Thermodynamic mechanism of density anomaly of liquid water
Directory of Open Access Journals (Sweden)
Makoto eYasutomi
2015-03-01
Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.
International Nuclear Information System (INIS)
Hyldgaard, P
2012-01-01
The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the
Relations between the density matrix and thermodynamic potential
International Nuclear Information System (INIS)
Pitanga, P.; Mundim, K.C.
1988-01-01
We propose to study the stability of a polyatomic molecular system in terms of the thermodynamic potential G. This enables us to establish a relation between the bond index and susceptibility tensor ∂ 2 G/∂μ i ∂ j . (author) [pt
On thermodynamic limits of entropy densities
Moriya, H; Van Enter, A
We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.
Nonperturbative quark-gluon thermodynamics at finite density
Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.
2018-03-01
Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 confinement.
Directory of Open Access Journals (Sweden)
R. Feistel
2005-01-01
Full Text Available The 2003 Gibbs thermodynamic potential function represents a very accurate, compact, consistent and comprehensive formulation of equilibrium properties of seawater. It is expressed in the International Temperature Scale ITS-90 and is fully consistent with the current scientific pure water standard, IAPWS-95. Source code examples in FORTRAN, C++ and Visual Basic are presented for the numerical implementation of the potential function and its partial derivatives, as well as for potential temperature. A collection of thermodynamic formulas and relations is given for possible applications in oceanography, from density and chemical potential over entropy and potential density to mixing heat and entropy production. For colligative properties like vapour pressure, freezing points, and for a Gibbs potential of sea ice, the equations relating the Gibbs function of seawater to those of vapour and ice are presented.
Thermodynamic potential in quantum electrodynamics
International Nuclear Information System (INIS)
Morley, P.D.
1978-01-01
The thermodynamic potential, Ω, in quantum electrodynamics (QED) is derived using the path-integral formalism. Renormalization of Ω is shown by proving the following theorem: Ω/sub B/(e/sub B/,m/sub B/,T,μ) - Ω/sub B/(e/sub B/,m/sub B/,T = 0,μ = 0) = Ω/sub R/(e/sub R/,m/sub R/,T,μ,S), where B and R refer to bare and renormalized quantities, respectively, and S is the Euclidean subtraction momentum squared. This theorem is proved explicitly to e/sub R/ 4 order and could be analogously extended to any higher order. Renormalization-group equations are derived for Ω/sub R/, and it is shown that perturbation theory in a medium is governed by effective coupling constants which are functions of the density. The behavior of the theory at high densities is governed by the Euclidean ultraviolet behavior of the theory in the vacuum
Thermodynamics as a Foundation for Density Functional Theory
International Nuclear Information System (INIS)
Argaman, Nathan
2014-01-01
Density Functional Theory (DFT) is the method of choice for an ever increasing number of electronic structure computations (recently reaching 30,000 publications per year). It was founded in the sixties on the basis of the Hohenberg-Kohn theorem and the Kohn-Sham equations, which were originally proved and derived for electronic ground states. Alternatively, one may use thermodynamics to derive DFT for finite-temperature ensembles, with the ground-state theory recovered in the zero temperature limit. Specifically, the transformation from chemical potential µ to electron number N as a free variable may be directly generalized to clarify how DFT uses the density distribution n(r), rather than the external potential v(r), to specify a particular inhomogeneous electronic system. Relating interacting and non-interacting systems with the same n(r) distribution, one recovers not only the Kohn-Sham formulation, but also the so-called adiabatic connection theorem, which gives an explicit expression for the exchange-correlation energy in terms of the 'exchangecorrelation hole.' This derivation has the advantage of being constructive, rather than being based on a reductio ad absurdum argument. It thus serves as an excellent basis for a discussion of the approximations which are inevitably introduced, including the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA)
Density-scaling exponents and virial potential-energy correlation ...
Indian Academy of Sciences (India)
This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...
Thermodynamic fluctuations and the monopole density of the early Universe
International Nuclear Information System (INIS)
Diosi, L.; Lukacs, B.
1984-10-01
The probability of thermodynamic fluctuations is calculated by explicitly using the Riemannian structure of the thermodynamic state space. By means of this probability distribution, a correlation volume can be defined. Identifying this volume with one domain in the GUT continuum at the symmetry breaking phase transition in the early Universe, a prediction can be obtained for the primordial monopole density. (author)
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
International Nuclear Information System (INIS)
Aslanyan, V.; Tallents, G. J.
2014-01-01
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
Energy Technology Data Exchange (ETDEWEB)
González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)
2016-05-14
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.
Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon
2016-07-27
Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.
International Nuclear Information System (INIS)
Zaghloul, Mofreh R.
2009-01-01
Accurate and consistent prediction of thermodynamic properties is of great importance in high-energy density physics and in modeling stellar atmospheres and interiors as well. Modern descriptions of thermodynamic properties of such nonideal plasma systems are sophisticated and/or full of pitfalls that make it difficult, if not impossible, to reproduce. The use of the Saha equation modified at high densities by incorporating simple expressions for depression of ionization potentials is very convenient in that context. However, as it is commonly known, the incorporation of ad hoc or empirical expressions for the depression of ionization potentials in the Saha equation leads to thermodynamic inconsistencies. The problem of thermodynamic consistency of ionization potentials depression in nonideal plasmas is investigated and a criterion is derived, which shows immediately, whether a particular model for the ionization potential depression is self-consistent, that is, whether it can be directly related to a modification of the free-energy function, or not. A backward scheme is introduced which can be utilized to derive nonideality corrections to the free-energy function from formulas of ionization potentials depression derived from plasma microfields or in ad hoc or empirical fashion provided that the aforementioned self-consistency criterion is satisfied. The value and usefulness of such a backward method are pointed out and discussed. The above-mentioned criterion is applied to investigate the thermodynamic consistency of some historic models in the literature and an optional routine is introduced to recover their thermodynamic consistencies while maintaining the same functional dependence on the species densities as in the original models. Sample computational problems showing the effect of the proposed modifications on the computed plasma composition are worked out and presented.
BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY
International Nuclear Information System (INIS)
MIAO, C.; SCHMIDT, C.
2007-01-01
We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations
Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun
2018-02-01
Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron
Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities
Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.
2018-03-01
Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that in the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
ZHU MingFeng; LIU GuangZhou; YU Zi; XU Yan; SONG WenTao
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied selfconsistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term Is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,Indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that In the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Local thermodynamic mapping for effective liquid density-functional theory
Kyrlidis, Agathagelos; Brown, Robert A.
1992-01-01
The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.
Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential
International Nuclear Information System (INIS)
Moskalenko, V. A.; Dohotaru, L. A.; Cebotari, I. D.
2010-01-01
The diagram approach proposed many years ago for the strongly correlated Hubbard model is developed with the aim to analyze the thermodynamic potential properties. A new exact relation between renormalized quantities such as the thermodynamic potential, the one-particle propagator, and the correlation function is established. This relation contains an additional integration of the one-particle propagator with respect to an auxiliary constant. The vacuum skeleton diagrams constructed from the irreducible Green's functions and tunneling propagator lines are determined and a special functional is introduced. The properties of this functional are investigated and its relation to the thermodynamic potential is established. The stationarity property of this functional with respect to first-order variations of the correlation function is demonstrated; as a consequence, the stationarity property of the thermodynamic potential is proved.
Mavris, Dimitri; Roth, Bryce; McDonald, Rob
2002-01-01
The objective of this report is to provide a tool to facilitate the application of thermodynamic work potential methods to aircraft and engine analysis. This starts with a discussion of the theoretical background underlying these methods, which is then used to derive various equations useful for thermodynamic analysis of aircraft engines. The work potential analysis method is implemented in the form of a set of working charts and tables that can be used to graphically evaluate work potential stored in high-enthalpy gas. The range of validity for these tables is 300 to 36,000 R, pressures between between 0.01 atm and 100 atm, and fuel-air ratios from zero to stoichiometric. The derivations and charts assume mixtures of Jet-A and air as the working fluid. The thermodynamic properties presented in these charts were calculated based upon standard thermodynamic curve fits.
International Nuclear Information System (INIS)
Gilles, D.
2005-01-01
This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)
Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem
2014-05-06
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low
A thermodynamic model for aqueous solutions of liquid-like density
Energy Technology Data Exchange (ETDEWEB)
Pitzer, K.S.
1987-06-01
The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)
Jedrzejowska, Agnieszka; Grzybowski, Andrzej; Paluch, Marian
2017-07-19
In this paper, we report the nontrivial results of our investigations of dynamic and thermodynamic moduli in search of invariants for viscous liquids in the density scaling regime by using selected supercooled van der Waals liquids as representative materials. Previously, the dynamic modulus M p-T (defined in the pressure-temperature representation by the ratio of isobaric activation energy and activation volume) as well as the ratio B T /M p-T (where B T is the thermodynamic modulus defined as the inverse isothermal compressibility) have been suggested as some kinds of material constants. We have established that they are not valid in the explored wide range of temperatures T over a dozen decades of structural relaxation times τ. The temperature dependences of M p-T and B T /M p-T have been elucidated by comparison with the well-known measure of the relative contribution of temperature and density fluctuations to molecular dynamics near the glass transition, i.e., the ratio of isochoric and isobaric activation energies. Then, we have implemented an idea to transform the definition of the dynamic modulus M p-T from the p-T representation to the V-T one. This idea relied on the disentanglement of combined temperature and density fluctuations involved in isobaric parameters and has resulted in finding an invariant for viscous liquids in the density scaling regime, which is the ratio of thermodynamic and dynamic moduli, B T /M V-T . In this way, we have constituted a characteristic of thermodynamics and molecular dynamics, which remains unchanged in the supercooled liquid state for a given material, the molecular dynamics of which obeys the power density scaling law.
International Nuclear Information System (INIS)
Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P
2012-01-01
The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions. (paper)
Thermodynamic curvature of soft-sphere fluids and solids
Brańka, A. C.; Pieprzyk, S.; Heyes, D. M.
2018-02-01
The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r-n) potential, where r is the pair separation and 1 /n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n ) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.
Evaluation of the thermodynamics of a four level system using canonical density matrix method
Directory of Open Access Journals (Sweden)
Awoga Oladunjoye A.
2013-02-01
Full Text Available We consider a four-level system with two subsystems coupled by weak interaction. The system is in thermal equilibrium. The thermodynamics of the system, namely internal energy, free energy, entropy and heat capacity, are evaluated using the canonical density matrix by two methods. First by Kronecker product method and later by treating the subsystems separately and then adding the evaluated thermodynamic properties of each subsystem. It is discovered that both methods yield the same result, the results obey the laws of thermodynamics and are the same as earlier obtained results. The results also show that each level of the subsystems introduces a new degree of freedom and increases the entropy of the entire system. We also found that the four-level system predicts a linear relationship between heat capacity and temperature at very low temperatures just as in metals. Our numerical results show the same trend.
Thermodynamic properties of water in confined environments: a Monte Carlo study
Gladovic, Martin; Bren, Urban; Urbic, Tomaž
2018-05-01
Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.
Nonextensive thermodynamics with finite chemical potentials and protoneutron starss⋆,⋆⋆
Directory of Open Access Journals (Sweden)
Megías Eugenio
2014-01-01
Full Text Available We derive the nonextensive thermodynamics of an ideal quantum gas composed by bosons and/or fermions with finite chemical potentials. We find agreement with previous works when μ ≤ m, and some inconsistencies are corrected for fermions when μ > m. This formalism is then used to study the thermodynamical properties of hadronic systems based on a Hadron Resonance Gas approach. We apply this result to study the protoneutron star stability under several conditions.
Thermodynamic properties and entropy scaling law for diffusivity in soft spheres.
Pieprzyk, S; Heyes, D M; Brańka, A C
2014-07-01
The purely repulsive soft-sphere system, where the interaction potential is inversely proportional to the pair separation raised to the power n, is considered. The Laplace transform technique is used to derive its thermodynamic properties in terms of the potential energy and its density derivative obtained from molecular dynamics simulations. The derived expressions provide an analytic framework with which to explore soft-sphere thermodynamics across the whole softness-density fluid domain. The trends in the isochoric and isobaric heat capacity, thermal expansion coefficient, isothermal and adiabatic bulk moduli, Grüneisen parameter, isothermal pressure, and the Joule-Thomson coefficient as a function of fluid density and potential softness are described using these formulas supplemented by the simulation-derived equation of state. At low densities a minimum in the isobaric heat capacity with density is found, which is a new feature for a purely repulsive pair interaction. The hard-sphere and n = 3 limits are obtained, and the low density limit specified analytically for any n is discussed. The softness dependence of calculated quantities indicates freezing criteria based on features of the radial distribution function or derived functions of it are not expected to be universal. A new and accurate formula linking the self-diffusion coefficient to the excess entropy for the entire fluid softness-density domain is proposed, which incorporates the kinetic theory solution for the low density limit and an entropy-dependent function in an exponential form. The thermodynamic properties (or their derivatives), structural quantities, and diffusion coefficient indicate that three regions specified by a convex, concave, and intermediate density dependence can be expected as a function of n, with a narrow transition region within the range 5 < n < 8.
Thermodynamic Properties of a Trapped Interacting Bose Gas
Shi, Hualin; Zheng, Wei-Mou
1996-01-01
A Bose gas in an external potential is studied by means of the local density approximation. Analytical results are derived for the thermodynamic properties of an ideal Bose gas in a generic power-law trapping potential, and their dependence on the mutual interaction of atoms in the case of a non-ideal Bose gas.
International Nuclear Information System (INIS)
Wu, Wei; Wang, Jin
2014-01-01
We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series
Virial theorem and Gibbs thermodynamic potential for Coulomb systems
International Nuclear Information System (INIS)
Bobrov, V. B.; Trigger, S. A.
2014-01-01
Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction
Virial theorem and Gibbs thermodynamic potential for Coulomb systems
Bobrov, V. B.; Trigger, S. A.
2013-01-01
Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction.
Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.
2014-01-01
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we
Local thermodynamics of a magnetized, anisotropic plasma
International Nuclear Information System (INIS)
Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.
2013-01-01
An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.
International Nuclear Information System (INIS)
Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao
2014-01-01
The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations
Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew
2008-10-01
A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or
Thermodynamics and elastic moduli of fluids with steeply repulsive potentials
Heyes, D. M.
1997-08-01
Analytic expressions for the thermodynamic properties and elastic moduli of molecular fluids interacting with steeply repulsive potentials are derived using Rowlinson's hard-sphere perturbation treatment which employs a softness parameter, λ specifying the deviation from the hard-sphere potential. Generic potentials of this form might be used to represent the interactions between near-hard-sphere stabilized colloids. Analytic expressions for the equivalent hard-sphere diameter of inverse power [ɛ(σ/r)n where ɛ sets the energy scale and σ the distance scale] exponential and logarithmic potential forms are derived using the Barker-Henderson formula. The internal energies in the hard-sphere limit are predicted essentially exactly by the perturbation approach when compared against molecular dynamics simulation data using the same potentials. The elastic moduli are similarly accurately predicted in the hard-sphere limit, as they are trivially related to the internal energy. The compressibility factors from the perturbation expansion do not compare as favorably with simulation data, and in this case the Carnahan-Starling equation of state prediction using the analytic effective hard-sphere diameter would appear to be a preferable route for this thermodynamic property. A more refined state point dependent definition for the effective hard-sphere diameter is probably required for this property.
Density effects on electronic configurations in dense plasmas
Faussurier, Gérald; Blancard, Christophe
2018-02-01
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
International Nuclear Information System (INIS)
Koperwas, K.; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.
2015-01-01
In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition
Energy Technology Data Exchange (ETDEWEB)
Koperwas, K., E-mail: kkoperwas@us.edu.pl; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland)
2015-07-14
In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.
Nonequilibrium thermodynamic potentials for continuous-time Markov chains.
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
International Nuclear Information System (INIS)
Durán-Zenteno, Moisés S.; Pérez-López, Hugo I.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio
2012-01-01
Highlights: ► We measured densities for {alkanol (ethanol or 1-propanol) + boldine} mixtures. ► Liquid densities are reported in the ranges of (1 to 20) MPa and (313 to 363) K. ► Thermodynamic derived properties were calculated using an empirical correlation. ► Extrapolated densities at atmospheric pressure agree with the literature data. - Abstract: In this work, densities of two binary systems of {alkanol (ethanol and 1-propanol) + boldine} are measured at temperatures from (313 to 363) K and pressures up to 20 MPa using an Anton Paar vibrating tube densimeter. Each (alkanol + boldine) system was prepared at five diluted compositions with respect to the alkaloid. These are (x 2 = 0.0012, 0.0074, 0.0136, 0.0196, 0.0267) and (x 2 = 0.0018, 0.0046, 0.0077, 0.0112, 0.0142) mixed in ethanol and 1-propanol, respectively. Experimental densities are correlated using an empirical 6-parameter equation with deviations within 0.04%. Extrapolated densities at atmospheric pressure agree with the literature data. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated.
On the v-representability of ensemble densities of electron systems
Gonis, A.; Däne, M.
2018-05-01
Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The paper describes a formal procedure that generates the domain of a constrained search over general ensembles (at zero or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. The main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.
DEFF Research Database (Denmark)
Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan
2011-01-01
A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen–hydrogen defect interactions in the cubic SrTiO3 perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 eV comp...
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
International Nuclear Information System (INIS)
Evans, R.; Kumaravadivel, R.
1976-01-01
A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.
International Nuclear Information System (INIS)
Neimark, Alexander V; Ravikovitch, Peter I; Vishnyakov, Aleksey
2003-01-01
With the example of the capillary condensation of Lennard-Jones fluid in nanopores ranging from 1 to 10 nm, we show that the non-local density functional theory (NLDFT) with properly chosen parameters of intermolecular interactions bridges the scale gap from molecular simulations to macroscopic thermodynamics. On the one hand, NLDFT correctly approximates the results of Monte Carlo simulations (shift of vapour-liquid equilibrium, spinodals, density profiles, adsorption isotherms) for pores wider than about 2 nm. On the other hand, NLDFT smoothly merges (above 7-10 nm) with the Derjaguin-Broekhoff-de Boer equations which represent augmented Laplace-Kelvin equations of capillary condensation and desorption
Thermodynamic potential with condensate fields in an SU(2) model of QCD
International Nuclear Information System (INIS)
Ebert, D.
