Thermodynamic approach to the inelastic state variable theories
International Nuclear Information System (INIS)
Dashner, P.A.
1978-06-01
A continuum model is proposed as a theoretical foundation for the inelastic state variable theory of Hart. The model is based on the existence of a free energy function and the assumption that a strained material element recalls two other local configurations which are, in some specified manner, descriptive of prior deformation. A precise formulation of these material hypotheses within the classical thermodynamical framework leads to the recovery of a generalized elastic law and the specification of evolutionary laws for the remembered configurations which are frame invariant and formally valid for finite strains. Moreover, the precise structure of Hart's theory is recovered when strains are assumed to be small
Shnip, A. I.
2018-01-01
Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.
Thermodynamics of Crystalline States
Fujimoto, Minoru
2010-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...
Thermodynamics of Crystalline States
Fujimoto, Minoru
2013-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...
The Matrix model, a driven state variables approach to non-equilibrium thermodynamics
Jongschaap, R.J.J.
2001-01-01
One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC
Choice of the thermodynamic variables
International Nuclear Information System (INIS)
Balian, R.
1985-09-01
Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr
On the derivation of thermodynamic restrictions for materials with internal state variables
International Nuclear Information System (INIS)
Malmberg, T.
1987-07-01
Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de
Thermodynamics of the variable modified Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Panigrahi, D. [Sree Chaitanya College, Habra 743268 (India); Chatterjee, S., E-mail: dibyendupanigrahi@yahoo.co.in, E-mail: chat_sujit1@yahoo.com [Relativity and Cosmology Research Centre, Jadavpur University, Kolkata – 700032 (India)
2016-05-01
A cosmological model with a new variant of Chaplygin gas obeying an equation of state (EoS), P = A ρ − B /ρ{sup α} where B = B {sub 0} a {sup n} is investigated in the context of its thermodynamical behaviour. Here B {sub 0} and n are constants and a is the scale factor. We show that the equation of state of this 'Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following standard thermodynamical criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, n introduced in VMCG plays a crucial role in determining the stability considerations and should always be negative. We further observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for 0 n < our model points to a phantom type of expansion which, however, is found to be compatible with current SNe Ia observations and CMB anisotropy measurements. Further the third law of thermodynamics is obeyed in our case. Our model is very general in the sense that many of earlier works in this field may be obtained as a special case of our solution. An interesting point to note is that the model also apparently suggests a smooth transition from the big bang to the big rip in its whole evaluation process.
Thermodynamic Ground States of Complex Oxide Heterointerfaces
DEFF Research Database (Denmark)
Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.
2017-01-01
The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...
Thermodynamic picture of the glassy state
Nieuwenhuizen, T.M.
2000-01-01
A picture for the thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second feature, the
International thermodynamic tables of the fluid state propylene (propene)
Angus, S; De Reuck, K M
2013-01-01
International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P
2010-06-07
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Thermodynamic Fluid Equations-of-State
Directory of Open Access Journals (Sweden)
Leslie V. Woodcock
2018-01-01
Full Text Available As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc and pressure (pc and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB, critical temperature (Tc, critical pressure (pc and coexisting densities of gas (ρcG and liquid (ρcL along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρT to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region.
Quantum thermodynamics of nanoscale steady states far from equilibrium
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
International thermodynamic tables of the fluid state helium-4
de Reuck, K M; McCarty, R D
2013-01-01
International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is
International Nuclear Information System (INIS)
Zanchini, E.
1988-01-01
The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions
Methods for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2013-05-21
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
International Nuclear Information System (INIS)
Malmberg, T.
1993-09-01
The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de
Thermodynamics of bread baking: A two-state model
Zürcher, Ulrich
2014-03-01
Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.
The Markov process admits a consistent steady-state thermodynamic formalism
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
Thermodynamic state ensemble models of cis-regulation.
Directory of Open Access Journals (Sweden)
Marc S Sherman
Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.
Fluctuating States: What is the Probability of a Thermodynamical Transition?
Directory of Open Access Journals (Sweden)
Álvaro M. Alhambra
2016-10-01
Full Text Available If the second law of thermodynamics forbids a transition from one state to another, then it is still possible to make the transition happen by using a sufficient amount of work. But if we do not have access to this amount of work, can the transition happen probabilistically? In the thermodynamic limit, this probability tends to zero, but here we find that for finite-sized and quantum systems it can be finite. We compute the maximum probability of a transition or a thermodynamical fluctuation from any initial state to any final state and show that this maximum can be achieved for any final state that is block diagonal in the energy eigenbasis. We also find upper and lower bounds on this transition probability, in terms of the work of transition. As a by-product, we introduce a finite set of thermodynamical monotones related to the thermomajorization criteria which governs state transitions and compute the work of transition in terms of them. The trade-off between the probability of a transition and any partial work added to aid in that transition is also considered. Our results have applications in entanglement theory, and we find the amount of entanglement required (or gained when transforming one pure entangled state into any other.
Thermodynamic behavior of glassy state of structurally related compounds.
Kaushal, Aditya Mohan; Bansal, Arvind Kumar
2008-08-01
Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.
Thermodynamic Properties from Corresponding States Theory
DEFF Research Database (Denmark)
Mollerup, Jørgen
1980-01-01
A corresponding states approach has been applied to the two-constant equations of state by Wilson, Soave, Peng—Robinson, Hamam et al., Lu et al., Simonet—Behar, and Chaudron et al. in order to obtain the equivalent shape-factor correlations. The correlations derived are compared with the Leach...
Fermi, Enrico
1956-01-01
Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr
Eliashberg Inversion of superconducting state thermodynamics
International Nuclear Information System (INIS)
Junod, A.
1985-01-01
It is shown that the inversion of the Eliashberg equations currently used in tunneling spectroscopy may be applied to calorimetric data in the superconducting state. This method yields integrals of the spectral function of the electron-phonon interaction α 2 F(ω). Experimental results in pure Nb are presented
Thermodynamic functions of element 105 in neutral and ionized states
International Nuclear Information System (INIS)
Pershina, V.; Fricke, B.; Ionova, G.V.; Johnson, E.
1994-01-01
The basic thermodynamic functions, the entropy, free energy, and enthalpy, for element 105 (hahnium) in electronic configurations d 3 s 2 , d 3 sp, and d 4 s 1 and for its + 5 ionized state (5f 14 ) have been calculated as a function of temperature. The data are based on the results of the calculations of the corresponding electronic states of element 105 using the multiconfiguration Dirac-Fock method. 19 refs., 1 fig., 11 tabs
Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States
Komatsu, Teruhisa S.; Nakagawa, Naoko; Sasa, Shin-ichi; Tasaki, Hal; Ito, Nobuyasu
2010-01-01
We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.
Thermodynamically constrained correction to ab initio equations of state
International Nuclear Information System (INIS)
French, Martin; Mattsson, Thomas R.
2014-01-01
We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used.
Chlorine international thermodynamic tables of the fluid state
Angus, S; de Reuck, K M
1985-01-01
Chlorine: International Thermodynamic Tables of the Fluid State-8 is a four-chapter book that covers available and estimated data on chlorine; estimation of the element's properties; the correlating equations for the element; and how the tabulated properties are calculated from chosen equation. The tables in this book give the volume, entropy, enthalpy, isobaric heat capacity, compression factor, fugacity/pressure ratio, Joule-Thomson coefficient, ratio of the heat capacities, and speed of sound as a function of pressure and temperature. Given in the tables as well are the pressure, entropy, i
A thermodynamic approach to fatigue damage accumulation under variable loading
International Nuclear Information System (INIS)
Naderi, M.; Khonsari, M.M.
2010-01-01
We put forward a general procedure for assessment of damage evolution based on the concept of entropy production. The procedure is applicable to both constant- and variable amplitude loading. The results of a series of bending fatigue tests under both two-stage and three-stage loadings are reported to investigate the validity of the proposed methodology. Also presented are the results of experiments involving bending, torsion, and tension-compression fatigue tests with Al 6061-T6 and SS 304 specimens. It is shown that, within the range of parameters tested, the evolution of fatigue damage for these materials in terms of entropy production is independent of load, frequency, size, loading sequence and loading history. Furthermore, entropy production fractions of individual amplitudes sums to unity.
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
Thermodynamic and kinetic properties of amorphous and liquid states
International Nuclear Information System (INIS)
Granato, A.V.
1998-01-01
The magnitude and temperature dependence of the liquid state shear modulus G, specific heat C p , diffusivity D, and viscosity η should all be closely related, according to the interstitialcy model, if a recent proposal by Dyre et al. is generally true. They suppose that the viscosity is given by η = η 0 exp (F/kT), where η 0 is a reference viscosity and F is given by the work required to shove aside neighboring particle in a diffusion process, where F = GV c and V c is a characteristic volume. In the interstitialcy model the high frequency thermodynamic liquid state shear modulus is given by G(T) = G 0 exp [-γ(T/T 0 - 1)], where G 0 is the shear modulus at a reference temperature T 0 , which can be taken as the glass temperature. The resulting non-Arrhenius behavior of the viscosity is compared with experimental data. A critical quantitative analysis for a Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 225 alloy does not support the shoving model, but the thermodynamic properties can be understood in terms of mixed interstitials composed of metal-beryllium complexes
Energy Technology Data Exchange (ETDEWEB)
Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)
2013-11-15
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
Tischer, Alexander; Auton, Matthew
2013-01-01
We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497
The vitreous state thermodynamics, structure, rheology, and crystallization
Gutzow, Ivan S
2013-01-01
This book summarizes the experimental evidence and modern classical and theoretical approaches in understanding the vitreous state, from structural problems, over equilibrium and non-equilibrium thermodynamics, to statistical physics. Glasses, and especially silicate glasses, are only the best known representatives of this particular physical state of matter. Other typical representatives include organic polymer glasses, and many other easily vitrifying organic and inorganic substances, technically important materials, amidst them vitreous water and vitrified aqueous solutions, and also many metallic alloy systems. Some of these systems only form glasses under particular conditions, e.g. through ultra-rapid cooling. This book describes the properties and the formation of both every-day technical glasses and especially of such more exotic forms of vitreous matter. It is a unique source of knowledge and new ideas for materials scientists, engineers and researchers working on condensed matter. The new edition e...
Hartree-Fock states in the thermodynamic limit
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Llano, M. de; Peltier, S.; Plastino, A.
1976-01-01
Two infinite families of two-parameter generalized Overhauser orbitals are introduced and shown to explicitly satisfy, for occupied states, the self-consistent Hartree-Fock equations in the thermodynamic limit. For an attractive delta interaction, they give lower Hartree-Fock energy than the usual plane-wave solutions, even for relatively weak coupling and/or low density. The limiting members (possessing an infinite number of harmonics) of both families appear to tend to a 'classical static lattice' state. The related density profiles and energy expressions are calculated as functions of the two new parameters. A direct-variation with respect to these parameters was done numerically and results are presented graphically. (Author) [pt
Some problems on the thermodynamic state of the metallogenetic systems
International Nuclear Information System (INIS)
Mingarro, E.
1965-01-01
In order to get a classification of the uranium deposits, the geological processes have been ordered in thermodynamic systems according to the independent parameters that define their equilibrium state. Also, to apply the phase rule, we suppose that the ore forming elements are always ideally mobile components; that is, in the geological systems, these components are defined by their chemical potentials. In this paper, we show that in random conditions, i. e.; for any possible value of the factors of equilibrium or state the stable mineralizations are formed only in metasomatic regimes; so that the mineralogical sequence is a function both of the Helmholtz's free energy and the crystallisation pressure of the minerals. (Author) 7 refs
Equation of state and thermodynamic properties of BCC metals
Directory of Open Access Journals (Sweden)
Vu Van Hung, N.T. Hoa
2017-10-01
Full Text Available The moment method in statistical dynamics is used to study the equation of state and thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion oefficient, and the specific heats of the bcc metals are derived within the fourth order moment approximation. The termodynamic quantities of W, Nb, Fe,and Ta metals are calculated as a function of the pressure, and they are in good agreement with the corresponding results obtained from the first principles calculations and experimental results. The effective pair potentials work well for the calculations of bcc metals.
Approximate thermodynamic state relations in partially ionized gas mixtures
International Nuclear Information System (INIS)
Ramshaw, John D.
2004-01-01
Thermodynamic state relations for mixtures of partially ionized nonideal gases are often approximated by artificially partitioning the mixture into compartments or subvolumes occupied by the pure partially ionized constituent gases, and requiring these subvolumes to be in temperature and pressure equilibrium. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (nonionized) ideal gases. The purpose of this paper is to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation in nonideal plasma mixtures
Rational extended thermodynamics
Müller, Ingo
1998-01-01
Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...
1976-01-01
The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.
International Nuclear Information System (INIS)
Kelley, Neil D.
1999-01-01
This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes
Analysis of radioactive-matter interaction near thermodynamical equilibrium states
International Nuclear Information System (INIS)
Damamme, G.
1993-01-01
We study the absorption/emission process of photon by matter in the framework of a radiativo-collisionnal model of atom, a thermodynamical approach being used. The considered matter description is the atomic sphere one. First we give the expression of the balance equation around an equilibrium state. Then we express the atomic populations in function of the characteristics of the radiation and of the free electrons and of their time history. This permit us to interpret the photon balance as being due to true emission/absorption process of photons as well as fluorescence terms, all these processes being affected by relaxation effects. The total energy balance between matter and radiation can also be analyzed in the same way and conduct to introduce one photon effective interactions terms for each radiative proper mode, terms also affected by retardation effects. Such a taking into account of atom populations has no consequence on the radiative flux equation (i.e. the transfer opacity) but can considerably modify the energy balance between matter and radiation. (author). 11 refs., 3 figs
Methods and systems for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2014-12-02
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
Energy Technology Data Exchange (ETDEWEB)
Martinez Reyes, Jose; Gonzalez Partida, Eduardo; Jorge, A [Centro de Geociencias, Universidad National Autonoma de Mexico Campo de Juriquilla, Qro., Mexico, apartado postal 76230 (Mexico); Perez, Renee J [Department of Chemical and Petroleum Engineering, University of Calgary, 500 University Drive, Calgary Alberta, T2N 1N4 (Canada); Tinoco, Michel
2008-10-01
Based on information of enthalpies of the fluids of wells from the geothermal reservoir of Los Humeros, Puebla, Mexico, we determined the thermodynamic conditions of the reservoir comparing the values of enthalpies of the fluids of discharge of the wells with the values published in the literature for different thermodynamic state of fluids.
An Equation of State for the Thermodynamic Properties of Cyclohexane
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yong, E-mail: Yong.Zhou2@honeywell.com; Liu, Jun [Honeywell Integrated Technology China Co. Ltd., 430 Li Bing Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); Penoncello, Steven G. [Center for Applied Thermodynamic Studies, College of Engineering, University of Idaho, Moscow, Idaho 83844 (United States); Lemmon, Eric W. [Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)
2014-12-15
An equation of state for cyclohexane has been developed using the Helmholtz energy as the fundamental property with independent variables of density and temperature. Multi-property fitting technology was used to fit the equation of state to data for pρT, heat capacities, sound speeds, virial coefficients, vapor pressures, and saturated densities. The equation of state was developed to conform to the Maxwell criteria for two-phase vapor-liquid equilibrium states, and is valid from the triple-point temperature to 700 K, with pressures up to 250 MPa and densities up to 10.3 mol dm{sup −3}. In general, the uncertainties (k = 2, indicating a level of confidence of 95%) in density for the equation of state are 0.1% (liquid and vapor) up to 500 K, and 0.2% above 500 K, with higher uncertainties within the critical region. Between 283 and 473 K with pressures lower than 30 MPa, the uncertainty is as low as 0.03% in density in the liquid phase. The uncertainties in the speed of sound are 0.2% between 283 and 323 K in the liquid, and 1% elsewhere. Other uncertainties are 0.05% in vapor pressure and 2% in heat capacities. The behavior of the equation of state is reasonable within the region of validity and at higher and lower temperatures and pressures. A detailed analysis has been performed in this article.
Teaching Differentials in Thermodynamics Using Spatial Visualization
Wang, Chih-Yueh; Hou, Ching-Han
2012-01-01
The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…
Contact Geometry of Mesoscopic Thermodynamics and Dynamics
Directory of Open Access Journals (Sweden)
Miroslav Grmela
2014-03-01
Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.
International Nuclear Information System (INIS)
Gilles, D.
2005-01-01
This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)
International Nuclear Information System (INIS)
Udovskij, A.L.; Karpushkin, V.N.; Nikishina, E.A.
1991-01-01
Method of non-interacting thermodynamic calculation of state diagram of binary systems contacting p disordered phases with variable composition and q phases with constant composition for (p, q) ≤ 10 case is developed. Determination of all possible solutions of phase equilibrium equations is realized in the method. Certain application examples of computer-realized method of T-x thermodynamic calculation using PC for Cr-W, Ni-W, Ni-Al, Ni-Re binary systems are given
Quantum engineering of continuous variable quantum states
International Nuclear Information System (INIS)
Sabuncu, Metin
2009-01-01
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser
2012-09-18
Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other
International Nuclear Information System (INIS)
Soldatova, Je.D.; Snegyir'ov, M.G.
2001-01-01
The thermodynamical method for studing a critical state is illustrated by the example of critical behavior of metallic cerium in the frameworks of the improved Rainford-Edwards model. Thermodynamical stability of the model is investigated, and behavior of the whole complex of thermodynamical characteristics of the system is analyzed. It is concluded that the model has the first type of critical behaviour
Ma, Y.M.; Menenti, M.; Feddes, R.A.; Wang, J.M.
2008-01-01
The land surface heterogeneity has a very significant impact on atmospheric variables (air temperature T-a, wind speed u, and humidity q), the aerodynamic roughness length z(0m), thermodynamic roughness length z(0h), and the excess resistance to heat transfer kB(-1). First, in this study the land
On the thermodynamics of the McMillan-Mayer state function
DEFF Research Database (Denmark)
Mollerup, Jørgen; Breil, Martin Peter
2009-01-01
to develop the McMillan-Mayer framework in a classical thermodynamic context for which we develop the relationship between the state function of the McMillan-Mayer framework and the Helmholtz state function. A Taylor expansion method can be applied to the osmotic pressure of a solution which is dilute...
Nieuwenhuizen, T.M.
2001-01-01
Glass is an under-cooled liquid that very slowly relaxes towards the equilibrium crystalline state. Its energy balance is ill understood, since it is widely believed that the glassy state cannot be described thermodynamically. However, the classical paradoxes involving the Ehrenfest relations and
Geodesics in thermodynamic state spaces of quantum gases
International Nuclear Information System (INIS)
Oshima, H.; Obata, T.; Hara, H.
2002-01-01
The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence
Thermodynamic study of fluid in terms of equation of state containing physical parameters
International Nuclear Information System (INIS)
Khasare, S. B.
2015-01-01
We introduce a simple condition for one mole fluid by considering the thermodynamics of molecules pointing towards the effective potential for the cluster. Efforts are made to estimate new physical parameter f in liquid state using the equation of state containing only two physical parameters such as the hard sphere diameter and binding energy. The temperature dependence of the structural properties and the thermodynamic behavior of the clusters are studied. Computations based on f predict the variation of numbers of particles at the contact point of the molecular cavity (radial distribution function). From the thermodynamic profile of the fluid, the model results are discussed in terms of the cavity due to the closed surface along with suitable energy. The present calculation is based upon the sample thermodynamic data for n-hexanol, such as the ultrasonic wave, density, volume expansion coefficient, and ratio of specific heat in the liquid state, and it is consistent with the thermodynamic relations containing physical parameters such as size and energy. Since the data is restricted to n-hexanol, we avoid giving the physical meaning of f, which is the key parameter studied in the present work. (paper)
Variable-speed-of-light cosmology and second law of thermodynamics
International Nuclear Information System (INIS)
Youm, Donam
2002-01-01
We examine whether cosmologies with a varying speed of light (VSL) are compatible with the second law of thermodynamics. We find that the VSL cosmology with a varying fundamental constant is severely constrained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained
Variable-speed-of-light cosmology and second law of thermodynamics
International Nuclear Information System (INIS)
Youm, Donam
2002-03-01
We examine whether the cosmologies with varying speed of light (VSL) are compatible with the second law of thermodynamics. We find that the VSL cosmology with varying fundamental constant is severely constrained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained. (author)
Thermodynamic properties by Equation of state of liquid sodium under pressure
Li, Huaming; Sun, Yongli; Zhang, Xiaoxiao; Li, Mo
Isothermal bulk modulus, molar volume and speed of sound of molten sodium are calculated through an equation of state of a power law form within good precision as compared with the experimental data. The calculated internal energy data show the minimum along the isothermal lines as the previous result but with slightly larger values. The calculated values of isobaric heat capacity show the unexpected minimum in the isothermal compression. The temperature and pressure derivative of various thermodynamic quantities in liquid Sodium are derived. It is discussed about the contribution from entropy to the temperature and pressure derivative of isothermal bulk modulus. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid Sodium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. By comparison with the results from experimental measurements and quasi-thermodynamic theory, the calculated values are found to be very close at melting point at ambient condition. Furthermore, several other thermodynamic quantities are also presented. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 11204200.
Fluid phases of hydrogen-bound states and thermodynamical properties
International Nuclear Information System (INIS)
Ebeling, W.; Kraeft, W.D.
1985-08-01
The fluid phases of hydrogen and especially the existence of two critical points, the density dependence of the two - particle states and the effective interactions are discussed. An effective Schroedinger equation and a Saha equation are given. (author)
Kulinskii, V.L.; Malomuzh, N.P.; Matvejchuk, O.I.
2009-01-01
The applicability of the Principle of Corresponding States (PCS) for the noble fluids is discussed. We give the thermodynamic evidence for the dimerization of the liquid phase in heavy noble gases like argon, krypton etc. which manifests itself in deviations from the PCS. The behavior of the
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
DEFF Research Database (Denmark)
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...
The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state
Philipse, A.P.; Vrij, A.
2011-01-01
The thermodynamic equilibrium between charged colloids and an electrolyte reservoir is named after Frederic Donnan who first published on it one century ago (Donnan 1911 Z. Electrochem. 17 572). One of the intriguing features of the Donnan equilibrium is the ensuing osmotic equation of state which
Bipartite entanglement in continuous variable cluster states
Energy Technology Data Exchange (ETDEWEB)
Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)
2010-11-15
A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.
Thermodynamics of U(VI) complexation by succinate at variable temperatures
Energy Technology Data Exchange (ETDEWEB)
Rawat, Neetika [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tomar, B.S., E-mail: bstomar@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Manchanda, V.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2011-07-15
Research highlights: > lg {beta} and {Delta}H{sub C} for U(VI)-succinate determined at variable temperatures. > Increase in lg {beta} with temperature well explained by Born equation. > {Delta}S{sub C} plays the dominant role in variation of {Delta}G{sub C} with temperature. > {Delta}H{sub C} for U(VI)-succinate increases linearly with temperature. > {Delta}C{sub P} of U(VI)-succinate is higher than that of oxalate and malonate complexes. - Abstract: Complexation of U(VI) by succinate has been studied at various temperatures in the range of (298 to 338) K by potentiometry and isothermal titration calorimetry at constant ionic strength (1.0 M). The potentiometric titrations revealed the formation of 1:1 uranyl succinate complex in the pH range of 1.5 to 4.5. The stability constant of uranyl succinate complex was found to increase with temperature. Similar trend was observed in the case of enthalpy of complex formation. However, the increase in entropy with temperature over-compensated the increase in enthalpy, thereby favouring the complexation reaction at higher temperatures. The linear increase of enthalpy of complexation with temperature indicates constancy of the change in heat capacity during complexation. The temperature dependence of stability constant data was well explained with the help of Born equation for electrostatic interaction between the metal ion and the ligand. The data have been compared with those for uranyl complexes with malonate and oxalate to study the effect of ligand size and hydrophobicity on the temperature dependence of thermodynamic quantities.
Control of Thermodynamical System with Input-Dependent State Delays
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Krstic, Miroslav
2013-01-01
We consider control of a cooling system with several consumers that require cooling from a common source. The flow feeding coolant to the consumers can be controlled, but due to significant physical distances between the common source and the consumers, the coolant flow takes a non......-negligible amount of time to travel to the consumers, giving rise to input-dependent state delays. We first present a simple bilinear model of the system, followed by a state feedback control design that is able to stabilize the system at a chosen equilibrium in spite of the delays. We also present a heuristic...
