understood here as adiabatic and isohaline events with non-zero buoyancy, so that it is only the net displacement aggregated over many events that is approximately neutral. This new view resolves an apparent paradox between the focus in neutral density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents and sheared internal waves. The efficiency by which a physical process contributes to lateral dispersion can be characterised by its energy signature, with those processes releasing available potential energy (negative energy cost being more efficient than purely neutral processes with zero energy cost. The latter mechanism occurs in the wedge of instability, and its source of energy is the coupling between baroclinicity, thermobaricity, and density compensated temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is speculated to be important for dissipating spiciness anomalies and neutral helicity. The paper also discusses potential

  10. Thermodynamics and the structure of quantum theory

    International Nuclear Information System (INIS)

    Krumm, Marius; Müller, Markus P; Barnum, Howard; Barrett, Jonathan

    2017-01-01

    Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Here we address these questions by studying how compatibility with thermodynamics constrains the structure of quantum theory. We employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour should arguably satisfy. In the framework of generalised probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for projective measurements and mixing procedures. Furthermore, we study additional entropy-like quantities based on measurement probabilities and convex decomposition probabilities, and uncover a relation between one of these quantities and Sorkin’s notion of higher-order interference. (paper)

  11. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  12. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joshua C., E-mail: joshchang@ucla.edu [Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA and Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210 (United States); Miura, Robert M., E-mail: miura@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2016-04-21

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  13. A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics

    Science.gov (United States)

    Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.

    2017-12-01

    The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as

  14. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal

    1997-01-01

    This paper describes the thermodynamic analysis of pathways related to penicillin production in Penicillium chrysogenum. First a thermodynamic feasibility analysis is performed of the L-lysine pathway of which one of the precursors for penicillin biosynthesis (alpha-aminoadipic acid......) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha......-aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all...

  15. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  16. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  17. Key Regulatory Issues for Digital Instrumentation and Control Systems at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2008-01-01

    To help reduce the uncertainty associated with application of digital instrumentation and controls (I and C) technology in nuclear power plants, the Nuclear Regulatory Commission (NRC) has issued six Interim Staff Guidance (ISG) documents that address the current regulatory positions on what are considered the significant digital I and C issues. These six documents address the following topics: Cyber Security, Diversity and Defense-in-Depth, Risk Informed Digital I and C Regulation, Communication issues, Human Factors and the Digital I and C Licensing Process (currently issued as Draft). After allowing for further refinement based on additional technical insight gathered by NRC staff through near-term research and detailed review of relevant experience, it is expected that updated positions ultimately will be incorporated into regulatory guides and staff review procedures. This paper presents an overview of the guidance provided by the NRC-issued ISGs on key technology considerations (i.e., the first five documents above) for safety-related digital I and C systems.

  18. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  19. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.

    Science.gov (United States)

    Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K

    2009-03-10

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

  20. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.