1996-06-01
We calculate the thermodynamic potential of the quark-gluon plasma in an SU(2) model of QCD, taking into account the gluon condensate configuration with a constant A 4 -potential and a uniform chromomagnetic field H. Within this scheme the interplay of condensate fields, as well as the role of quarks in the possible dynamical stabilization of the system is investigated. (orig.)
International Nuclear Information System (INIS)
Stiegler, Thomas; Sadus, Richard J.
2015-01-01
General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form
International Nuclear Information System (INIS)
Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.
1977-01-01
Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table
Thermodynamics of dilute gases: application to submonolayer He films
International Nuclear Information System (INIS)
Vetrovec, M.B.; Carneiro, G.M.
1979-01-01
The thermodynamic properties of submonolayer He films are calculated. Expressions are first obtained for the thermodynamic properties of dilute systems of particles interacting through a short range potential taking into account binary interactions between the particles. These expressions are exact in the limit n→0, n being the particle number density, and are valid at all temperatures. At high temperatures these expressions are reduced to those obtained using the virial expansion truncated after the second term. These expressions are next applied to He in two dimensions and the results compared with experiment and with previous calculations [pt
Neutrality Versus Materiality: A Thermodynamic Theory of Neutral Surfaces
Directory of Open Access Journals (Sweden)
Rémi Tailleux
2016-09-01
Full Text Available In this paper, a theory for constructing quasi-neutral density variables γ directly in thermodynamic space is formulated, which is based on minimising the absolute value of a purely thermodynamic quantity J n . Physically, J n has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy cost of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of in-situ density on spiciness, in a description of water masses based on γ, spiciness and pressure. Mathematically, minimising | J n | in thermodynamic space is showed to be equivalent to maximising neutrality in physical space. The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that epineutral dispersion is best understood as the aggregate effect of many individual non-neutral stirring events (being understood here as adiabatic and isohaline events with non-zero buoyancy, so that it is only the net displacement aggregated over many events that is approximately neutral. This new view resolves an apparent paradox between the focus in neutral density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents and sheared internal waves. The efficiency by which a physical process contributes to lateral dispersion can be characterised by its energy signature, with those processes releasing available potential energy (negative energy cost being more efficient than purely neutral processes with zero energy cost. The latter mechanism occurs in the wedge of instability, and its source of energy is the coupling between baroclinicity, thermobaricity, and density compensated temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is speculated to be important for dissipating spiciness anomalies and neutral helicity. The paper also discusses potential
Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping
2014-08-01
Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Thermodynamic DFT analysis of natural gas.
Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C
2017-08-01
Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.
Numerical simulation of SU(2)c high density state
International Nuclear Information System (INIS)
Muroya, Shin; Nakamura, Atsushi; Nonaka, Chiho
2003-01-01
We report a study of the high baryon number density system with use of the two-color lattice QCD with Wilson fermions[1]. First we investigate thermodynamical quantities such as the Polyakov line, gluon energy density, and baryon number density in the (κ, μ) plane, where κ and μ are the hopping parameter and chemical potential, respectively. Then we calculate propagators of meson (q-barΓq) and baryon (qΓq) states in addition to the potential between quark lines. (author)
Studies on the Action Potential From a Thermodynamic Perspective
DEFF Research Database (Denmark)
Wang, Tian
and nerves with ganglia. (2) Attempts have been made to measure the temperature change associated with an action potential as well as an oscillation reaction (Briggs-Rauscher reaction) that shares the adiabatic feature. It turns out that some practical issues need to be solved for the temperature measurement...... of the nerve impulses, while the measured temperature change during the oscillation reaction suggests that there are a reversible adiabatic process and a dissipative process. (3) Local anesthetic e↵ect on nerves is studied. Local anesthetic lidocaine causes a significant stimulus threshold shift of the action......Nerve impulse, also called action potential, has mostly been considered as a pure electrical phenomenon. However, changes in dimensions, e.g. thickness and length, and in temperature along with action potentials have been observed, which indicates that the nerve is a thermodynamic system. The work...
Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.
2017-01-01
Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.
Speeds of Propagation in Classical and Relativistic Extended Thermodynamics
Directory of Open Access Journals (Sweden)
Müller Ingo
1999-01-01
Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-11-01
The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations.
Towards Thermodynamics with Generalized Uncertainty Principle
International Nuclear Information System (INIS)
Moussa, Mohamed; Farag Ali, Ahmed
2014-01-01
Various frameworks of quantum gravity predict a modification in the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP). Introducing quantum gravity effect makes a considerable change in the density of states inside the volume of the phase space which changes the statistical and thermodynamical properties of any physical system. In this paper we investigate the modification in thermodynamic properties of ideal gases and photon gas. The partition function is calculated and using it we calculated a considerable growth in the thermodynamical functions for these considered systems. The growth may happen due to an additional repulsive force between constitutes of gases which may be due to the existence of GUP, hence predicting a considerable increase in the entropy of the system. Besides, by applying GUP on an ideal gas in a trapped potential, it is found that GUP assumes a minimum measurable value of thermal wavelength of particles which agrees with discrete nature of the space that has been derived in previous studies from the GUP
Thermodynamic theory of equilibrium fluctuations
International Nuclear Information System (INIS)
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype
Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.
2018-03-01
In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.
Perturbative entanglement thermodynamics for AdS spacetime: renormalization
International Nuclear Information System (INIS)
Mishra, Rohit; Singh, Harvendra
2015-01-01
We study the effect of charged excitations in the AdS spacetime on the first law of entanglement thermodynamics. It is found that ‘boosted’ AdS black holes give rise to a more general form of first law which includes chemical potential and charge density. To obtain this result we have to resort to a second order perturbative calculation of entanglement entropy for small size subsystems. At first order the form of entanglement law remains unchanged even in the presence of charged excitations. But the thermodynamic quantities have to be appropriately ‘renormalized’ at the second order due to the corrections. We work in the perturbative regime where T thermal ≪T E .
Molecular thermodynamics of polymer melts at interfaces
International Nuclear Information System (INIS)
Theodorou, D.N.
1988-09-01
A lattice model is developed for the prediction of structure and thermodynamic properties at free polymer melt surfaces and polymer melt/solid interfaces. Density variations in the interfacial region are taken into account by introducing voids in the lattice, in the spirit of the equation of state theory of Sanchez and Lacombe. Intramolecular energy (chain stiffness) effects are explicitly incorporated. The model is derived through a rigorous statistical mechanical and thermodynamic analysis, which is based on the concept of availability. Two cases are considered: ''full equilibrium,'' whereby the interfacial polymer is taken as free to exchange heat, work and mass with a bulk polymer phase at given temperature and pressure; and ''restricted equilibrium,'' whereby a thin polymer film is allowed to equilibrate locally in response to ambient temperature and pressure, but in which chains do not necessarily have the same chemical potential as in the unconstrained bulk. Techniques are developed for calculating surface tension, adhesion tension, density profiles, chain shape, bond orientation, as well as the distribution of segments of various orders in the interfacial region. 28 refs., 6 figs
International Nuclear Information System (INIS)
Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan
2015-01-01
This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers
DEFF Research Database (Denmark)
Greeley, Jeffrey Philip; Nørskov, Jens Kehlet
2007-01-01
A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...
International Nuclear Information System (INIS)
Ali, M A; Nasir, M T; Khatun, M R; Naqib, S H; Islam, A K M A
2016-01-01
The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc 2 AlC are calculated using density functional theory (DFT). The structural properties of Sc 2 AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy ( F ), internal energy ( E ), entropy ( S ), and specific heat capacity ( C v ) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector. (paper)
Watts, Heath D; Mohamed, Mohamed Naseer Ali; Kubicki, James D
2011-12-21
Five potential reaction mechanisms, each leading to the formation of an α-O-4-linked coniferyl alcohol dimer, and one scheme leading to the formation of a recently proposed free-radical coniferyl alcohol trimer were assessed using density functional theory (DFT) calculations. These potential reaction mechanisms were evaluated using both the calculated Gibbs free energies, to predict the spontaneity of the constituent reactions, and the electron-density mapped Fukui function, to determine the most reactive sites of each intermediate species. The results indicate that each reaction in one of the six mechanisms is thermodynamically favorable to those in the other mechanisms; what is more, the Fukui function for each free radical intermediate corroborates with the thermochemical results for this mechanism. This mechanism proceeds via the formation of two distinct free-radical intermediates, which then react to produce the four α-O-4 stereoisomers.
Electrochemical thermodynamic measurement system
Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA
2009-09-29
The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.
Thermodynamics in Loop Quantum Cosmology
International Nuclear Information System (INIS)
Li, L.F.; Zhu, J.Y.
2009-01-01
Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.
Clarifying the link between von Neumann and thermodynamic entropies
Deville, Alain; Deville, Yannick
2013-01-01
The state of a quantum system being described by a density operator ρ, quantum statistical mechanics calls the quantity - kTr( ρln ρ), introduced by von Neumann, its von Neumann or statistical entropy. A 1999 Shenker's paper initiated a debate about its link with the entropy of phenomenological thermodynamics. Referring to Gibbs's and von Neumann's founding texts, we replace von Neumann's 1932 contribution in its historical context, after Gibbs's 1902 treatise and before the creation of the information entropy concept, which places boundaries into the debate. Reexamining von Neumann's reasoning, we stress that the part of his reasoning implied in the debate mainly uses thermodynamics, not quantum mechanics, and identify two implicit postulates. We thoroughly examine Shenker's and ensuing papers, insisting upon the presence of open thermodynamical subsystems, imposing us the use of the chemical potential concept. We briefly mention Landau's approach to the quantum entropy. On the whole, it is shown that von Neumann's viewpoint is right, and why Shenker's claim that von Neumann entropy "is not the quantum-mechanical correlate of thermodynamic entropy" can't be retained.
Mathematical foundations of thermodynamics
Giles, R; Stark, M; Ulam, S
2013-01-01
Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.
Reiss, Howard
1997-01-01
Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m
Perturbation theory of the quark-gluon plasma at finite temperature and baryon number density
International Nuclear Information System (INIS)
Anon.
1984-01-01
At very high energy densities, hadronic matter becomes an almost ideal gas of quarks and gluons. In these circumstances, the effects of particle interactions are small, and to some order in perturbation theory are computable by methods involving weak coupling expansions. To illustrate the perturbative methods which may be used to compute the thermodynamic potential, the results and methods which are employed to compute to first order in α/sub s/ are reviewed. The problem of the plasmon effect, and the necessity of using non-perturbative methods when going beyond first order in α/sub s/ in evaluating the thermodynamic potential are discussed. The results at zero temperature and finite baryon number density to second order in α/sub s/ are also reviewed. The method of renormalization group improving the weak coupling expansions by replacing the expansion by an expansion in a temperature and baryon number density dependent coupling which approaches zero at high energy densities is discussed. Non-perturbative effects such as instantons are briefly mentioned and the breakdown of perturbation theory for the thermodynamical at order α/sub s/ 3 for finite temperature is presented
Statistical density of nuclear excited states
Directory of Open Access Journals (Sweden)
V. M. Kolomietz
2015-10-01
Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.
Braun-Le Chatelier principle in dissipative thermodynamics
Pavelka, Michal; Grmela, Miroslav
2016-01-01
Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.
Thermodynamics of adaptive molecular resolution.
Delgado-Buscalioni, R
2016-11-13
A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Statistical thermodynamics understanding the properties of macroscopic systems
Fai, Lukong Cornelius
2012-01-01
Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th
Thermodynamic properties of sticky electrolytes in the HNC/MS approximation
International Nuclear Information System (INIS)
Herrera, J.N.; Blum, L.
1991-01-01
We study an approximation for a model which combines the sticky potential of Baxter and charged spheres. In the hypernetted chain (HNC)/mean spherical approximation (MSA), simple expressions for the thermodynamic functions are obtained. There equations should be useful in representing the properties of real electrolytes. Approximate expressions that are similar to those of the primitive model are obtained, for low densities (concentrations) of the electrolyte (Author)
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; Gordon, Margaret E.; Bryan, Charles R.
2018-04-01
Elastic and thermodynamic properties of negative thermal expansion (NTE) α -ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ∼ 2 % with PBEsol and ∼ 6 % with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be CP0 = 192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.
Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.
2018-06-01
Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.
Thermodynamic study of selected monoterpenes III
International Nuclear Information System (INIS)
Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad
2014-01-01
Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description
Kou, Jisheng
2017-12-09
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.
A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding
International Nuclear Information System (INIS)
Stout, R.B.
1989-10-01
Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs
Thermodynamic optimization of the Cu-Nd system
International Nuclear Information System (INIS)
Wang Peisheng; Zhou Liangcai; Du Yong; Xu Honghui; Liu Shuhong; Chen Li; Ouyang Yifang
2011-01-01
Research highlights: → The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd were calculated using DFT. → The thermodynamic constraints to eliminate the artificial phase relations were imposed during the thermodynamic optimization procedure. → The Cu-Nd system was optimized under the thermodynamic constraints. - Abstract: The thermodynamic constraints to eliminate artificial phase relations were introduced with the Cu-Nd system as an example. The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd are calculated using density functional theory. Taking into account all the experimental data and the first-principles calculated enthalpies of formation of these compounds, the thermodynamic optimization of the Cu-Nd system was performed under the proposed thermodynamic constraints. It is demonstrated that the thermodynamic constraints are critical to obtain a set of thermodynamic parameters for the Cu-Nd system, which can avoid the appearance of all the artificial phase relations.
Granet, Irving
2014-01-01
Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M
2017-07-24
Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.
Level density from realistic nuclear potentials
International Nuclear Information System (INIS)
Calboreanu, A.
2006-01-01
Nuclear level density of some nuclei is calculated using a realistic set of single particle states (sps). These states are derived from the parameterization of nuclear potentials that describe the observed sps over a large number of nuclei. This approach has the advantage that one can infer level density for nuclei that are inaccessible for a direct study, but are very important in astrophysical processes such as those close to the drip lines. Level densities at high excitation energies are very sensitive to the actual set of sps. The fact that the sps spectrum is finite has extraordinary consequences upon nuclear reaction yields due to the leveling-off of the level density at extremely high excitation energies wrongly attributed so far to other nuclear effects. Single-particle level density parameter a parameter is extracted by fitting the calculated densities to the standard Bethe formula
Thermodynamic study of selected monoterpenes II
International Nuclear Information System (INIS)
Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad
2014-01-01
Highlights: • (−)-Borneol, (−)-camphor, (±)-camphene, and (+)-fenchone were studied. • New thermodynamic data were measured and calculated. • Most of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-borneol, (−)-camphor, (±)-camphene, and (+)-fenchone is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range from (238 to 308) K. Heat capacities of condensed phases were measured by Tian–Calvet calorimetry in the temperature interval from (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from subambient temperatures up to the fusion temperatures. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description
Keshavarzi, Ezat; Kamalvand, Mohammad
2009-04-23
The structure and properties of fluids confined in nanopores may show a dramatic departure from macroscopic bulk fluids. The main reason for this difference lies in the influence of system walls. In addition to the entropic wall effect, system walls can significantly change the energy of the confined fluid compared to macroscopic bulk fluids. The energy effect of the walls on a nanoconfined fluid appears in two forms. The first effect is the cutting off of the intermolecular interactions by the walls, which appears for example in the integrals for calculation of the thermodynamic properties. The second wall effect involves the wall-molecule interactions. In such confined fluids, the introduction of wall forces and the competition between fluid-wall and fluid-fluid forces could lead to interesting thermodynamic properties, including new kinds of phase transitions not observed in the macroscopic fluid systems. In this article, we use the perturbative fundamental measure density functional theory to study energy effects on the structure and properties of a hard core two-Yukawa fluid confined in a nanoslit. Our results show the changes undergone by the structure and phase transition of the nanoconfined fluids as a result of energy effects.
Fluctuating Thermodynamics for Biological Processes
Ham, Sihyun
Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.
Thermodynamics and statistical physics. 2. rev. ed.
International Nuclear Information System (INIS)
Schnakenberg, J.
2002-01-01
This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas
Application of Statistical Thermodynamics in Refrigeration
International Nuclear Information System (INIS)
Avsec, J.; Marcic, M.
1999-01-01
The paper presents the mathematical model for computing the thermodynamical properties in the liquid, gas and two-phase domain by means of statistical thermodynamics. The paper features all important components (translation, rotation, internal rotation, vibration, intermolecular potential energy and influence of electron and nuclei excitation). To calculate the thermodynamic properties of real gases, we have developed the cluster theory, which yields better results than the virial equation. In case of real liquids, the Johnson-Zollweg-Gubbins model based on the modified Benedict-Webb-Rubin (BWR) equation was applied. The Lennard-Jones intermolecular potential was used. The analytical results are compared with the thermodynamical data and models obtained from classical thermodynamics, and they show relatively good agreement. (author)
The thermodynamical foundation of electronic conduction in solids
Bringuier, E.
2018-03-01
In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
Directory of Open Access Journals (Sweden)
Jen-Tsung Hsiang
2018-05-01
Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for
Kou, Jisheng
2016-11-25
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.
Patching the Exchange-Correlation Potential in Density Functional Theory.