Akiba, Hiroki; Tsumoto, Kouhei
2015-07-01
Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state
International Nuclear Information System (INIS)
Philipse, A; Vrij, A
2011-01-01
The thermodynamic equilibrium between charged colloids and an electrolyte reservoir is named after Frederic Donnan who first published on it one century ago (Donnan 1911 Z. Electrochem. 17 572). One of the intriguing features of the Donnan equilibrium is the ensuing osmotic equation of state which is a nonlinear one, even when both colloids and ions obey Van 't Hoff's ideal osmotic pressure law. The Donnan equation of state, nevertheless, is internally consistent; we demonstrate it to be a rigorous consequence of the phenomenological thermodynamics of a neutral bulk suspension equilibrating with an infinite salt reservoir. Our proof is based on an exact thermodynamic relation between osmotic pressure and salt adsorption which, when applied to ideal ions, does indeed entail the Donnan equation of state. Our derivation also shows that, contrary to what is often assumed, the Donnan equilibrium does not require ideality of the colloids: the Donnan model merely evaluates the osmotic pressure of homogeneously distributed ions, in excess of the pressure exerted by an arbitrary reference fluid of uncharged colloids. We also conclude that results from the phenomenological Donnan model coincide with predictions from statistical thermodynamics in the limit of weakly charged, point-like colloids.
Irreversible thermodynamics, parabolic law and self-similar state in grain growth
International Nuclear Information System (INIS)
Rios, P.R.
2004-01-01
The formalism of the thermodynamic theory of irreversible processes is applied to grain growth to investigate the nature of the self-similar state and its corresponding parabolic law. Grain growth does not reach a steady state in the sense that the entropy production remains constant. However, the entropy production can be written as a product of two factors: a scale factor that tends to zero for long times and a scaled entropy production. It is suggested that the parabolic law and the self-similar state may be associated with the minimum of this scaled entropy production. This result implies that the parabolic law and the self-similar state have a sound irreversible thermodynamical basis
Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics
International Nuclear Information System (INIS)
Qian, Hong
2005-01-01
An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells
Ferroelectric-antiferroelectric mixed systems. Equation of state, thermodynamic functions
Directory of Open Access Journals (Sweden)
N.A.Korynevskii
2006-01-01
Full Text Available The problem of equation of state for ferroelectric-antiferroelectric mixed systems in the whole region of a concentration change (0≤n≤1 is discussed. The main peculiarity of the presented model turns out to be the possibility for the site dipole momentum to be oriented ferroelectrically in z-direction and antiferroelectrically in x-direction. Such a situation takes place in mixed compounds of KDP type. The different phases (ferro-, antiferro-, paraelectric, dipole glass and some combinations of them have been found and analyzed.
Thermodynamics and equations of state of matter from ideal gas to quark-gluon plasma
Fortov, Vladimir E
2016-01-01
The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.
Directory of Open Access Journals (Sweden)
Raji HeyrovskÃƒÂ¡
2004-03-01
Full Text Available Abstract: Recently, the author suggested a simple and composite equation of state by incorporating fundamental thermodynamic properties like heat capacities into her earlier concise equation of state for gases based on free volume and molecular association / dissociation. This work brings new results for aqueous solutions, based on the analogy of the equation of state for gases and solutions over wide ranges of pressures (for gases and concentrations (for solutions. The definitions of entropy and heat energy through the equation of state for gases, also holds for solutions.
A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis
Chillara, Vamshi Krishna
2017-11-01
We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2013-05-01
Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model involving heat flow, work energy, and chemical reactions, we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we show that our thermodynamically consistent dynamical system model is globally semistable with system states converging to a state of temperature equipartition. Furthermore, in the presence of chemical reactions, we use the law of mass-action and the notion of chemical potential to show that the dynamic system states converge to a state of temperature equipartition and zero affinity corresponding to a state of chemical equilibrium.
Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states
Energy Technology Data Exchange (ETDEWEB)
Bomont, Jean-Marc, E-mail: jean-marc.bomont@univ-lorraine.fr; Bretonnet, Jean-Louis
2014-08-17
Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions.
Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states
International Nuclear Information System (INIS)
Bomont, Jean-Marc; Bretonnet, Jean-Louis
2014-01-01
Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions
Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality
International Nuclear Information System (INIS)
Xu, Wei; Xu, Hao; Zhao, Liu
2014-01-01
The thermodynamic phase space of Gauss-Bonnet (GB) AdS black holes is extended, taking the inverse of the GB coupling constant as a new thermodynamic pressure P GB . We studied the critical behavior associated with P GB in the extended thermodynamic phase space at fixed cosmological constant and electric charge. The result shows that when the black holes are neutral, the associated critical points can only exist in five dimensional GB-AdS black holes with spherical topology, and the corresponding critical exponents are identical to those for the Van der Waals system. For charged GB-AdS black holes, it is shown that there can be only one critical point in five dimensions (for black holes with either spherical or hyperbolic topologies), which also requires the electric charge to be bounded within some appropriate range; while in d < 5 dimensions, there can be up to two different critical points at the same electric charge, and the phase transition can occur only at temperatures which are not in between the two critical values. (orig.)
International Nuclear Information System (INIS)
Hamm, L.L.; Van Brunt, V.
1982-08-01
The Christiansen and Fredenslund programs for calculating vapor-liquid equilibria have been modified by replacing the Soave-Redlich-Kwong equation of state with the newly developed Peng-Robinson equation of state. This modification was shown to be a decided improvement for high pressure systems, especially in the critical and upper retrograde regions. Thermodynamic consistency tests were developed and used to evaluate and compare calculated values from both the modified and unmodified programs with reported experimental data for several vapor-liquid systems
Thermodynamic properties and equation of state of zircon ZrSiO4
International Nuclear Information System (INIS)
Mittal, R.; Chaplot, S.L.; Choudhury, N.
1998-01-01
The silicate mineral zircon is a host material for radioactive materials in the earth's crust and is a natural candidate for usage as a nuclear waste storage material. Lattice dynamical calculations have been carried out to understand its thermodynamic properties and high pressure behavior. The calculated phonon density of states, variation of phonon frequencies with pressure and equation of state are in good agreement with the available experimental data. One of the zone center optic mode involving SiO 4 rotations becomes soft at 47 GPa
Variable flavor scheme for final state jets
International Nuclear Information System (INIS)
Pietrulewicz, P.
2014-01-01
In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed for deep inelastic scattering (DIS) in the classical region 1 - x ⁓ O(1) and which will be also discussed here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently takes into account the effects of massive quark loops and allows to deal with all hierarchies between the mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large masses and the correct massless behavior for very small masses, and provides a continuous description in between. In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as a showcase for the concepts and on the thrust distribution for e + e - -collisions in the dijet limit as a phenomenologically relevant example for an event shape. The computations of the corrections to the structures in the factorization theorems are described explicitly for the singular terms at O(α s 2 C F T F ) arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function for thrust, which requires a dedicated calculation, these results are directly obtained from the corresponding results for the radiation of a massive gauge boson with vector coupling at O(α s ) with the help of dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary massive bottom and top quarks on thrust distributions at different center-of-mass energies
International Nuclear Information System (INIS)
Cabrillo, C; Bermejo, F J; Maira-Vidal, A; Fernandez-Perea, R; Bennington, S M; Martin, D
2004-01-01
The advent of inelastic x-ray scattering techniques has prompted a reawakened interest in the dynamics of simple liquids. Such studies are often carried out using simplified models to account for the stochastic dynamics that give rise to quasielastic scattering. The vibrational and diffusive dynamics of molten potassium are studied here by an experiment using neutron scattering and are shown to provide some clues to understand the basic thermodynamics of the liquid state. The findings reported here suggest ways in which the true complementarity of neutron and x-ray scattering may be profitably exploited
Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan
2016-01-01
Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.
Investigation of the thermodynamics governing metal hydride synthesis in the molten state process
International Nuclear Information System (INIS)
Stowe, Ashley C.; Berseth, Polly A.; Farrell, Thomas P.; Laughlin, Laura; Anton, Donald; Zidan, Ragaiy
2008-01-01
This work is aimed at utilizing a new synthetic technique to form novel complex hydrides for hydrogen storage. This technique is based on fusing different complex hydrides at elevated temperatures and pressures to form new species with improved hydrogen storage properties. Under conditions of elevated hydrogen overpressures and temperatures the starting materials can reach melting or near-melting point without decomposing (molten state processing), allowing for enhanced diffusion and exchange of elements among the starting materials. The formation and stabilization of these compounds, using the molten state process, is driven by the thermodynamic and kinetic properties of the starting and resulting compounds. Complex hydrides (e.g. NaK 2 AlH 6 , Mg(AlH 4 ) 2 ) were formed, structurally characterized and their hydrogen desorption properties were tested. In this paper we report on investigations of the thermodynamic aspects governing the process and products. We also report on the role of molar ratio in determining the final products. The effectiveness of the molten state process is compared with chemomechanical synthetic methods (ball milling)
Energy Technology Data Exchange (ETDEWEB)
Baudisch, H.
1968-03-15
The tables presented in this report contain the thermodynamic values of isentropic change of state for water in the two-phase region starting from the saturation line down to 0.01 at. The variables have been computed in the pressure range from 5-100 at. in equal pressure intervals of 5 at. and in the range from 100-170 at. in intervals of 10 at. Assuming a one-dimensional flow and a known saturation pressure, the dimensions of a discharge nozzle may be determined by interpolation of the calculated values for an isentropic discharge. 4 figs., 29 tabs., 23 refs.
Institute of Scientific and Technical Information of China (English)
吴金平
1991-01-01
The relation between the excess entropy production criterion of thermodynamic stabilityfor nonequilibrium states and kinetic linear stability principle is discussed. It is shown thatthe condition required by the excess entropy production criterion generally is sufficient, butnot necessary to judge the system stability. The condition required by the excess entropyproduction criterion is stronger than that of the linear stability principle. Only when theproduct matrix between the linearized matrix of kinetic equations and matrix of quadraticform of second-order excess entropy is symmetric, is the condition required by the excessentropy production criterion that the steady steate is asymptotically stable (δ_xP>0) necessaryand sufficient. The counterexample given by Fox to prove that the excess entropy, (δ~2S)ss,is not a Liapunov function is incorrect. Contradictory to his conclusion, the counterexampleis just a positive one that proves that the excess entropy is a Liapunov function. Moreover,the excess entropy production criterion is not limited by symmetric conditions of the linear-ized matrix of kinetic equations. The excess entropy around nonequilibrium steady states,(δ~2S)ss, is a Liapunov function of thermodynamic system.
Surface dependency in thermodynamics of ideal gases
International Nuclear Information System (INIS)
Sisman, Altug
2004-01-01
The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry
Huang, Jinfeng; Zhu, Yali; Sun, Bin; Yao, Yuan; Liu, Junjun
2016-03-01
The protonation state of the Asp dyad is important as it can reveal enzymatic mechanisms, and the information this provides can be used in the development of drugs for proteins such as memapsin 2 (BACE-1), HIV-1 protease, and rennin. Conventional molecular dynamics (MD) simulations have been successfully used to determine the preferred protonation state of the Asp dyad. In the present work, we demonstrate that the results obtained from conventional MD simulations can be greatly influenced by the particular force field applied or the values used for control parameters. In principle, free-energy changes between possible protonation states can be used to determine the protonation state. We show that protonation state prediction by the thermodynamic integration (TI) method is insensitive to force field version or to the cutoff for calculating nonbonded interactions (a control parameter). In the present study, the protonation state of the Asp dyad predicted by TI calculations was the same regardless of the force field and cutoff value applied. Contrary to the intuition that conventional MD is more efficient, our results clearly show that the TI method is actually more efficient and more reliable for determining the protonation state of the Asp dyad.
Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals
International Nuclear Information System (INIS)
Mousazadeh, M.H.; Faramarzi, E.; Maleki, Z.
2010-01-01
We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, σ, and segment energy, ε. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.
Thermodynamical properties of dark energy with the equation of state ω=ω0+ω1z
International Nuclear Information System (INIS)
Zhang Yongping; Yi Zelong; Zhang Tongjie; Liu Wenbiao
2008-01-01
The thermodynamical properties of dark energy are usually investigated with the equation of state ω=ω 0 +ω 1 z. Recent observations show that our Universe is accelerating, and the apparent horizon and the event horizon vary with redshift z. Because definitions of the temperature and entropy of a black hole are used to describe the two horizons of the Universe, we examine the thermodynamical properties of the Universe, which is enveloped by the apparent horizon and the event horizon, respectively. We show that the first and the second laws of thermodynamics inside the apparent horizon in any redshift are satisfied, while they are broken down inside the event horizon in some redshifts. Therefore, the apparent horizon for the Universe may be the boundary of thermodynamical equilibrium for the Universe like the event horizon for a black hole
The virial equation of state for unitary fermion thermodynamics with non-Gaussian correlations
International Nuclear Information System (INIS)
Chen Jisheng; Li Jiarong; Wang Yanping; Xia Xiangjun
2008-01-01
We study the roles of the dynamical high order perturbation and statistically non-linear infrared fluctuation/correlation in the virial equation of state for the Fermi gas in the unitary limit. Incorporating the quantum level crossing rearrangement effects, the spontaneously generated entropy departing from the mean-field theory formalism leads to concise thermodynamical expressions. The dimensionless virial coefficients with complex non-local correlations are calculated up to the fourth order for the first time. The virial coefficients of unitary Fermi gas are found to be proportional to those of the ideal quantum gas with integer ratios through a general term formula. Counterintuitively, contrary to those of the ideal bosons (a (0) 2 =-(1/4√2)) or fermions (a (0) 2 =(1/4√2)), the second virial coefficient a 2 of Fermi gas at unitarity is found to be equal to zero. With the vanishing leading order quantum correction, the BCS–BEC crossover thermodynamics manifests the famous pure classical Boyle's law in the Boltzmann regime. The non-Gaussian correlation phenomena can be validated by studying the Joule–Thomson effect
Directory of Open Access Journals (Sweden)
B. H. Kahn
2017-08-01
Full Text Available The global-scale patterns and covariances of subtropical marine boundary layer (MBL cloud fraction and spatial variability with atmospheric thermodynamic and dynamic fields remain poorly understood. We describe an approach that leverages coincident NASA A-train and the Modern Era Retrospective-Analysis for Research and Applications (MERRA data to quantify the relationships in the subtropical MBL derived at the native pixel and grid resolution. A new method for observing four subtropical oceanic regions that capture transitions from stratocumulus to trade cumulus is demonstrated, where stratocumulus and cumulus regimes are determined from infrared-based thermodynamic phase. Visible radiances are normally distributed within stratocumulus and are increasingly skewed away from the coast, where trade cumulus dominates. Increases in MBL depth, wind speed, and effective radius (re, and reductions in 700–1000 hPa moist static energy differences and 700 and 850 hPa vertical velocity correspond with increases in visible radiance skewness. We posit that a more robust representation of the cloudy MBL is obtained using visible radiance rather than retrievals of optical thickness that are limited to a smaller subset of cumulus. The method using the combined A-train and MERRA data set has demonstrated that an increase in re within shallow cumulus is strongly related to higher MBL wind speeds that further correspond to increased precipitation occurrence according to CloudSat, previously demonstrated with surface observations. Hence, the combined data sets have the potential of adding global context to process-level understanding of the MBL.
Mathematical foundations of thermodynamics
Giles, R; Stark, M; Ulam, S
2013-01-01
Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn
Directory of Open Access Journals (Sweden)
A. Zuber
2015-09-01
Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.
International Nuclear Information System (INIS)
Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.
1977-01-01
Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-01-01
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214
International Nuclear Information System (INIS)
Lewis, A.E.; Khodabocus, F.; Dhokun, V.; Khalife, M.
2010-01-01
In a sugar refinery, the juice is concentrated through evaporation, with the objective of concentrating the juice to syrup as rapidly as possible. Because the heat of vaporization of water is relatively high, the evaporation process can be highly energy intensive, and therefore the economical use of steam is important in the refinery. This paper reports on the development of a simulation model for the evaporation sections of two Mauritian sugar refineries. The first objective was to use the simulation model to carry out an energy balance over the evaporators in order to assess the economy of steam usage over the refinery. The second objective was to examine to what extent a fundamental steady state model, based on thermodynamics (not kinetics) was capable of predicting the material and energy flows in two operating sugar refineries and thereby to evaluate the applicability of the modelling framework. The simulation model was validated using historical data as well as data from the plant DCS system. The simulation results generally correlated well with the measured values, except for one of the evaporators on one refinery. Some suggestions were made as to the cause of the discrepancy. On balance, it was found that both refineries are extremely efficient in terms of steam and equipment usage and that there is not much scope for energy optimisation within the present configuration - nor for much spare steam capacity for an additional refinery. It was also shown that steady state process simulation, using thermodynamic models, can generate a very useful representation of a working refinery. Besides being able to use the model to 'benchmark' the operation and thus evaluate its performance as a whole as well as across individual units, it could also be used to evaluate refinery performance across refineries, nationally as well as globally.
Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement
Gyftopoulos, Elias P.
2006-01-01
Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.
International Nuclear Information System (INIS)
Kim, Sangjo; Son, Changmin; Kim, Kuisoon
2017-01-01
Aim of this work is to provide evidence of the effectiveness of combined use of the variable guide vanes (VGVs) and bleed air on the thermodynamic performance of aircraft engine system. This paper performed the comparative study to evaluate the overall thermal performance of an aircraft engine with optimized VGVs and bleed air, separately or simultaneously. The low-bypass ratio turbofan engine has been modeled with a 0D/1D modeling approach. The genetic algorithm is employed to find the optimum schedule of VGVs and bleed air. There are four types of design variables: (1) the inlet guide vane (IGV) angle, (2) the IGV and 1st stator vane (SV) angles, (3) bleed air mass flow rate at the exit of the axial compressor, and (4) both type 2 and type 3. The optimization is conducted with surge margin constraints of more than 10% and 15% in the axial compressor. The results show that the additional use of the bleed air increases the efficiency of the compressors. Overall, the percentage reductions of the total fuel consumption for the engine with the IGV, 1st SV and bleed air schedule is 1.63% for 15% surge margin constraints when compared with the engine with the IGV schedule. - Highlights: • The effect of combined use of variable guide vanes and bleed air is evaluated. • The genetic algorithm is employed to find the optimum setting angle and bleed air. • A low bypass ratio mixed turbofan engine is analyzed for optimization. • Additional use of the bleed air shows improved overall performance of the engine.
State variable participation in the limit cycle of induction motor
Indian Academy of Sciences (India)
State variable participation in the limit cycle of induction ... 2National Institute of Technical Teachers' Training and Research, Kolkata 700 106, India ..... the phase plot shown in figure 10 would be very useful as it shows infinite loops, meaning.
McCarty, J; Clark, A J; Copperman, J; Guenza, M G
2014-05-28
Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.
Abramov, Yuriy A
2015-06-01
The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.
Smith, Brent
2002-01-01
Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…
International Nuclear Information System (INIS)
Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.
2013-01-01
Highlights: ► Energy and exergy analysis of palm oil methyl ester (POME) run diesel engine. ► Engine was run at various compression ratios (CRs) and injection timings (ITs). ► POME can recover around 26% of the energy supplied by the fuel. ► CR rise and IT change cause shaft energy per unit fuel supply to increase. ► CR of 18 and IT of 20°BTDC reduce more entropy generation. - Abstract: The present work is set to explore the effect of compression ratio (CR) and injection timing (IT) on energy and exergy potential of a palm oil methyl ester (POME) run diesel engine. Experiments are carried out in a single cylinder, direct injection, water cooled variable compression ratio diesel engine at a constant peed of 1500 rpm under a full load of 4.24 bar brake mean effective pressure (BMEP). The study involves four different CRs of 16, 17, 17.5 and 18; and three different ITs of 20°, 23° and 28°BTDC. Here, the CR of 17.5 and IT of 23°BTDC are the standard ones. The energy analysis performed for the experimental data includes shaft power, energy input through fuel, output by cooling water and exhaust, uncounted loss per unit time. Side by side, the effects of varying CR and IT on peak pressure, peak heat release rate, brake thermal efficiency and exhaust gas temperature are also studied. The exergy analysis is carried out for availability input, shaft, cooling water and exhaust availability, availability destruction and entropy generation. It shows that higher values of CR increase the shaft availability and cooling water availability, however, they decrease the exhaust flow availability. The retardation and advancement of IT give similar results. The exergy analysis also shows that with the increase of CR, the injection retardation and advancement increase the shaft availability and exergy efficiency, while it reduces the exergy destruction. The entropy generation is also reduced for the similar CR and IT modifications.
International Nuclear Information System (INIS)
Roskosch, Dennis; Atakan, Burak
2015-01-01
Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds. The considered model-process works between the temperature levels of 273.15 and 333.15 K and can be used as heat pump for supplying buildings with heat, typically. The objective functions are the COP (coefficient of performance) and the VHC (volumetric heating capacity) as a function of critical pressure, critical temperature, acentric factor and two coefficients for the temperature-dependent isobaric ideal gas heat capacity. Also, the steam quality at the compressor entrance has to be regarded as a problem variable. The results give clear hints regarding optimal fluid parameters of the analyzed process and deepen
International Nuclear Information System (INIS)
Ackermann, R.J.; Chandrasekharaiah, M.S.
1975-01-01
The thermodynamic data for the actinide metals and oxides (thorium to curium ) have been assessed, examined for consistency, and compared with the lanthanides. Correlations relating the enthalpies of formation of the solid oxides with the corresponding aquo ions make possible the estimation of the thermodynamic properties of AmO 2 (s) and Am 2 O 3 (s) which are in accordance with vaporization data. The known thermodynamic properties of the substoichiometric dioxides MOsub(2-x)(s) at high temperatures demonstrate the relative stabilities of valence states less than 4+ and lead to the examination of stability requirements for the sesquioxides M 2 O 3 (s) and the monoxides MO(s). Sequential trends in the gaseous metals, monoxides and dioxides are examined, compared, and contrasted with the lanthanides. (author)
Exceptional thermodynamics. The equation of state of G{sub 2} gauge theory
Energy Technology Data Exchange (ETDEWEB)
Bruno, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Caselle, Michele [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy); Panero, Marco [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Pellegrini, Roberto [Swansea Univ. (United Kingdom). Dept. of Physics
2014-10-15
We present a lattice study of the equation of state in Yang-Mills theory based on the exceptional G{sub 2} gauge group. As is well-known, at zero temperature this theory shares many qualitative features with real-world QCD, including the absence of colored states in the spectrum and dynamical string breaking at large distances. In agreement with previous works, we show that at finite temperature this theory features a first-order deconfining phase transition, whose nature can be studied by a semi-classical computation. We also show that the equilibrium thermodynamic observables in the deconfined phase bear striking quantitative similarities with those found in SU(N) gauge theories: in particular, these quantities exhibit nearly perfect proportionality to the number of gluon degrees of freedom, and the trace anomaly reveals a characteristic quadratic dependence on the temperature, also observed in SU(N) Yang-Mills theories (both in four and in three spacetime dimensions). We compare our lattice data with analytical predictions from effective models, and discuss their implications for the deconfinement mechanism and high-temperature properties of strongly interacting, non-supersymmetric gauge theories. Our results give strong evidence for the conjecture that the thermal deconfining transition is governed by a universal mechanism, common to all simple gauge groups.
Exceptional thermodynamics. The equation of state of G2 gauge theory
International Nuclear Information System (INIS)
Bruno, Mattia; Panero, Marco; Pellegrini, Roberto
2014-10-01
We present a lattice study of the equation of state in Yang-Mills theory based on the exceptional G 2 gauge group. As is well-known, at zero temperature this theory shares many qualitative features with real-world QCD, including the absence of colored states in the spectrum and dynamical string breaking at large distances. In agreement with previous works, we show that at finite temperature this theory features a first-order deconfining phase transition, whose nature can be studied by a semi-classical computation. We also show that the equilibrium thermodynamic observables in the deconfined phase bear striking quantitative similarities with those found in SU(N) gauge theories: in particular, these quantities exhibit nearly perfect proportionality to the number of gluon degrees of freedom, and the trace anomaly reveals a characteristic quadratic dependence on the temperature, also observed in SU(N) Yang-Mills theories (both in four and in three spacetime dimensions). We compare our lattice data with analytical predictions from effective models, and discuss their implications for the deconfinement mechanism and high-temperature properties of strongly interacting, non-supersymmetric gauge theories. Our results give strong evidence for the conjecture that the thermal deconfining transition is governed by a universal mechanism, common to all simple gauge groups.
A constitutive model for magnetostriction based on thermodynamic framework
International Nuclear Information System (INIS)
Ho, Kwangsoo
2016-01-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.
Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state
International Nuclear Information System (INIS)
Vassiliev, V.P.; Benaissa, Ablazeze; Taldrik, A.F.
2013-01-01
Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn 3 . Highlights: •Set of experimental values was collected for REIn 3 phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn 3 . The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn 3 phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook
Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team
In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.
Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic
Sobolev, V. P.; Schuurmans, P.; Benamati, G.
2008-06-01
Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.
Principles of Considering the Effect of the Limited Volume of a System on Its Thermodynamic State
Tovbin, Yu. K.
2018-01-01
The features of a system with a finite volume that affect its thermodynamic state are considered in comparison to describing small bodies in macroscopic phases. Equations for unary and pair distribution functions are obtained using difference derivatives of a discrete statistical sum. The structure of the equation for the free energy of a system consisting of an ensemble of volume-limited regions with different sizes and a full set of equations describing a macroscopic polydisperse system are discussed. It is found that the equations can be applied to molecular adsorption on small faces of microcrystals, to bound and isolated pores of a polydisperse material, and to describe the spinodal decomposition of a fluid in brief periods of time and high supersaturations of the bulk phase when each local region functions the same on average. It is shown that as the size of a system diminishes, corrections must be introduced for the finiteness of the system volume and fluctuations of the unary and pair distribution functions.
International Nuclear Information System (INIS)
Lion, Alexander; Engelhard, Marco; Johlitz, Michael
2012-01-01
In order to understand the temperature-dependent response behaviour of thin thermoviscoelastic films which are deposited on relative stiff but thermally deformable substrates it is important to consider the lateral geometric constraints. They are generated by differences in the thermal expansion properties between the substrate and the film and provoke internal stresses. Since glass-forming materials exhibit distinct temperature history-dependent thermal expansion and calorimetric properties, primarily in the vicinity of the glass transition, the situation is rather complicated. In this article, a recently developed three-dimensional model of thermodynamics with internal variables is applied and adapted to simulate this type of behaviour. Explicit relations are obtained for the specific heat of the film, the normal strain and the lateral stresses. Numerical simulations demonstrate that the magnitude of the internal stress at temperatures below the glass transition depends strongly on the cooling rate. It is also shown that the specific heat of the supported film is principally different from the isobaric specific heat of the bulk material: the glassy limit of the specific heat of the film is reduced but the glass transition temperature is almost uninfluenced. The simulated behaviour is in accordance with experimental observations from literature. - Highlights: ► For the specific heat, stress and strain of the film, explicit equations were derived. ► The constraints of the substrate reduce the glassy limit of specific heat of the film. ► Glass transition temperatures of free bulk material and supported film are equal. ► Simulations are in good agreement with experimental observations from literature.
Energy Technology Data Exchange (ETDEWEB)
Lion, Alexander, E-mail: alexander.lion@unibw.de; Engelhard, Marco; Johlitz, Michael
2012-11-01
In order to understand the temperature-dependent response behaviour of thin thermoviscoelastic films which are deposited on relative stiff but thermally deformable substrates it is important to consider the lateral geometric constraints. They are generated by differences in the thermal expansion properties between the substrate and the film and provoke internal stresses. Since glass-forming materials exhibit distinct temperature history-dependent thermal expansion and calorimetric properties, primarily in the vicinity of the glass transition, the situation is rather complicated. In this article, a recently developed three-dimensional model of thermodynamics with internal variables is applied and adapted to simulate this type of behaviour. Explicit relations are obtained for the specific heat of the film, the normal strain and the lateral stresses. Numerical simulations demonstrate that the magnitude of the internal stress at temperatures below the glass transition depends strongly on the cooling rate. It is also shown that the specific heat of the supported film is principally different from the isobaric specific heat of the bulk material: the glassy limit of the specific heat of the film is reduced but the glass transition temperature is almost uninfluenced. The simulated behaviour is in accordance with experimental observations from literature. - Highlights: Black-Right-Pointing-Pointer For the specific heat, stress and strain of the film, explicit equations were derived. Black-Right-Pointing-Pointer The constraints of the substrate reduce the glassy limit of specific heat of the film. Black-Right-Pointing-Pointer Glass transition temperatures of free bulk material and supported film are equal. Black-Right-Pointing-Pointer Simulations are in good agreement with experimental observations from literature.
Ben-Naim, Arieh
2017-01-01
This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...
Continuous variable quantum key distribution with modulated entangled states
DEFF Research Database (Denmark)
Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael
2012-01-01
Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...
The utility of affine variables and affine coherent states
International Nuclear Information System (INIS)
Klauder, John R
2012-01-01
Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)
Teran, Alexander Andrew
Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid
Thermodynamics of two component gaseous and solid state plasmas at any degeneracy
International Nuclear Information System (INIS)
Kraeft, W.D.; Stolzmann, W.; Fromhold-Treu, I.; Rother, T.
1988-10-01
We give the results of thermodynamical calculations for two component plasmas which are of interest for dense hydrogen, noble gas and alkali plasmas and for electron hole plasmas in optically excited semiconductors as well. 25 refs, 4 figs
System Tb-Fe-O: thermodynamic properties of ternary oxides using solid-state electrochemical cells
International Nuclear Information System (INIS)
Rakshit, S.K.; Parida, S.C.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.
2003-01-01
The standard molar Gibbs free energies of formation of TbFeO 3 (s) and Tb 3 Fe 5 O 12 (s) have been determined using solid-state electrochemical cell employing different solid electrolytes. The reversible emfs of the following solid-state electrochemical cells have been measured in the temperature range 1050≤T/K≤1250. Cell (I):(-)Pt/{TbFeO 3 (s)+Tb 2 O 3 (s)+Fe(s)}//YDT/CSZ//{Fe(s)+Fe 0.95 O(s)}/Pt(+))) (Cell (II):(-)Pt/{Fe(s)+Fe 0.95 O(s)}//CSZ//{TbFeO 3 (s)+Tb 3 Fe 5 O 12 (s)+Fe 3 O 4 (s)}/Pt(+) The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the emf data. The standard molar Gibbs free energies of formation of solid TbFeO 3 and Tb 3 Fe 5 O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by {Δ f G compfn m (TbFeO 3 ,s)/(kJ·mol -1 )±3.2}=-1357.5+0.2531·(T/K); (1050≤T/K≤1548);))and({Δ f G compfn m (Tb 3 Fe 5 O 12 ,s)/(kJ·mol -1 )±3.5}=-4901.7+ 0.9997·(T/K); (1050≤T/K≤1250).)) The uncertainty estimates for Δ f G compfn m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams were computed for the system Tb-Fe-O at T=1250 K
Continuous Variable Quantum Key Distribution Using Polarized Coherent States
Vidiella-Barranco, A.; Borelli, L. F. M.
We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.
Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.
2014-12-01
Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High
Thermodynamic analysis of elastic-plastic deformation
International Nuclear Information System (INIS)
Lubarda, V.
1981-01-01
The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt
Twenty lectures on thermodynamics
Buchdahl, H A
2013-01-01
Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text
Directory of Open Access Journals (Sweden)
B. Hussain
2018-02-01
Full Text Available Mixture phase equilibrium and thermodynamic properties have a significant role in industry. Numerical analysis of flash calculation generates an appropriate solution for the problem. In this research, a comparison of Soave Redlich Kwong (SRK and Peng-Robinson (PR equations of state predicting the thermodynamic properties of a mixture of hydrocarbon and related compounds in a critical region at phase equilibrium is performed. By applying mathematical modeling of both equations of states, the behavior of binary gases mixtures is monitored. The numerical analysis of isothermal flash calculations is applied to study the pressure behavior with volume and mole fraction. The approach used in this research shows considerable convergence with experimental results available in the literature.
Automatic Welding Control Using a State Variable Model.
1979-06-01
A-A10 610 NAVEAL POSTGRADUATE SCH4O.M CEAY CA0/ 13/ SAUTOMATIC WELDING CONTROL USING A STATE VARIABLE MODEL.W()JUN 79 W V "my UNCLASSIFIED...taverse Drive Unit // Jbint Path /Fixed Track 34 (servomotor positioning). Additional controls of heave (vertical), roll (angular rotation about the
Work hardening correlation for monotonic loading based on state variables
International Nuclear Information System (INIS)
Huang, F.H.; Li, C.Y.
1977-01-01
An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes
Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund
2009-01-01
We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...
Action–angle variables, ladder operators and coherent states
International Nuclear Information System (INIS)
Campoamor-Stursberg, R.; Gadella, M.; Kuru, Ş.; Negro, J.
2012-01-01
This Letter is devoted to the building of coherent states from arguments based on classical action–angle variables. First, we show how these classical variables are associated to an algebraic structure in terms of Poisson brackets. In the quantum context these considerations are implemented by ladder type operators and a structure known as spectrum generating algebra. All this allows to generate coherent states and thereby the correspondence of classical–quantum properties by means of the aforementioned underlying structure. This approach is illustrated with the example of the one-dimensional Pöschl–Teller potential system. -- Highlights: ► We study the building of coherent states from classical action–angle variables arguments. ► The classical variables are associated to an algebraic structure in terms of Poisson brackets. ► In the quantum context these considerations are implemented by ladder type operators. ► All this allows to formulate coherent states and the correspondence of classical–quantum properties.
International Nuclear Information System (INIS)
Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin
2011-01-01
A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH) 3 and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn 2+ and Fe 2+ under suboxic condition and very close to the FeS/Fe 2+ stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.
Eichhorn, Ralf; Aurell, Erik
2014-04-01
theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them
Haldar, Amritendu; Biswas, Ritabrata
2018-06-01
We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.
International Nuclear Information System (INIS)
Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi
1987-01-01
The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.
Kou, Jisheng; Sun, Shuyu
2017-01-01
In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.
Kou, Jisheng
2017-12-06
In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.
International Nuclear Information System (INIS)
Morrison, J.D.; Barley, M.H.; Parker, I.B.
1995-01-01
This paper reports on the development and application of a thermodynamic model based on the second-order Modified Huron Vidal equation of state (MHV-2) to predict the properties of ternary mixtures of the refrigerants R32, R125, and R134a. The mixing rules of this equation of state have been used to incorporate directly an activity-coefficient model for the excess Gibbs free energy. The parameters for the activity-coefficient model have been derived from experimental VLE data for binary mixtures. This methodology has enabled the production of a thermodynamically consistent model which can be used to predict the phase equilibria of R32/R125/R134a mixtures. The input data used in the model are presented in the paper and the predictions of the model are compared with available experimental data. The model has been used to predict the behavior of ternary refrigerant blends of R32/R125/R134a in fractionation scenarios, such as liquid charging and vapor leakage, which are of direct interest to the refrigeration industry. Details of these applications and comparisons with experimental data are discussed, along with other general uses of the thermodynamic model
Zaidi, Sobia; Haque, Md Anzarul; Ubaid-Ullah, Shah; Prakash, Amresh; Hassan, Md Imtaiyaz; Islam, Asimul; Batra, Janendra K; Ahmad, Faizan
2017-05-01
A sequence alignment of mammalian cytochromes c with yeast iso-1-cytochrome c (y-cyt-c) shows that the yeast protein contains five extra N-terminal residues. We have been interested in understanding the question: What is the role of these five extra N-terminal residues in folding and stability of the protein? To answer this question we have prepared five deletants of y-cyt-c by sequentially removing these extra residues. During our studies on the wild type (WT) protein and its deletants, we observed that the amount of secondary structure in the guanidinium chloride (GdmCl)-induced denatured (D) state of each protein is different from that of the heat-induced denatured (H) state. This finding is confirmed by the observation of an additional cooperative transition curve of optical properties between H and D states on the addition of different concentrations of GdmCl to the already heat denatured WT y-cyt-c and its deletants at pH 6.0 and 68°C. For each protein, analysis of transition curves representing processes, native (N) state ↔ D state, N state ↔ H state, and H state ↔ D state, was done to obtain Gibbs free energy changes associated with all the three processes. This analysis showed that, for each protein, thermodynamic cycle accommodates Gibbs free energies associated with transitions between N and D states, N and H states, and H and D states, the characteristics required for a thermodynamic function. All these experimental observations have been supported by our molecular dynamics simulation studies.
Tarnacka, M; Madejczyk, O; Adrjanowicz, K; Pionteck, J; Kaminska, E; Kamiński, K; Paluch, M
2015-06-14
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.
Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics
International Nuclear Information System (INIS)
Ao, P.
2008-01-01
The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium
International Nuclear Information System (INIS)
Karow, H.U.
1977-02-01
The properties have been determined by means of statistical mechanics. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contribution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma. At temperatures around 5,000 K, UO 2 vapor reaches the collective plasma state and becomes increasingly 'metallic'. - Moreover, the nonuniform molecular equilibrium composition of UO 2 vapor has been taken into account in calculating its caloric functions-of-state. The contribution to specific heat and enthalpy of thermally excited electronic states of the vapor molecules has been derived by means of a Rydberg orbital model of the UO 2 molecule. The resulting enthalpy functions and specific heats for saturated UO 2 vapor of equilibrium composition and that for pure UO 2 gas are compared with the enthalpy and specific heat data of gaseous UO 2 at lower temperatures known from literature. (orig./HP) [de
Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme
Directory of Open Access Journals (Sweden)
Zia Bashir
2017-12-01
Full Text Available Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption.
State variable theories based on Hart's formulation
Energy Technology Data Exchange (ETDEWEB)
Korhonen, M.A.; Hannula, S.P.; Li, C.Y.
1985-01-01
In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and future developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.
Squeezed states and Hermite polynomials in a complex variable
International Nuclear Information System (INIS)
Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.
2014-01-01
Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)
International Nuclear Information System (INIS)
Adesso, Gerardo; Illuminati, Fabrizio
2006-01-01
For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed
Energy Technology Data Exchange (ETDEWEB)
Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)
2006-01-15
For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
International Nuclear Information System (INIS)
Parvan, A.S.
2005-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
International Nuclear Information System (INIS)
Parvan, A.S.
2006-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
International Nuclear Information System (INIS)
Buy, Francois; Voltz, Christophe; Llorca, Fabrice
2006-01-01
This work is devoted to the evaluation of complex behavior of metals under shock wave loading. It presents a methodology for the design of specific experiments performed for validation of models and the evaluation of a multiphase equation of state for tin. This material has been selected because of the numerous works completed during the past years on its equation of state. We focus on the solid diagram which presents two solid phases. A thermodynamically based equation of state is developed which gives the opportunity to search for singularities which could be activated under particular shock wave loading. In the temperature -- pressure diagram, the superimposed Hugoniot and release paths make apparent a double shock, release shock configurations. We propose the design and the VISAR results of a calibrated shock -- reshock test for investigating the validity and the efficiency of the model for predicting the thermodynamical state of tin (phases mixing, temperature...). Comparison between numerical and experimental data shows the good accuracy of the results given by the EOS
Energy Technology Data Exchange (ETDEWEB)
Tarnacka, M., E-mail: mtarnacka@us.edu.pl; Madejczyk, O.; Kamiński, K.; Paluch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Adrjanowicz, K. [NanoBioMedical Centre, ul. Umultowska 85, 61-614 Poznan (Poland); Pionteck, J. [Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden (Germany); Kaminska, E. [Department of Pharmacognosy and Phytochemistry, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jagiellonska 4, 41-200 Sosnowiec (Poland)
2015-06-14
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT{sub g}/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT{sub n}/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ {sub α} = 10{sup −5} s. Furthermore, we plotted the obtained relaxation times as a function of T{sup −1}v{sup −γ}, which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals’ properties of itraconazole molecule.
Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface
International Nuclear Information System (INIS)
Lai, H.-Y.; Huang, P.-H.
2008-01-01
A microscopic insight of interfacial spallation and recombination behaviors at multilayer thin-film interface induced by incident femtosecond pulsed laser is presented in this paper. Such two different aforementioned behaviors are investigated via the thermodynamic trajectories obtained by using standard Lennard-Jones (L-J) molecular dynamics (MD) simulation. Based on the simulation results, the interfacial damages of multilayer thin film are dominated by a critical threshold that induces an extraordinary expansive dynamics and phase transitions leading to the structural softened and tensile spallation at interface. The critical damage threshold is evaluated at around 8.5 J/m 2 which governs the possible occurrence of two different regimes, i.e. interfacial spallaiton and recombination. In interfacial damage region, quasi-isothermal thermodynamic trajectories can be observed after the interfacial spallation occurs. Moreover, the result of thermodynamic trajectories analyses indicates that, the relaxation of pressure wave may cause the over-heated interfacial zone to reduce volumetric density, thus leading to structural softness and even weaken interfacial structural strength. The crucial effect leading to the phenomenon of low tension spallation is identified
International Nuclear Information System (INIS)
Näfe, H.
2013-01-01
As far as a multicomponent mixture is concerned, different versions exist in the literature for the relationship between the partial molar and molar quantity of a thermodynamic state function with the most prominent example of the two quantities being the activity coefficient of an arbitrary component and the excess Gibbs free energy of a mixture comprising this component. Since the relationships published so far have to a large degree been derived independently of each other and result from apparently conflicting approaches, they are still considered as separate subjects in the literature. It is demonstrated that despite this curious situation all relationships are equivalent to each other from a mathematical point of view
Increased variability of tornado occurrence in the United States.
Brooks, Harold E; Carbin, Gregory W; Marsh, Patrick T
2014-10-17
Whether or not climate change has had an impact on the occurrence of tornadoes in the United States has become a question of high public and scientific interest, but changes in how tornadoes are reported have made it difficult to answer it convincingly. We show that, excluding the weakest tornadoes, the mean annual number of tornadoes has remained relatively constant, but their variability of occurrence has increased since the 1970s. This is due to a decrease in the number of days per year with tornadoes combined with an increase in days with many tornadoes, leading to greater variability on annual and monthly time scales and changes in the timing of the start of the tornado season. Copyright © 2014, American Association for the Advancement of Science.
Stability of black holes based on horizon thermodynamics
Directory of Open Access Journals (Sweden)
Meng-Sen Ma
2015-12-01
Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.
On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies
Directory of Open Access Journals (Sweden)
Purushottam D. Gujrati
2015-02-01
Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.
International Nuclear Information System (INIS)
Duthil, P
2014-01-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered
Energy Technology Data Exchange (ETDEWEB)
Duthil, P [Orsay, IPN (France)
2014-07-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Li, Guanchen; von Spakovsky, Michael R.
2016-01-01
This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of
Energy Technology Data Exchange (ETDEWEB)
Mingarro, E.
1965-07-01
In order to get a classification of the uranium deposits, the geological processes have been ordered in thermodynamic systems according to the independent parameters that define their equilibrium state. Also, to apply the phase rule, we suppose that the ore forming elements are always ideally mobile components; that is, in the geological systems, these components are defined by their chemical potentials. In this paper, we show that in random conditions, i. e.; for any possible value of the factors of equilibrium or state the stable mineralizations are formed only in metasomatic regimes; so that the mineralogical sequence is a function both of the Helmholtz's free energy and the crystallisation pressure of the minerals. (Author) 7 refs.
Energy Technology Data Exchange (ETDEWEB)
Mingarro, E
1965-07-01
In order to get a classification of the uranium deposits, the geological processes have been ordered in thermodynamic systems according to the independent parameters that define their equilibrium state. Also, to apply the phase rule, we suppose that the ore forming elements are always ideally mobile components; that is, in the geological systems, these components are defined by their chemical potentials. In this paper, we show that in random conditions, i. e.; for any possible value of the factors of equilibrium or state the stable mineralizations are formed only in metasomatic regimes; so that the mineralogical sequence is a function both of the Helmholtz's free energy and the crystallisation pressure of the minerals. (Author) 7 refs.
International Nuclear Information System (INIS)
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2015-01-01
We have found that thermodynamic state and kinetic process co-determine the dual ferromagnetic (FM) orders in high-Si content FeMnP 1−x Si x (0.25 < x < 0.5). Alloys undergoing high temperature annealing and quenching process prefer a high magnetic moment FM state in a chemically partial disordered structure with low c/a ratio. This mechanism is suggested to be responsible for the often discussed virgin effect as well. A chemically ordered structure obtained by a slow cooling process from a relatively low annealing temperature and the increase in Si content stabilize a metastable lattice with high c/a ratio and FM order with low magnetic moment. The non-simultaneity of the magnetic and structural transitions can be responsible for the occurrence of FM state in the high c/a range. Thus, a c/a ratio that changes from high to low is physically plausible to stabilize the metastable FM order at low temperature. Our theoretical observations indicate that suitable thermodynamic state and kinetic diffusion process is crucial for optimizing magnetocaloric properties and exploring feasible magnetocaloric materials
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
International Nuclear Information System (INIS)
Fortin, Xavier
1971-01-01
The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr
International Nuclear Information System (INIS)
Chan, K.T.; Yu, F.W.
2006-01-01
This paper presents a thermodynamic model to evaluate the coefficient of performance (COP) of an air-cooled screw chiller under various operating conditions. The model accounts for the real process phenomena, including the capacity control of screw compressors and variations in the heat-transfer coefficients of an evaporator and a condenser at part load. It also contains an algorithm to determine how the condenser fans are staged in response to a set-point condensing temperature. The model parameters are identified, based on the performance data of chiller specifications. The chiller model is validated using a wide range of operating data of an air-cooled screw chiller. The difference between the measured and modelled COPs is within ±10% for 86% of the data points. The chiller's COP can increase by up to 115% when the set-point condensing temperature is adjusted, based on any given outdoor temperature. Having identified the variation in the chiller's COP, a suitable strategy is proposed for air-cooled screw chillers to operate at maximum efficiency as much as possible when they have to satisfy a building's cooling-load
Energy Technology Data Exchange (ETDEWEB)
Jakse, Noel; Bretonnet, Jean-Louis [Laboratoire de Theorie de la Matiere Condensee, Universite de Metz, 1 Boulevard FD Arago, 57078 Metz Cedex 3 (France)
2003-12-08
Understanding the interatomic interactions in noble gases remains one of the fundamental problems not completely solved to date. From small-angle neutron scattering experiments it is well-known that three-body forces exist and cannot be neglected. On the theoretical side, semi-analytic and simulation methods have been used to reveal the nature of these many-body interactions. The purpose of the present work is to provide an overview of the different three-body contributions to the interactions and their relative importance in describing the structural and thermodynamic properties for noble gases by means of the integral equation theory and molecular dynamics simulations. We examine the relevance of the effective state-dependent pair potential in this framework, as well as the self-consistency problem that we are faced with in the integral equation theory.
A Hamiltonian approach to Thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A Hamiltonian approach to Thermodynamics
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Variability in United States Allopathic Medical School Tuition.
Gil, Joseph A; Park, Sarah H; Daniels, Alan H
2015-11-01
Over the course of the last generation, the cost of medical school attendance and medical student debt has increased drastically. Medical student debt has been reported as high as $350,000, and the Association of American Medical Colleges (AAMC) reports that medical school tuition continues to increase annually. The increasing cost of medical education and associated financial burden is now beginning to deter potential applicants from pursuing a career in medicine. In this study we aimed to assess medical school tuition across the US. We hypothesized that the cost of medical school attendance is variable across all regions of the US, and as a result, the financial burden on medical students is inconsistent. All 123 allopathic medical schools accredited by the AAMC were assessed in this investigation. In-state and out-of-state tuitions for the year 2016 were obtained from U.S. News and World Report. Additionally, medical school size was collected. Regions were defined according to the US Census Bureau definition, with the US being divided into 4 regions: Northeast, Midwest, South, and West. There was no difference in average medical school size among the 4 regions (P > .05). Average in-state tuition was $38,291.56 ± $9801.38 (95% confidence interval [CI], $34,658.07-$41,513.46) in the Midwest, $45,923.04 ± $9178.87 (95% CI, $42,566.28-$49,216.78) in the Northeast, $32,287.78 ± $12,277.53 (95% CI, $28,581.90-$35,378.68) in the South, and $37,745.40 ± $11,414.37 (95% CI, $30,063.28-$40,458.99) in the West. In-state tuition in the South was significantly lower than in the Northeast, West, and Midwest (P tuition in the Northeast was significantly higher than in the South, West, and Midwest (P tuition is $54,104.04 ± $8227.65 (95% CI, $51,207.6-$57,000.39) in the Midwest, $53,180.10 ± $3963.71 (95% CI, $51,761.71-$54,598.50) in the Northeast, $48,191.86 ± $12,578.13 (95% CI, $44,595.84-$51,787.89) in the South, and $52,920.47 ± $7400.83 (95% CI, $49
International Nuclear Information System (INIS)
Garcia-Moliner, F.