Huang, Chen
2016-05-10
A method for directly patching exchange-correlation (XC) potentials in materials is derived. The electron density of a system is partitioned into subsystem densities by dividing its Kohn-Sham (KS) potential among the subsystems. Inside each subsystem, its projected KS potential is required to become the total system's KS potential. This requirement, together with the nearsightedness principle of electronic matters, ensures that the electronic structures inside subsystems can be good approximations to the total system's electronic structure. The nearsightedness principle also ensures that subsystem densities could be well localized in their regions, making it possible to use high-level methods to invert the XC potentials for subsystem densities. Two XC patching methods are developed. In the local XC patching method, the total system's XC potential is improved in the cluster region. We show that the coupling between a cluster and its environment is important for achieving a fast convergence of the electronic structure in the cluster region. In the global XC patching method, we discuss how to patch the subsystem XC potentials to construct the XC potential in the total system, aiming to scale up high-level quantum mechanics simulations of materials. Proof-of-principle examples are given.
Charge density glass dynamics - Soft potentials and soft modes
Energy Technology Data Exchange (ETDEWEB)
Biljakovic, K., E-mail: katica@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Staresinic, D., E-mail: damirs@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Lasjaunias, J.C., E-mail: jean-claude.lasjaunias@pop3.grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Remenyi, G., E-mail: Gyorgy.Remenyi@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Melin, R., E-mail: Regis.Melin@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Monceau, P., E-mail: pierre.monceau@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Sahling, S., E-mail: sven.olaf@gmail.com [Institut fuer Festkoerperphysik, Universitaet Dresden, D-01062, Dresden (Germany)
2012-06-01
An universal fingerprint of glasses has been found in low-temperature thermodynamic properties of charge/spin density wave (C/SDW) systems. Deviations from the well-known Debye, elastic continuum prediction for specific heat (flat C{sub p}/T{sup 3} plot) appear as two anomalies; the upturn below 1 K and a broad bump at T{approx}10 K (named Boson peak in glasses). The first one, inherent of localized two level systems within the shalow corrugated phase space, exhibits slow relaxation with the complex dynamics. The second one, 'Boson peak-like peak' was attributed to the pinned mode and incomplete softening of CDW superstructural mode. We discuss similar C{sub p}(T) features found also in incommensurate dielectrics with well documented soft-mode anomalies.
Density-density functionals and effective potentials in many-body electronic structure calculations
International Nuclear Information System (INIS)
Reboredo, Fernando A.; Kent, Paul R.
2008-01-01
We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.
On the thermodynamic stability of the generalized Chaplygin gas
International Nuclear Information System (INIS)
Santos, F.C.; Bedran, M.L.; Soares, V.
2006-01-01
The main purpose of this Letter is to discuss the temperature behavior and the thermodynamic stability of an exotic fluid known as generalized Chaplygin gas considering only general thermodynamics. This fluid is considered a perfect fluid which obeys an adiabatic equation of state like P=-A/ρ α , where P and ρ are respectively the pressure and energy density; the parameter A is a positive universal constant and α>0. It is remarked that if the energy density of the fluid is a function of volume only, the temperature of the fluid remains zero at any pressure or volume, violating the third law of thermodynamics. We have determined a scenario where its thermal equation of state depends on temperature only and the fluid presents thermodynamic stability during any expansion process. Such a scenario also reveals that the fluid cools down through the expansion without facing any critical point or phase transition
Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters
2016-06-01
unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under
The Thermal Entropy Density of Spacetime
Directory of Open Access Journals (Sweden)
Rongjia Yang
2013-01-01
Full Text Available Introducing the notion of thermal entropy density via the first law of thermodynamics and assuming the Einstein equation as an equation of thermal state, we obtain the thermal entropy density of any arbitrary spacetime without assuming a temperature or a horizon. The results confirm that there is a profound connection between gravity and thermodynamics.
New astrophysical school of thermodynamics. Space dynamics and gravitism
Energy Technology Data Exchange (ETDEWEB)
Gal-Or, B [Technion-Israel Inst. of Tech., Haifa. Dept. of Aeronautical Engineering
1978-07-01
Much verified information has been accumulated in recent years which shows that many fundamental concepts involving classical physics, thermodynamics, astrophysics and the general theory of relativity are strongly coupled together. This evidence is employed in this paper to explain principles of the astrophysical school of thermodynamics; a growing revolutionary school which deduces thermodynamics, energy dissipation, and time anisotropies from the Newtonian and Einsteinian theories of gravitation and from the dynamics of radiation in 'unsaturable' (intercluster) space. Accordingly, the density of radiation and the dynamics of ('unsaturable') outer space affect all processes in the galactic media, in the solar system, in the magnetosphere and on Earth. The origin of all observed irreversibilities in nature - of time, of all time anisotropics, of energy dissipation, of T-violations in 'elementary particles', of retarded potentials in electrodynamics, of the biological clocks, and of biological arrows of time - is one; it is the radiation unsaturability of space. But, since this unsaturability and gravitation are interconnected, the origin of asymmetries, structure, and thermodynamics is explained within the framework of the Newtonian and Einsteinian theories of gravitation. The theory presented here forms a part of a general approach called gravitism, which unifies some other disciplinary studies in the natural sciences with a unified approach to gravitation and the theory of time.
Equations of state of nonspherical fluids by spherical intermolecular potentials
International Nuclear Information System (INIS)
Bastea, S; Ree, F H
1999-01-01
The equilibrium properties of anisotropic molecular fluids can be in principle calculated in a statistical mechanics framework, but the theory is generally too cumbersome for many practical applications. Fortunately, at high densities and temperatures the anisotropy can be averaged-out by means of a density and temperature independent potential (the median) that produces reliable thermodynamics[1,2]. The proposal of Shaw and Johnson[1], which turns out to be the so-called median potential[2], is very successful in predicting the thermodynamics of simple fluids such as N(sub 2) and CO(sub 2) at reasonable high pressures and temperatures[3]. Lebowitz and Percus[2] pointed out some time ago that the success of this approximation could perhaps be understood in terms of a simple theory that treats the asphericity as a perturbation. The median appears to be the best choice for hard nonspherical potential[4], which may explain its success for fluids at high densities, where the hard core contribution is known to be dominant
Thermodynamics of Lovelock-Lifshitz black branes
International Nuclear Information System (INIS)
Dehghani, M. H.; Mann, R. B.
2010-01-01
We investigate the thermodynamics of Lovelock-Lifshitz black branes. We begin by introducing the finite action of third order Lovelock gravity in the presence of a massive vector field for a flat boundary, and use it to compute the energy density of these black branes. Using the field equations, we find a conserved quantity along the r coordinate that relates the metric parameters at the horizon and at infinity. Remarkably, though the subleading large-r behavior of Lovelock-Lifshitz black branes differs substantively from their Einsteinian Lifshitz counterparts, we find that the relationship between the energy density, temperature, and entropy density is unchanged from Einsteinian gravity. Using the first law of thermodynamics to obtain the relationship between entropy and temperature, we find that it too is the same as the Einsteinian case, apart from a constant of integration that depends on the Lovelock coefficients.
Tables of thermodynamic properties of sodium
International Nuclear Information System (INIS)
Fink, J.K.
1982-06-01
The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units
A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics
Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.
2017-12-01
The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as
Clapham, David E; Miller, Christopher
2011-12-06
The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.
Thermodynamic properties of fluids from Fluctuation Solution Theory
International Nuclear Information System (INIS)
O'Connell, J.P.
1990-01-01
Fluctuation Theory develops exact relations between integrals of molecular correlation functions and concentration derivatives of pressure and chemical potential. These quantities can be usefully correlated, particularly for mechanical and thermal properties of pure and mixed dense fluids and for activities of strongly nonideal liquid solutions. The expressions yield unique formulae for the desirable thermodynamic properties of activity and density. The molecular theory origins of the flucuation properties, their behavior for systems of technical interest and some of their successful correlations will be described. Suggestions for fruitful directions will be suggested
Standard electrode potential, Tafel equation, and the solvation thermodynamics.
Matyushov, Dmitry V
2009-06-21
Equilibrium in the electronic subsystem across the solution-metal interface is considered to connect the standard electrode potential to the statistics of localized electronic states in solution. We argue that a correct derivation of the Nernst equation for the electrode potential requires a careful separation of the relevant time scales. An equation for the standard metal potential is derived linking it to the thermodynamics of solvation. The Anderson-Newns model for electronic delocalization between the solution and the electrode is combined with a bilinear model of solute-solvent coupling introducing nonlinear solvation into the theory of heterogeneous electron transfer. We therefore are capable of addressing the question of how nonlinear solvation affects electrochemical observables. The transfer coefficient of electrode kinetics is shown to be equal to the derivative of the free energy, or generalized force, required to shift the unoccupied electronic level in the bulk. The transfer coefficient thus directly quantifies the extent of nonlinear solvation of the redox couple. The current model allows the transfer coefficient to deviate from the value of 0.5 of the linear solvation models at zero electrode overpotential. The electrode current curves become asymmetric in respect to the change in the sign of the electrode overpotential.
Contribution to the thermodynamic description of the corium - The U-Zr-O system
Quaini, A.; Guéneau, C.; Gossé, S.; Dupin, N.; Sundman, B.; Brackx, E.; Domenger, R.; Kurata, M.; Hodaj, F.
2018-04-01
In order to understand the stratification process that may occur in the late phase of the fuel degradation during a severe accident in a PWR, the thermodynamic knowledge of the U-Zr-O system is crucial. The presence of a miscibility gap in the U-Zr-O liquid phase may lead to a stratified configuration, which will impact the accidental scenario management. The aim of this work was to obtain new experimental data in the U-Zr-O liquid miscibility gap. New tie-line data were provided at 2567 ± 25 K. The related thermodynamic models were reassessed using present data and literature values. The reassessed model will be implemented in the TAF-ID international database. The composition and density of phases potentially formed during stratification will be predicted by coupling current thermodynamic model with thermal-hydraulics codes.
Lee, B H; Lee, C H; Seong Baek Seok
2000-01-01
A density functional perturbative approximation, which is based on the density functional expansion of the one-particle direct correlation function of model fluids with respect to the bulk density, has been employed to investigate the influence of the potential well and the potential barrier on the density behavior of confined-model fluids. The mean spherical approximation has been used to calculate the two-particle direct correlation function of the model fluids. At lower densities, the density distributions are strongly affected by the barrier height and the well depth of the model potential, the contribution from the short-range repulsive part being especially important. However, the effects of the barrier height and the well depth of the model potential decrease with increasing bulk density. The calculated results also show that in the region where the effect of the wall-fluid interaction is relatively weak, the square-barrier part of the model potential leads to a nonuniformity in the density distributio...
Thermodynamical inequivalence of quantum stress-energy and spin tensors
International Nuclear Information System (INIS)
Becattini, F.; Tinti, L.
2011-01-01
It is shown that different couples of stress-energy and spin tensors of quantum-relativistic fields, which would be otherwise equivalent, are in fact inequivalent if the second law of thermodynamics is taken into account. The proof of the inequivalence is based on the analysis of a macroscopic system at full thermodynamical equilibrium with a macroscopic total angular momentum and a specific instance is given for the free Dirac field, for which we show that the canonical and Belinfante stress-energy tensors are not equivalent. For this particular case, we show that the difference between the predicted angular momentum densities for a rotating system at full thermodynamical equilibrium is a quantum effect, persisting in the nonrelativistic limit, corresponding to a polarization of particles of the order of (ℎ/2π)ω/KT (ω being the angular velocity) and could in principle be measured experimentally. This result implies that specific stress-energy and spin tensors are physically meaningful even in the absence of gravitational coupling and raises the issue of finding the thermodynamically right (or the right class of) tensors. We argue that the maximization of the thermodynamic potential theoretically allows us to discriminate between two different couples, yet for the present we are unable to provide a theoretical method to single out the best couple of tensors in a given quantum field theory. The existence of a nonvanishing spin tensor would have major consequences in hydrodynamics, gravity and cosmology.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Nuclear thermodynamics below particle threshold
International Nuclear Information System (INIS)
Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.
2005-01-01
From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems
Making thermodynamic functions of nanosystems intensive
International Nuclear Information System (INIS)
Nassimi, A M; Parsafar, G A
2007-01-01
The potential energy of interaction among particles in many systems is proportional to r -α . In systems for which α< d, we encounter nonextensive (nonintensive) thermodynamic functions, where d is the space dimension. A scaling parameter, N-tilde, has been introduced to make the nonextensive (nonintensive) thermodynamic functions of such systems extensive (intensive). Our simulation results show that this parameter is not capable of making the thermodynamic functions of a nanosystem extensive (intensive). Here we have presented a theoretical justification for N-tilde. Then we have generalized this scaling parameter to be capable of making the nonextensive (nonintensive) thermodynamic functions of nanosystems extensive (intensive). This generalized parameter is proportional to the potential energy per particle at zero temperature
Thermodynamic study of fluid in terms of equation of state containing physical parameters
International Nuclear Information System (INIS)
Khasare, S. B.
2015-01-01
We introduce a simple condition for one mole fluid by considering the thermodynamics of molecules pointing towards the effective potential for the cluster. Efforts are made to estimate new physical parameter f in liquid state using the equation of state containing only two physical parameters such as the hard sphere diameter and binding energy. The temperature dependence of the structural properties and the thermodynamic behavior of the clusters are studied. Computations based on f predict the variation of numbers of particles at the contact point of the molecular cavity (radial distribution function). From the thermodynamic profile of the fluid, the model results are discussed in terms of the cavity due to the closed surface along with suitable energy. The present calculation is based upon the sample thermodynamic data for n-hexanol, such as the ultrasonic wave, density, volume expansion coefficient, and ratio of specific heat in the liquid state, and it is consistent with the thermodynamic relations containing physical parameters such as size and energy. Since the data is restricted to n-hexanol, we avoid giving the physical meaning of f, which is the key parameter studied in the present work. (paper)
A Hamiltonian approach to Thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A Hamiltonian approach to Thermodynamics
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Analytical exploration of the thermodynamic potentials by using symbolic computation software
International Nuclear Information System (INIS)
Hantsaridou, Anastasia P; Polatoglou, Hariton M
2005-01-01
Thermodynamics is a very general theory, based on fundamental symmetries. It generalizes classical mechanics and incorporates theoretical concepts such as field and field equations. Although all these ingredients are of the highest importance for a scientist, they are not given the attention they perhaps deserve in most undergraduate courses. Nowadays, powerful computers in conjunction with equally powerful software can ease the exploration of the crucial ideas of thermodynamics. The purpose of the present work is to show how the utilization of symbolic computation software can lead to a complementary understanding of thermodynamics. The method was applied to first and second year physics students in the Aristotle University of Thessaloniki (Greece) during the 2002-2003 academic year. The results indicate that symbolic computation software is appropriate not only for enhancing the teaching of the fundamental principles in thermodynamics and their applications, but also for increasing students' motivation for learning
The first principles study of elastic and thermodynamic properties of ZnSe
Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya
2018-05-01
The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.
Jacobs, Michael H G; Schmid-Fetzer, Rainer; van den Berg, Arie P.
2017-01-01
In a previous paper, we showed a technique that simplifies Kieffer’s lattice vibrational method by representing the vibrational density of states with multiple Einstein frequencies. Here, we show that this technique can be applied to construct a thermodynamic database that accurately represents
Some consideration on the thermodynamics of the universe
International Nuclear Information System (INIS)
Hoenl, H.
1977-01-01
It is shown that the thermodynamics of the universe display certain features that are foreign to classical thermodynamics, the discrepancy having its origin in the cosmic expansion of the universe. This is apparent, for example, in the outstanding fact that in the early stages of the universe (some 10 5 or 10 6 years after the Big Bang) the distribution of matter was essentially homogeneous and, owing to the extremely high density and temperature, was in thermodynamic equilibrium. However, in its present state, after the formation of the celestial bodies, (the inhomogeneous phase of the universe), it has moved far away from thermodynamic equilibrium. It is stated that to prove entropy conservation during the homogeneous phase of the universe, one only needs the most general thermodynamical-statistical principles. (U,K)
DEFF Research Database (Denmark)
Friisberg, Ida Marie; Costigliola, Lorenzo; Dyre, Jeppe C.
2017-01-01
This paper investigates the relation between the density-scaling exponent γ and the virial potentialenergy coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ syste...
Thermodynamic data-base for metal fluorides
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others
2001-05-01
This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.
Thermodynamic data-base for metal fluorides
International Nuclear Information System (INIS)
Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others
2001-05-01
This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project
On singular interaction potentials in classical statistical mechanics
International Nuclear Information System (INIS)
Zagrebnov, V.A.; Pastur, L.A.
1978-01-01
A classical system of particles with stable two-body interaction potential is considered. It is shown that for a certain class of highly singular stable two-body potentials a cut-off procedure preserves the stability of the potential. The thermodynamical potentials (pressure and free energy density) and correlation functions are proved to have the property of asymptotic independence with respect to the continuation of the interaction potentials near singularity
Self-consistency condition and high-density virial theorem in relativistic many-particle systems
International Nuclear Information System (INIS)
Kalman, G.; Canuto, V.; Datta, B.
1976-01-01
In order for the thermodynamic and kinetic definitions of the chemical potential and the pressure to lead to identical results a nontrivial self-consistency criterion has to be satisfied. This, in turn, leads to a virial-like theorem in the high-density limit
Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context
Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn
2015-04-01
The fact that persistent spatial organization in catchments exists has inspired many scientists to speculate whether this is the manifestation of an underlying organizing principle. In line with these studies we developed and tested a thermodynamic framework to link rainfall runoff generation and self-organization in catchments. From a thermodynamic perspective any water mass flux is equal to a "potential gradient" divided by a "resistance", and fluxes deplete due to the second law of thermodynamics their driving gradients. Relevant potentials controlling rainfall runoff are soil water potentials, piezometric heads and surface water levels and their gradients are associated with spatial differences in associated forms of free energy. Rainfall runoff processes thus are associated with conversions of capillary binding energy, potential energy and kinetic energy. These conversions reflect energy conservation and irreversibility as they imply small amounts of dissipation of free energy into heat and thus production of entropy. Energy conversions during rainfall runoff transformation are, though being small, nevertheless of key importance, because they are related to the partitioning of incoming rainfall mass into runoff components and storage dynamics. This splitting and the subsequent subsurface dynamics is strongly controlled by preferential flow paths, which in turn largely influence hydrologically relevant resistance fields in larger control volumes. The field of subsurface flow resistances depends for instance on soil hydraulic conductivity, its spatial covariance and soil moisture. Apparent preferential pathways reduce, depending on their density, topology and spatial extent, subsurface flow resistances along their main extent, resulting in accelerated fluxes against the driving gradient. This implies an enlarged power in the subsurface flux thereby either an enlarged free energy export from the control volume or an increased depletion of internal driving
Kou, Jisheng; Sun, Shuyu
2017-01-01
In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.
Kou, Jisheng
2017-12-06
In this paper, we consider a diffuse-interface gas-liquid two-phase flow model with inhomogeneous temperatures, in which we employ the Peng-Robinson equation of state and the temperature-dependent influence parameter instead of the van der Waals equation of state and the constant influence parameter used in the existing models. As a result, our model can characterize accurately the physical behaviors of numerous realistic gas-liquid fluids, especially hydrocarbons. Furthermore, we prove a relation associating the pressure gradient with the gradients of temperature and chemical potential, and thereby derive a new formulation of the momentum balance equation, which shows that gradients of the chemical potential and temperature become the primary driving force of the fluid motion. It is rigorously proved that the new formulations of the model obey the first and second laws of thermodynamics. To design efficient numerical methods, we prove that Helmholtz free energy density is a concave function with respect to the temperature under certain physical conditions. Based on the proposed modeling formulations and the convex-concave splitting of Helmholtz free energy density, we propose a novel thermodynamically stable numerical scheme. We rigorously prove that the proposed method satisfies the first and second laws of thermodynamics. Finally, numerical tests are carried out to verify the effectiveness of the proposed simulation method.
Thermodynamics of hairy black holes in Lovelock gravity
Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.
2017-02-01
We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.
Biogenic methane potential of marine sediments. Application of chemical thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology
2013-08-01
Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in
Thermodynamics of freezing and melting
DEFF Research Database (Denmark)
Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas
2016-01-01
phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...
Obeidat, Abdalla; Abu-Ghazleh, Hind
2018-06-01
Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.
Quantum corrections to thermodynamics of quasitopological black holes
Directory of Open Access Journals (Sweden)
Sudhaker Upadhyay
2017-12-01
Full Text Available Based on the modification to area-law due to thermal fluctuation at small horizon radius, we investigate the thermodynamics of charged quasitopological and charged rotating quasitopological black holes. In particular, we derive the leading-order corrections to the Gibbs free energy, charge and total mass densities. In order to analyze the behavior of the thermal fluctuations on the thermodynamics of small black holes, we draw a comparative analysis between the first-order corrected and original thermodynamical quantities. We also examine the stability and bound points of such black holes under effect of leading-order corrections.
On black hole thermodynamics with a momentum relaxation
International Nuclear Information System (INIS)
Park, Chanyong
2016-01-01
We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range. (paper)
Computer codes used in the calculation of high-temperature thermodynamic properties of sodium
International Nuclear Information System (INIS)
Fink, J.K.
1979-12-01
Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region
Thermodynamic properties of sea air
Directory of Open Access Journals (Sweden)
R. Feistel
2010-02-01
Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.
In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.
The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.
Thermodynamics and Efficiency of a CuCl(aq)/HCl(aq) Electrolyzer
International Nuclear Information System (INIS)
Hall, Derek M.; Akinfiev, Nikolay N.; LaRow, Eric G.; Schatz, Richard S.; Lvov, Serguei N.
2014-01-01
The high ionic strength and complex speciation of the anolyte solution within the CuCl(aq)/HCl(aq) electrolytic cell have impeded predictions of the energy requirements for the cell's electrolytic reaction at 25 °C and 1 bar. After collecting experimental open circuit potential (OCP) data and comparing the values obtained with predictions from prospective thermodynamic models, an approach to predict thermodynamic values and the overall efficiency was formulated. The compositions of the experimental measurements ranged from 2-2.5 mol of CuCl(aq) with 8-9 mol of HCl(aq) per kilogram of water in anolyte solution and 8-9 mol of HCl(aq) per kilogram of water in catholyte solution. From the OCP data, it was found that activity coefficient and speciation effects were critical in predicting the Gibbs energy, entropy and thermodynamic (intrinsic maximum) efficiency of the electrolytic cell. At equilibrium, all thermodynamic functions of the anolyte redox reactions were the same after activity coefficients and speciation effects were taken into account. The electrochemical reactions’ Gibbs energy and entropy were found to be 9700 J/mol and 2.18 J/(mol K) at 25 °C and 1 bar, which indicated that the reactions required a small amount of electrical and thermal energy to proceed. With thermodynamic values for the electrolytic reaction and experimental data from a CuCl(aq)/HCl(aq) electrolytic cell, the voltage, current, thermodynamic and overall efficiency were calculated. The overall efficiency ranged from 15 to 95% depending on the current density
Thermodynamics of hairy black holes in Lovelock gravity
Energy Technology Data Exchange (ETDEWEB)
Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Tjoa, Erickson [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, 637371 (Singapore); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada)
2017-02-14
We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including ‘virtual triple points’ and the first example of a ‘λ-line’ — a line of second order phase transitions — in black hole thermodynamics.
Yang—Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement
International Nuclear Information System (INIS)
Hao Ya-Jiang; Yin Xiang-Guo
2011-01-01
By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases. (general)
Density of states in an optical speckle potential
International Nuclear Information System (INIS)
Falco, G. M.; Fedorenko, A. A.; Giacomelli, J.; Modugno, M.
2010-01-01
We study the single-particle density of states of a one-dimensional speckle potential, which is correlated and non-Gaussian. We consider both the repulsive and the attractive cases. The system is controlled by a single dimensionless parameter determined by the mass of the particle, the correlation length, and the average intensity of the field. Depending on the value of this parameter, the system exhibits different regimes, characterized by the localization properties of the eigenfunctions. We calculate the corresponding density of states using the statistical properties of the speckle potential. We find good agreement with the results of numerical simulations.
Zhou, S.; Solana, J. R.
2018-03-01
Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.
Space potential, temperature, and density profile measurements on RENTOR
International Nuclear Information System (INIS)
Schoch, P.M.
1983-05-01
Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed
Energy Technology Data Exchange (ETDEWEB)
Gilles, D
2005-07-01
This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)
Thermodynamical stability of FRW models with quintessence
Sharif, M.; Ashraf, Sara
2018-03-01
In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.
Can the nuclear symmetry potential at supra-saturation densities be negative?
International Nuclear Information System (INIS)
Yong Gaochan
2010-01-01
In the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central 197 Au+ 197 Au reaction at an incident beam energy of 400 MeV/nucleon, the effect of nuclear symmetry potential at supra-saturation densities on the preequilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron-to-proton ratio of lighter clusters with mass number A≤3[(n/p) A≤3 ] is larger than that of the heavier clusters with mass number A>3[(n/p) A>3 ], whereas for the negative symmetry potential at supra-saturation densities the (n/p) A≤3 is smaller than the (n/p) A>3 . This may be considered as a probe of the negative symmetry potential at supra-saturation densities.
Computational applications of the thermodynamic local potential: The case of pattern forming systems
International Nuclear Information System (INIS)
Hubert, J.Z.
1986-09-01
Using the thermodynamic local potential Φ a single variational principle may be formulated for a broad class of pattern formation phenomena (this class contains patterns which are: macroscopic, possess steady states, are degenerate at least with respect to one parameter, approach the steady state via fluctuations in the coarsely grained (macroscopic) phase space and so have no memory of the initial conditions). When a steady state is reached Φ assumes its minimum value with respect to distribution function and a maximum with respect to the actually assumed values of free parameters. (author)
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
Determination of the thermodynamic properties of water from the speed of sound
International Nuclear Information System (INIS)
Trusler, J.P. Martin; Lemmon, Eric W.
2017-01-01
Highlights: • We analyse error propagation in thermodynamic integration of fluid-phase sound speed data. • A new correlation of the speed of sound in liquid water is derived. • Thermodynamic integration is carried out for pure water. • Derived properties considered include density, isobaric expansivity and isobaric specific heat capacity. - Abstract: Thermodynamic properties of compressed liquids may be obtained from measurements of the speed of sound by means of thermodynamic integration subject to initial values of density and isobaric specific heat capacity along a single low-pressure isobar. In this paper, we present an analysis of the errors in the derived properties arising from perturbations in both the speed-of-sound surface and the initial values. These errors are described in first order by a pair of partial differential equations that we integrate for the example case of water with various scenarios for the errors in the sound speed and the initial values. The analysis shows that errors in either the speed of sound or the initial values of density that are rapidly oscillating functions of temperature have a disproportionately large influence on the derived properties, especially at low temperatures. In view of this, we have obtained a more accurate empirical representation of the recent experimental speed-of-sound data for water [Lin and Trusler, J. Chem. Phys. 136, (2012) 094511] and use this in a new thermodynamic integration to obtain derived properties including density, isobaric heat capacity and isobaric thermal expansivity at temperatures between (253.15 and 473.15) K at pressures up to 400 MPa. The densities obtained in this way are in very close agreement with those reported by Lin and Trusler, but the isobaric specific heat capacity and the isobaric expansivity both differ significantly in the extremes of low temperatures and high pressures.
The OpenCalphad thermodynamic software interface
Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G
2017-01-01
Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838
International Nuclear Information System (INIS)
Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto
2015-01-01
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model
Thermodynamic Property Model of Wide-Fluid Phase Propane
Directory of Open Access Journals (Sweden)
I Made Astina
2007-05-01
Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.
Kohn–Sham exchange-correlation potentials from second-order reduced density matrices
Energy Technology Data Exchange (ETDEWEB)
Cuevas-Saavedra, Rogelio; Staroverov, Viktor N., E-mail: vstarove@uwo.ca [Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 (Canada); Ayers, Paul W. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)
2015-12-28
We describe a practical algorithm for constructing the Kohn–Sham exchange-correlation potential corresponding to a given second-order reduced density matrix. Unlike conventional Kohn–Sham inversion methods in which such potentials are extracted from ground-state electron densities, the proposed technique delivers unambiguous results in finite basis sets. The approach can also be used to separate approximately the exchange and correlation potentials for a many-electron system for which the reduced density matrix is known. The algorithm is implemented for configuration-interaction wave functions and its performance is illustrated with numerical examples.
Thermodynamic understanding on swelling pressure of bentonite buffer
International Nuclear Information System (INIS)
Sato, Haruo
2007-01-01
Smectite (montmorillonite) is a major clay mineral constituent of the bentonite buffer and backfilling materials to be used for the geological disposal of high-level radioactive waste. Swelling pressure of the bentonite buffer occurring in the permeation process of moisture was estimated based on thermodynamic theory and the thermodynamic data of interlayer water in smectite in this study. The relative partial molar Gibbs free energies (ΔG H2O ) of water on the smectite surface were measured as a function of water content (0-83%) in a dry density range of 0.6-0.9 Mg/m 3 . Purified Na-smectite of which interlayer cations were exchanged with Na + ions and soluble salts were completely removed, was used in this study. Obtained ΔG H2O decreased with an increase of water content in the range of water content lower than about 40%, and similar trends were obtained to data of Kunipia-F bentonite (Na-bentonite) of which smectite content was approximately 100 wt.%. From the specific surface area of smectite (ca. 800 m 2 /g) and the correlation between ΔG H2O and water content, water affected from the surface of smectite was estimated to be up to approximately 2 water layers. Swelling pressure versus smectite partial density (montmorillonite partial density) was estimated based on ΔG H2O from the chemical potential balance of water in equilibrium between the free water and moisturized smectite, and compared to data measured for various kinds of bentonites of which smectite contents were respectively different. The estimated swelling pressures were in good agreement with the measured data. (author)
Pineda, Evan Jorge; Waas, Anthony M.
2013-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.
Experimental observations of anomalous potential drops over ion density cavities
International Nuclear Information System (INIS)
Bohm, M.
1991-08-01
Experiments are reported showing the plasma potential response when a step voltage is applied over the plasma column between the two plasma sources in a triple plasma machine. The time resolution is sufficient to resolve potential variations caused essentially by the electron motion, and two independent probe methods are used to obtain this time resolution. Depending on the initial conditions two different responses were observed on the time scale of the electron motion. When the initial ion density varies along the plasma column and has a local minimum (that is, forms an ion density cavity), the applied potential drop becomes distributed over the cavity after a few electron transit times. Later the profile steepens to a double layer on the time scale of the ion motion. The width of the cavity is comparable to the length of the plasma column. When the initial density is axially uniform, most of the potential drop instead concentrates to a narrow region at the low potential end of the plasma column after a few electron transit times. On the time scale of the ion motion this potential drop begins to propagate into the plasma as a double layer. The results obtained are consistent with those from numerical simulations with similar boundary conditions. Further experiments are necessary to get conclusive insight into the voltage supporting capability of an ion density cavity. (au) (34 refs.)
Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations
Eskandari Nasrabad, A.; Laghaei, R.
2018-04-01
Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.
Theoretical physics 5 thermodynamics
Nolting, Wolfgang
2017-01-01
This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...
The properties of W-boson condensation induced by fermion density at finite temperatures
International Nuclear Information System (INIS)
Perez Rojas, H.; Kalashnikov, O.K.
1987-01-01
Bose-Einstein condensation of W bosons induced by fermion density is discussed within models of unified interactions at T ≠ 0. We study in detail the Weinberg-Salam model in wich chemical potentials related to lepton number, electric charge and weak neutral charge are introduced. The one-loop thermodynamic potential is calculated and a set of equations representing the necessary condition for condensation is solved thogether with the corresponding chemical equilibrium conditions. The boundary of the condensate phase is established and estimations for the critical lepton density are given. It is found that for small lepton density W-boson condensation exists only in the finite temperature region, evaporating when T goes to zero. (orig.)
On the interfacial thermodynamics of nanoscale droplets and bubbles
Corti, David S.; Kerr, Karl J.; Torabi, Korosh
2011-07-01
We present a new self-consistent thermodynamic formalism for the interfacial properties of nanoscale embryos whose interiors do not exhibit bulklike behavior and are in complete equilibrium with the surrounding mother phase. In contrast to the standard Gibbsian analysis, whereby a bulk reference pressure based on the same temperature and chemical potentials of the mother phase is introduced, our approach naturally incorporates the normal pressure at the center of the embryo as an appropriate reference pressure. While the interfacial properties of small embryos that follow from the use of these two reference pressures are different, both methods yield by construction the same reversible work of embryo formation as well as consistency between their respective thermodynamic and mechanical routes to the surface tension. Hence, there is no a priori reason to select one method over another. Nevertheless, we argue, and demonstrate via a density-functional theory (with the local density approximation) analysis of embryo formation in the pure component Lennard-Jones fluid, that our new method generates more physically appealing trends. For example, within the new approach the surface tension at all locations of the dividing surface vanishes at the spinodal where the density profile spanning the embryo and mother phase becomes completely uniform (only the surface tension at the Gibbs surface of tension vanishes in the Gibbsian method at this same limit). Also, for bubbles, the location of the surface of tension now diverges at the spinodal, similar to the divergent behavior exhibited by the equimolar dividing surface (in the Gibbsian method, the location of the surface of tension vanishes instead). For droplets, the new method allows for the appearance of negative surface tensions (the Gibbsian method always yields positive tensions) when the normal pressures within the interior of the embryo become less than the bulk pressure of the surrounding vapor phase. Such a
Thermodynamics for Chemists, Physicists and Engineers
Hołyst, Robert
2012-01-01
Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...
International Nuclear Information System (INIS)
Bogolyubov, N.P.
1988-01-01
A model of the spontaneous breaking of chiral symmetry motivated by quantum chromodynamics is considered at a finite density of the quarks and zero temperature. For zero chemical potential the dynamical quark mass, the bag constant, and the vacuum expectation value are estimated. The dependence of the grand thermodynamic potential on the chemical potential of the quarks and of the energy on the particle number density are calculated. It is found that there is a phase transition of the first kind with respect to the density of the quarks accompanied by restoration of the chiral symmetry. The critical values of the fermion density are found
Welland, M. J.; Tenuta, E.; Prudil, A. A.
2017-06-01
This article describes a phase-field model for an isothermal multicomponent, multiphase system which avoids implicit interfacial energy contributions by starting from a grand potential formulation. A method is developed for incorporating arbitrary forms of the equilibrium thermodynamic potentials in all phases to determine an explicit relationship between chemical potentials and species concentrations. The model incorporates variable densities between adjacent phases, defect migration, and dependence of internal pressure on object dimensions ranging from the macro- to nanoscale. A demonstrative simulation of an overpressurized nanoscopic intragranular bubble in nuclear fuel migrating to a grain boundary under kinetically limited vacancy diffusion is shown.
Density Functional Methods for Shock Physics and High Energy Density Science
Desjarlais, Michael
2017-06-01
Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
QCD at Zero Baryon Density and the Polyakov Loop Paradox
Kratochvila, S; Forcrand, Ph. de
2006-01-01
We compare the grand canonical partition function at fixed chemical potential mu with the canonical partition function at fixed baryon number B, formally and by numerical simulations at mu=0 and B=0 with four flavours of staggered quarks. We verify that the free energy densities are equal in the thermodynamic limit, and show that they can be well described by the hadron resonance gas at T T_c. Small differences between the two ensembles, for thermodynamic observables characterising the deconfinement phase transition, vanish with increasing lattice size. These differences are solely caused by contributions of non-zero baryon density sectors, which are exponentially suppressed with increasing volume. The Polyakov loop shows a different behaviour: for all temperatures and volumes, its expectation value is exactly zero in the canonical formulation, whereas it is always non-zero in the commonly used grand-canonical formulation. We clarify this paradoxical difference, and show that the non-vanishing Polyakov loop e...