1975-01-01
Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions
Thermodynamic perspectives on genetic instructions, the laws of biology and diseased states.
Trevors, Jack T; Saier, Milton H
2011-01-01
This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Saier, M. H.
2014-01-01
This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Many knowledge gaps abound, hence our understanding is still fragmented and incomplete. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms must free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient enough to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment, that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases. PMID:21262480
Applied chemical engineering thermodynamics
Tassios, Dimitrios P
1993-01-01
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
Thermodynamics of pion gas using states predicted from κ-deformed Poincare algebra
International Nuclear Information System (INIS)
Cordeiro, Claudete E.; Delfino, Antonio; Dey, Jishnu
1995-01-01
K-deformed Poincare algebra, which preserves rotational and translational symmetries, can successfully predict the angular and radial excited states of the pion. At high temperature, T these states can be excited in the pion gas, in addition to the usual momentum excitation. We exploit this to look at pion free energy finding it increases linearly with T. The energy per particle and the entropy show evidence of a smooth phase transition after T=0.2 GeV. (author)
Jacobs, Michael H G; Schmid-Fetzer, Rainer; van den Berg, Arie P.
2017-01-01
In a previous paper, we showed a technique that simplifies Kieffer’s lattice vibrational method by representing the vibrational density of states with multiple Einstein frequencies. Here, we show that this technique can be applied to construct a thermodynamic database that accurately represents
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Alldredge, G. P.; McMurry, H. L.
1983-01-01
The phonon density of states for trigonal selenium has been calculated on the basis of a short range force model giving good overall agreement with experimental room temperature phonon dispersion data. A qualitative comparison with an experimental determination of the phonon density of states shows...... similarities in the gross features, but the experimental data lacks many of the finer details shown by the theoretical results due to resolution effects. The lattice dynamical contribution to the heat capacity CV is calculated and is found to be in good agreement with experimental determinations of Cp after...
Continuous variable entanglement distillation of non-Gaussian states
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Dong, Ruifang; Heersink, Joel
2009-01-01
We experimentally demonstrate distillation of continuous variable entangled light that has undergone non-Gaussian attenuation loss. The continuous variable entanglement is generated with optical fibers and sent through a lossy channel, where the transmission is varying in time. By employing simple...
Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J
2018-05-01
Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.
International Nuclear Information System (INIS)
Djamali, Essmaiil; Cobble, James W.
2009-01-01
Standard state thermodynamic properties for fully ionized aqueous perrhenic acid at temperature in the range of (298.15 to 598.15) K and at p sat were determined by high dilution solution calorimetry (10 -4 m). A comparison of the standard state thermodynamic properties for fully ionized aqueous perrhenic acid, HReO 4 (aq), and sodium perrhenate, NaReO 4 (aq), establishes for the first time the quantitative values for the differences between H + (aq) and Na + (aq) from temperature of (298.15 to 598.15) K. Perrhenic acid is believed to be the first strong acid to be thermodynamically well characterized under standard state conditions to date from measurements down to 10 -4 m. The value of the Debye-Hueckel limiting slope for enthalpies of dilution at temperature of 596.30 K of 122 ± 6 kJ . mol -3/2 . kg 1/2 , obtained from the integral heats of solution measurement at various concentrations, is in good agreement with theoretical value in literature, 121 kJ . mol -3/2 . kg 1/2 . This agreement verifies that HReO 4 (aq) obeys the simple limiting law for strong electrolytes. Many thermodynamic properties of soluble sodium electrolytes can now be converted to the corresponding acid form.
Life, hierarchy, and the thermodynamic machinery of planet Earth.
Kleidon, Axel
2010-12-01
Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates
Müller, Ingo
1993-01-01
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...
Entropy production and thermodynamics of nonequilibrium stationary states: a point of view.
Gallavotti, Giovanni
2004-09-01
Entropy might be a not well defined concept if the system can undergo transformations involving stationary nonequilibria. It might be analogous to the heat content (once called "caloric") in transformations that are not isochoric (i.e., which involve mechanical work): it could be just a quantity that can be transferred or created, like heat in equilibrium. The text first reviews the philosophy behind a recently proposed definition of entropy production in nonequilibrium stationary systems. A detailed technical attempt at defining the entropy of a stationary states via their variational properties follows: the unsatisfactory aspects of the results add arguments in favor of the nonexistence of a function of state to be identified with entropy; at the same time new aspects and properties of the phase space contraction emerge. Copyright 2004 American Institute of Physics
The evolutionary state of the Beta Canis Majoris variables
International Nuclear Information System (INIS)
Shobbrook, R.R.
1978-01-01
New β photometry is presented for all the known β Canis Majoris variables and for other bright early B stars observable from the southern hemisphere which were close to the β CMa stars in a β/[c 1 ] diagram published earlier. The new β values are accurate to +- 0.002 or 0.003 mag and enable the 'instability strip' along which the variables lie to be defined much more precisely. Several of the other B stars also lie in the strip; most of these have already been found to be non-variable in a subsidiary observing programme. (author)
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics
Thermodynamics of adaptive molecular resolution.
Delgado-Buscalioni, R
2016-11-13
A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Theoretical physics 5 thermodynamics
Nolting, Wolfgang
2017-01-01
This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...
Electrochemical thermodynamic measurement system
Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA
2009-09-29
The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.
The thermodynamic basis of entransy and entransy dissipation
International Nuclear Information System (INIS)
Xu, Mingtian
2011-01-01
In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.
Berg, Alexander K; Srivastava, D K
2009-02-24
We investigated the binding of a naturally occurring antibiotic, actinonin, to the Ni(2+)-reconstituted recombinant form of Escherichia coli peptide deformylase (PDF(Ec)) via isothermal titration microcalorimetry. The binding data conformed to both exothermic and endothermic phases with magnitudes of DeltaG degrees , DeltaH degrees , and TDeltaS degrees being equal to -12, -2.7, and 9.3 kcal/mol and -8.7, 3.9, and 12.6 kcal/mol, respectively. Evidently, although both phases are dominated by favorable entropic changes, the exothermic phase has about 6.7 kcal/mol enthalpic advantage over the endothermic phase. We observed that the removal of bound Ni(2+) from PDF(Ec) abolished the exothermic phase without affecting the endothermic phase, but it was regained upon addition of Zn(2+). In conjunction with metal analysis data, we propose that the recombinant form of PDF(Ec) is expressed in two stable conformational states that yield markedly distinct ITC profiles (i.e., exothermic versus endothermic) upon interaction with actinonin. The existence of two conformational states of PDF(Ec) is further supported by the observation of two distinct and independent transitions during the thermal unfolding of the enzyme. In addition, the thermodynamic data reveal that the formation of the PDF(Ec)-actinonin complex results in the transfer of one H(+) from the enzyme phase to the bulk solvent at pH 6.3. Both exothermic and endothermic phases produce highly negative DeltaC(p) degrees values, but there is no apparent enthalpy-entropy compensation effect upon formation of the PDF(Ec)-actinonin complex. In view of the known structural features of the enzyme, arguments are presented that the alternative conformational states of PDF(Ec) are modulated by the metal ligation at the enzyme site.
Experimental verification of quantum discord in continuous-variable states
International Nuclear Information System (INIS)
Hosseini, S; Haw, J Y; Assad, S M; Chrzanowski, H M; Janousek, J; Symul, T; Lam, P K; Rahimi-Keshari, S; Ralph, T C
2014-01-01
We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states. (paper)
International Nuclear Information System (INIS)
Bednarski, Henryk; Spałek, Józef
2014-01-01
We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)
Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions
International Nuclear Information System (INIS)
Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph
2015-01-01
Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the
International Nuclear Information System (INIS)
Zhang, Shao-Jun; Miao, Yan-Gang; Zhao, Ying-Jie
2015-01-01
As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.
International Nuclear Information System (INIS)
Teng Lidong; Aune, Ragnhild; Seetharaman, Seshadri
2005-01-01
In view of the important applications of carbides and nitrides of transition metals in the hard materials industries, the thermodynamic activities of manganese in Mn-Ni-C-N alloys have been studied by solid-state galvanic cell technique with CaF 2 as the solid electrolyte. The phase compositions and microstructure of various alloys have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Nitrogen was introduced into the alloy by equilibrating with N 2 gas. It was established during the experiments that the solubility of nitrogen in the alloys was affected by the carbon content. A (Mn,Ni) 4 (N,C) nitride was formed during the nitriding procedure in the alloys. The electromotive force (EMF) measurements were carried out in the temperature range 940-1127 K in order to determine the activities of Mn in the alloys. The activities of manganese were calculated and compared with those of the corresponding Mn-Ni-C ternary alloys
The evolutionary state of the β Canis Majoris variables
International Nuclear Information System (INIS)
Shobbrook, R.R.
1978-01-01
It is found from accurate β photometry of bright stars in the region of the β CMa instability strip that about three-quarters of the stars in the strip, to a distance modulus of 8.0, are β CMa variables. The strip is not resolved by the data so that its intrinsic width is uncertain, but the conclusion from a consideration of theoretical evolutionary rates is that the variables must be very near the end of core hydrogen burning. Comparison of the relative positions of the empirical and theoretical instability strip and zero age main sequence indicates that the observationally located upper ZAMS is too bright. (author)
Characterization of Nighttime Light Variability Over the Southeastern United States
Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.
2016-01-01
City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.
Olander, Donald
2007-01-01
The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations
International Nuclear Information System (INIS)
Mansson, B.A.
1990-01-01
Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory
The Variable Transition State in Polar Additions to Pi Bonds
Weiss, Hilton M.
2010-01-01
A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…
State-independent quantum contextuality for continuous variables
International Nuclear Information System (INIS)
Plastino, Angel R.; Cabello, Adan
2010-01-01
Recent experiments have shown that nature violates noncontextual inequalities regardless of the state of the physical system. So far, all these inequalities involve measurements of dichotomic observables. We show that state-independent quantum contextuality can also be observed in the correlations between measurements of observables with genuinely continuous spectra, highlighting the universal character of the effect.
Energy Technology Data Exchange (ETDEWEB)
Singh, Rakesh S.; Debenedetti, Pablo G. [Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Biddle, John W.; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute of Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)
2016-04-14
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.
International Nuclear Information System (INIS)
Singh, Rakesh S.; Debenedetti, Pablo G.; Biddle, John W.; Anisimov, Mikhail A.
2016-01-01
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.
Pattern recognition of state variables by neural networks
International Nuclear Information System (INIS)
Faria, Eduardo Fernandes; Pereira, Claubia
1996-01-01
An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)
Energy Technology Data Exchange (ETDEWEB)
Bagus, Paul S. [Univ. of North Texas, Denton, TX (United States)
2013-01-01
-Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2
International Nuclear Information System (INIS)
Hyldgaard, P
2012-01-01
The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the
International Nuclear Information System (INIS)
McHugh, Derek; Buzek, Vladimir; Ziman, Mario
2006-01-01
We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case
Irreversible Thermodynamics of the Universe: Constraints from Planck Data
International Nuclear Information System (INIS)
Saha, Subhajit; Chakraborty, Subenoy; Biswas, Atreyee
2014-01-01
The present work deals with irreversible universal thermodynamics. The homogenous and isotropic flat model of the universe is chosen as open thermodynamical system and nonequilibrium thermodynamics comes into picture. For simplicity, entropy flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for nonequilibrium phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second law of thermodynamics (GSLT) has been investigated for universe bounded by apparent or event horizon with cosmic substratum as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to constrain the thermal conductivity λ and the coupling parameter b 2 . These constraints must be satisfied in order for GSLT to hold for universe bounded by apparent or event horizons
Thermodynamics of de Sitter black holes: Thermal cosmological constant
International Nuclear Information System (INIS)
Sekiwa, Y.
2006-01-01
We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if the cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes
Continuous Variable Entanglement of Orbital Angular Momentum States
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Leuchs, G.; Andersen, Ulrik Lund
2009-01-01
We have generated a new quantum state of light composed of quadrature entangled Laguerre-Gaussian (LG) modes. For the generation we used an OPO operating in a new regime where all field parameters are degenerate except for its spatial degree of freedom for which it is two-fold degenerate. The ent...
Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-09-01
Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.
State variable participation in the limit cycle of induction motor
Indian Academy of Sciences (India)
2015-02-21
Feb 21, 2015 ... The paper presents bifurcation behaviour of a single-phase induction motor. Study of bifurcation of a system gives the complete picture of its dynamical behaviour with the change in system's parameters. The system is mathematically described by a set of differential equations in the state space. Induction ...
Possible generalization of Yang variables for the study of many particle final states
International Nuclear Information System (INIS)
Becker, L.; Schiller, H.
1976-01-01
Starting from a discussion of constraints on invariant variables a generalization of the so called Yang-variables is discussed for the case of 5 and 6 particles in the final states. The obtained Lorentz-invariant variables are ''quasi permutation invariant'' with respect to the final state particles. The influence of Gram determinants is discussed in the context of the application of a cluster algorithm. (author)
Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
Generating continuous variable optical quantum states and entanglement
International Nuclear Information System (INIS)
Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.
2002-01-01
Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox
On thermodynamic limits of entropy densities
Moriya, H; Van Enter, A
We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.
Alastuey, A; Ballenegger, V
2012-12-01
We compute thermodynamical properties of a low-density hydrogen gas within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential. Our calculations are done using the exact scaled low-temperature (SLT) expansion, which provides a rigorous extension of the well-known virial expansion-valid in the fully ionized phase-into the Saha regime where the system is partially or fully recombined into hydrogen atoms. After recalling the SLT expansion of the pressure [A. Alastuey et al., J. Stat. Phys. 130, 1119 (2008)], we obtain the SLT expansions of the chemical potential and of the internal energy, up to order exp(-|E_{H}|/kT) included (E_{H}≃-13.6 eV). Those truncated expansions describe the first five nonideal corrections to the ideal Saha law. They account exactly, up to the considered order, for all effects of interactions and thermal excitations, including the formation of bound states (atom H, ions H^{-} and H_{2}^{+}, molecule H_{2},⋯) and atom-charge and atom-atom interactions. Among the five leading corrections, three are easy to evaluate, while the remaining ones involve well-defined internal partition functions for the molecule H_{2} and ions H^{-} and H_{2}^{+}, for which no closed-form analytical formula exist currently. We provide accurate low-temperature approximations for those partition functions by using known values of rotational and vibrational energies. We compare then the predictions of the SLT expansion, for the pressure and the internal energy, with, on the one hand, the equation-of-state tables obtained within the opacity program at Livermore (OPAL) and, on the other hand, data of path integral quantum Monte Carlo (PIMC) simulations. In general, a good agreement is found. At low densities, the simple analytical SLT formulas reproduce the values of the OPAL tables up to the last digit in a large range of temperatures, while at higher densities (ρ∼10^{-2} g/cm^{3}), some
Energy Technology Data Exchange (ETDEWEB)
Peleties, F. [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid (Spain); Trusler, J.P.M., E-mail: m.trusler@imperial.ac.u [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vega-Maza, D. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid (Spain)
2010-05-15
We report measurements of the thermodynamic properties of liquid di-isodecyl phthalate (DIDP) and an equation of state determined therefrom. The speed of sound in DIDP was measured at temperatures between (293.15 and 413.15) K and a pressures between (0.1 and 140) MPa with a relative uncertainty of 0.1%. In addition, the isobaric specific heat capacity was measured at temperatures between (293.15 and 423.15) K at a pressure of 0.1 MPa with a relative uncertainty of 1%, and the density was measured at temperatures between (273.15 and 413.15) K at a pressure of 0.1 MPa with a relative uncertainty of 0.015%. The thermodynamic properties of DIDP were obtained from the measured speeds of sound by thermodynamic integration starting from the initial values of density and isobaric specific heat capacity obtained experimentally. The results have been represented by a new equation of state containing nine parameters with an uncertainty in density not worse than 0.025%. Comparisons with literature data are made.
International Nuclear Information System (INIS)
Peleties, F.; Segovia, J.J.; Trusler, J.P.M.; Vega-Maza, D.
2010-01-01
We report measurements of the thermodynamic properties of liquid di-isodecyl phthalate (DIDP) and an equation of state determined therefrom. The speed of sound in DIDP was measured at temperatures between (293.15 and 413.15) K and a pressures between (0.1 and 140) MPa with a relative uncertainty of 0.1%. In addition, the isobaric specific heat capacity was measured at temperatures between (293.15 and 423.15) K at a pressure of 0.1 MPa with a relative uncertainty of 1%, and the density was measured at temperatures between (273.15 and 413.15) K at a pressure of 0.1 MPa with a relative uncertainty of 0.015%. The thermodynamic properties of DIDP were obtained from the measured speeds of sound by thermodynamic integration starting from the initial values of density and isobaric specific heat capacity obtained experimentally. The results have been represented by a new equation of state containing nine parameters with an uncertainty in density not worse than 0.025%. Comparisons with literature data are made.
Present state and perspectives of variable renewable energies in Spain
Gómez-Calvet, Roberto; Martínez-Duart, José Manuel; Serrano Calle, Silvia
2018-03-01
In accordance with the Paris Climate Agreement (2015) and the more recent European Union Winter Package of November 2016, the European nations have committed to drastically cut CO2 emissions during the next decades, especially in the power sector. To this end, Spain as well as many other European countries are initiating plans for a large deployment of variable renewable energy sources (VRES), especially motivated by the huge lowering in prices of solar and wind installations. In the first part of this work, a detailed analysis of the current Spanish electricity mix is carried out, especially of the present generation by VRES. To this end, we present hourly and daily fan charts, for the different days of the week as well as months or seasons of the year. These studies show that the current power system is quite varied and presents a large installed capacity in relation to peak demand. Other aspects, that will surely assist the transition to lower emission targets are the following: the recent adjudication of 9000MW of VRES, which will be operational within the next 2-3 years; a large overcapacity of Combined Cycle Gas Turbines (CCGT) plants, which could be used during the transition as backup plants; and the relatively large hydro-pump potential for the storage of possible VRES surpluses. Finally, the possibility of decommissioning several nuclear plants in a few years is also discussed.
Latent variable method for automatic adaptation to background states in motor imagery BCI
Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei
2018-02-01
Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
Extended Irreversible Thermodynamics
Jou, David
2010-01-01
This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...
Recent state report: Groundwater programmes of variable density
International Nuclear Information System (INIS)
Fein, E.
1991-12-01
This report summarises basic facts and data that may be helpful in decisions about the development of a groundwater programme for the calculation of saline groundwater movements. Generally accepted requirements of a rapid groundwater programme for the assessment of flow mechanisms above salt domes are defined. It also describes the possibilities offered by similar programmes already in progress on a national and international basis and discusses state-of-the-art numerical methods and hardware in respect of speed and efficiency of the relevant computer programmes. The availability of a rapid groundwater programme would make it possible for model calculations in connection with long-term safety analyses to take account of the influence of salinity on groundwater movements in extended and complex model regions. (orig./DG) [de
Institute of Scientific and Technical Information of China (English)
YUAN Hong-Chun; QI Kai-Guo
2005-01-01
We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.
High-fidelity teleportation of continuous-variable quantum States using delocalized single photons
DEFF Research Database (Denmark)
Andersen, Ulrik L; Ralph, Timothy C
2013-01-01
Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed...... states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...
Subseasonal climate variability for North Carolina, United States
Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe; Schimmel, Keith A.
2014-08-01
Subseasonal trends in climate variability for maximum temperature (Tmax), minimum temperature (Tmin) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The magnitude and significance of the trends at all stations were determined using the non-parametric Theil-Sen Approach (TSA) and the Mann-Kendall (MK) test, respectively. The Sequential Mann-Kendall (SQMK) test was also applied to find the initiation of abrupt trend changes. The lag-1 serial correlation and double mass curve were employed to address the data independency and homogeneity. Using the MK trend test, statistically significant (confidence level ≥ 95% in two-tailed test) decreasing (increasing) trends by 44% (45%) of stations were found in May (June). In general, trends were decreased in Tmax and increased in Tmin data series in subseasonal scale. Using the TSA method, the magnitude of lowest (highest) decreasing (increasing) trend in Tmax is - 0.050 °C/year (+ 0.052 °C/year) in the monthly series for May (March) and for Tmin is - 0.055 °C/year (+ 0.075 °C/year) in February (December). For the precipitation time series using the TSA method, it was found that the highest (lowest) magnitude of 1.00 mm/year (- 1.20 mm/year) is in September (February). The overall trends in precipitation data series were not significant at the 95% confidence level except that 17% of stations were found to have significant (confidence level ≥ 95% in two-tailed test) decreasing trends in February. The statistically significant trend test results were used to develop a spatial distribution of trends: May for Tmax, June for Tmin, and February for precipitation. A correlative analysis of significant temperature and precipitation trend results was examined with respect to large scale circulation modes (North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI). A negative NAO index (positive-El Niño Southern Oscillation (ENSO) index) was found to be associated with
Zhang, Jianzhong; Velisavljevic, Nenad; Zhu, Jinlong; Wang, Liping
2016-10-05
In situ synchrotron x-ray diffraction experiments were conducted on 1,1-diamino-2,2-dinitroethylene (FOX-7) at pressures up to 6.8 GPa and temperatures up to 485 K. Within the resolution of the present diffraction data, our results do not reveal evidence for a pressure-induced structural phase transition near 2 GPa, previously observed in several vibrational spectroscopy experiments. Based on unit-cell volume measurements, the least-squares fit using the third-order Birch-Murnaghan equation of state (EOS) yields K 0 = 12.6 ± 1.4 GPa and [Formula: see text] = 11.3 ± 2.1 for the α-phase of FOX-7, which are in good agreement with recently reported values for the deuterated sample, indicating that the effect of hydrogen-deuterium substitution on the compressibility of FOX-7 is negligibly small. A thermal EOS is also obtained for the α-phase of FOX-7, including pressure dependence of thermal expansivity, (∂α/∂P)T = -7.0 ± 2.0 × 10(-5) K(-1) GPa(-1), and temperature derivative of the bulk modulus, (∂K T/∂T)P = -1.1 × 10(-2) GPa K(-1). From these EOS parameters, we calculate heat capacity at constant volume (C V) and thermodynamic Grüneisen parameter (γ TH) as a function of temperature. At ambient conditions, the calculated γ TH is 1.055, which is in good agreement with the value (1.09) previously obtained from density functional theory (DFT). The obtained C V, however, is 13% larger than that calculated from the first-principles calculations, indicating that the dispersion correction in the DFT calculations may need to be further improved for describing intermolecular interactions of molecular crystals.
Crisis and adjustment variables of Mediterranean oil states
International Nuclear Information System (INIS)
Beraud, Philippe; Jablanczy, Adrienne
2010-01-01
This paper deals with the performance of the Mediterranean and the other Arabian oil exporting countries. As far as the resource-based industry is concerned, it could be interesting to notice that the performance of these countries is linked to sectoral mix, nature of industry, type of enterprise, nature of joint-venture contracts and obviously macro-economic policies. The studies on the relationship between oil resources, oil production and valorization and global growth show that oil sector is not reliable, especially if we take into account the gap between low and high absorbing countries in the Arab world. In the first group of countries, oil revenues have a positive and significant effect on economic growth and development. In the second group of countries, oil revenues often copy with the Dutch-disease type resource reallocation process and have a negative effect on growth and development. Three alternative ways seem to be opened for these countries. And we study each of them: growing influence of profit sharing contracts between the state-owned companies and the international oil companies linked to technology transfers agreements, entrepreneurial and managerial trajectories coping with the influence of small and medium enterprises, effects of the regional integration in the framework of the Euro-Mediterranean trade agreements
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
Directory of Open Access Journals (Sweden)
Jen-Tsung Hsiang
2018-05-01
Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for
Stability and fluctuations in black hole thermodynamics
International Nuclear Information System (INIS)
Ruppeiner, George
2007-01-01
I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition
Hamiltonian and Thermodynamic Modeling of Quantum Turbulence
Grmela, Miroslav
2010-10-01
The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.
Institute of Scientific and Technical Information of China (English)
Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai
2006-01-01
This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.
2010-04-01
The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...
A Novel Flood Forecasting Method Based on Initial State Variable Correction
Directory of Open Access Journals (Sweden)
Kuang Li
2017-12-01
Full Text Available The influence of initial state variables on flood forecasting accuracy by using conceptual hydrological models is analyzed in this paper and a novel flood forecasting method based on correction of initial state variables is proposed. The new method is abbreviated as ISVC (Initial State Variable Correction. The ISVC takes the residual between the measured and forecasted flows during the initial period of the flood event as the objective function, and it uses a particle swarm optimization algorithm to correct the initial state variables, which are then used to drive the flood forecasting model. The historical flood events of 11 watersheds in south China are forecasted and verified, and important issues concerning the ISVC application are then discussed. The study results show that the ISVC is effective and applicable in flood forecasting tasks. It can significantly improve the flood forecasting accuracy in most cases.