International Nuclear Information System (INIS)
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-01-01
The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. (paper)
Thermodynamic properties of aqueous hydroxyurea solutions
International Nuclear Information System (INIS)
Kumar, Shekhar; Sinha, Pranay Kumar; Kamachi Mudali, U.; Natarajan, R.
2011-01-01
Hydroxyurea is a novel reductant for uranium-plutonium separation in PUREX process. Little information on its thermophysical properties is available in published literature. In this work, its contributions to aqueous density, apparent molal volume, vapour pressure and thermodynamic water activity values, derived from in-house experiments, are reported. (author)
Belmonte, Donato; Gatti, Carlo; Ottonello, Giulio; Richet, Pascal; Vetuschi Zuccolini, Marino
2016-11-10
Thermodynamic and thermophysical properties of Na 2 SiO 3 in the Cmc2 1 structural state are computed ab initio using the hybrid B3LYP density functional method. The static properties at the athermal limit are first evaluated through a symmetry-preserving relaxation procedure. The thermodynamic properties that depend on vibrational frequencies, viz., heat capacities, thermal expansion, thermal derivative of the bulk modulus, thermal correction to internal energy, enthalpy, and Gibbs free energy, are then computed in the framework of quasi-harmonic approximation. Acoustic branches are computed by solving the Christoffel determinant and are assumed to follow sine wave dispersion when traveling within the Brillouin zone. The procedure generates several thermo-physical properties of interest in materials science and geophysics (transverse and longitudinal wave velocities, shear modulus, Young modulus, Poisson ratio) all consistent with experimentally determined properties. A representative cluster is then abstracted from the cell and a detailed electron localization/delocalization analysis is performed on it, in the ground state geometry, and on deformed states imposed by two peculiar mixed asymmetric stretching/bending modes affecting the silicate chain that, according to literature data, have anomalous mode Grüneisen parameters. A Bader analysis reveals an intriguing feature associated with these deformations: an increase in the covalence of the Si-O bond that strengthens the linkage opposing the weakening induced by thermal stress. Finally, on the same cluster, the Ramsey contributions to the J NM coupling are evaluated by the gauge-independent atomic orbital method. The calculated isotropic chemical shifts of both 23 Na and 29 Si are again in substantial agreement with observations.
Planar density of vacuum charge induced by a supercritical Coulomb potential
Directory of Open Access Journals (Sweden)
V.R. Khalilov
2017-06-01
Full Text Available Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.
Planar density of vacuum charge induced by a supercritical Coulomb potential
Energy Technology Data Exchange (ETDEWEB)
Khalilov, V.R., E-mail: khalilov@phys.msu.ru; Mamsurov, I.V.
2017-06-10
Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.
Methods for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2013-05-21
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
Chemical thermodynamic representation of
International Nuclear Information System (INIS)
Lindemer, T.B.; Besmann, T.M.
1984-01-01
The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base
On radii of nuclear potential and density
International Nuclear Information System (INIS)
Bal'butsev, E.B.; Mikhajlov, I.N.
1975-01-01
The Saxon-Woods potential is widely used as an average field in different nuclear models: upsilon(r)=-upsilonsub(0)parameters: upsilonsub(0) is the well depth, Rsub(v) is the well width, a is the diffusivity of the potential edge. The potential parameters should be determined from the data on the nuclear matter distribution. The data available is in agreement with the formula for density: rho(r)=rhosub(0)same sense as Rsub(v), a. The experimental data show that Rsub(v) by 1 Fermi exceed Rsub(rho) approximately. There exist some suggestions that it caused by the finiteness of the radius of action of nuclear forces. It is noted that finiteness of radius of action of forces is a sufficient condition for the presence of this effect. A model is considered in which the matter is limited with a plane surface, so that the density depends only on a single spatial variable normal to the boundary of matter. As is shown by the results, the radius of nuclear potential exceeds that of the volume of the nuclear matter by 0.6 Fermi approximately. The mechanism of this phenomenon takes its origin from a quantum-mechanical effect of turning the wave functions into zero near the infinitely high wall and from their considerable decreasing near the wall of a finite height
International Nuclear Information System (INIS)
Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi
1987-01-01
The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.
Toward thermodynamic consistency of quasiparticle picture
International Nuclear Information System (INIS)
Biro, T.S.; Toneev, V.D.; Shanenko, A.A.
2003-01-01
The purpose of the present article is to call attention to some realistic quasiparticle-based description of quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamic consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamic consistency. Particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential that can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics
Structure and thermodynamics of molten salts
International Nuclear Information System (INIS)
Papatheodorou, G.N.
1983-01-01
This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures
Black hole thermodynamics with conical defects
Energy Technology Data Exchange (ETDEWEB)
Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)
2017-05-22
Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.
A constitutive model for magnetostriction based on thermodynamic framework
International Nuclear Information System (INIS)
Ho, Kwangsoo
2016-01-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.
Kakekhani, Arvin; Ismail-Beigi, Sohrab
2014-03-01
NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.
Thermodynamics and general relativity could determine the symmetry of the universe
International Nuclear Information System (INIS)
Bayin, S.S.
1986-01-01
Behavior of black hole parameters (area, surface gravity, and so on), like certain thermodynamic quantities (entropy, temperature, and so on), motivated Bekenstein to conjecture the existence of black hole thermodynamics. Later, the discovery of black hole radiation by Hawking established the physical link between these parameters and their thermodynamic counterparts. However, despite the success of black hole thermodynamics, the relation between general relativity and thermodynamics remains to be established for more general metrics. In this paper, in order to explore this relation the author considers the possibility of the Bianchi symmetry of a Friedmann model changing as the universe evolves. The suggestive model he uses is the one in which the radius of curvature of the three-dimensional space is treated like the inverse of the temperature and where rho(P,T) plays the role of the Gibbs potential energy density. He shows that for the transitions between Bianchi I and V and Bianchi I and IX symmetric Friedmann models, there is only one Gibbs function and the transformation is of second order. For the transformations between Bianchi V and Bianchi IV symmetric models, he has two distinct Gibbs functions and in general this leads us to first order phase transitions. These conclusions are obtained independently of the details of the local equation of state. He also discusses two specific cases to demonstrate some of the properties of the model. One of these properties is that this model gives us a new way of determining the symmetry of the universe. By using a well-known equation of state (P = αrho), he shows that with respect to the thermodynamics he has defined, it is advantageous for the universe to be open (Bianchi V symmetric)
Thermodynamic Calculations for Systems Biocatalysis
DEFF Research Database (Denmark)
Abu, Rohana; Gundersen, Maria T.; Woodley, John M.
2015-01-01
the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...
International Nuclear Information System (INIS)
Elsner, Albrecht
2012-01-01
Gibbs's work on the thermodynamic properties of substances presented a complete thermodynamic theory. The formulations of the entropy S and internal energy U as extensive quantities allow the zeros of the real gas to be given: S=0 at absolute zero (Nernst, Planck) and U=0 at the critical point. Consequently, every thermodynamic function is unique and absolutely specified. Interdependences among quantities such as temperature, vapor pressure, chemical potential, volume, entropy, internal energy, and heat capacity are likewise unique and numerically well defined. This is shown for the saturated fluid, water, in the region between absolute zero and the critical point. As a consequence of the calculation of the chemical potential, it follows that the free particle flow in an inhomogeneous system is essentially governed by the difference in chemical potential, and not through the difference in pressure, this effect being of importance for meteorology and oceanography.
International Nuclear Information System (INIS)
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2011-01-01
A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.
Transformations between Extensive and Intensive Versions of Thermodynamic Relationships
Eberhart, James G.
2010-01-01
Most thermodynamic properties are either extensive (e.g., volume, energy, entropy, amount, etc.) or intensive (e.g., temperature, pressure, chemical potential, mole fraction, etc.). By the same token most of the mathematical relationships in thermodynamics can be written in extensive or intensive form. The basic laws of thermodynamics are usually…
Towards thermodynamical consistency of quasiparticle picture
International Nuclear Information System (INIS)
Biro, T.S.; Shanenko, A.A.; Toneev, V.D.; Research Inst. for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest
2003-01-01
The purpose of the present article is to call attention to some realistic quasi-particle-based description of the quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamical consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamical consistency. A particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential, which can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics [ru
Thermodynamics of an Attractive 2D Fermi Gas
Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.
2016-01-01
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Directory of Open Access Journals (Sweden)
Maziar Heidari
2018-03-01
Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.
Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids
International Nuclear Information System (INIS)
Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.
2016-01-01
Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.
International Nuclear Information System (INIS)
Khaleque, M.A.; Bhuiyan, G.M.; Rashid, R.I.M.A.
1998-01-01
Thermodynamic properties such as entropy, specific heat capacity at constant pressure and isothermal compressibility have been calculated for liquid 3d, 4d and 5d transition metals near melting temperature. The hard sphere diameter for all such systems is estimated from the potential profile generated from the Wills and Harrison's prescription using linearized WCA theory of liquid. Evaluated values of entropy and specific heat capacity are found to be in good agreement with the experimental data. Transport property like shear viscosity for these liquid metals is obtained using the same potential profile. Lack of experimental data at melting temperatures hampers detailed comparison for all such systems. However, for the case of transport property, the results obtained are found to compare qualitatively well with the available experimental data. (author)
Shnip, A. I.
2018-01-01
Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.
International Nuclear Information System (INIS)
Urrutia, Ignacio
2015-01-01
Recently, new insights into the relation between the geometry of the vessel that confines a fluid and its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by edges, emphasizing on the question of the region to which these properties refer. In this context, the relations between the line-thermodynamic properties referred to different regions are derived as analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both edges and wedges. As a simple application of these results, I analyze the properties of the confined gas in the low-density regime. Finally, using recent analytic results for the second cluster integral of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference regions
Structure, thermodynamics, and dynamical properties of supercooled liquids
International Nuclear Information System (INIS)
Kambayashi, Shaw
1992-12-01
The equilibrium properties of supercooled liquids with repulsive soft-sphere potentials, u(r) = ε(σ/r) n , have been obtained by solving the integral equation of the theory of liquids and by performing constant-temperature molecular dynamics (MD) simulations. A thermodynamically consistent approximation, proposed recently by Rogers and Young (RY), has been examined for the supercooled soft-sphere fluids. Then, a new approximation for the integral equation, called MHNCS (modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids) approximation, is proposed. The solution of the MHNCS integral equation for highly supercooled liquid states agrees well with the results of computer simulations. The MHNCS integral equation has also been applied for binary soft-sphere mixtures. Dynamical properties of soft-sphere fluids have been investigated by molecular dynamics (MD) simulations. The reduced diffusion constant is found to be insensitive to the choice of the softness of the potential. On the other hand, the spectrum of the velocity autocorrelation function shows a pronounced dependence on the softness of the potential. These significant dynamical properties dependent on the softness parameter (n) are consistent to dynamical behavior observed in liquid alkali metals and liquefied inert gases. The self-part of the density-density autocorrelation function obtained shows a clear nonexponential decay in intermediate time, as the liquid-glass transition is approached. (J.P.N.) 105 refs
International Nuclear Information System (INIS)
Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian; Egelhaaf, Stefan U.; Sengupta, Ankush; Sengupta, Surajit
2016-01-01
Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g (1) (r) and an analogue of the Edwards-Anderson order parameter g (2) (r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.
On nonlinear statistical thermodynamics of boundary plasma with postactions
International Nuclear Information System (INIS)
Temko, S.W.; Temko, K.W.; Kuz'min, S.K.
1992-01-01
The authors use the statistical thermodynamics of small systems proposed before their publications for boundary weakly ionized plasma with postaction. Boundary properties of the plasma is taken into account by two ways: (1) suppose that only small number of very quick particles are able to leave the cloud having done entrance into outer medium work; (2) take into account the interaction between particles and inner surface of the cloud. Interactions in the boundary plasma are described by corresponding potential functions. The potential functions are mathematical models of real interactions in boundary plasma. Choosing of potential functions, their numerical parameters, geometrical form and dimensions of the cloud is made by using the methods of optimal experiment planning, maximum likelihood and computer experiment. Free energy of the cloud is a likelihood function. State of boundary plasma with admixtures is described by vector-density of particles distribution. Term ''distribution'' is used here in Sobolev-Schwartc sense. The authors obtain the vector-density of particles distribution in cloud which gives the condition minimum of free energy for every time moment under quasistatistical equilibrium. The system of conditions for free energy conditional minimizing for every time moment includes integral equilibrium equations, ''non-hard normalization'' and additional conditions taken as a result of analyzing physical and physical-chemical nature of boundary plasma. To obtain conditional minimum of free energy it is necessary to solve the system of conditions. First of all they solve equilibrium problem by the authors method. They obtain vector-density of particles distribution in the cloud. Then using method of random walk with postaction between sets of random walk process they build distribution function of random vector-density
Single particle level density in a finite depth potential well
International Nuclear Information System (INIS)
Shlomo, S.; Kolomietz, V.M.; Dejbakhsh, H.
1997-01-01
We consider the single particle level density g(ε) of a realistic finite depth potential well, concentrating on the continuum (ε>0) region. We carry out quantum-mechanical calculations of the partial level density g l (ε), associated with a well-defined orbital angular momentum l≤40, using the phase-shift derivative method and the Greens-function method and compare the results with those obtained using the Thomas-Fermi approximation. We also numerically calculate g(ε) as a l sum of g l (ε) up to a certain value of scr(l) max ≤40 and determine the corresponding smooth level densities using the Strutinsky smoothing procedure. We demonstrate, in accordance with Levinson close-quote s theorem, that the partial contribution g l (ε) to the single particle level density from continuum states has positive and negative values. However, g(ε) is nonnegative. We also point out that this is not the case for an energy-dependent potential well. copyright 1997 The American Physical Society
Fisenko, Anatoliy I.; Lemberg, Vladimir
2014-07-01
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.
The impact of quark masses on pQCD thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Graf, Thorben; Schaffner-Bielich, Juergen [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil)
2016-07-15
We present results for several thermodynamic quantities within the next-to-leading order calculation of the thermodynamic potential in perturbative QCD at finite temperature and chemical potential including non-vanishing quark masses. These results are compared to lattice data and to higher-order optimized perturbative calculations to investigate the trend brought about by mass corrections. (orig.)
Hard-Thermal-Loop QCD thermodynamics and quark number susceptibility
Directory of Open Access Journals (Sweden)
Mogliacci Sylvain
2014-04-01
Full Text Available The weak-coupling expansion of the QCD pressure is known up to the order g6 log g. However, at experimentally relevant temperatures, the corresponding series is poorly convergent. In this proceedings, we discuss at which extent the gauge-invariant resummation scheme, Hard-Thermal-Loop perturbation theory (HTLpt, improves the apparent convergence. We first present HTLpt results for QCD thermodynamic functions up to three-loop order at vanishing chemical potential. Then, we report a preliminary HTLpt result of one-loop quark number susceptibility, probing the finite density equation of state. Our results are consistent with lattice data down to 2 − 3Tc, reinforcing the weakly-coupled quasiparticle picture in the intermediate coupling regime.
Progress in long sustainment and high density experiments with potential confinement on GAMMA 10
International Nuclear Information System (INIS)
Yatsu, K.; Cho, T.; Hirata, M.
2001-01-01
The improvement of potential confinement reported in the last IAEA meeting was attained by axisymmetrization of heating pattern of electron cyclotron resonance heating (ECRH). It was experimentally shown that the axisymmetrization of ECRH really produced axisymmetric potential profile. GAMMA 10 experiments have advanced in longer sustainment and high density operation of potential confinement. Experiments for long sustainment of potential confinement were carried out in order to study problems of steady state operation of a tandem mirror reactor. A confining potential was sustained for 150 ms by sequentially injecting two (ECRH) powers in the plug region. It was difficult before to increase the central cell density higher than about 2.5x10 12 cm -3 with and/or without potential confinement due to some density limiting mechanism. In order to overcome this problem, a new higher frequency ion cyclotron range of frequency (ICRF) system (RF3: 36-76 MHz) has been installed. A higher density plasma has been produced with RF3. In addition to RF3, neutral beam injection (NBI) in the anchor cell became effective by reducing neutral gas from beam injectors. Potential confinement experiments have advanced to higher central cell densities up to 4x10 12 cm -3 with RF3 and NBI. A 20% density increase due to the potential confinement was obtained in the high density experiments. (author)
Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Tuyen, Nguyen Viet; Hai, Tran Thi; Hieu, Ho Khac
2018-03-01
The thermodynamic and mechanical properties of III-V zinc-blende AlP, InP semiconductors and their alloys have been studied in detail from statistical moment method taking into account the anharmonicity effects of the lattice vibrations. The nearest neighbor distance, thermal expansion coefficient, bulk moduli, specific heats at the constant volume and constant pressure of the zincblende AlP, InP and AlyIn1-yP alloys are calculated as functions of the temperature. The statistical moment method calculations are performed by using the many-body Stillinger-Weber potential. The concentration dependences of the thermodynamic quantities of zinc-blende AlyIn1-yP crystals have also been discussed and compared with those of the experimental results. Our results are reasonable agreement with earlier density functional theory calculations and can provide useful qualitative information for future experiments. The moment method then can be developed extensively for studying the atomistic structure and thermodynamic properties of nanoscale materials as well.
Generalization of first-principles thermodynamic model: Application to hexagonal close-packed ε-Fe3N
DEFF Research Database (Denmark)
Bakkedal, Morten B.; Shang, Shu- Li; Liu, Zi-Kui
2016-01-01
A complete first-principles thermodynamic model was developed and applied to hexagonal close-packed structure ε-Fe3N. The electronic structure was calculated using density functional theory and the quasiharmonic phonon approximation to determine macroscopic thermodynamic properties at finite...
Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror
International Nuclear Information System (INIS)
Yatsu, K.
2002-01-01
After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)
The heat is on: thermodynamic analysis in fragment-based drug discovery
Edink, E.S.; Jansen, C.J.W.; Leurs, R.; De Esch, I.J.
2010-01-01
Thermodynamic analysis provides access to the determinants of binding affinity, enthalpy and entropy. In fragment-based drug discovery (FBDD), thermodynamic analysis provides a powerful tool to discriminate fragments based on their potential for successful optimization. The thermodynamic data
Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P
2018-01-01
Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Clathrates and beyond: Low-density allotropy in crystalline silicon
Energy Technology Data Exchange (ETDEWEB)
Beekman, Matt [Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407 (United States); Wei, Kaya; Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)
2016-12-15
In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoretical and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.
Li, Guanchen; von Spakovsky, Michael R.
2016-01-01
This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of
Density dependent hadron field theory
International Nuclear Information System (INIS)
Fuchs, C.; Lenske, H.; Wolter, H.H.
1995-01-01
A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/nfcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Fermi, Enrico
1956-01-01
Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr
Waterlike anomalies in a two-dimensional core-softened potential
Bordin, José Rafael; Barbosa, Marcia C.
2018-02-01
We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.
Limits of predictions in thermodynamic systems: a review
Marsland, Robert, III; England, Jeremy
2018-01-01
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.
The thermodynamic-buffer enzymes.
Stucki, J W
1980-08-01
Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a
Thermodynamics of excited nuclei and nuclear level densities
International Nuclear Information System (INIS)
Ramamurthy, V.S.
1977-01-01
A review has been made of the different approaches that are being used for a theoretical calculation of nuclear level densities. It is pointed out that while the numerical calculations based on the partition function approach and shell model single particle level schemes have shed important insight into the influence of nuclear shell effects on level densities and its excitation energy dependence and have brought out the inadequacy of the conventional Bethe Formula, these calculations are yet to reach a level where they can be directly used for quantitative comparisons. Some of the important drawbacks of the numerical calculations are also discussed. In this context, a new semi-empirical level density formula is described which while retaining the simplicity of analytical formulae, takes into account nuclear shell effects in a more realistic manner. (author)
Non-hard sphere thermodynamic perturbation theory.
Zhou, Shiqi
2011-08-21
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics
Equilibrium thermodynamics in modified gravitational theories
International Nuclear Information System (INIS)
Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji
2010-01-01
We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.
Density-functional errors in ionization potential with increasing system size
Energy Technology Data Exchange (ETDEWEB)
Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)
2015-05-14
This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.
Thermodynamic properties of α-uranium
International Nuclear Information System (INIS)
Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao
2016-01-01
The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0–100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T"3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit. - Highlights: • Thermodynamic properties of α-U were predicted systematically with quasi-harmonic Debye model. • Summarizations of the corresponding experimental and theoretical results have been made for the EOS and other thermodynamic parameters. • The calculated thermodynamic properties show good agreement with the experimental results in general trends.
Thermodynamic properties of α-uranium
Energy Technology Data Exchange (ETDEWEB)
Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao, E-mail: luochaoboss@sohu.com
2016-11-15
The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0–100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T{sup 3} power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit. - Highlights: • Thermodynamic properties of α-U were predicted systematically with quasi-harmonic Debye model. • Summarizations of the corresponding experimental and theoretical results have been made for the EOS and other thermodynamic parameters. • The calculated thermodynamic properties show good agreement with the experimental results in general trends.
THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE
Directory of Open Access Journals (Sweden)
T. O. Parashchuk
2016-07-01
Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.
Thermodynamic equivalence between the Lennard-Jones and hard-core attractive Yukawa systems
International Nuclear Information System (INIS)
Kadiri, Y.; Albaki, R.; Bretonnet, J.L.
2008-01-01
The investigation of the thermodynamic properties of the Lennard-Jones (LJ) fluid is made by means of a system of particles interacting with a potential of hard-core plus attractive Yukawa tail (HCY). Due to the similarity between the LJ potential and the HCY potential in its overall form, it is worthwhile seeking to approximate the LJ potential in much the same way that the hard-sphere reference potential has been so used. The study consists in describing the thermodynamics of the LJ fluid in terms of the equivalent HCY system, whose the properties are known accurately, by means of mapping the thermodynamic quantities for the HCY potential parameters. The method is feasible owing to a convenient analytical expression of the Helmholtz free energy from the mean-spherical approximation expanded in power of the inverse temperature. Two different procedures are used to determine the parameters of the HCY potential as a function of the thermodynamic states: one is based on the simultaneous fits of pressure and internal energy of the LJ system and the other uses the concept of collision frequency. The reasonable homogeneity of the results in both procedures of mapping makes that the HCY potential is a very good reference system, whose the proposed theoretical expressions can be used confidently to predict the thermodynamic properties of more realistic potentials
Thermodynamics at work - on the limits and potentials of biogeochemical processes
Peiffer, Stefan
2017-04-01
The preferential use of high potential electron acceptors by microorganisms has lead to the classical concept of a redox sequence with a sequential use of O2 nitrate, Fe(III), sulfate, and finally CO2 as electron acceptors for respiration (Stumm & Morgan, 1996). Christian Blodau has rigourously applied this concept to constrain the thermodynamical limits at which specific aquatic systems operate. In sediments from acidic mining lakes his analysis revealed that sulfate reducers are not competitive as long as low-crystallinity ferric oxides are available for organic matter decomposition (Blodau et al, 1998). This analysis opened up the possibility to generalize the linkage between the iron and sulphur cycle in such systems and to constrain the biogeochemical limits for remediation (e. g. Peine et al, 2000). In a similar approach, Beer & Blodau (2007) were able to demonstrate that constraints on the removal of products from acetoclastic methanogenesis in deeper peat layers are inhibiting organic matter decomposition and provide a thermodynamic argument for peat accumulation. In this contribution I will review such ideas and further refine the limits and potentials of biogeochemical reactions in terms of redox-active metastable phases (RAMPS) that are typically mixed-valent carbon-, iron-, and sulfur-containing compounds and which allow for the occurrence of a number of enigmatic reactions, e. g. limited greenhouse gas emission (CH4) under dynamic redox conditions. It is proposed that redox equivalents are generated, stored and recycled during oxidation and reduction cycles thus suppressing methanogenesis (Blodau, 2002). Such RAMPS will preferentially occur at dynamic interfaces being exposed to frequent redox cycles. The concept of RAMPS will be illustrated along the interaction between ferric (hydr)oxides and dissolved sulphide. Recent studies using modern analytical tools revealed the formation of a number of amorphous products within a short time scale (days) both
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Thermodynamic Fluid Equations-of-State
Directory of Open Access Journals (Sweden)
Leslie V. Woodcock
2018-01-01
Full Text Available As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc and pressure (pc and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB, critical temperature (Tc, critical pressure (pc and coexisting densities of gas (ρcG and liquid (ρcL along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρT to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region.
Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement
Gyftopoulos, Elias P.
2006-01-01
Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.
Thermodynamic properties of water solvating biomolecular surfaces
Heyden, Matthias
Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.
A density functional theory-based chemical potential equalisation
Indian Academy of Sciences (India)
A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few ...
International Nuclear Information System (INIS)
Davoodi, J.; Ahmadi, M.; Rafii-Tabar, H.
2010-01-01
Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu 3 Pd and CuPd 3 ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.
Methods and systems for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2014-12-02
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
On high-order perturbative calculations at finite density
Ghisoiu, Ioan; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi
2017-01-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
International Nuclear Information System (INIS)
Bogar, Ferenc; Bartha, Ferenc; Bartha, Ferenc A.; March, Norman H.
2011-01-01
Independently, in the mid-1980s, several groups proposed to bosonize the density-functional theory (DFT) for fermions by writing a Schroedinger equation for the density amplitude ρ(r) 1/2 , with ρ(r) as the ground-state electron density, the central tool of DFT. The resulting differential equation has the DFT one-body potential V(r) modified by an additive term V P (r) where P denotes Pauli. To gain insight into the form of the Pauli potential V P (r), here, we invoke the known Coulombic density, ρ ∞ (r) say, calculated analytically by Heilmann and Lieb (HL), by summation over the entire hydrogenic bound-state spectrum. We show that V P∞ (r) has simple limits for both r tends to infinity and r approaching zero. In particular, at large r, V P∞ (r) precisely cancels the attractive Coulomb potential -Ze 2 /r, leaving V(r)+V P∞ (r) of O(r -2 ) as r tends to infinity. The HL density ρ ∞ (r) is finally used numerically to display V P∞ (r) for all r values.
Energy Technology Data Exchange (ETDEWEB)
Biswas, S. N.
1980-07-01
The application of quantum statistical mechanics to a system of particles consisting of quarks is considered. Realistic theoretical investigations have been underway to understand highly dense objects such as white dwarfs and neutron stars. The various possibilities in the case of very high densities such as 10/sup 15/ or 10/sup 16/ g/cm/sup 3/ are enumerated. The thermodynamics of a phase transition from neutron matter phase to quark matter phase is analysed. Preliminary results based on quantum chromodynamics and other phenomenological models are reported.
Making thermodynamic functions of nanosystems intensive
Nassimi, Ali Mohammad; Parsafar, Gholamabbas
2006-01-01
The interaction potential energy among particles in many systems is of the form of r^-(alpha), at least at long distances. It has been argued that, in systems for which (alpha) < d (d is the space dimension) we encounter with nonextensive (nonintensive) thermodynamic functions. A scaling parameter N~ has been introduced to make nonextensive (nonintensive) thermodynamic functions of such systems extensive (intensive) functions. Our simulation results show that this parameter is not capable of ...
Statistical thermodynamics and mean-field theory for the alloy under irradiation model
International Nuclear Information System (INIS)
Kamyshendo, V.
1993-01-01
A generalization of statistical thermodynamics to the open systems case, is discussed, using as an example the alloy-under-irradiation model. The statistical properties of stationary states are described with the use of generalized thermodynamic potentials and 'quasi-interactions' determined from the master equation for micro-configuration probabilities. Methods for resolving this equation are illustrated by the mean-field type calculations of correlators, thermodynamic potentials and phase diagrams for disordered alloys
Musari, A. A.; Orukombo, S. A.
2018-03-01
Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.
Thermodynamic and dynamical properties of dense ICF plasma
Directory of Open Access Journals (Sweden)
Gabdullin Maratbek T.
2016-06-01
Full Text Available In present work, thermodynamic expressions were obtained through potentials that took into consideration long-range many-particle screening effects as well as short-range quantum-mechanical effects and radial distribution functions (RDFs. Stopping power of the projectile ions in dense, non-isothermal plasma was considered. One of the important values that describe the stopping power of the ions in plasma is the Coulomb logarithm. We investigated the stopping power of ions in inertial confinement fusion (ICF plasma and other energetic characteristics of fuel. Calculations of ions energy losses in the plasma for different values of the temperature and plasma density were carried out. A comparison of the calculated data of ion stopping power and energy deposition with experimental and theoretical results of other authors was also performed.
International Nuclear Information System (INIS)
Duthil, P
2014-01-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered
Energy Technology Data Exchange (ETDEWEB)
Duthil, P [Orsay, IPN (France)
2014-07-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.
Thermodynamics of high-temperature and high-density hadron gas by a numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Nobuo; Miyamura, Osamu [Hiroshima Univ., Higashi-Hiroshima (Japan). Dept. of Physics
1998-07-01
We study thermodynamical properties of hot and dense hadronic gas an event generator URASiMA. In our results, the increase of temperature is suppressed. It indicates that hot and dense hadronic gas has a large specific heat at constant volume. (author)
Experimental thermodynamics experimental thermodynamics of non-reacting fluids
Neindre, B Le
2013-01-01
Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio
Dynamics of an ion chain in a harmonic potential
International Nuclear Information System (INIS)
Morigi, Giovanna; Fishman, Shmuel
2004-01-01
Cold ions in anisotropic harmonic potentials can form ion chains of various sizes. Here, the density of ions is not uniform, and thus the eigenmodes are not phononic-like waves. We study chains of N>>1 ions and evaluate analytically the long-wavelength modes and the density of states in the short-wavelength limit. These results reproduce with good approximation the dynamics of chains consisting of dozens of ions. Moreover, they allow one to determine the critical transverse frequency required for the stability of the linear structure, which is found to be in agreement with results obtained by different theoretical methods [D. H. E. Dubin, Phys. Rev. Lett. 71, 2753 (1993)] and by numerical simulations [J. P. Schiffer, Phys. Rev. Lett. 70, 818 (1993)]. We introduce and explore the thermodynamic limit for the ion chain. The thermodynamic functions are found to exhibit deviations from extensivity
Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr
2018-03-01
Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.
Nguyen, Crystal N; Young, Tom Kurtzman; Gilson, Michael K
2012-07-28
The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and
Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory
Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara
2018-05-01
We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-04-01
The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC
Thermodynamic stabilization of colloids
Stol, R.J.; Bruyn, P.L. de
An analysis is given of the conditions necessary for obtaining a thermodynamically stable dispersion (TSD) of solid particles in a continuous aqueous solution phase. The role of the adsorption of potential-determining ions at the planar interface in lowering the interfacial free energy (γ) to
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Chemical thermodynamics. An introduction
Energy Technology Data Exchange (ETDEWEB)
Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry
2012-07-01
Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.
Eich, F G; Hellgren, Maria
2014-12-14
We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.
International Nuclear Information System (INIS)
Eich, F. G.; Hellgren, Maria
2014-01-01
We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative
Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions
International Nuclear Information System (INIS)
Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst
2005-01-01
Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated
International Nuclear Information System (INIS)
Garcia-Moliner, F.
1975-01-01
Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions
Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems
International Nuclear Information System (INIS)
Tu Zhanchun
2014-01-01
Thermodynamics is an old subject. The research objects in conventional thermodynamics are macroscopic systems with huge number of particles. In recent 30 years, thermodynamics of small systems is a frontier topic in physics. Here we introduce nonequilibrium statistical mechanics and stochastic thermodynamics of small systems. As a case study, we construct a Canot-like cycle of a stochastic heat engine with a single particle controlled by a time-dependent harmonic potential. We find that the efficiency at maximum power is 1 - √T c /T h , where Tc and Th are the temperatures of cold bath and hot bath, respectively. (author)
Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.
Parker, Barry R.; McLeod, Robert J.
1980-01-01
An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)
Thermodynamic tables to accompany Modern engineering thermodynamics
Balmer, Robert T
2011-01-01
This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.
Thermodynamics of the Apparent Horizon in FRW Universe with Massive Gravity
International Nuclear Information System (INIS)
Li Hui; Zhang Yi
2013-01-01
Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtained with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ = T d S, where the heat Bow δQ is the energy-supply of pure matter projecting on the vector ξ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/(2πr A ), the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit H c → 0, which recovers the Minkowski reference metric solution in the fiat case, the generalized second law of thermodynamics holds if α 3 + 4α 4 3 = α 4 = 0, the generalized second law of thermodynamics could be violated. (general)
Thermodynamically constrained correction to ab initio equations of state
International Nuclear Information System (INIS)
French, Martin; Mattsson, Thomas R.
2014-01-01
We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used.
Simulated pressure denaturation thermodynamics of ubiquitin.
Ploetz, Elizabeth A; Smith, Paul E
2017-12-01
Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermodynamical properties of liquid lanthanides-A variational approach
Energy Technology Data Exchange (ETDEWEB)
Patel, H. P. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A. [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)
2015-06-24
Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.
QCD thermodynamics from an imaginary μB: Results on the four flavor lattice model
International Nuclear Information System (INIS)
D'Elia, Massimo; Lombardo, Maria-Paola
2004-01-01
We study four flavor QCD at nonzero temperature and density by analytic continuation from an imaginary chemical potential. The explored region is T=0.95T c c , and the baryochemical potentials range from 0 to ≅500 MeV. Observables include the number density, the order parameter for chiral symmetry, and the pressure, which is calculated via an integral method at fixed temperature and quark mass. The simulations are carried out on a 16 3 x4 lattice, and the mass dependence of the results is estimated by exploiting the Maxwell relations. In the hadronic region, we confirm that the results are consistent with a simple resonance hadron gas model, and we estimate the critical density by combining the results for the number density with those for the critical line. In the hot phase, above the end point of the Roberge-Weiss transition T E ≅1.1T c , the results are consistent with a free lattice model with a fixed effective number of flavor slightly different from four. We confirm that confinement and chiral symmetry are coincident by a further analysis of the critical line, and we discuss the interrelation between thermodynamics and critical behavior. We comment on the strength and weakness of the method, and propose further developments
International Nuclear Information System (INIS)
Fortin, Xavier
1971-01-01
The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr
Introduction to the thermodynamic Bethe ansatz
van Tongeren, Stijn J.
2016-08-01
We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.
High-temperature of thermodynamic properties of sodium
Energy Technology Data Exchange (ETDEWEB)
Padilla, A. Jr.
1977-01-01
The set of high-temperature thermodynamic properties for sodium in the two-phase and subcooled-liquid regions which was previously recommended, has been modified to incorporate recent experimental data. In particular, replacement of the previously estimated critical constants with experimentally-determined values has resulted in substantial differences in the region of the critical point. The following thermodynamic properties were determined: pressure, density, enthalpy, entropy, internal energy, compressibility (adiabatic and isothermal), thermal expansion coefficient, thermal pressure coefficient, and specific heat (constant-pressure and constant-volume). These properties were determined for the saturated liquid, saturated vapor, subcooled liquid, and superheated vapor. The superheated vapor properties are limited to low pressures and more work is required to extend them to higher pressures. The supercritical region was not investigated.
Approximate thermodynamic state relations in partially ionized gas mixtures
International Nuclear Information System (INIS)
Ramshaw, John D.