Concise chemical thermodynamics
Peters, APH
2010-01-01
EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of
Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.
2003-05-01
The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.
International Nuclear Information System (INIS)
Peretrukhin, V.F.; Spitsyn, V.I.
1982-01-01
The oxidation potentials of neptunium, plutonium, and americium in the valance states from (III) to (VII) have been determined experimentally in 0.1-15 M NaOH. Heptavalent plutonium and americium are thermodynamically able to oxidize water with the evolution of oxygen in 0.1-15 M NaOH, neptunium(VII) in 0.1-7 M NaOH. All valance states of plutonium resist disproportionation in alkaline solutions; in the case of neptunium and americium only one disproportionation reaction is possible; of the hexavalent state in to penta- and heptavalent states. The degree of completion of the reaction can be calculated accurately from the oxidation potentials determined
Genuine tripartite entangled states with a local hidden-variable model
International Nuclear Information System (INIS)
Toth, Geza; Acin, Antonio
2006-01-01
We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states
International Nuclear Information System (INIS)
Zinke, M.
1979-01-01
Exemplified by hemoglobin, the thermodynamic equilibrium properties of the dissolved macromolecular system could be determined solely from the small angle X-ray scattering of concentrated macromolecular solutions via the intermolecular structure of the dissolved macromolecules and their intermolecular potentials. From the scattering experiment on concentrated Hb solutions the concentration dependence of the following properties of the dissolved Hb system were determined: fluctuation, isothermic compressibility, internal energy, surface tension, and osmotic pressure. (author)
Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium
Hunt, J. L.; Boney, L. R.
1973-01-01
Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.
Variability common to first leaf dates and snowpack in the western conterminous United States
McCabe, Gregory J.; Betancourt, Julio L.; Pederson, Gregory T.; Schwartz, Mark D.
2013-01-01
Singular value decomposition is used to identify the common variability in first leaf dates (FLDs) and 1 April snow water equivalent (SWE) for the western United States during the period 1900–2012. Results indicate two modes of joint variability that explain 57% of the variability in FLD and 69% of the variability in SWE. The first mode of joint variability is related to widespread late winter–spring warming or cooling across the entire west. The second mode can be described as a north–south dipole in temperature for FLD, as well as in cool season temperature and precipitation for SWE, that is closely correlated to the El Niño–Southern Oscillation. Additionally, both modes of variability indicate a relation with the Pacific–North American atmospheric pattern. These results indicate that there is a substantial amount of common variance in FLD and SWE that is related to large-scale modes of climate variability.
Braun-Le Chatelier principle in dissipative thermodynamics
Pavelka, Michal; Grmela, Miroslav
2016-01-01
Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.
DEFF Research Database (Denmark)
Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.
1998-01-01
-called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
International Nuclear Information System (INIS)
Reva, T.D.; Semenov, A.M.
1984-01-01
Statistically significant estimations of the second, third and fourth group integrals of sodium and potassium vapors were obtained in the framework of the initial atom method on the basis of semiempirical equation of state derived by the authors. Possibility is duscussed of estimating dimer, trimer and tetramer concentrations from these data with account of unideality of vapors. High rate of convergence of density and pressure group expansion is demonstrated. Virial coefficients were calculated. It is shown that virial expansions of thermodynamic functions diverge at elevated densities of the gases under study. The estimations of senior virial coefficients of sodium and potassium vapors available in literature were proved to be faulty
Directory of Open Access Journals (Sweden)
Mitchell Schulte
2009-06-01
Full Text Available The citric acid cycle (CAC is the central pathway of energy transfer for many organisms, and understanding the origin of this pathway may provide insight into the origins of metabolism. In order to assess the thermodynamics of this key pathway for microorganisms that inhabit a wide variety of environments, especially those found in high temperature environments, we have calculated the properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While a significant amount of data is not available for many of the constituents of this fundamental pathway, methods exist that allow estimation of these missing data.
Barsuk, Alexandr A.; Paladi, Florentin
2018-04-01
The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.
Parida, S. C.; Jacob, K. T.; Venugopal, V.
2002-10-01
The enthalpy increments and the standard molar Gibbs energies of formation of DyFeO 3(s) and Dy 3Fe 5O 12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent from the heat capacity data for DyFeO 3 at ˜648 K. A similar type of phase transition has been observed for Dy 3Fe 5O 12 at ˜560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO 3(s) and Dy 3Fe 5O 12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions: {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.1%)=-52754+142.9×(T ( K))+2.48×10 -3×(T ( K)) 2+2.951×10 6×(T ( K)) -1;(298.15⩽ T ( K)⩽1000) for DyFeO 3(s), and {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.2%)=-191048+545.0×(T ( K))+2.0×10 -5×(T ( K)) 2+8.513×10 6×(T ( K)) -1;(298.15⩽T ( K)⩽1000) for Dy 3Fe 5O 12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO 3(s) + Dy 2O 3(s) + Fe(s)}//YDT/CSZ//{Fe(s) + Fe 0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe 0.95O(s)}//CSZ//{DyFeO 3(s) + Dy 3Fe 5O 12(s) + Fe 3O 4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO 3 and Dy 3Fe 5O 12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe 0.95O and Dy 2O 3 from the literature, are given by: Δ fG 0m( DyFeO3, s) ( kJ mol-1) (±3.2)=-1339.9+0.2473×(T ( K));(1021⩽T ( K)⩽1548) and Δ fG 0m( Dy3Fe5O12, s) ( kJ mol-1) (±3.5)=-4850.4+0.9846×(T ( K));(1035⩽T ( K)⩽1250). The uncertainty estimates for Δ fG 0m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for
Chemical Thermodynamics and Information Theory with Applications
Graham, Daniel J
2011-01-01
Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The
First principles thermodynamics of alloys
International Nuclear Information System (INIS)
Ducastelle, F.
1993-01-01
We present a brief report on the methods of solid state physics (electronic structure, statistical thermodynamics) that allow us to discuss the phase stability of alloys and to determine their phase diagrams. (orig.)
Thermodynamic analysis of biochemical systems
International Nuclear Information System (INIS)
Yuan, Y.; Fan, L.T.; Shieh, J.H.
1989-01-01
Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Relativistic thermodynamics of Fluids. l
International Nuclear Information System (INIS)
Havas, P.; Swenson, R.J.
1979-01-01
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail
Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.
2017-11-01
Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.
DEFF Research Database (Denmark)
Somers, Marcel A.J.
2000-01-01
and atmospheric corrosion performance. The diffusion zone brings about an improvement of the endurance limit as compared to an untreated component. Hence, nitrocarburising is perhaps the most versatile surface treatment for ferritic steel and has a potential for wide application. From the literature...... conditions for tailoring a certain combination of properties. The present paper describes aspects of the thermodynamics, kinetics and microstructure evolution of the compound layer on pure iron during nitrocarburising, by comparing the current status of qualitative understanding with that for nitriding...
Generating entangled states of continuous variables via cross-Kerr nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Zhang Zhiming [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ikram, Manzoor [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2007-05-28
We propose a scheme for generating entanglement of quantum states with continuous variables (coherent states and squeezed vacuum states) of electromagnetical fields. The scheme involves cross-Kerr nonlinearity. It was shown that the cross-Kerr nonlinearity required for generating the superposition and entanglement of squeezed vacuum states is smaller than that required for coherent states. It was also found that the fidelity monotonously decreases with both the increase of the amplitude of the input coherent field and the increase of the deviation of the nonlinear phase shift from {pi}.
Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint
Energy Technology Data Exchange (ETDEWEB)
Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.
2014-04-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.
Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data
Energy Technology Data Exchange (ETDEWEB)
Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weekley, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoltenberg, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parsons, B. [Evergreen Renewable Consulting, CO (United States); Batra, P. [Central Electricity Authority, New Delhi (India); Mehta, B. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India); Patel, D. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India)
2014-03-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.
Thermodynamic properties of cryogenic fluids
Leachman, Jacob; Lemmon, Eric; Penoncello, Steven
2017-01-01
This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...
Ben-Naim, Arieh
1987-01-01
This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther modynamics alone. However, solvation is inherently a molecular pro cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...
Outcalt, Stephanie L.; McLinden, Mark O.
1996-03-01
A modified Benedict-Webb-Rubin (MBWR) equation of state has been developed for R152a (1,1-difluoroethane). The correlation is based on a selection of available experimental thermodynamic property data. Single-phase pressure-volume-temperature (PVT), heat capacity, and sound speed data, as well as second virial coefficient, vapor pressure, and saturated liquid and saturated vapor density data, were used with multi-property linear least-squares fitting to determine the 32 adjustable coefficients of the MBWR equation. Ancillary equations representing the vapor pressure, saturated liquid and saturated vapor densities, and the ideal gas heat capacity were determined. Coefficients for the equation of state and the ancillary equations are given. Experimental data used in this work covered temperatures from 162 K to 453 K and pressures to 35 MPa. The MBWR equation established in this work may be used to predict thermodynamic properties of R152a from the triple-point temperature of 154.56 K to 500 K and for pressures up to 60 MPa except in the immediate vicinity of the critical point.
International Nuclear Information System (INIS)
Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan
2011-01-01
This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.
Recent trends in the variability of halogenated trace gases over the United States
Hurst, Dale F.; Bakwin, Peter S.; Elkins, James W.
1998-10-01
Recent trends in the atmospheric variability of seven halogenated trace gases are determined from three years (November 1994 through October 1997) of hourly gas chromatographic measurements at a 610 m tower in North Carolina and 17 months (June 1996 through October 1997) of similar measurements at a 450 m tower in Wisconsin. Production of five of these gases, CCl3F (CFC-11), CCl2F2 (CFC-12), CCl2FCClF2 (CFC-113), CH3CCl3 (methyl chloroform), and CCl4 (carbon tetrachloride), is now strictly regulated in the United States and other developed countries under international legislation. C2Cl4 (tetrachloroethene) and SF6 (sulfur hexafluoride) are currently produced without restriction, but requests for voluntary cutbacks in C2Cl4 emissions have been made, at least in the United States. Atmospheric variability of these gases is examined at several sampling heights on the towers, but trends are deduced using only nighttime data at the top sampling level of each tower to minimize variability driven by local emissions and the diurnal cycle of the planetary boundary layer, leaving regional emissions as the main source of day-to-day variability. Significant downward trends are determined for CFC-12, CFC-113, CH3CCl3, and C2Cl4 variability at both towers, reflecting decreased emissions of these gases in two regions of the United States. Trends in CFC-11, CCl4, and SF6 variability at both towers are not significantly different from zero.
Nonequilibrium thermodynamics of the Kovacs effect
Bouchbinder, Eran; Langer, J. S.
We present a thermodynamic theory of the Kovacs effect based on the idea that the configurational degrees of freedom of a glass-forming material are driven out of equilibrium with the heat bath by irreversible thermal contraction and expansion. We assume that the slowly varying configurational subsystem, i.e. the part of the system that is described by inherent structures, is characterized by an effective temperature, and contains a volume-related internal variable. We examine mechanisms by which irreversible dynamics of the fast, kinetic-vibrational degrees of freedom can cause the entropy and the effective temperature of the configurational subsystem to increase during sufficiently rapid changes in the bath temperature. We then use this theory to interpret the numerical simulations by Mossa and Sciortino (MS), who observe the Kovacs effect in more detail than is feasible in laboratory experiments. Our analysis highlights two mechanisms for the equilibration of internal variables. In one of these, an internal variable first relaxes toward a state of quasi-equilibrium determined by the effective temperature, and then approaches true thermodynamic equilibrium as the effective temperature slowly relaxes toward the bath temperature. In the other mechanism, an internal variable directly equilibrates with the bath temperature on intermediate timescales, without equilibrating with the effective temperature at any stage. Both mechanisms appear to be essential for understanding the MS results.
International Nuclear Information System (INIS)
Bernhoeft, N.; Lander, G.H.; Colineau, E.
2003-01-01
An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)
Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895.
Rayne, Sierra; Forest, Kaya
2016-02-15
Annual and summertime trends towards increasingly variable values of the Palmer Drought Severity Index (PDSI) over a sub-decadal period (five years) were investigated within the contiguous United States between 1895 and the present. For the contiguous United States as a whole, there is a significant increasing trend in the five-year running minimum-maximum ranges for the annual PDSI (aPDSI5 yr(min|max, range)). During this time frame, the average aPDSI5 yr(min|max, range) has increased by about one full unit, indicating a substantial increase in drought variability over short time scales across the United States. The end members of the running aPDSI5 yr(min|max, range) highlight even more rapid changes in the drought index variability within the past 120 years. This increasing variability in the aPDSI5 yr(min|max, range) is driven primarily by changes taking place in the Pacific and Atlantic Ocean coastal climate regions, climate regions which collectively comprise one-third the area of the contiguous United States. Similar trends were found for the annual and summertime Palmer Hydrological Drought Index (PHDI), the Palmer Modified Drought Index (PMDI), and the Palmer Z Index (PZI). Overall, interannual drought patterns in the contiguous United States are becoming more extreme and difficult to predict, posing a challenge to agricultural and other water-resource related planning efforts. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Gomez Palacio, German Rau
1998-01-01
Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems
Thermodynamic metrics and optimal paths.
Sivak, David A; Crooks, Gavin E
2012-05-11
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Puzzarini, Cristina
2013-03-12
A state-of-the-art computational strategy for the evaluation of accurate molecular structures as well as thermodynamic and spectroscopic properties along with the direct simulation of infrared (IR) and Raman spectra is established, validated (on the basis of the experimental data available for the Ip glycine conformer) and then used to provide a reliable and accurate characterization of the elusive IVn/gtt and IIIp/tct glycine conformers. The integrated theoretical model proposed is based on accurate post-Hartree-Fock computations (involving composite schemes) of energies, structures, properties, and harmonic force fields coupled to DFT corrections for the proper inclusion of vibrational effects at an anharmonic level (as provided by general second-order perturbative approach). It is shown that the approach presented here allows the evaluation of structural, thermodynamic, and spectroscopic properties with an overall accuracy of about, or better than, 0.001 Å, 20 MHz, 1 kJ·mol(-1), and 10 cm(-1) for bond distances, rotational constants, conformational enthalpies, and vibrational frequencies, respectively. The high accuracy of the computational results allows one to support and complement experimental studies, thus providing (i) an unequivocal identification of several conformers concomitantly present in the experimental mixture and (ii) data not available or difficult to experimentally derive.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3
Smale, Alan P.; Boyd, Patricia T.
2012-01-01
Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.
Agudelo, Paula; Robbins, Robert T.; Stewart, James McD.; Szalanski, Allen L.
2005-01-01
Reniform nematode (Rotylenchulus reniformis) is a major pest of cotton in the southeastern United States. The objective of this study was to examine the variation of reniform nematode populations from cotton-growing locations in the United States where it is prevalent. Multivariate analysis of variance and discriminant analysis were used to determine the variability of morphology in males and immature females. Reproduction indices of populations were measured on selected soybean and cotton ge...
Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.
Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John
2018-03-01
Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon
An Energy-Based State Observer for Dynamical Subsystems with Inaccessible State Variables
Khalil, I.S.M.; Sabanovic, Asif; Misra, Sarthak
2012-01-01
This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical
Accurate determination of process variables in a solid-state fermentation system
Smits, J.P.; Rinzema, A.; Tramper, J.; Schlösser, E.E.; Knol, W.
1996-01-01
The solid-state fermentation (SSF) method described enabled accurate determination of variables related to biological activity. Growth, respiratory activity and production of carboxymethyl-cellulose-hydrolysing enzyme (CMC-ase) activity by Trichoderma reesei QM9414 on wheat bran was used as a model
Quantum error correction of continuous-variable states against Gaussian noise
Energy Technology Data Exchange (ETDEWEB)
Ralph, T. C. [Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072 (Australia)
2011-08-15
We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.
A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States
Ryff, Luiz Carlos
1996-01-01
A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.
State-related differences in heart rate variability in bipolar disorder
DEFF Research Database (Denmark)
Faurholt-Jepsen, Maria; Brage, Søren; Kessing, Lars Vedel
2017-01-01
Heart rate variability (HRV) is a validated measure of sympato-vagal balance in the autonomic nervous system. HRV appears decreased in patients with bipolar disorder (BD) compared with healthy individuals, but the extent of state-related alterations has been sparingly investigated. The present...... bipolar disorder and could...
Bemmel, Alex L. van; Hoofdakker, Rutger H. van den; Beersma, Domien G.M.; Bouhuys, Antoinette L.
1993-01-01
Drug-induced improvement of depression may be mediated by changes in sleep physiology. The aim of this study was to relate changes in sleep polygraphic variables to clinical state during treatment with citalopram, a highly specific serotonin uptake inhibitor. Sixteen patients took part. The study
Regularized tripartite continuous variable EPR-type states with Wigner functions and CHSH violations
International Nuclear Information System (INIS)
Jacobsen, Sol H; Jarvis, P D
2008-01-01
We consider tripartite entangled states for continuous variable systems of EPR type, which generalize the famous bipartite CV EPR states (eigenvectors of conjugate choices X 1 - X 2 , P 1 + P 2 , of the systems' relative position and total momentum variables). We give the regularized forms of such tripartite EPR states in second-quantized formulation, and derive their Wigner functions. This is directly compared with the established NOPA-like states from quantum optics. Whereas the multipartite entangled states of NOPA type have singular Wigner functions in the limit of large squeezing, r → ∞, or tanh r → 1 - (approaching the EPR states in the bipartite case), our regularized tripartite EPR states show singular behaviour not only in the approach to the EPR-type region (s → 1 in our notation), but also for an additional, auxiliary regime of the regulator (s→√2). While the s → 1 limit pertains to tripartite CV states with singular eigenstates of the relative coordinates and remaining squeezed in the total momentum, the (s→√2) limit yields singular eigenstates of the total momentum, but squeezed in the relative coordinates. Regarded as expectation values of displaced parity measurements, the tripartite Wigner functions provide the ingredients for generalized CHSH inequalities. Violations of the tripartite CHSH bound (B 3 ≤ 2) are established, with B 3 ≅2.09 in the canonical regime (s → 1 + ), as well as B 3 ≅2.32 in the auxiliary regime (s→√2 + )
Quantum key distribution using continuous-variable non-Gaussian states
Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.
2016-02-01
In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.
Glacier variability in the conterminous United States during the twentieth century
McCabe, Gregory J.; Fountain, Andrew G.
2013-01-01
Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.
a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.
Sobolewski, Stanley John
The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second
International Nuclear Information System (INIS)
Burger, Florian
2012-01-01
In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.
Use of state variables in the description of irradiation creep and deformation of metals
International Nuclear Information System (INIS)
Hart, E.W.; Li, C.Y.
1976-01-01
The understanding of the effects of irradiation on metal creep and deformation are not yet satisfactory, owing in part to the limitations on experimentation in radiation environment. Because of such limitations, theoretical considerations must play a strong role. Virtually all of the theoretical considerations currently employed are based on micro-mechanical models for the deformation behavior. The recent theoretical and experimental development of a plastic equation of state for metal deformation has led to the identification of some of the principal micro-mechanisms in phenomenological terms. The role of the individual mechanisms can be related to the state variables of the description, and those variables are directly accessible measurable quantities. This paper explores how irradiation might affect this description. It is shown that the radiation flux and the radiation fluence are expected to affect different components of the equation of state. The resultant description makes considerable use of the information developed in radiation-free environment. 5 fig
de Oliveira, Mário J
2017-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...
Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun
2015-10-01
Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p > 0.05). The corresponding HRV indices had significant positive correlation (all p 0.05) for either state. Besides, none of the indices showed HR-related change (all p > 0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV indices in clinical practice.
The OpenCalphad thermodynamic software interface
Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G
2017-01-01
Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838
Statistical mechanics and the foundations of thermodynamics
International Nuclear Information System (INIS)
Loef, A.M.
1979-01-01
An introduction to classical statistical mechanics and its relation to thermodynamics is presented. Emphasis is put on getting a detailed and logical presentation of the foundations of thermodynamics based on the maximum entropy principles which govern the values taken by macroscopic variables according to the laws of large numbers
Statistical thermodynamics of supercapacitors and blue engines
van Roij, R.H.H.G.
2013-01-01
We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce
Thermodynamical quantum information sharing
International Nuclear Information System (INIS)
Wiesniak, M.; Vedral, V.; Brukner, C.
2005-01-01
Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)
A commentary on thermodynamics
Day, William Alan
1988-01-01
The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.
VALUE OF HEART RATE VARIABILITY ANALYSIS IN DIAGNOSTICS OF THE EMOTIONAL STATE
Directory of Open Access Journals (Sweden)
І. Chaykovskyi
2012-11-01
Full Text Available The is presented the development of method for evaluation of emotional state of man, what suitable for use at the workplace based on analysis of heart rate (HR variability. 28 healthy volunteers were examined. 3 audiovisual clips were consistently presented on the display of the personal computer for each of them. One clip contained information originating the positive emotions, the second one – negative emotions, the third one – neutral. All possible pairs of the emotional states were analysed with help of one- and multi-dimensional linear discriminant analysis based on HR variability. Showing the emotional video-clips (of both signs causes reliable slowing of HR frequency and also some decreasing of HR variability. In addition, negative emotions cause regularizing and simplification of structural organization of heart rhythm. Accuracy of discrimination for pair “emotional – neutral” video clips was 98 %, for pair “rest – neutral” was 74 %, for pair “positive – negative” was 91 %. Analysis of HR variability enables to determine the emotional state of observed person at the workplace with high reliability.
Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Trifonov, D A
1975-01-01
Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.
Navrotsky, Alexandra
Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.
Puffed-up but shaky selves: State self-esteem level and variability in narcissists.
Geukes, Katharina; Nestler, Steffen; Hutteman, Roos; Dufner, Michael; Küfner, Albrecht C P; Egloff, Boris; Denissen, Jaap J A; Back, Mitja D
2017-05-01
Different theoretical conceptualizations characterize grandiose narcissists by high, yet fragile self-esteem. Empirical evidence, however, has been inconsistent, particularly regarding the relationship between narcissism and self-esteem fragility (i.e., self-esteem variability). Here, we aim at unraveling this inconsistency by disentangling the effects of two theoretically distinct facets of narcissism (i.e., admiration and rivalry) on the two aspects of state self-esteem (i.e., level and variability). We report on data from a laboratory-based and two field-based studies (total N = 596) in realistic social contexts, capturing momentary, daily, and weekly fluctuations of state self-esteem. To estimate unbiased effects of narcissism on the level and variability of self-esteem within one model, we applied mixed-effects location scale models. Results of the three studies and their meta-analytical integration indicated that narcissism is positively linked to self-esteem level and variability. When distinguishing between admiration and rivalry, however, an important dissociation was identified: Admiration was related to high (and rather stable) levels of state self-esteem, whereas rivalry was related to (rather low and) fragile self-esteem. Analyses on underlying processes suggest that effects of rivalry on self-esteem variability are based on stronger decreases in self-esteem from one assessment to the next, particularly after a perceived lack of social inclusion. The revealed differentiated effects of admiration and rivalry explain why the analysis of narcissism as a unitary concept has led to the inconsistent past findings and provide deeper insights into the intrapersonal dynamics of grandiose narcissism governing state self-esteem. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A continuous variable quantum deterministic key distribution based on two-mode squeezed states
International Nuclear Information System (INIS)
Gong, Li-Hua; Song, Han-Chong; Liu, Ye; Zhou, Nan-Run; He, Chao-Sheng
2014-01-01
The distribution of deterministic keys is of significance in personal communications, but the existing continuous variable quantum key distribution protocols can only generate random keys. By exploiting the entanglement properties of two-mode squeezed states, a continuous variable quantum deterministic key distribution (CVQDKD) scheme is presented for handing over the pre-determined key to the intended receiver. The security of the CVQDKD scheme is analyzed in detail from the perspective of information theory. It shows that the scheme can securely and effectively transfer pre-determined keys under ideal conditions. The proposed scheme can resist both the entanglement and beam splitter attacks under a relatively high channel transmission efficiency. (paper)
About the role of constraints in the linear relaxational behaviour of thermodynamic systems
Jongschaap, R.J.J.
1978-01-01
A formalism is presented by which the linear relaxational behaviour of thermodynamic systems can be described. Instead of using the concept of internal variables of state a set of so-called constraint equations is introduced. These equations represent structural properties of the system and turn out
Teleportation of continuous variable multimode Greeberger-Horne-Zeilinger entangled states
International Nuclear Information System (INIS)
He Guangqiang; Zhang Jingtao; Zeng Guihua
2008-01-01
Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).
Ektarawong, A.
2018-05-01
The phase stability of icosahedral boron subselenide B12(B1-xSex) 2 , where 0.5 ≤x ≤1 , is explored using a first-principles cluster expansion. The results shows that, instead of a continuous solid solution, B12(B1-xSex) 2 is thermodynamically stable as an individual line compound at the composition of B9.5Se . The ground-state configuration of B9.5Se is represented by a mixture of B12(Se-Se), B12(B-Se), and B12(Se-B) with a ratio of 1:1:1, where they form a periodic A B C A B C ⋯ stacking sequence of B12(Se-Se), B12(B-Se), and B12(Se-B) layers along the c axis of the hexagonal conventional unit cell. The structural and electronic properties of the ground-state B9.5Se are also derived and discussed. By comparing the derived ground-state properties of B9.5Se to the existing experimental data of boron subselenide B˜13Se , I proposed that the as-synthesized boron subselenide B˜13Se , as reported in the literature, has the actual composition of B9.5Se .
Thermodynamics of an Attractive 2D Fermi Gas
Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.
2016-01-01
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.
Fukuoka, Shuhei; Yamashita, Satoshi; Nakazawa, Yasuhiro; Yamamoto, Takashi; Fujiwara, Hideki; Shirahata, Takashi; Takahashi, Kazuko
2016-06-01
The results are presented for systematic heat capacity measurements of π-d interacting systems of κ -(BETS) 2Fe Br4 and κ -(BETS) 2FeC l4 [BETS = bis(ethylenedithio)tetraselenafulvalene] performed under in-plane magnetic fields. We observed sharp thermal anomalies at 2.47 K for κ -(BETS) 2FeB r4 and at 0.47 K for κ -(BETS) 2FeC l4 at 0 T that are associated with antiferromagnetic transitions of the 3 d electrons in the anion layers. From analyses of the magnetic heat capacity data, we indicate that the two compounds show unconventional thermodynamic behaviors inherent in the π-d interacting layered system. In the case of κ -(BETS) 2FeB r4 , a small hump structure was observed in the magnetic heat capacity below the transition temperature when a magnetic field was applied parallel to the a axis. In the case of κ -(BETS) 2FeC l4 , a similar hump structure was observed at 0 T that remained in the data with magnetic fields applied parallel to the a axis. We demonstrate that the temperature dependencies of the magnetic heat capacities scale well by normalizing the temperatures with dominant one-dimensional direct interactions (Jdd/kB) of each compound. The field dependencies of the transition temperatures and the hump structures are elucidated in one simple magnetic field vs temperature (H -T ) phase diagram. These results indicate that the thermodynamic features of both κ-type BETS salts are essentially equivalent, and the observed hump structures are derived from the one-dimensional Jdd interaction characters, which are still influential for magnetic features even in the long-range magnetic ordered states.
Thermodynamics for Chemists, Physicists and Engineers
Hołyst, Robert
2012-01-01
Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...
Geometric description of BTZ black hole thermodynamics
International Nuclear Information System (INIS)
Quevedo, Hernando; Sanchez, Alberto
2009-01-01
We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.
Lake variability: Key factors controlling mercury concentrations in New York State fish
International Nuclear Information System (INIS)
Simonin, Howard A.; Loukmas, Jefferey J.; Skinner, Lawrence C.; Roy, Karen M.
2008-01-01
A 4 year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands. - Lake water chemistry variables, dams, and wetlands play major roles in determining fish mercury concentrations
State-space dimensionality in short-memory hidden-variable theories
International Nuclear Information System (INIS)
Montina, Alberto
2011-01-01
Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.
International Nuclear Information System (INIS)
Shen Yong; Yang Jian; Guo Hong
2009-01-01
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
Failure mode analysis using state variables derived from fault trees with application
International Nuclear Information System (INIS)
Bartholomew, R.J.
1982-01-01
Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem
Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.
Menicucci, Nicolas C
2014-03-28
A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.
Energy Technology Data Exchange (ETDEWEB)
Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)
2009-12-14
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
International Nuclear Information System (INIS)
Namiki, Ryo; Hirano, Takuya
2005-01-01
We investigate the security of continuous-variable (CV) quantum key distribution (QKD) using coherent states in the presence of quadrature excess noise. We consider an eavesdropping attack that uses a linear amplifier and a beam splitter. This attack makes a link between the beam-splitting attack and the intercept-resend attack (classical teleportation attack). We also show how postselection loses its efficiency in a realistic channel
A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism
Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo
2015-03-01
In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.
Variability and trends in dry day frequency and dry event length in the southwestern United States
McCabe, Gregory J.; Legates, David R.; Lins, Harry F.
2010-01-01
Daily precipitation from 22 National Weather Service first-order weather stations in the southwestern United States for water years 1951 through 2006 are used to examine variability and trends in the frequency of dry days and dry event length. Dry events with minimum thresholds of 10 and 20 consecutive days of precipitation with less than 2.54 mm are analyzed. For water years and cool seasons (October through March), most sites indicate negative trends in dry event length (i.e., dry event durations are becoming shorter). For the warm season (April through September), most sites also indicate negative trends; however, more sites indicate positive trends in dry event length for the warm season than for water years or cool seasons. The larger number of sites indicating positive trends in dry event length during the warm season is due to a series of dry warm seasons near the end of the 20th century and the beginning of the 21st century. Overall, a large portion of the variability in dry event length is attributable to variability of the El Niño–Southern Oscillation, especially for water years and cool seasons. Our results are consistent with analyses of trends in discharge for sites in the southwestern United States, an increased frequency in El Niño events, and positive trends in precipitation in the southwestern United States.
Energy Technology Data Exchange (ETDEWEB)
Ozkanlar, Abdullah; Cape, Jonathan L.; Hurst, James K.; Clark, Aurora E.
2011-09-05
Density functional theory (DFT) has been used to investigate the plausibility of water addition to the simple mononuclear ruthenium complexes, [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 2+}/{sup 3+} and [(NH{sub 3}){sub 3}(bpy)RuOH]{sup 3+}, in which the OH fragment adds to the 2,2{prime}-bipyridine (bpy) ligand. Activation of bpy toward water addition has frequently been postulated within the literature, although there exists little definitive experimental evidence for this type of 'covalent hydration'. In this study, we examine the energetic dependence of the reaction upon metal oxidation state, overall spin state of the complex, as well as selectivity for various positions on the bipyridine ring. The thermodynamic favorability is found to be highly dependent upon all three parameters, with free energies of reaction that span favorable and unfavorable regimes. Aqueous addition to [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 3+} was found to be highly favorable for the S = 1/2 state, while reduction of the formal oxidation state on the metal center makes the reaction highly unfavorable. Examination of both facial and meridional isomers reveals that when bipyridine occupies the position trans to the ruthenyl oxo atom, reactivity toward OH addition decreases and the site preferences are altered. The electronic structure and spectroscopic signatures (EPR parameters and simulated spectra) have been determined to aid in recognition of 'covalent hydration' in experimental systems. EPR parameters are found to uniquely characterize the position of the OH addition to the bpy as well as the overall spin state of the system.
Unified geometric description of black hole thermodynamics
International Nuclear Information System (INIS)
Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto
2008-01-01
In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
Thermodynamics Far from the Thermodynamic Limit.
de Miguel, Rodrigo; Rubí, J Miguel
2017-11-16
Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.
Applied Thermodynamics: Grain Boundary Segregation
Directory of Open Access Journals (Sweden)
Pavel Lejček
2014-03-01
Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.
Thermodynamic treatment of nonphysical systems: formalism and an example (single-lane traffic)
International Nuclear Information System (INIS)
Reiss, H.; Hammerich, A.D.; Montroll, E.W.
1986-01-01
An effort is made to introduce thermodynamic and statistical thermodynamic methods into the treatment of nonphysical (e.g., social, economic, etc.) systems. Emphasis is placed on the use of the entire thermodynamic framework, not merely entropy. Entropy arises naturally, related in a simple manner to other measurables, but does not occupy a primary position in the theory. However, the maximum entropy formalism is a convenient procedure for deriving the thermodynamic analog framework in which undetermined multipliers are thermodynamic-like variables which summarize the collective behavior of the system. The authors discuss the analysis of Levine and his coworkers showing that the maximum entropy formalism is the unique algorithm for achieving consistent inference of probabilities. The thermodynamic-like formalism for treating a single lane of vehicular traffic is developed and applied to traffic in which the interaction between cars is chosen to be a particular form of the ''follow-the-leader'' type. The equation of state of the traffic, the distributions of velocity and headway, and the various thermodynamic-like parameters, e.g., temperature (collective sensitivity), pressure, etc. are determined for the example of the Holland Tunnel. Nearest-neighbor and pair correlation functions for the vehicles are also determined. Interesting and suggestive results are obtained
Samuel L. Zelinka; Samuel V. Glass; Joseph E. Jakes; Donald S. Stone
2016-01-01
The fiber saturation point (FSP) is an important concept in woodâ moisture relations that differentiates between the states of water in wood and has been discussed in the literature for over 100 years. Despite its importance and extensive study, the exact theoretical definition of the FSP and the operational definition (the correct way to measure the FSP) are still...
Directory of Open Access Journals (Sweden)
Trajanovska Sonja
2012-01-01
Full Text Available Our research into 52 profiles of the littoral zone of the Macedonian part of Lake Ohrid and numerous samples taken from its surroundings has resulted in a detailed picture of the composition of the Charophyta vegetation in the lake. The results of the research also include data regarding the species composition and present state of Nitella. The dominant species of Nitella is Nitella opaca, which is characterized by a specific distribution, morphological variability and ecology. The present state of Nitella is not steady, especially in the watershed of the lake, since in this area there are some permanent changes in the hydrology of the terrain. Therefore, there is a need to establish long-term and complex monitoring which will result in the prompt detection of risk factors and influences, thereby enabling a rapid reaction to a possible newly emerged negative state.
International Nuclear Information System (INIS)
Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.
2010-01-01
We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.
Variability in temperature, precipitation and river discharge in the Baltic States
Energy Technology Data Exchange (ETDEWEB)
Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Sarauskiene, D. (Lithuanian Energy Inst., Kaunas (Lithuania), Lab. of Hydrology); Reihan, A. (Tallinn Univ. of Technology (Estonia), Inst. of Environmental Engineering); Koltsova, T.; Lizuma, L. (Latvian Hydrometeorological Agency, Riga (LV))
2012-07-01
The climate change impact on water resources is observed in all the Baltic States. These processes became more evident in the last decades. Although the territory of the Baltic States (Lithuania, Latvia, Estonia) is not large (175000 km2), the climatic differences are quite considerable. We performed a regionalization of the territory of the Baltic States depending on the conditions of river runoff formation which can be defined according to percentages of the river feeding sources (precipitation, snowmelt, groundwater). Long-term series of temperature (40 stations), precipitation (59 stations) and river discharge (77 stations) were used to compose ten regional series. This paper addresses: (1) variability in long-term regional series of temperature, precipitation and river discharge over a long period (1922-2007); (2) changes in regional series, comparing the periods 1991-2007 and 1931-1960 with the reference period (1961-1990), and (3) the impact of temperature and precipitation changes on regional river discharge. (orig.)
The statistical-inference approach to generalized thermodynamics
International Nuclear Information System (INIS)
Lavenda, B.H.; Scherer, C.
1987-01-01
Limit theorems, such as the central-limit theorem and the weak law of large numbers, are applicable to statistical thermodynamics for sufficiently large sample size of indipendent and identically distributed observations performed on extensive thermodynamic (chance) variables. The estimation of the intensive thermodynamic quantities is a problem in parametric statistical estimation. The normal approximation to the Gibbs' distribution is justified by the analysis of large deviations. Statistical thermodynamics is generalized to include the statistical estimation of variance as well as mean values
Cárdenas-Castro, Manuel; Faúndez-Abarca, Ximena; Arancibia-Martini, Héctor; Ceruti-Mahn, Cristián
2017-08-01
The present study explores reports of growth in survivors and family members of victims of state terrorism ( N = 254) in Chile from 1973 to 1990. The results indicate the presence of reports of posttraumatic growth ( M = 4.69) and a positive and statistically significant correlation with variables related to the life impact of the stressful events ( r = .46), social sharing of emotions ( r = .32), deliberate rumination ( r = .37), positive reappraisal ( r = .35), reconciliation ( r = .39), spiritual practices ( r = .33), and meaning in life ( r = .51). The relationship between growth and forgiveness is not statistically significant. The variables that best predict posttraumatic growth are positive reappraisal (β = .28), life impact (β = .24), meaning in life β = .23), and reconciliation (β = .20). The forward-method hierarchical model indicates that these variables are significant predictors of growth levels, R 2 = .53, F(8, 210) = 30.08, p state terrorism manage to grow after these experiences, and the redefinition of meaning in life and the positive reappraisal of the traumatic experiences are the elements that make it possible to create a new narrative about the past.
Energy Technology Data Exchange (ETDEWEB)
Liu, Ju, E-mail: jliu@ices.utexas.edu [Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712 (United States); Gomez, Hector [Department of Mathematical Methods, University of A Coruña, Campus de Elviña, s/n, 15192 A Coruña (Spain); Evans, John A.; Hughes, Thomas J.R. [Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712 (United States); Landis, Chad M. [Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 East 24th Street, 1 University Station C0600, Austin, TX 78712 (United States)
2013-09-01
We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionally stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.
Analyzing Variability in Ebola-Related Controls Applied to Returned Travelers in the United States.
Kraemer, John D; Siedner, Mark J; Stoto, Michael A
2015-01-01
Public health authorities have adopted entry screening and subsequent restrictions on travelers from Ebola-affected West African countries as a strategy to prevent importation of Ebola virus disease (EVD) cases. We analyzed international, federal, and state policies-principally based on the policy documents themselves and media reports-to evaluate policy variability. We employed means-ends fit analysis to elucidate policy objectives. We found substantial variation in the specific approaches favored by WHO, CDC, and various American states. Several US states impose compulsory quarantine on a broader range of travelers or require more extensive monitoring than recommended by CDC or WHO. Observed differences likely partially resulted from different actors having different policy goals-particularly the federal government having to balance foreign policy objectives less salient to states. Further, some state-level variation appears to be motivated by short-term political goals. We propose recommendations to improve future policies, which include the following: (1) actors should explicitly clarify their objectives, (2) legal authority should be modernized and clarified, and (3) the federal government should consider preempting state approaches that imperil its goals.
International Nuclear Information System (INIS)
Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L.
1985-01-01
A novel nonlinear equation of motion is proposed for a general quantum system consisting of more than one distinguishable elementary constituent of matter. In the domain of idempotent quantum-mechanical state operators, it is satisfied by all unitary evolutions generated by the Schroedinger equation. But in the broader domain of nonidempotent state operators not contemplated by conventional quantum mechanics, it generates a generally nonunitary evolution, it keeps the energy invariant and causes the entropy to increase with time until the system reaches a state of equilibrium or a limit cycle
Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state
Energy Technology Data Exchange (ETDEWEB)
Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)
1995-04-01
A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.
Thermodynamic study of selected monoterpenes III
International Nuclear Information System (INIS)
Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad
2014-01-01
Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description
Complex state variable- and disturbance observer-based current controllers for AC drives
DEFF Research Database (Denmark)
Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede
2013-01-01
In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....
Friction Force: From Mechanics to Thermodynamics
Ferrari, Christian; Gruber, Christian
2010-01-01
We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…
Understanding the Thermodynamics of Biological Order
Peterson, Jacob
2012-01-01
By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…
Thermodynamic tables to accompany Modern engineering thermodynamics
Balmer, Robert T
2011-01-01
This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.
Directory of Open Access Journals (Sweden)
Kori Blankenship
2015-04-01
Full Text Available Reference ecological conditions offer important context for land managers as they assess the condition of their landscapes and provide benchmarks for desired future conditions. State-and-transition simulation models (STSMs are commonly used to estimate reference conditions that can be used to evaluate current ecosystem conditions and to guide land management decisions and activities. The LANDFIRE program created more than 1,000 STSMs and used them to assess departure from a mean reference value for ecosystems in the United States. While the mean provides a useful benchmark, land managers and researchers are often interested in the range of variability around the mean. This range, frequently referred to as the historical range of variability (HRV, offers model users improved understanding of ecosystem function, more information with which to evaluate ecosystem change and potentially greater flexibility in management options. We developed a method for using LANDFIRE STSMs to estimate the HRV around the mean reference condition for each model state in ecosystems by varying the fire probabilities. The approach is flexible and can be adapted for use in a variety of ecosystems. HRV analysis can be combined with other information to help guide complex land management decisions.
Comparative Study of Monsoon Rainfall Variability over India and the Odisha State
Directory of Open Access Journals (Sweden)
K C Gouda
2017-10-01
Full Text Available Indian summer monsoon (ISM plays an important role in the weather and climate system over India. The rainfall during monsoon season controls many sectors from agriculture, food, energy, and water, to the management of disasters. Being a coastal province on the eastern side of India, Odisha is one of the most important states affected by the monsoon rainfall and associated hydro-meteorological systems. The variability of monsoon rainfall is highly unpredictable at multiple scales both in space and time. In this study, the monsoon variability over the state of Odisha is studied using the daily gridded rainfall data from India Meteorological Department (IMD. A comparative analysis of the behaviour of monsoon rainfall at a larger scale (India, regional scale (Odisha, and sub-regional scale (zones of Odisha is carried out in terms of the seasonal cycle of monsoon rainfall and its interannual variability. It is seen that there is no synchronization in the seasonal monsoon category (normal/excess/deficit when analysed over large (India and regional (Odisha scales. The impact of El Niño, La Niña, and the Indian Ocean Dipole (IOD on the monsoon rainfall at both scales (large scale and regional scale is analysed and compared. The results show that the impact is much more for rainfall over India, but it has no such relation with the rainfall over Odisha. It is also observed that there is a positive (negative relation of the IOD with the seasonal monsoon rainfall variability over Odisha (India. The correlation between the IAV of monsoon rainfall between the large scale and regional scale was found to be 0.46 with a phase synchronization of 63%. IAV on a sub-regional scale is also presented.
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
DEFF Research Database (Denmark)
Breil, Martin Peter; Kontogeorgis, Georgios; Behrens, Paul K.
2011-01-01
The cubic-plus-association (CPA) equation of state is applied in this work to mixtures containing acetic acid and water. A previously developed modification of the model, the so-called CPA-Huron−Vidal (CPA-HV), is used. New CPA parameters have been estimated based on the vapor pressure, liquid...... density, enthalpy of vaporization, and vapor-phase compressibility factor data. The CPA-HV parameters have been fitted to, among others, experimental vapor compressibility factor data and experimental relative volatility data at different temperature ranges. The purpose of the work was to investigate...... that satisfactory results are overall obtained, but if an excellent match is needed over the whole temperature range, then different interaction parameters need to be used at the various temperature ranges....
International Nuclear Information System (INIS)
Kuramitsu, Seiki; Hiromi, Keitaro; Hayashi, Hideyuki; Morino, Yoshimasa; Kagamiyama, Hiroyuki
1990-01-01
The four half-transamination reactions [the pyridoxal form of Escherichia coli aspartate aminotransferase (AspAT) with aspartate or glutamate and the pyridoxamine form of the enzyme with oxalacetate or 2-oxoglutarate] were followed in a stopped-flow spectrometer by monitoring the absorbance change at either 333 or 358 nm. The reaction progress curves in all cases gave fits to a monophasic exponential process. Kinetic analyses of these reactions showed that each half-reaction is composed of the following three processes: (1) the rapid binding of an amino acid substrate to the pyridoxal form of the enzyme; (2) the rapid binding of the corresponding keto acid to the pyridoxamine form of the enzyme; (3) the rate-determining interconversion between the two complexes. This mechanism was supported by the findings that the equilibrium constants for half- and overall-transamination reactions and the steady-state kinetic constants agreed well with the predicted values on the basis of the above mechanism using pre-steady-state kinetic parameters. The significant primary kinetic isotope effect observed in the reaction with deuterated amino acid suggests that the withdrawal of the α-proton of the substrates is rate determining. The pyridoxal form of E. coli AspAT reacted with a variety of amino acids as substrates. The substrate specificity of the E. coli enzyme was much broader than that of pig isoenzymes, reflecting some subtle but distinct difference in microenvironment accommodating the side chain of the substrate between e. coli and mammalian AspATs
Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.
Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M
2018-05-30
Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.
Four-State Continuous-Variable Quantum Key Distribution with Photon Subtraction
Li, Fei; Wang, Yijun; Liao, Qin; Guo, Ying
2018-06-01
Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \\hat {x} or \\hat {p} itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.
Directory of Open Access Journals (Sweden)
Margaret A. Cook
2015-11-01
Full Text Available Recent droughts and heat waves have revealed the vulnerability of some power plants to effects from higher temperature intake water for cooling. In this evaluation, we develop a methodology for predicting whether power plants are at risk of violating thermal pollution limits. We begin by developing a regression model of average monthly intake temperatures for open loop and recirculating cooling pond systems. We then integrate that information into a thermodynamic model of energy flows within each power plant to determine the change in cooling water temperature that occurs at each plant and the relationship of that water temperature to other plants in the river system. We use these models together with climate change models to estimate the monthly effluent temperature at twenty-six power plants in the Upper Mississippi River Basin and Texas between 2015 and 2035 to predict which ones are at risk of reaching thermal pollution limits. The intake model shows that two plants could face elevated intake temperatures between 2015 and 2035 compared to the 2010–2013 baseline. In general, a rise in ambient cooling water temperature of 1 °C could cause a drop in power output of 0.15%–0.5%. The energy balance shows that twelve plants might exceed state summer effluent limits.
Directory of Open Access Journals (Sweden)
Knežević Darko M.
2016-01-01
Full Text Available In control hydraulic components (servo valves, LS regulators, etc. there is a need for precise mathematical description of fluid flow through radial clearances between the control piston and body of component at zero overlap, small valve opening and small lengths of overlap. Such a mathematical description would allow for a better dynamic analysis and stability analysis of hydraulic systems. The existing formulas in the literature do not take into account the change of the physical properties of the fluid with a change of thermodynamic state of the fluid to determine the flow rate through radial clearances in hydraulic components at zero overlap, a small opening, and a small overlap lengths, which leads to the formation of insufficiently precise mathematical models. In this paper model description of fluid flow through radial clearances at zero overlap is developed, taking into account the changes of physical properties of hydraulic fluid as a function of pressure and temperature. In addition, the experimental verification of the mathematical model is performed.
Energy Technology Data Exchange (ETDEWEB)
Kumar, V; Mukherjee, S [Cornell Univ., Ithaca, N.Y. (USA)
1977-03-01
A computational technique in terms of stress, strain and displacement rates is presented for the solution of boundary value problems for metallic structural elements at uniform elevated temperatures subjected to time varying loads. This method can accommodate any number of constitutive relations with state variables recently proposed by other researchers to model the inelastic deformation of metallic media at elevated temperatures. Numerical solutions are obtained for several structural elements subjected to steady loads. The constitutive relations used for these numerical solutions are due to Hart. The solutions are discussed in the context of the computational scheme and Hart's theory.
Directory of Open Access Journals (Sweden)
Luisa F. Escobar-Dávila
2013-06-01
Full Text Available This paper presents the mathematical modeling of the Furuta Pendu-lum by power functions, taking into account the non linear own dynamics of the physical systems and considering the existing couplings between the electric and mechanic devices. A control process based on feedback of state variables (FSV for the equilibrium point is developed and two topics for the non linear zone are addressed. First of all, functions are implemented to represent the energetic states of the plant in a global way and the operation regions are established (“Swing up” zone, and later Artificial Neural Networks (ANN are employed to simulate the behavior of the energy functions. Finally, it is presented the combination between the control techniques, considering the own constrains of the actuators and sensors used, besides of this, a study is done in a simulated environment of the physical phenomena that may disturb system behavior, and the capacity, sensitivity and robustness of the controller is verified.