2004-01-01
Thermodynamic state relations for mixtures of partially ionized nonideal gases are often approximated by artificially partitioning the mixture into compartments or subvolumes occupied by the pure partially ionized constituent gases, and requiring these subvolumes to be in temperature and pressure equilibrium. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (nonionized) ideal gases. The purpose of this paper is to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation in nonideal plasma mixtures
Thermodynamics of superconducting quantum metamaterials
Energy Technology Data Exchange (ETDEWEB)
Dallaire-Demers, Pierre-Luc; Wilhelm-Mauch, Frank [Universitaet des Saarlandes (Germany)
2015-07-01
Left-handed matematerials are capacitively coupled layers of inductive pieces of conductors. These systems are well studied in the context of microwave metamaterials but their full quantum description or their embedding in highly correlated materials like superconductors are still an open problem. Notably, they are known to have a Van Hove singularity in the density of states at low energy and high pseudo-momentum that could effectively couple and condense Cooper pairs. The goal of this research is to analyze the thermodynamical properties of the order parameter of stacked layers of superconductors with a small repulsive Coulomb interaction. A 3D toy model of such a material is mapped to a Fermi-Hubbard lattice. The temperature dependent anomalous correlation functions are computed variationally from a self-energy functional of a small cluster where inter-cluster tunneling is treated perturbatively. The effect of the repulsive interaction on the Cooper pairs binding can then be seen from the momentum distribution of the condensation amplitude. Such a material could potentially be realized with optical lattices or nanoscaled superconductors.
Assessment of thermodynamic parameters of plasma shock wave
International Nuclear Information System (INIS)
Vasileva, O V; Isaev, Yu N; Budko, A A; Filkov, A I
2014-01-01
The work is devoted to the solution of the one-dimensional equation of hydraulic gas dynamics for the coaxial magneto plasma accelerator by means of Lax-Wendroff modified algorithm with optimum choice of the regularization parameter artificial viscosity. Replacement of the differential equations containing private derivatives is made by finite difference method. Optimum parameter of regularization artificial viscosity is added using the exact known decision of Soda problem. The developed algorithm of thermodynamic parameter calculation in a braking point is proved. Thermodynamic parameters of a shock wave in front of the plasma piston of the coaxial magneto plasma accelerator are calculated on the basis of the offered algorithm. Unstable high-frequency fluctuations are smoothed using modeling and that allows narrowing the ambiguity area. Results of calculation of gas dynamic parameters in a point of braking coincide with literary data. The chart 3 shows the dynamics of change of speed and thermodynamic parameters of a shock wave such as pressure, density and temperature just before the plasma piston
Definition of current density in the presence of a non-local potential.
Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian
2008-04-16
In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.
Definition of current density in the presence of a non-local potential
International Nuclear Information System (INIS)
Li Changsheng; Wan Langhui; Wei Yadong; Wang Jian
2008-01-01
In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J c = (e/2m)([(p-eA)ψ]*ψ-ψ*[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., ∇ . J c ≠ 0 in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Buettiker formula. Examples are given to demonstrate our results
International Nuclear Information System (INIS)
Zhou Mu; Wang Feng; Zheng Zhou; Liu Xiankun; Jiang Tao
2013-01-01
The elastic and thermodynamic properties of UO 2 under extreme physical condition are studied by using the density functional theory and quasi-harmonic Debye model. Results show that UO 2 is still stable ionic crystal under high temperatures, and pressures. Tetragonal shear constant is steady under high pressures and temperatures, while elastic constant C 44 is stable under high temperatures, but rises with pressure sharply. Bulk modulus, shear modulus and Young's modulus increase with pressure rapidly, but temperature would not cause evident debasement of the moduli, all of which indicate that UO 2 has excellent mechanical properties. Heat capacity of different pressures increases with temperature and is close to the Dulong-Petit limit near 1000 K. Debye temperature decreases with temperature, and increases with pressure. Under low pressure, thermal expansion coefficient raises with temperature rapidly, and then gets slow at higher pressure and temperature. Besides, the thermal expansion coefficient of UO 2 is much lower than that of other nuclear materials. (authors)
Thermodynamics of de Sitter universes
International Nuclear Information System (INIS)
Huang Chaoguang; Liu Liao; Wang Bobo
2002-01-01
It is shown that the first law of thermodynamics can be applied to the de Sitter universe to relate its vacuum energy, pressure, entropy of horizon, chemical potential, etc., when the cosmological constant changes due to the fluctuation of the vacuum or other reasons. The second law should be reformulated in the form that the spontaneous decay of the vacuum never makes the entropy of the de Sitter universe decrease. The third law of thermodynamics, applying to the de Sitter universe, implies that the cosmological constant cannot reach zero by finite physical processes. The relation to the holographic principle is also briefly discussed
Müller, Ingo
1993-01-01
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...
Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length
Directory of Open Access Journals (Sweden)
Yan-Gang Miao
2017-01-01
Full Text Available Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ-function and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ-function.
Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles
Energy Technology Data Exchange (ETDEWEB)
Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)
2015-05-15
The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.
On adiabatic pair potentials of highly charged colloid particles
Sogami, Ikuo S.
2018-03-01
Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.
Directory of Open Access Journals (Sweden)
RHA Sahirul Alim
2010-06-01
Full Text Available Isothermal reversible thermodynamic processes were studied, where there will not occur flow of heat (q in the system in accord with the second law of thermodynamic. It appear that the energy flow in the system cannot be explained adequately by considering the flow of P,V - work, usually indicated by w, in accordance with the first law, that is, ΔU = q + w with q = 0. Therefore, it is necessary to have another kind of work energy (potential which is not electrical to explain such as the experiment of Boyle that results in the formula PV = C for a close ideal gas system undergoing an isothermal and reversible process. In this paper, a new work potential which is called ";;terpi";; is introduced, and is abbreviated as τ (tau and defined as: dτ ≡ - T dSrev = - dqrev. Therefore, dt is also not an exact differential as dw and dq. For any isothermal reversible process, it can be written: τ = -TΔSrev, and for redox reaction, such as an electrochemical cell, it is noteworthy to distinguish between τ system (τsyst and τ reaction (τr which combine together to become an electrical work flow, (wel done by the system on the surrounding, so that: ΔGr = τsyst + τr = v F E Furthermore, the studies of phase transitions, which occur isothermally, were also considered, e.g. the evaporation of a liquid into vapour at a certain T. The heat given to this process cannot freely flow isothermally, but first it must be changed into terpy and then added to the enthalpy of the vapour following the equation: τvap = -TΔSvap = -ΔHvap. Keywords: thermodynamics, heat, work, isothermal, reversible
Energy Technology Data Exchange (ETDEWEB)
Sarmah, Amrit; Roy, Ram Kinkar, E-mail: rkroy2@rediffmail.com
2016-06-15
Highlights: • Kinetic and thermodynamic aspects of the interaction between fullerene (C{sub 32}) and SWCNT using CDASE scheme. • Role of symmetry of fullerenes as well as the site of covalent attachment to the SWCNT in the structural stability of the NanoBud structure. • Increase in the fullerene symmetry improves the relative stability of hybrid NanoBud structure. - Abstract: In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C{sub 32}) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost–effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C{sub 32} fullerene and its site of covalent attachment to the SWCNT.
Satoh, Katsuhiko
2013-03-07
Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.
Advanced thermodynamic (exergetic) analysis
International Nuclear Information System (INIS)
Tsatsaronis, G; Morosuk, T
2012-01-01
Exergy analysis is a powerful tool for developing, evaluating and improving an energy conversion system. However, the lack of a formal procedure in using the results obtained by an exergy analysis is one of the reasons for exergy analysis not being very popular among energy practitioners. Such a formal procedure cannot be developed as long as the interactions among components of the overall system are not being taken properly into account. Splitting the exergy destruction into unavoidable and avoidable parts in a component provides a realistic measure of the potential for improving the thermodynamic efficiency of this component. Alternatively splitting the exergy destruction into endogenous and exogenous parts provides information on the interactions among system components. Distinctions between avoidable and unavoidable exergy destruction on one side and endogenous and exogenous exergy destruction on the other side allow the engineer to focus on the thermodynamic inefficiencies that can be avoided and to consider the interactions among system components. The avoidable endogenous and the avoidable exogenous exergy destruction provide the best guidance for improving the thermodynamic performance of energy conversion systems.
Intermolecular interaction potentials of the methane dimer from the local density approximation
International Nuclear Information System (INIS)
Chen Xiangrong; Bai Yulin; Zhu Jun; Yang Xiangdong
2004-01-01
The intermolecular interaction potentials of methane (CH 4 ) dimer are calculated within the density functional theory in the local density approximation (LDA). It is found that the calculated potentials have minima when the intermolecular distance of CH 4 dimer is about 7.0 a.u., which is in good agreement with the experiment. The depth of the potential is 0.017 eV. The results obtained by our LDA calculations seem to agree well with those obtained by MP2, MP3, and CCSD from the Moeller-Plesset and coupled cluster methods by Tsuzuki et al. and with the experimental data
Surface effects on mean inner potentials studied using density functional theory
Energy Technology Data Exchange (ETDEWEB)
Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre and Peter Grüneberg Institute, Forschungzentrum Jülich, 52425 Jülich (Germany)
2015-12-15
Quantitative materials characterization using electron holography frequently requires knowledge of the mean inner potential, but reported experimental mean inner potential measurements can vary widely. Using density functional theory, we have simulated the mean inner potential for materials with a range of different surface conditions and geometries. We use both “thin-film” and “nanowire” specimen geometries. We consider clean bulk-terminated surfaces with different facets and surface reconstructions using atom positions from both structural optimization and experimental data and we also consider surfaces both with and without adsorbates. We find that the mean inner potential is surface-dependent, with the strongest dependency on surface adsorbates. We discuss the outlook and perspective for future mean inner potential measurements. - Highlights: • Density functional theory (DFT) is used to simulate mean inner potentials (MIP). • Applications for MIP electron holography measurements are considered. • MIPs are found to be surface-dependent, for thin-film and nanowire geometries. • The DFT simulation precision is extensively tested for multiple materials. • Surface adsorbates can create a strong positive or negative effect.
Quark number density and susceptibility calculation with one correction in mean field potential
International Nuclear Information System (INIS)
Singh, S. Somorendro
2016-01-01
We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)
Statistical thermodynamics of supercapacitors and blue engines
van Roij, René
2012-01-01
We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive ...
Thermodynamic cycles of adsorption desalination system
International Nuclear Information System (INIS)
Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.
2012-01-01
Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.
Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling
Balcerzak, T.; Szałowski, K.; Jaščur, M.
2018-04-01
Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.
The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films
International Nuclear Information System (INIS)
Haji-Akbari, Amir; Debenedetti, Pablo G.
2014-01-01
Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible
The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films.
Haji-Akbari, Amir; Debenedetti, Pablo G
2014-07-14
Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.
The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films
Energy Technology Data Exchange (ETDEWEB)
Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)
2014-07-14
Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.
Energy Technology Data Exchange (ETDEWEB)
Davoodi, J., E-mail: jdavoodi@znu.ac.ir [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Ahmadi, M. [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Rafii-Tabar, H. [Department of Medical Physics and Biomedical Engineering and Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2010-06-25
Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu{sub 3}Pd and CuPd{sub 3} ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.
Simulations of cold nuclear matter at sub-saturation densities
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Nichols, J.I. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); López, J.A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Dorso, C.O. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2014-03-01
Ideal nuclear matter is expected to undergo a first order phase transition at the thermodynamic limit. At such phase transitions the size of density fluctuations (bubbles or droplets) scale with the size of the system. This means that simulations of nuclear matter at sub-saturation densities will inexorably suffer from what is vaguely referred to as “finite size effects”. It is usually thought that these finite size effects can be diminished by imposing periodic boundary conditions and making the system large enough, but as we show in this work, that is actually not the case at sub-saturation densities. In this paper we analyze the equilibrium configurations of molecular dynamics simulations of a classical model for symmetric ideal (uncharged) nuclear matter at sub-saturation densities and low temperatures, where phase coexistence is expected at the thermodynamic limit. We show that the most stable configurations in this density range are almost completely determined by artificial aspects of the simulations (i.e. boundary conditions) and can be predicted analytically by surface minimization. This result is very general and is shown to hold true for several well known semi-classical models of nuclear interaction and even for a simple Lennard-Jones potential. Also, in the limit of very large systems, when “small size” effects can be neglected, those equilibrium configurations seem to be restricted to a few structures reminiscent to the “Pasta Phases” expected in Neutron Star matter, but arising from a completely different origin: In Neutron Star matter, the non-homogeneous structures arise from a competition between nuclear and Coulomb interactions while for ideal nuclear matter they emerge from finite (yet not “small”) size effects. The role of periodic boundary conditions and finite size effects in Neutron Star matter simulations are reexamined.
Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures
International Nuclear Information System (INIS)
Mesmer, R.E.; Marshall, W.L.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.
1990-01-01
Electrochemical and electrical conductance cells have been widely used at ORNL over the years to quantitatively determine equilibrium constants and their salt effects to 300 degree C (EMF) and 800 degree C (conductance) at the saturation pressure of water (EMF) and to 4000 bars (conductance). The most precise results to 300 degree C for a large number of weak acids and bases show very similar thermodynamic behavior, which will be discussed. Results for the ionization constants of water, NH 3 (aq), HCl(aq), and NaCl(aq), which extend well into the supercritical region, have been fitted in terms of a model with dependence on density and temperature. The entropy change is found to be the driving force for ion-association reactions and this tendency increases (as it must) with increasing temperature at a given pressure. Also, the variation of all thermodynamic properties is greatly reduced at high fixed densities. Considerable variation occurs at low densities. From this analysis, the dependence of the reaction thermodynamics on the P-V-T properties of the solvent is shown, and the implication of large changes in hydration for solutes in the vicinity of the critical temperature will be discussed. Finally, the change in the molar compressibility coefficient for all reactions in water is shown to be the same and dependent only on the compressibility of the solvent
Thermodynamics a complete undergraduate course
Steane, Andrew M
2016-01-01
This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...
Potential and electron density calculated for freely expanding plasma by an electron beam
International Nuclear Information System (INIS)
Ho, C. Y.; Tsai, Y. H.; Ma, C.; Wen, M. Y.
2011-01-01
This paper investigates the radial distributions of potential and electron density in free expansion plasma induced by an electron beam irradiating on the plate. The region of plasma production is assumed to be cylindrical, and the plasma expansion is assumed to be from a cylindrical source. Therefore, the one-dimensional model in cylindrical coordinates is employed in order to analyze the radial distributions of the potential and electron density. The Runge-Kutta method and the perturbation method are utilized in order to obtain the numerical and approximate solutions, respectively. The results reveal that the decrease in the initial ion energy makes most of the ions gather near the plasma production region and reduces the distribution of the average positive potential, electron, and ion density along the radial direction. The oscillation of steady-state plasma along the radial direction is also presented in this paper. The ions induce a larger amplitude of oscillation along the radial direction than do electrons because the electrons oscillate around slowly moving ions due to a far smaller electron mass than ion mass. The radial distributions of the positive potential and electron density predicted from this study are compared with the available experimental data.
Nuclear interaction potential in a folded-Yukawa model with diffuse densities
International Nuclear Information System (INIS)
Randrup, J.
1975-09-01
The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)
On conserved densities and asymptotic behaviour for the potential Kadomtsev-Petviashvili equation
International Nuclear Information System (INIS)
Rosenhaus, V
2006-01-01
We study local conservation laws with non-vanishing conserved densities and corresponding boundary conditions for the potential Kadomtsev-Petviashvili equation. We analyse an infinite symmetry group of the equation, and generate a finite number of conserved densities corresponding to infinite symmetries through appropriate boundary conditions
Thermodynamic and mechanical properties of TiC from ab initio calculation
International Nuclear Information System (INIS)
Dang, D. Y.; Fan, J. L.; Gong, H. R.
2014-01-01
The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature, while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.
Improving Free-Piston Stirling Engine Power Density
Briggs, Maxwell H.
2016-01-01
Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
International Nuclear Information System (INIS)
Vanyolos, Andras; Dora, Balazs; Maki, Kazumi; Virosztek, Attila
2007-01-01
We present a detailed theoretical study on the thermodynamic properties of impure quasi-one-dimensional unconventional charge and spin density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder- and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between
Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels
International Nuclear Information System (INIS)
Yang, Y.; Busby, J.T.
2014-01-01
This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors
Srivastava, Anurag; SanthiBhushan, Boddepalli
2018-03-01
Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.
Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp
2014-10-07
Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.
Hartree-Fock states in the thermodynamic limit
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Llano, M. de; Peltier, S.; Plastino, A.
1976-01-01
Two infinite families of two-parameter generalized Overhauser orbitals are introduced and shown to explicitly satisfy, for occupied states, the self-consistent Hartree-Fock equations in the thermodynamic limit. For an attractive delta interaction, they give lower Hartree-Fock energy than the usual plane-wave solutions, even for relatively weak coupling and/or low density. The limiting members (possessing an infinite number of harmonics) of both families appear to tend to a 'classical static lattice' state. The related density profiles and energy expressions are calculated as functions of the two new parameters. A direct-variation with respect to these parameters was done numerically and results are presented graphically. (Author) [pt
Extended irreversible thermodynamics and the Jeffreys type constitutive equations
International Nuclear Information System (INIS)
Serdyukov, S.I.
2003-01-01
A postulate of extended irreversible thermodynamics is considered, according to which the entropy density is a function of the internal energy, the specific volume, and their material time derivatives. On the basis of this postulate, entropy balance equations and phenomenological equations are obtained, which directly lead to the Jeffreys type constitutive equations
Towards a thermodynamics of active matter.
Takatori, S C; Brady, J F
2015-03-01
Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.
Improved actions for QCD thermodynamics on the lattice
Beinlich, B; Laermann, E
1996-01-01
Finite cut-off effects strongly influence the thermodynamics of lattice regularized QCD at high temperature in the standard Wilson formulation. We analyze the reduction of finite cut-off effects in formulations of the thermodynamics of SU(N) gauge theories with three different O(a^2) and O(a^4) improved actions. We calculate the energy density and pressure on finite lattices in leading order weak coupling perturbation theory (T\\rightarrow \\infty) and perform Monte Carlo simulations with improved SU(3) actions at non-zero g^2. Already on lattices with temporal extent N_\\tau=4 we find a strong reduction of finite cut-off effects in the high temperature limit, which persists also down to temperatures a few times the deconfinement transition temperature.