Kaneda, Toru; Suzuki, Toshiyasu
2009-07-01
Pulse oximeter expressed by SpO2 is used for monitoring respiratory state during operation and in ICU. Perfusion index (PI) and pleth variability index (PVI) as new indexes are calculated from pulse oximeter (Masimo SET Radical-7, Masimo Corp., USA, 1998) waveforms. And these indices were used as parameters to evaluate the circulatory state. For PI calculation, the pulsatile infrared signal is indexed against the nonpulsatile infrared signal and expressed as a percentage. It might thus be of future value in assessment of perioperative changes in peripheral perfusion. PVI is a measure of a dynamic change in PI that occurs during complete respiratory cycle. It might be thought that PVI, an index automatically derived from the pulse oximeter waveform analysis, had potentially clinical applications for noninvasive hypovolemia detection and fluid responsiveness monitoring.
Thermodynamics of freezing and melting
DEFF Research Database (Denmark)
Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas
2016-01-01
phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...
A Simple Statistical Thermodynamics Experiment
LoPresto, Michael C.
2010-01-01
Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…
State control of discrete-time linear systems to be bound in state variables by equality constraints
International Nuclear Information System (INIS)
Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír
2014-01-01
The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach
Design of thermodynamic experiments and analyses of thermodynamic relationships
International Nuclear Information System (INIS)
Oezer Arnas, A.
2009-01-01
In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)
Thermodynamics of Fluid Polyamorphism
Directory of Open Access Journals (Sweden)
Mikhail A. Anisimov
2018-01-01
Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.
International Nuclear Information System (INIS)
Li, Mei; Gong, Maoqiong; Guo, Hao; Sun, Zhaohu; Wu, Jianfeng
2016-01-01
Highlights: • Good agreements and the feasibility of the MESH model were found. • Fine applicability and low energy consumption of the dephlegmator were addressed. • A clear and comprehensive three-dimensional dephlegmator model was shown. - Abstract: Dephlegmators can be used to reduce the energy consumption and simplify the layout of the mixed-refrigerant Joule–Thomson (MRJT) cycle. Heat-exchange characteristics and refrigeration design are currently based on highly simplified assumptions. Synthesis methods to efficiently solve all design issues of dephlegmators in MRJT cycle are insufficient. No suitable separation module is available for the simultaneous heat and mass transfer processes in Aspen Plus because the module should be programmed and incorporated into Aspen Plus as a user-defined unit. In this paper, a systematic steady-state method was proposed for the detailed design of dephlegmators for gas mixture separation, considering the simulation and heat exchanger design simultaneously. The material balance, vapor–liquid equilibrium, mole fraction summation and heat balance (MESH) model was programmed in FORTRAN language. Good agreements and the feasibility of the MESH model were found. Deviations between the simulation results and patent data were all within 5%. The errors in the predicted temperatures of vapor and liquid products were less than 2% and 10%, respectively. Fine applicability and low energy consumption of the dephlegmator were addressed. The mole fraction of n-butane in the liquid phase had high recovery ratio of 90%. The dephlegmator decreased more than 30% of energy consumption compared with the traditional distillation tower under similar separation effects. In the structural design process, the dephlegmator was divided into certain segments by baffle plates on the basis of segmented calculation. The heat transfer coefficient, heat transfer area, pressure drop, and structural parameters of the dephlegmator were evaluated. A clear
Impact of climate variability on runoff in the north-central United States
Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.
2014-01-01
Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.
Placement by thermodynamic simulated annealing
International Nuclear Information System (INIS)
Vicente, Juan de; Lanchares, Juan; Hermida, Roman
2003-01-01
Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features
Peaceful nuclear explosions and thermodynamics
International Nuclear Information System (INIS)
Prieto, F.E.
1975-01-01
Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)
A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.
Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian
2016-09-01
Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
International Nuclear Information System (INIS)
Kumar, V.; Mukherjee, S.
1977-01-01
In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory
Continuous-variable entanglement distillation of non-Gaussian mixed states
International Nuclear Information System (INIS)
Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Filip, Radim; Andersen, Ulrik L.
2010-01-01
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
Pre-performance Physiological State: Heart Rate Variability as a Predictor of Shooting Performance.
Ortega, E; Wang, C J K
2018-03-01
Heart rate variability (HRV) is commonly used in sport science for monitoring the physiology of athletes but not as an indicator of physiological state from a psychological perspective. Since HRV is established to be an indicator of emotional responding, it could be an objective means of quantifying an athlete's subjective physiological state before competition. A total of 61 sport shooters participated in this study, of which 21 were novice shooters, 19 were intermediate shooters, and 21 were advanced level shooters. HRV, self-efficacy, and use of mental skills were assessed before they completed a standard shooting performance task of 40 shots, as in a competition qualifying round. The results showed that HRV was significantly positively correlated with self-efficacy and performance and was a significant predictor of shooting performance. In addition, advanced shooters were found to have significantly lower average heart rate before shooting and used more self-talk, relaxation, imagery, and automaticity compared to novice and intermediate shooters. HRV was found to be useful in identifying the physiological state of an athlete before competing, and as such, coaches and athletes can adopt practical strategies to improve the pre-performance physiological state as a means to optimize performance.
Molina, A; Guiñon, L; Perez, A; Segurana, A; Bedini, J L; Reverter, J C; Merino, A
2018-02-05
It is important for clinical laboratories to maintain under control the possible sources of error in its analytical determinations. The objective of this work is to perform an analysis of the total error committed by laboratories using the data extracted from the Spanish External Quality Assessment Program in Hematology and to compare them with the specifications based on the biological variability proposed by the Ricós group. We analyzed a total of 3 89 000 results during the period 2015-2016 from the following quantitative schemes of Spanish External Quality Assessment Program: complete blood count, blood coagulation tests, differential leukocyte count, reticulocytes, hemoglobin A 2 , antithrombin, factor VIII, protein C, and von Willebrand factor. It has been considered as an indicator of the current performance the value of total error that 90% of laboratories are able to achieve, taking into account 75% of their results. We found some magnitudes whose biological variability specifications are achievable by most of the laboratories for either minimum, desirable, or optimum criteria: white blood cells, red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, platelets, fibrinogen, neutrophils, lymphocytes, eosinophils, von Willebrand factor, and protein C. However, current performance for mean corpuscular hemoglobin concentration and hemoglobin A 2 only allows to meet the specifications based on the state of the art. Our results reflect the feasibility of establishing specifications based on biological variability criteria or the state of the art, which may help to select the proper criteria for each parameter. © 2018 John Wiley & Sons Ltd.
ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES
International Nuclear Information System (INIS)
Yu Wenfei; Zhang Wenda
2013-01-01
We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.
RNA Thermodynamic Structural Entropy.
Garcia-Martin, Juan Antonio; Clote, Peter
2015-01-01
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
RNA Thermodynamic Structural Entropy.
Directory of Open Access Journals (Sweden)
Juan Antonio Garcia-Martin
Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
Gonzalez, Robert; Suppes, Trisha; Zeitzer, Jamie; McClung, Colleen; Tamminga, Carol; Tohen, Mauricio; Forero, Angelica; Dwivedi, Alok; Alvarado, Andres
2018-02-19
Multiple types of chronobiological disturbances have been reported in bipolar disorder, including characteristics associated with general activity levels, sleep, and rhythmicity. Previous studies have focused on examining the individual relationships between affective state and chronobiological characteristics. The aim of this study was to conduct a variable cluster analysis in order to ascertain how mood states are associated with chronobiological traits in bipolar I disorder (BDI). We hypothesized that manic symptomatology would be associated with disturbances of rhythm. Variable cluster analysis identified five chronobiological clusters in 105 BDI subjects. Cluster 1, comprising subjective sleep quality was associated with both mania and depression. Cluster 2, which comprised variables describing the degree of rhythmicity, was associated with mania. Significant associations between mood state and cluster analysis-identified chronobiological variables were noted. Disturbances of mood were associated with subjectively assessed sleep disturbances as opposed to objectively determined, actigraphy-based sleep variables. No associations with general activity variables were noted. Relationships between gender and medication classes in use and cluster analysis-identified chronobiological characteristics were noted. Exploratory analyses noted that medication class had a larger impact on these relationships than the number of psychiatric medications in use. In a BDI sample, variable cluster analysis was able to group related chronobiological variables. The results support our primary hypothesis that mood state, particularly mania, is associated with chronobiological disturbances. Further research is required in order to define these relationships and to determine the directionality of the associations between mood state and chronobiological characteristics.
Thermodynamics in Einstein's thought
International Nuclear Information System (INIS)
Klein, M.J.
1983-01-01
The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced
Coherence and measurement in quantum thermodynamics.
Kammerlander, P; Anders, J
2016-02-26
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
Saxena, A K
2014-01-01
Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions
Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States
Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.
2017-12-01
Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.
Nonequilibrium thermodynamic potentials for continuous-time Markov chains.
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
Advanced classical thermodynamics
International Nuclear Information System (INIS)
Emanuel, G.
1987-01-01
The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda; Winkel, Russell W.; Alarousu, Erkki; Mohammed, Omar F.; Schanze, Kirk S.
2016-01-01
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda
2016-02-12
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Black hole chemistry: thermodynamics with Lambda
International Nuclear Information System (INIS)
Kubizňák, David; Mann, Robert B; Teo, Mae
2017-01-01
We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)
Directory of Open Access Journals (Sweden)
Oscar D. Montoya-Giraldo
2014-01-01
Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.
Sabatini, Angelo Maria
2012-01-01
In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.
Directory of Open Access Journals (Sweden)
Angelo Maria Sabatini
2012-06-01
Full Text Available In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1, and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2. Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.
Thermodynamics of geothermal fluids
Energy Technology Data Exchange (ETDEWEB)
Rogers, P.S.Z.
1981-03-01
A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.
Universalities of thermodynamic signatures in topological phases
Kempkes, S. N.; Quelle, A.; de Morais Smith, C.
2016-01-01
Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman
2015-01-01
This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...
Onyekuru, Bruno U.; Ibegbunam, Josephat
2015-01-01
Quality personality traits and socio-demographic variables are essential elements of effective counselling. This correlational study investigated personality traits and socio-demographic variables as predictors of counselling effectiveness of counsellors in Enugu State. The instruments for data collection were Personality Traits Assessment Scale…
De Ruiter, Naomi M. P.; Den Hartigh, Ruud J. R.; Cox, Ralf F. A.; Van Geert, Paul L. C.; Kunnen, E. Saskia
2015-01-01
Research regarding the variability of state self-esteem (SSE) commonly focuses on the magnitude of variability. In this article we provide the first empirical test of the temporalstructure of SSE as a real-time process during parent-adolescent interactions. We adopt a qualitative phenomenological
Statistical thermodynamics of supercapacitors and blue engines
van Roij, René
2012-01-01
We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive ...
Chemical engineering and thermodynamics using Mat lab
International Nuclear Information System (INIS)
Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won
2002-02-01
This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.
Introduction to applied thermodynamics
Helsdon, R M; Walker, G E
1965-01-01
Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o
Variability of apparently homogeneous soilscapes in São Paulo state, Brazil: I. spatial analysis
Directory of Open Access Journals (Sweden)
M. van Den Berg
2000-06-01
Full Text Available The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation. Statistical methods used were: nested analysis of variance (for 11 fields, semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS. Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour, varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.
Garrett, Robert G.
2009-01-01
To support the development of protocols for the proposed North American Soil Geochemical Landscapes project, whose objective is to establish baselines for the geochemistry of North American soils, two continental-scale transects across the United States and Canada were sampled in 2004. The sampling employed a spatially stratified random sampling design in order to estimate the variability between 40-km linear sampling units, within them, at sample sites, and due to sample preparation and analytical chemical procedures. The 40-km scale was chosen to be consistent with the density proposed for the continental-scale project. The two transects, north–south (N–S) from northern Manitoba to the USA–Mexico border near El Paso, Texas, and east–west (E–W) from the Virginia shore north of Washington, DC, to north of San Francisco, California, closely following the 38th parallel, have been studied individually. The purpose of this study was to determine if statistically significant systematic spatial variation occurred along the transects. Data for 38 major, minor and trace elements in A- and C-horizon soils where less than 5% of the data were below the detection limit were investigated by Analysis of Variance (ANOVA). A total of 15 elements (K, Na, As, Ba, Be, Ce, La, Mn, Nb, P, Rb, Sb, Th, Tl and W) demonstrated statistically significant (p<0.05) variability at the between-40-km scale for both horizons along both transects. Only Cu failed to demonstrate significant variability at the between-40-km scale for both soil horizons along both transects.
Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil
Directory of Open Access Journals (Sweden)
José Avelino Cardoso
2014-04-01
Full Text Available Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K, medium (potential acidity, Ca and Mg and low (pH, organic matter and clay content. Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.
Building the nodal nuclear data dependences in a many-dimensional state-variable space
International Nuclear Information System (INIS)
Dufek, Jan
2011-01-01
Highlights: → The Abstract and Introduction are revised to reflect reviewers' comments. → Section is revised and simplified. → The third paragraph in Section is revised. → All typos are fixed. - Abstract: We present new methods for building the polynomial-regression based nodal nuclear data models. The data models can reflect dependences on a large number of state variables, and they can consider various history effects. Suitable multivariate polynomials that approximate the nodal data dependences are identified efficiently in an iterative manner. The history effects are analysed using a new sampling scheme for lattice calculations where the traditional base burnup and branch calculations are replaced by a large number of diverse burnup histories. The total number of lattice calculations is controlled so that the data models are built to a required accuracy.
DEFF Research Database (Denmark)
Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka
2005-01-01
The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...
Effect of normal impurities on anisotropic superconductors with variable density of states
Whitmore, M. D.; Carbotte, J. P.
1982-06-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.
Effect of normal impurities on anisotropic superconductors with variable density of states
International Nuclear Information System (INIS)
Whitmore, M.D.; Carbotte, J.P.
1982-01-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron--electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(epsilon-c), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T/sub c/ by both the anisotropy and the peak in N(epsilon-c) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak
A state variable approach to the BESSY II local beam-position-feedback system
International Nuclear Information System (INIS)
Gilpatrick, J.D.; Khan, S.; Kraemer, D.
1996-01-01
At the BESSY II facility, stability of the electron beam position and angle near insertion devices (IDs) is of utmost importance. Disturbances due to ground motion could result in unwanted broad-bandwidth beam-jitter which decreases the electron (and resultant photon) beam's effective brightness. Therefore, feedback techniques must be used. Operating over a frequency range of 100-Hz, a local feedback system will correct these beam-trajectory errors using the four bumps around IDs. This paper reviews how the state-variable feedback approach can be applied to real-time correction of these beam position and angle errors. A frequency-domain solution showing beam jitter reduction is presented. Finally, this paper reports results of a beam-feedback test at BESSY I
Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.
Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M; Emmenegger, Yann; Franken, Paul
2013-03-01
Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Mouse sleep laboratory. Male mice. Sleep deprivation. The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.
Determination of interfacial states in solid heterostructures using a variable-energy positron beam
Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.
1993-01-01
A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.
Origin of the OFF state variability in ReRAM cells
International Nuclear Information System (INIS)
Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Prodromakis, Themistoklis; Berdan, Radu; Papavassiliou, Christos
2014-01-01
This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO 2 and In 2 O 3 : SnO 2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO 2 or ITO active cores over 5 × 5 µm 2 and 100 × 100 µm 2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO 2 -based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states. (paper)
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The interannual variability of the At lantic tropical cyclone (TC) frequency is well known. Separately,recent studies have also suggested that a much longer, multidecadal (40-60 year) trend might be emerging from the recent increase in Atlantic TC activity. However, the overall structure of the intrinsic frequencies (or temporal modes) of Atlantic TC activity is not yet known. The focus of this study is to systematically analyze the intrinsic frequencies of Atlantic TC activity using hurricane and tropical storm landfall data collected along the southeast coast (SEC) of the United States. Based on an Empirical Mode Decomposition (EMD) analysis of the frequency of landfall TCs along the SEC from 1887-1999, we have found that Atlantic TC activity has four primary, temporal modes. The interannual and multidecadal modes reported in the published literature are two such modes. After identifying all primary modes, the relative importance of each mode and its physical cause can be analyzed. For example, the most energetic mode is the interannual mode (2-7 year period). This mode is known to be associated with the 2-7 year El Nino / La Ni na cycle. The average number of annual landfalling TCs along the SEC decreased by 24% during El Nino years, but did not show significant increase during weak and moderate La Nina years. However, intense La Nina years were generally associated with more than average landfalling TCs along the SEC. The effects of El Nino and La Nina also became more significant when only hurricanes were considered. The significance of the effects of El Nino and La Nina on landfalling TCs and hurricanes in different US southeast coastal states showed significant differences.
Thermodynamic theory of equilibrium fluctuations
International Nuclear Information System (INIS)
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
Energy Technology Data Exchange (ETDEWEB)
Leng, Guoyong
2017-12-01
The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated
Introduction to the thermodynamics of solids
International Nuclear Information System (INIS)
Ericksen, J.L.
1992-01-01
This book addresses issues of thermodynamics associated with solids from a unique point of view. Professor Ericksen provides a perspective of thermodynamics which is based in material science and solid mechanics, and attempts to apply basic thermodynamics to a wide range of phenomena. The book is not written as a text-book, as it does not contain example problems or exercises, is directed primarily at researchers in solids. The author states that much of the book is controversial, and that many of his treatments of thermodynamics are not traditional. The author's assessment is accurate on both counts. However, there are several reasons to believe that many of the issues raised in the book are not so much controversial, but rather simply not well described, either by the author or by thermodynamicists, in general. The primary references for much of the thermodynamics in the book are historic in nature, and certainly worthy of consideration, but only a few current references are provided
Thermodynamics of an accelerated expanding universe
International Nuclear Information System (INIS)
Wang Bin; Gong Yungui; Abdalla, Elcio
2006-01-01
We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that enveloped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics
Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair
Lightsey, Harry M.; Kantrowitz, David E.; Swindell, Hasani W.; Trofa, David P.; Ahmad, Christopher S.; Lynch, T. Sean
2018-01-01
Background: The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. Purpose: To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Study Design: Cross-sectional study. Methods: Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Results: Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises
Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair.
Lightsey, Harry M; Kantrowitz, David E; Swindell, Hasani W; Trofa, David P; Ahmad, Christopher S; Lynch, T Sean
2018-02-01
The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Cross-sectional study. Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises. Fifteen protocols (43%) required completion of
Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.
2004-04-01
The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.
Directory of Open Access Journals (Sweden)
Malinda L. Pennington
2014-01-01
Full Text Available In light of the steady rise in the prevalence of students with autism, this study examined the definition of autism published by state education agencies (SEAs, as well as SEA-indicated evaluation procedures for determining student qualification for autism. We compared components of each SEA definition to aspects of autism from two authoritative sources: Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR and Individuals with Disabilities Education Improvement Act (IDEA-2004. We also compared SEA-indicated evaluation procedures across SEAs to evaluation procedures noted in IDEA-2004. Results indicated that many more SEA definitions incorporate IDEA-2004 features than DSM-IV-TR features. However, despite similar foundations, SEA definitions of autism displayed considerable variability. Evaluation procedures were found to vary even more across SEAs. Moreover, within any particular SEA there often was little concordance between the definition (what autism is and evaluation procedures (how autism is recognized. Recommendations for state and federal policy changes are discussed.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Thermodynamics of small systems two volumes bound as one
Hill, Terrel L
1994-01-01
This authoritative summary of the basics of small system, or nonmacroscopic, thermodynamics was written by the field's founder. Originally published in two volumes, the text remains essential reading in an area in which the practical aim is to derive equations that provide interconnections among various thermodynamic functions. Part I introduces the basics of small system thermodynamics, exploring environmental variables, noting throughout the ways in which small thermodynamic systems differ operationally from macroscopic systems. Part II explores binding on macromolecules and aggregation, completes the discussion of environmental variables, and includes brief summaries of certain special topics, including electric and magnetic fields, spherical drops and bubbles, and polydisperse systems.
Assessing positive emotional states in dogs using heart rate and heart rate variability.
Zupan, Manja; Buskas, Julia; Altimiras, Jordi; Keeling, Linda J
2016-03-01
Since most animal species have been recognized as sentient beings, emotional state may be a good indicator of welfare in animals. The goal of this study was to manipulate the environment of nine beagle research dogs to highlight physiological responses indicative of different emotional experiences. Stimuli were selected to be a more or a less positive food (meatball or food pellet) or social reward (familiar person or less familiar person). That all the stimuli were positive and of different reward value was confirmed in a runway motivation test. Dogs were tested individually while standing facing a display theatre where the different stimuli could be shown by lifting a shutter. The dogs approached and remained voluntarily in the test system. They were tested in four sessions (of 20s each) for each of the four stimuli. A test session consisted of four presentation phases (1st exposure to stimulus, post exposure, 2nd exposure, and access to reward). Heart rate (HR) and heart rate variability (HRV) responses were recorded during testing in the experimental room and also when lying resting in a quiet familiar room. A new method of 'stitching' short periods of HRV data together was used in the analysis. When testing different stimuli, no significant differences were observed in HR and LF:HF ratio (relative power in low frequency (LF) and the high-frequency (HF) range), implying that the sympathetic tone was activated similarly for all the stimuli and may suggest that dogs were in a state of positive arousal. A decrease of HF was associated with the meatball stimulus compared to the food pellet and the reward phase (interacting with the person or eating the food) was associated with a decrease in HF and RMSSD (root mean square of successive differences of inter-beat intervals) compared to the preceding phase (looking at the person or food). This suggests that parasympathetic deactivation is associated with a more positive emotional state in the dog. A similar reduction
Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.
2016-09-01
We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.
Directory of Open Access Journals (Sweden)
Jessie M H Szostakiwskyj
Full Text Available Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty, and within trial (fixation, post-stimulus, and post-response. We calculated variability with multiscale entropy (MSE, and additionally examined spectral power density (SPD from electroencephalography (EEG in children aged 8-14, and in adults aged 18-33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales. Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain.
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongjun [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Weifang Vocational College, Weifang 261041 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Quanlong [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)
2011-07-18
This Letter designs an asynchronous hyper chaotic secure communication system, which possesses high stability against noise, using dynamic delay and state variables switching to ensure the high security. The relationship between the bit error ratio (BER) and the signal-to-noise ratio (SNR) is analyzed by simulation tests, the results show that the BER can be ensured to reach zero by proportionally adjusting the amplitudes of the state variables and the noise figure. The modules of the transmitter and receiver are implemented, and numerical simulations demonstrate the effectiveness of the system. -- Highlights: → Asynchronous anti-noise hyper chaotic secure communication system. → Dynamic delay and state switching to ensure the high security. → BER can reach zero by adjusting the amplitudes of state variables and noise figure.
Vigeant, Margot; Prince, Michael; Nottis, Katharyn
2011-01-01
This study examines the use of inquiry-based instruction to promote the understanding of critical concepts in thermodynamics and heat transfer. Significant research shows that students frequently enter our courses with tightly held misconceptions about the physical world that are not effectively addressed through traditional instruction. Students'…
Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.
2014-12-01
The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
International Nuclear Information System (INIS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-01-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Thermodynamics for scientists and engineers
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2011-02-01
This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.
Kim, T. W.; Park, G. H.
2014-12-01
Seasonal variation of aragonite saturation state (Ωarag) in the North Pacific Ocean (NPO) was investigated, using multiple linear regression (MLR) models produced from the PACIFICA (Pacific Ocean interior carbon) dataset. Data within depth ranges of 50-1200m were used to derive MLR models, and three parameters (potential temperature, nitrate, and apparent oxygen utilization (AOU)) were chosen as predictor variables because these parameters are associated with vertical mixing, DIC (dissolved inorganic carbon) removal and release which all affect Ωarag in water column directly or indirectly. The PACIFICA dataset was divided into 5° × 5° grids, and a MLR model was produced in each grid, giving total 145 independent MLR models over the NPO. Mean RMSE (root mean square error) and r2 (coefficient of determination) of all derived MLR models were approximately 0.09 and 0.96, respectively. Then the obtained MLR coefficients for each of predictor variables and an intercept were interpolated over the study area, thereby making possible to allocate MLR coefficients to data-sparse ocean regions. Predictability from the interpolated coefficients was evaluated using Hawaiian time-series data, and as a result mean residual between measured and predicted Ωarag values was approximately 0.08, which is less than the mean RMSE of our MLR models. The interpolated MLR coefficients were combined with seasonal climatology of World Ocean Atlas 2013 (1° × 1°) to produce seasonal Ωarag distributions over various depths. Large seasonal variability in Ωarag was manifested in the mid-latitude Western NPO (24-40°N, 130-180°E) and low-latitude Eastern NPO (0-12°N, 115-150°W). In the Western NPO, seasonal fluctuations of water column stratification appeared to be responsible for the seasonal variation in Ωarag (~ 0.5 at 50 m) because it closely followed temperature variations in a layer of 0-75 m. In contrast, remineralization of organic matter was the main cause for the seasonal
Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation
Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul
2013-01-01
Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state
Limits of predictions in thermodynamic systems: a review
Marsland, Robert, III; England, Jeremy
2018-01-01
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.
Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall
Chang, P.; Saravanan, R.; Giannini, A.
2003-04-01
The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.
Thermodynamical properties of dark energy
International Nuclear Information System (INIS)
Gong Yungui; Wang Bin; Wang Anzhong
2007-01-01
We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously
Javornik, Uroš; Plavec, Janez; Wang, Baifan; Graham, Steven M
2018-01-02
A combined variable temperature 600 MHz NMR/molecular dynamics study of the Ca 2+ -release agent cyclic adenosine 5'-diphosphate ribose (cADPR) was conducted. In addition to elucidating the major and minor orientations of the conformationally flexible furanose rings, γ- (C4'-C5'), and β- (C5'-O5') bonds, the thermodynamics (ΔH o , ΔS o ) associated with each of these conformational equilibria were determined. Both furanose rings were biased towards a south conformation (64-74%) and both β-bonds heavily favored trans conformations. The R-ring γ-bond was found to exist almost exclusively as the γ + conformer, whereas the A-ring γ-bond was a mixture of the γ + and γ t conformers, with the trans conformer being slightly favored. Enthalpic factors accounted for most of the observed conformational preferences, although the R-ring furanose exists as its major conformation based solely on entropic factors. There was excellent agreement between the NMR and MD results, particularly with regard to the conformer identities, but the MD showed a bias towards γ + conformers. The MD results showed that both N-glycosidic χ-bonds are exclusively syn. Collectively the data allowed for the construction of a model for cADPR in which many of the conformationally flexible units in fact effectively adopt single orientations and where most of the conformational diversity resides in its A-ring furanose and γ-bond. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermodynamically efficient solar concentrators
Winston, Roland
2012-10-01
Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.
Black Holes and Thermodynamics
Wald, Robert M.
1997-01-01
We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...
State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.
Dimitriev, Dimitriy A; Saperova, Elena V; Dimitriev, Aleksey D
2016-01-01
Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA. Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.
Leti, Thomas; Bricout, Véronique A
2013-01-01
The use of heart rate variability (HRV) in the management of sport training is a practice which tends to spread, especially in order to prevent the occurrence of fatigue states. To estimate the HRV parameters obtained using a heart rate recording, according to different exercise impacts, and to make the link with the appearance of subjective fatigue. Ten senior runners, aged 51±5 years, were each monitored over a period of 12 weeks in different conditions: (i) after a resting period, (ii) after a day with training, (iii) after a day of competition and (iv) after a rest day. They also completed three questionnaires, to assess fatigue (SFMS), profile of mood states (POMS) and quality of sleep. The HRV indices (heart rate, LF (n.u.), HF (n.u.) and LF/HF) were significantly altered with the competitive impact, shifting toward a sympathetic predominance. After rest and recovery nights, the LF (n.u.) increased significantly with the competitive impact (62.1±15.2 and 66.9±11.6 vs. 76.0±10.7; p<0.05 respectively) whereas the HF (n.u.) decreased significantly (37.9±15.2 and 33.1±11.6 vs. 24.0±10.7; p<0.05 respectively). Positive correlations were found between fatigue and frequency domain indices and between fatigue and training impact. Autonomic nervous system modulation-fatigue relationships were significant, suggesting the potential use of HRV in follow-up and control of training. Furthermore, the addition of questionnaires constitutes complementary tools that allow to achieve a greater relevance and accuracy of the athletes' fitness and results. Copyright © 2012 Elsevier B.V. All rights reserved.
State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.
Directory of Open Access Journals (Sweden)
Dimitriy A Dimitriev
Full Text Available Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV in humans. The present study investigated whether changes in state anxiety (SA can also modulate nonlinear dynamics of heart rate.A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA.Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE, and pointwise correlation dimension (PD2, and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1 during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2, and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure, entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA.The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.
Spatiotemporal predictions of soil properties and states in variably saturated landscapes
Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David
2017-07-01
Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Reiss, Howard
1997-01-01
Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m
Thermodynamics of nuclear materials
International Nuclear Information System (INIS)
Rand, M.H.
1975-01-01
A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented
Thermodynamic behaviour of ruthenium at high temperatures
International Nuclear Information System (INIS)
Garisto, F.
1988-01-01
Thermodynamic equilibrium calculations are used to determine the chemical speciation of ruthenium under postulated reactor accident conditions. The speciation of ruthenium is determined for various values of temperature, pressure, oxygen partial pressure and ruthenium concentration. The importance of these variables, in particular the oxygen partial pressure, in determining the volatility of ruthenium is clearly demonstrated in this report. Reliable thermodynamic data are required to determine the behaviour of ruthenium using equilibrium calculations. Therefore, it was necessary to compile a thermodynamic database for the ruthenium species that can be formed under reactor accident conditions. The origin of the thermodynamic data for the ruthenium species included in our calculations is discussed in detail in Appendix A. 23 refs
Inter-Annual Variability Of Rainfall In Some States Of Southern Nigeria
Directory of Open Access Journals (Sweden)
Egor
2015-08-01
Full Text Available Abstract The study inter-annual variability of rainfall in some states in Southern Nigeria focuses on analyzing the trends and fluctuations in annual rainfall over six states in Southern Nigeria covering a period of 1972 2012. In order to ascertain the variabilitys and to model the annual rainfall for future prediction to enhance policy implementation the quantitative and descriptive analysis techniques was employed. The rainfall series were analyzed for fluctuations using Standardized Anomaly Index SAI whereas the trends were examined using Statistical Package for Social Science Software SPSS 17.0. At 95 percent confidence level observations in the stations may be signals that the wetter period dominates the drier periods in this study. Each of the series contains two distinct periods when the rainfall anomalies negative and positive of a particular type were most significant. The period where the annual rainfall is above one standard deviation from the mean annual rainfall is considered Wet and the period below one standard deviation from the mean annual rainfall is considered Dry for each station. The results of the linear trend lines revealed an increase in rainfall supply over the period of study especially of recent. The annual rate of increase in rainfall over the period of investigation 1972 - 2012 were 15.21mmyear for Calabar 2.18mmyear for Port Harcourt 22.23mmyear for Owerri 3.25mmyear for Benin City 5.08mmyear for Enugu and 16.29mmyear for Uyo respectively. The variability in amount of annual rainfall revealed that in 2012 Calabar received the highest amount of rainfall of about 4062.70mm and the least value of 2099.4mm in 1973. In Porthacourt the highest amount of rainfall occurred in 1993 with a value of 3911.70mm and the least value in 1983 with a value of 1816.4mm. Owerri recorded the highest amount of rainfall of about 3064.0mm in 2011 and the least value occurred in 1986 with a value of 1228.4mm. In 1976 Benin received the
Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor
International Nuclear Information System (INIS)
Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.
2015-01-01
Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general
International Nuclear Information System (INIS)
Sen, P.; Tan, John K.G.; Spencer, David
1999-01-01
Probabilistic risk analysis (PRA) methods have been proven to be valuable in risk and reliability analysis. However, a weak link seems to exist between methods for analysing risks and those for making rational decisions. The integrated decision support system (IDSS) methodology presented in this paper attempts to address this issue in a practical manner. In consists of three phases: a PRA phase, a risk sensitivity analysis (SA) phase and an optimisation phase, which are implemented through an integrated computer software system. In the risk analysis phase the problem is analysed by the Boolean representation method (BRM), a PRA method that can deal with systems with multiple state variables and feedback loops. In the second phase the results obtained from the BRM are utilised directly to perform importance and risk SA. In the third phase, the problem is formulated as a multiple objective decision making problem in the form of multiple objective reliability optimisation. An industrial example is included. The resultant solutions of a five objective reliability optimisation are presented, on the basis of which rational decision making can be explored
Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.
2015-01-01
The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.
Directory of Open Access Journals (Sweden)
Qian Wang
2017-01-01
Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.
Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.
Rawitscher, George H.; Koltracht, Israel
2002-08-01
An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.
Energy Technology Data Exchange (ETDEWEB)
Meyer, L.; Witzel, G.; Ghez, A. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Longstaff, F. A. [UCLA Anderson School of Management, University of California, Los Angeles, CA 90095-1481 (United States)
2014-08-10
Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.
Directory of Open Access Journals (Sweden)
Prashant Goswami
Full Text Available Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance and change in host (human population, in the change in disease load.We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases.For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence.The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India. Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.
International Nuclear Information System (INIS)
Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Yu Hui
2011-01-01
It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH 4 + -N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: → A genetic algorithm aided stepwise cluster analysis method in food waste composting. → Nonlinear relationships between the selected state variables and the C/N ratio. → Introduced proxy tables save around 70% computational
Energy Technology Data Exchange (ETDEWEB)
Sun Wei [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Huang, Guo H., E-mail: huangg@iseis.org [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Energy and Environmental Research Academy, North China Electric Power University, Beijing, 102206 (China); Zeng Guangming [MOE Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082 (China); Qin Xiaosheng [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yu Hui [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)
2011-03-01
It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH{sub 4}{sup +}-N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: {yields} A genetic algorithm aided stepwise cluster analysis method in food waste composting. {yields} Nonlinear relationships between the selected state variables and the C/N ratio. {yields} Introduced proxy tables
Thermodynamics of nuclear materials
International Nuclear Information System (INIS)
1979-01-01
Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these
International Nuclear Information System (INIS)
Wire, G.L.; Duncan, D.R.; Cannon, N.S.; Johnson, G.D.; Alexopoulos, P.S.; Li, C.Y.
Inelastic analysis is performed to calculate the deformation of thin-walled, internally pressurized, tube under a variety of loading modes. A state-variable approach was used to describe the material properties. The material parameters of the constitutive equations used were determined based on uniaxial, load relaxation, tensile tests, and internally pressurized tubes under creep and constant-displacement-rate modes of loading. The simulated results were compared with the experimental data. The significance of the comparison is discussed in terms of the validity of a state-variable approach used to describe the deformation properties in mechanical testing
International Nuclear Information System (INIS)
Wang Yu; Su Xiaolong; Shen Heng; Tan Aihong; Xie Changde; Peng Kunchi
2010-01-01
One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability to perform a variety of unitary operations only through different choices of measurement bases. Here we present an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are used for achieving the gate operation of the quantum state transformation from input target and control states to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic feeding forward, the information carried by the input control state is transformed to the output target state. The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement is estimated with the fidelity.
Granet, Irving
2014-01-01
Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...
The thermodynamic solar energy
International Nuclear Information System (INIS)
Rivoire, B.
2002-04-01
The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)
Quasiparticles and thermodynamical consistency
International Nuclear Information System (INIS)
Shanenko, A.A.; Biro, T.S.; Toneev, V.D.
2003-01-01
A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)
Castelletti, A.; Giuliani, M.; Block, P. J.
2017-12-01
Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
Equilibrium thermodynamics - Callen's postulational approach
Jongschaap, R.J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
Thermodynamics an engineering approach
Cengel, Yunus A
2014-01-01
Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...
Thermodynamic estimation: Ionic materials
International Nuclear Information System (INIS)
Glasser, Leslie
2013-01-01
Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy
Molecular thermodynamics using fluctuation solution theory
DEFF Research Database (Denmark)
Ellegaard, Martin Dela
. The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...
A statistical model for instable thermodynamical systems
International Nuclear Information System (INIS)
Sommer, Jens-Uwe
2003-01-01
A generic model is presented for statistical systems which display thermodynamic features in contrast to our everyday experience, such as infinite and negative heat capacities. Such system are instable in terms of classical equilibrium thermodynamics. Using our statistical model, we are able to investigate states of instable systems which are undefined in the framework of equilibrium thermodynamics. We show that a region of negative heat capacity in the adiabatic environment, leads to a first order like phase transition when the system is coupled to a heat reservoir. This phase transition takes place without a phase coexistence. Nevertheless, all intermediate states are stable due to fluctuations. When two instable system are brought in thermal contact, the temperature of the composed system is lower than the minimum temperature of the individual systems. Generally, the equilibrium states of instable system cannot be simply decomposed into equilibrium states of the individual systems. The properties of instable system depend on the environment, ensemble equivalence is broken
Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo
2017-10-01
Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non
Modern Thermodynamics with Statistical Mechanics
Helrich, Carl S
2009-01-01
With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...
Association theories for complex thermodynamics
DEFF Research Database (Denmark)
Kontogeorgis, Georgios; Rafiqul Gani
2013-01-01
of this review is two-fold: first to illustrate some of the significant capabilities of these association theories and why indeed they have already been extensively used and are expected to find even more applications in the future. The second and most important aspect of this review is to outline many...... applications. While specialized models can handle different cases, even complex ones, with the advent of powerful theories and computers there is the hope that a single or a few models could be suitable for a general modeling of complex thermodynamics. After more than 100 years with active use of thermodynamic...... models, we have now come to the understanding that simple one-fluid theories like the cubic equations of state or the various forms of local composition models will never be able to model a wide range of complex systems with sufficient accuracy. While various modern approaches have appeared, one very...
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Directory of Open Access Journals (Sweden)
V. R. N. Pauwels
2013-09-01
Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
The second laws of quantum thermodynamics.
Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie
2015-03-17
The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies.
Teleported State and its Fidelity in Quantum Teleportation of Continuous Variables
Institute of Scientific and Technical Information of China (English)
LI Fu-Li; LI Hong-Rong; ZHANG Jun-Xiang; ZHU Shi-Yao
2003-01-01
When given an unknown quantum state which may be either a pure or a mixed state in the coherent state representation, we show that explicit expressions for the teleported state and its fidelity in the teleportation process (S. L. Braunstein and H. J. Kimble 1998 Phys. Rev. Lett. 80 869) can be obtained without explicit expansions for the two-mode squeezed vacuum state and the Bell basis in a specified representation.
The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk
DEFF Research Database (Denmark)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.
2016-01-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variabilit...
X. Li; S. Zhong; X. Bian; W.E. Heilman
2010-01-01
The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...
Akpan, Charles P.; Archibong, Ijeoma A.
2012-01-01
The study sought to find out the predictive effect of self-concept, self-efficacy, self-esteem and locus of control on the instructional and motivational leadership roles performance effectiveness of administrators of public secondary schools in Cross River State of Nigeria. The relative contribution of each of the independent variables to the…
Fejoh, Johnson
2016-01-01
This study investigated the influence of bio-social variables - educational status, age and family socio-economic background on teacher union leaders' adherence to democratic principles in Ogun State of Nigeria. The study employed the ex-post-facto research design. Five hypotheses were generated and tested using an instrument titled "union…
Fogel, Benjamin N; Nguyen, Hong Loan T; Smink, Gayle; Sekhar, Deepa L
2018-04-01
We conducted an inventory of state-based recommendations for follow-up of alpha thalassemia silent carrier and trait identified on newborn screen. We found wide variability in the nature and timing of these recommendations. We recommend a standardized recommendation to guide pediatricians in evidenced-based care for this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Akpochafo, G. O.
2014-01-01
This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…
Predicting structural properties of fluids by thermodynamic extrapolation
Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.
2018-05-01
We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.
Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane
Birkner, Nancy; Navrotsky, Alexandra
2017-01-01
Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549
Structure and thermodynamics of molten salts
International Nuclear Information System (INIS)
Papatheodorou, G.N.
1983-01-01
This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Is applicable thermodynamics of negative temperature for living organisms?
Atanasov, Atanas Todorov
2017-11-01
During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature
Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui
2011-03-01
It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. Copyright © 2010 Elsevier B.V. All rights reserved.
Behnke, Ruben John
The objective of this dissertation was to show that there is now enough observed humidity data available so that estimates of humidity, along with their necessary assumptions, can be replaced by measured humidity data. The range of applications that depend on humidity data is huge, ranging from water use efficiency of plants and plant stress to human health and agricultural practices. Biases due to the use of estimated humidity can be expected to have short and long impacts, decreasing the accuracy and precision of these, and many other, applications. Data from local, regional, and national observation networks was gathered, and custom quality control routines were written to remove bad data points from over 45000 stations, leaving 12533 usable stations. While still not at the same number of observations as temperature or precipitation, this number is nearly ten times as high as two decades ago. The work I performed consists of three major components, corresponding to the three main chapters of this dissertation. In chapter one, I describe data sources and quality control methods, along with some basic statistics of humidity, describing which geographic variables often used to predict temperature and precipitation can be used to do the same for humidity. Chapter two defines specific diurnal patterns (or "types") of dew point across the United States, including their attributes, causes, and potential influences. Chapter three analyzes biases in evapotranspiration, heat indices, and relative humidity levels that are a direct result of using estimated humidity data. Chapter four discusses contributions this work makes to the scientific community, and potential further research to build on what is presented here. While it may seem that the science of humidity should be well beyond data gathering and bias analysis, the fact remains that humidity is still very commonly estimated through the use of minimum temperature, and diurnal changes in dew point are often ignored
Vanderhoof, Melanie; Fairaux, Nicole; Beal, Yen-Ju G.; Hawbaker, Todd J.
2017-01-01
The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and
Onsager's reciprocity theorem in extended irreversible thermodynamics
International Nuclear Information System (INIS)
Garcia-Colin, L.S.; Velasco, R.M.
1992-01-01
In this paper we shall discuss the Onsager relations for the transport coefficients in a dilute monatomic gas described by the extended irreversible thermodynamics. Our discussion is based on a 26 variables description of the system and its corresponding comparison with the kinetic reciprocity between coefficients is shown (Author)
Quantum tele-amplification with a continuous-variable superposition state
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo
2013-01-01
-enhanced functions such as coherent-state quantum computing (CSQC), quantum metrology and a quantum repeater could be realized in the networks. Optical cat states are now routinely generated in laboratories. An important next challenge is to use them for implementing the aforementioned functions. Here, we......Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum...... demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both...
Advanced thermodynamics engineering
Annamalai, Kalyan; Jog, Milind A
2011-01-01
Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
Modern engineering thermodynamics
Balmer, Robert T
2010-01-01
Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica
Directory of Open Access Journals (Sweden)
Rodrigo Wiff
2012-03-01
Full Text Available Alfonsino (Beryx splendens is a species associated with seamounts, with an important fishery in Juan Fernandez archipelago, Chile (33°40'S, 79°00'W. Since 2004, this resource has been managed by catch quotas estimated from stock assessment models. The alfonsino model involves high levels of uncertainty for several reasons including a lack of knowledge of aspects of the population dynamics and poorly informative time-series that feed the proposed evaluation models. This work evaluated three hypotheses regarding population dynamics and their influence on the main state variables (biomass, recruitment of the model using age-structured and dynamic biomass models. The hypotheses corresponded to de-recruitment of older individuals, non-linearity between standardized catch per unit effort, and population abundance as well as variations of the relative importance of length structures. According to the results, the depletion of the spawning biomass between 1998 and 2008 varied between 9 and 56%, depending on the combination of hypotheses used in the model. This indicates that state variables in alfonsino are not robust to the available information; rather, they depend strongly on the hypothesis of population dynamics. The discussion is focused on interpreting the causes of the changes in the state variables in light of a conceptual model for population dynamics in alfonsino and which pieces of information would be necessary to reduce the associated uncertainty.El alfonsino (Beryx splendens es una especie asociada a montes submarinos. En Chile sustenta una importante pesquería en el archipiélago de Juan Fernández (33°40'S, 79°00'W. Desde el año 2004, este recurso es administrado a través de cuotas anuales de capturas, las cuales son estimadas desde un modelo de evaluación de stock. La modelación de la población de alfonsino se caracteriza por una alta incertidumbre, debido a diversas fuentes, como son desconocimiento de aspectos de su din
Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward
2018-01-01
Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.
Abatzoglou, John T.; Ficklin, Darren L.
2017-09-01
The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.
Black hole thermodynamics under the microscope
Falls, Kevin; Litim, Daniel F.
2014-04-01
A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.
Directory of Open Access Journals (Sweden)
Francesco Oliveri
2016-01-01
Full Text Available The exploitation of second law of thermodynamics for a mixture of two fluids with a scalar internal variable and a first order nonlocal state space is achieved by using the extended Liu approach. This method requires to insert as constraints in the entropy inequality either the field equations or their gradient extensions. Consequently, the thermodynamic restrictions imposed by the entropy principle are derived without introducing extra terms neither in the energy balance equation nor in the entropy inequality.
International Nuclear Information System (INIS)
Bullard, G.L.
1978-05-01
The basic principles of the Engel-Brewer theory of metals are summarized and illustrated. Definitions of words used to describe its fundamentals are clarified. The theory predicts the extreme stability of the Lewis-acid-base alloys. The thermodynamics of such alloys may be obtained through the use of oxide-electrolyte, electrochemical cells. Experimental techniques associated with the use of these cells are explained in detail. Much attention is given to the preparation and processing of the materials required. A selective review of the cell literature demonstrates frequent difficulty in obtaining accurate thermodynamic data. In an attempt to correct this situation, as well as to correct problems discovered in this work, the physical processes which create the cell emf are clearly identified. The fundamental understanding afforded by the resulting cell model implies the procedures used to both discover and eliminate errors. Those due to concentration overpotentials, reactive impurities in the gas phase, and interfacial reactions are carefully analyzed. The procedures used to test for and attain equilibrium in an alloy-oxide, powder compact are supported through identification of the transport processes that mediate equilibration
Energy Technology Data Exchange (ETDEWEB)
Cristoforetti, G., E-mail: gabriele.cristoforetti@cnr.i [National Institute of Optics, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy); Lorenzetti, G.; Legnaioli, S.; Palleschi, V. [Institute of Chemistry of Organometallic Compounds, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy)
2010-09-15
The amount and the spatial distribution of air atoms and ions in a laser-induced plasma in ambient air provide important information about the formation of the plasma and its successive evolution history. For this reason, in the present work, the air mixing in a laser-induced plasma in air at atmospheric pressure and its influence on its thermodynamic evolution were studied. Information about spatial distributions of atoms and ions from Al, N and O were achieved by Abel-inverted spectra in the plume. The occurrence of LTE in the plume was also assessed by the utilization of theoretical criteria, and by the analysis of experimental spectra. Aluminium atoms and ions were found to be in LTE, while nitrogen and oxygen were not because of their longer times of relaxation toward equilibrium. Nitrogen was found to be over-ionized with respect to Saha-Eggert equilibrium, indicating that the plasma is recombining. Experimental observations suggest that the concentration of air species in the plasma is larger than that of aluminium, even in the region closer to the target, where the aluminium lines are stronger. In the front part of the plume only emission lines from air species were observed. The results suggest that a Laser-Supported Detonation (LSD) regime occurs during the trailing part of the laser pulse, resulting in the strong inclusion into the plasma of air elements. In this scenario, also the thermodynamic history of the plume is affected by the predominance of air species.
Energy Technology Data Exchange (ETDEWEB)
Bullard, G.L.
1978-05-01
The basic principles of the Engel-Brewer theory of metals are summarized and illustrated. Definitions of words used to describe its fundamentals are clarified. The theory predicts the extreme stability of the Lewis-acid-base alloys. The thermodynamics of such alloys may be obtained through the use of oxide-electrolyte, electrochemical cells. Experimental techniques associated with the use of these cells are explained in detail. Much attention is given to the preparation and processing of the materials required. A selective review of the cell literature demonstrates frequent difficulty in obtaining accurate thermodynamic data. In an attempt to correct this situation, as well as to correct problems discovered in this work, the physical processes which create the cell emf are clearly identified. The fundamental understanding afforded by the resulting cell model implies the procedures used to both discover and eliminate errors. Those due to concentration overpotentials, reactive impurities in the gas phase, and interfacial reactions are carefully analyzed. The procedures used to test for and attain equilibrium in an alloy-oxide, powder compact are supported through identification of the transport processes that mediate equilibration.
Systemic analysis of thermodynamic properties of lanthanide halides
International Nuclear Information System (INIS)
Mirsaidov, U.; Badalov, A.; Marufi, V.K.
1992-01-01
System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out
Positive Nonlinear Dynamical Group Uniting Quantum Mechanics and Thermodynamics
Beretta, Gian Paolo
2006-01-01
We discuss and motivate the form of the generator of a nonlinear quantum dynamical group 'designed' so as to accomplish a unification of quantum mechanics (QM) and thermodynamics. We call this nonrelativistic theory Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermodynamic equilibrium (TE) states it reduces to the same mathematics, and for zero entropy stat...
Elements of chemical thermodynamics
Nash, Leonard K
2005-01-01
This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.
Elements of statistical thermodynamics
Nash, Leonard K
2006-01-01
Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.