Directory of Open Access Journals (Sweden)
Bingol Suat
2015-01-01
Full Text Available The geometric structural optimization, electronic band structure, total density of states for valence electrons, density of states for phonons, optical, dynamical, and thermodynamical features of cesium chloride have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient approximation. Ground state properties of cesium chloride are studied. The calculated ground state properties are consistent with experimental results. Calculated band structure indicates that the cesium chloride structure has an indirect band gap value of 5.46 eV and is an insulator. From the obtained phonon spectra, the cesium chloride structure is dynamically stable along the various directions in the Brillouin zone. Temperature dependent thermodynamic properties are studied using the harmonic approximation model.
Estimating the density-scaling exponent of a monatomic liquid from its pair potential
DEFF Research Database (Denmark)
Bøhling, Lasse; Bailey, Nicholas; Schrøder, Thomas
2014-01-01
This paper investigates two conjectures for calculating the density dependence of the density-scaling exponent γ of a single-component, pair-potential liquid with strong virial potential-energy correlations. The first conjecture gives an analytical expression for γ directly in terms of the pair...... potential. The second conjecture is a refined version of this involving the most likely nearest-neighbor distance determined from the pair-correlation function. The conjectures are tested by simulations of three systems, one of which is the standard Lennard-Jones liquid. While both expressions give...
Thermodynamic and transport properties of sodium liquid and vapor
International Nuclear Information System (INIS)
Fink, J.K.; Leibowitz, L.
1995-01-01
Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed
Directory of Open Access Journals (Sweden)
R. Feistel
2010-07-01
Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.
Zhang, Xing; Carter, Emily A.
2018-01-01
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
Thermodynamics of geothermal fluids
Energy Technology Data Exchange (ETDEWEB)
Rogers, P.S.Z.
1981-03-01
A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.
Liao, Wenjie
2012-01-01
Technologies and sustainable development are interrelated from a thermodynamic perspective, with industrial ecology (IE) as a major point of access for studying the relationship in the Anthropocene. To offer insights into the potential offered by thermodynamics in the environmental sustainability
Fisher Information, Entropy, and the Second and Third Laws of Thermodynamics
We propose Fisher Information as a new calculable thermodynamic property that can be shown to follow the Second and the Third Laws of Thermodynamics. Fisher Information is, however, qualitatively different from entropy and potentially possessing a great deal more structure. Hence...
Kohn-Sham orbitals and potentials from quantum Monte Carlo molecular densities
International Nuclear Information System (INIS)
Varsano, Daniele; Barborini, Matteo; Guidoni, Leonardo
2014-01-01
In this work we show the possibility to extract Kohn-Sham orbitals, orbital energies, and exchange correlation potentials from accurate Quantum Monte Carlo (QMC) densities for atoms (He, Be, Ne) and molecules (H 2 , Be 2 , H 2 O, and C 2 H 4 ). The Variational Monte Carlo (VMC) densities based on accurate Jastrow Antisymmetrised Geminal Power wave functions are calculated through different estimators. Using these reference densities, we extract the Kohn-Sham quantities with the method developed by Zhao, Morrison, and Parr (ZMP) [Phys. Rev. A 50, 2138 (1994)]. We compare these extracted quantities with those obtained form CISD densities and with other data reported in the literature, finding a good agreement between VMC and other high-level quantum chemistry methods. Our results demonstrate the applicability of the ZMP procedure to QMC molecular densities, that can be used for the testing and development of improved functionals and for the implementation of embedding schemes based on QMC and Density Functional Theory
Energy Technology Data Exchange (ETDEWEB)
Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco
2016-11-21
The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.
The Construction of 3-d Neutral Density for Arbitrary Data Sets
Riha, S.; McDougall, T. J.; Barker, P. M.
2014-12-01
The Neutral Density variable allows inference of water pathways from thermodynamic properties in the global ocean, and is therefore an essential component of global ocean circulation analysis. The widely used algorithm for the computation of Neutral Density yields accurate results for data sets which are close to the observed climatological ocean. Long-term numerical climate simulations, however, often generate a significant drift from present-day climate, which renders the existing algorithm inaccurate. To remedy this problem, new algorithms which operate on arbitrary data have been developed, which may potentially be used to compute Neutral Density during runtime of a numerical model.We review existing approaches for the construction of Neutral Density in arbitrary data sets, detail their algorithmic structure, and present an analysis of the computational cost for implementations on a single-CPU computer. We discuss possible strategies for the implementation in state-of-the-art numerical models, with a focus on distributed computing environments.
Rational extended thermodynamics
Müller, Ingo
1998-01-01
Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...
Thermodynamic and kinetic anisotropies in octane thin films
International Nuclear Information System (INIS)
Haji-Akbari, Amir; Debenedetti, Pablo G.
2015-01-01
Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ S . Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ S , while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ S ) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ S ) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing
Thermodynamic and kinetic anisotropies in octane thin films
Energy Technology Data Exchange (ETDEWEB)
Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)
2015-12-07
Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ{sub S}. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ{sub S}, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ{sub S}) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ{sub S}) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy
Thermodynamic and kinetic anisotropies in octane thin films.
Haji-Akbari, Amir; Debenedetti, Pablo G
2015-12-07
Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent
First law of thermodynamics on holographic screens in entropic force frame
International Nuclear Information System (INIS)
Chen Yixin; Li Jianlong
2011-01-01
Imposing a mathematical definition of holographic screen, in the spirit of Verlinde's entropic force proposal (E.P. Verlinde, (arXiv:1001.0785)), we give the differential and integral form of the first law of thermodynamics on the holographic screen enclosing a spherical symmetric black hole. It is consistent with equipartition principle and the form of Komar mass. There are also other version of first law, which are equivalent up to a Legendre transformation. The holographic screen thermodynamics is defined in a quasi-local form, which is the main difference to black hole thermodynamics. Thus, the physical interpretation of holographic screen thermodynamics might be different from black hole thermodynamics. We argue that the entropy of the holographic screen determines its area, i.e. S=A/4 . And the metric can be expressed by thermodynamics variables, which is an illustration of how the space is foliated by the thermodynamical potentials.
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
Vuckovic, Stefan; Levy, Mel; Gori-Giorgi, Paola
2017-12-01
The augmented potential introduced by Levy and Zahariev [Phys. Rev. Lett. 113, 113002 (2014)] is shifted with respect to the standard exchange-correlation potential of the Kohn-Sham density functional theory by a density-dependent constant that makes the total energy become equal to the sum of the occupied orbital energies. In this work, we analyze several features of this approach, focusing on the limit of infinite coupling strength and studying the shift and the corresponding energy density at different correlation regimes. We present and discuss coordinate scaling properties of the augmented potential, study its connection to the response potential, and use the shift to analyze the classical jellium and uniform gas models. We also study other definitions of the energy densities in relation to the functional construction by local interpolations along the adiabatic connection. Our findings indicate that the energy density that is defined in terms of the electrostatic potential of the exchange-correlation hole is particularly well suited for this purpose.
Modern Thermodynamics with Statistical Mechanics
Helrich, Carl S
2009-01-01
With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...
Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement
Directory of Open Access Journals (Sweden)
Kim Nygård
2016-02-01
Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.
Thermodynamics of the dead zone inner edge in protoplanetary disks
International Nuclear Information System (INIS)
Faure, Julien
2014-01-01
The dead zone, a quiescent region enclosed in the turbulent flow of a protoplanetary disk, seems to be a promising site for planet formation. Indeed, the development of a density maximum at the dead zone inner edge, that has the property to trap the infalling dust, is a natural outcome of the accretion mismatch at this interface. Moreover, the flow here may be unstable and organize itself into vortical structures that efficiently collect dust grains. The inner edge location is however loosely constrained. In particular, it depends on the thermodynamical prescriptions of the disk model that is considered. It has been recently proposed that the inner edge is not static and that the variations of young stars accretion luminosity are the signature of this interface displacements. This thesis address the question of the impact of the gas thermodynamics onto its dynamics around the dead zone inner edge. MHD simulations including the complex interplay between thermodynamical processes and the dynamics confirmed the dynamical behaviour of the inner edge. A first measure of the interface velocity has been realised. This result has been compared to the predictions of a mean field model. It revealed the crucial role of the energy transport by density waves excited at the interface. These simulations also exhibit a new intriguing phenomenon: vortices forming at the interface follow a cycle of formation-migration-destruction. This vortex cycle may compromise the formation of planetesimals at the inner edge. This thesis claims that thermodynamical processes are at the heart of how the region around the dead zone inner edge in protoplanetary disks works. (author) [fr
On high-order perturbative calculations at finite density
Energy Technology Data Exchange (ETDEWEB)
Ghişoiu, Ioan, E-mail: ioan.ghisoiu@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: tyler.gorda@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: aleksi.kurkela@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: paul.romatschke@colorado.edu [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: matias.sappi@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: aleksi.vuorinen@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)
2017-02-15
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions
Hoffman, M. D.; Loheac, A. C.; Porter, W. J.; Drut, J. E.
2017-03-01
Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density and pressure equations of state, as well as Tan's contact, of attractively interacting SU(4)- and SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a nonperturbative proof of a universal relation whereby quantities computable in the SU(2) case completely determine the virial coefficients of the SU(Nf) case. These one-dimensional systems are appealing because they can be experimentally realized in highly constrained traps and because of the dominant role played by correlations. The latter are typically nonperturbative and are crucial for understanding ground states and quantum phase transitions. While quantum fluctuations are typically overpowered by thermal ones in one and two dimensions at any finite temperature, we find that quantum effects do leave their imprint in thermodynamic quantities. Our calculations show that the additional degrees of freedom, relative to the SU(2) case, provide a dramatic enhancement of the density and pressure (in units of their noninteracting counterparts) in a wide region around vanishing β μ , where β is the inverse temperature and μ the chemical potential. As shown recently in experiments, the thermodynamics we explore here can be measured in a controlled and precise fashion in highly constrained traps and optical lattices. Our results are a prediction for such experiments in one dimension with atoms of high nuclear spin.
Discrete nature of thermodynamics in confined ideal Fermi gases
International Nuclear Information System (INIS)
Aydin, Alhun; Sisman, Altug
2014-01-01
Intrinsic discrete nature in thermodynamic properties of Fermi gases appears under strongly confined and degenerate conditions. For a rectangular confinement domain, thermodynamic properties of an ideal Fermi gas are expressed in their exact summation forms. For 1D, 2D and 3D nano domains, variations of both number of particles and internal energy per particle with chemical potential are examined. It is shown that their relation with chemical potential exhibits a discrete nature which allows them to take only some definite values. Furthermore, quasi-irregular oscillatory-like sharp peaks are observed in heat capacity. New nano devices can be developed based on these behaviors. - Highlights: • “Discrete behaviors” appear in thermodynamic properties of ideal Fermi gases at nano scale. • Variations of particle number and internal energy with chemical potential have stepwise behavior. • There are oscillations and peaks in the variation of heat capacity with domain size and particle number. • Fermi line and Fermi surface at nano scale are not continuous but “discrete”. • Heat capacity oscillations can be used for excess thermal energy storage at nano scale
Thermodynamics of Quantum Gases for the Entire Range of Temperature
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations
International Nuclear Information System (INIS)
Zotos, X.
1982-01-01
Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics
Infection Unit Density as an Index of Infection Potential of Arbuscular Mycorrhizal Fungi.
Ohtomo, Ryo; Kobae, Yoshihiro; Morimoto, Sho; Oka, Norikuni
2018-03-29
The effective use of arbuscular mycorrhizal (AM) fungal function to promote host plant phosphate uptake in agricultural practice requires the accurate quantitative evaluation of AM fungal infection potential in field soil or AM fungal inoculation material. The number of infection units (IUs), intraradical fungal structures derived from single root entries formed after a short cultivation period, may reflect the number of propagules in soil when pot soil is completely permeated by the host root. However, the original IU method, in which all AM propagules in a pot are counted, requires the fine tuning of plant growing conditions and is considered to be laborious. The objective of the present study was to test whether IU density, not the total count of IU, but the number of IUs per unit root length, reflects the density of AM fungal propagules in soil. IU density assessed after 12 d of host plant cultivation and 3,3'-diaminobenzidine (DAB) staining showed a stronger linear correlation with propagule density than the mean infection percentage (MIP). In addition, IU density was affected less by the host plant species than MIP. We suggest that IU density provides a more rapid and reliable quantitation of the propagule density of AM fungi than MIP or the original IU method. Thus, IU density may be a more robust index of AM fungal infection potential for research and practical applications.
Minimal length, Friedmann equations and maximum density
Energy Technology Data Exchange (ETDEWEB)
Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)
2014-06-16
Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.
Metal hydrides based high energy density thermal battery
International Nuclear Information System (INIS)
Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina
2015-01-01
Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles
Low-density, one-dimensional quantum gases in the presence of a localized attractive potential
International Nuclear Information System (INIS)
Goold, J; O'Donoghue, D; Busch, Th
2008-01-01
We investigate low-density, quantum-degenerate gases in the presence of a localized attractive potential in the centre of a one-dimensional harmonic trap. The attractive potential is modelled using a parameterized δ-function, allowing us to determine all single-particle eigenfunctions analytically. From these we calculate the ground-state many-body properties for a system of spin-polarized fermions and, using the Bose-Fermi mapping theorem, extend the results to strongly interacting bosonic systems. We discuss the single-particle densities, the pair-correlation functions, the reduced single-particle density matrices and the momentum distributions as a function of the particle number and strength of the attractive point potential. As an important experimental observable, we place special emphasis on spatial coherence properties of such samples.
Interfacial solvation thermodynamics
International Nuclear Information System (INIS)
Ben-Amotz, Dor
2016-01-01
Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)
Bayesian quantification of thermodynamic uncertainties in dense gas flows
International Nuclear Information System (INIS)
Merle, X.; Cinnella, P.
2015-01-01
A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of the so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid–vapor saturation curve – are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data – specifically, wall pressure data – are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters and the true phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed. - Highlights: • Development of a Bayesian inference procedure for calibrating dense-gas flow solvers. • Complex thermodynamic models calibrated by using aerodynamic data for the flow. • Preliminary Sobol analysis used to reduce parameter space. • Piecewise polynomial surrogate model constructed to reduce computational cost. • Calibration results show the crucial role played by model-form inadequacies
Multia, Evgen; Sirén, Heli; Andersson, Karl; Samuelsson, Jörgen; Forssén, Patrik; Fornstedt, Torgny; Öörni, Katariina; Jauhiainen, Matti; Riekkola, Marja-Liisa
2017-02-01
Two complementary instrumental techniques were used, and the data generated was processed with advanced numerical tools to investigate the interactions between anti-human apoB-100 monoclonal antibody (anti-apoB-100 Mab) and apoB-100 containing lipoproteins. Partial Filling Affinity Capillary Electrophoresis (PF-ACE) combined with Adsorption Energy Distribution (AED) calculations provided information on the heterogeneity of the interactions without any a priori model assumptions. The AED calculations evidenced a homogenous binding site distribution for the interactions. Quartz Crystal Microbalance (QCM) studies were used to evaluate thermodynamics and kinetics of the Low-Density Lipoprotein (LDL) and anti-apoB-100 Mab interactions. High affinity and selectivity were observed, and the emerging data sets were analysed with so called Interaction Maps. In thermodynamic studies, the interaction between LDL and anti-apoB-100 Mab was found to be predominantly enthalpy driven. Both techniques were also used to study antibody interactions with Intermediate-Density (IDL) and Very Low-Density (VLDL) Lipoproteins. By screening affinity constants for IDL-VLDL sample in a single injection we were able to distinguish affinity constants for both subpopulations using the numerical Interaction Map tool. Copyright © 2016 Elsevier Inc. All rights reserved.
Entropy density of an adiabatic relativistic Bose-Einstein condensate star
Energy Technology Data Exchange (ETDEWEB)
Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza [Theoretical Physics Lab., Department of Physics, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-04-24
Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.
Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics
International Nuclear Information System (INIS)
Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio
2005-01-01
The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems
International Nuclear Information System (INIS)
Mansson, B.A.
1990-01-01
Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory
Saxena, A K
2014-01-01
Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions
Thermodynamic framework for compact q-Gaussian distributions
Souza, Andre M. C.; Andrade, Roberto F. S.; Nobre, Fernando D.; Curado, Evaldo M. F.
2018-02-01
Recent works have associated systems of particles, characterized by short-range repulsive interactions and evolving under overdamped motion, to a nonlinear Fokker-Planck equation within the class of nonextensive statistical mechanics, with a nonlinear diffusion contribution whose exponent is given by ν = 2 - q. The particular case ν = 2 applies to interacting vortices in type-II superconductors, whereas ν > 2 covers systems of particles characterized by short-range power-law interactions, where correlations among particles are taken into account. In the former case, several studies presented a consistent thermodynamic framework based on the definition of an effective temperature θ (presenting experimental values much higher than typical room temperatures T, so that thermal noise could be neglected), conjugated to a generalized entropy sν (with ν = 2). Herein, the whole thermodynamic scheme is revisited and extended to systems of particles interacting repulsively, through short-ranged potentials, described by an entropy sν, with ν > 1, covering the ν = 2 (vortices in type-II superconductors) and ν > 2 (short-range power-law interactions) physical examples. One basic requirement concerns a cutoff in the equilibrium distribution Peq(x) , approached due to a confining external harmonic potential, ϕ(x) = αx2 / 2 (α > 0). The main results achieved are: (a) The definition of an effective temperature θ conjugated to the entropy sν; (b) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 -(θ2 /θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 >θ2; (c) Thermodynamic potentials, Maxwell relations, and response functions. The present thermodynamic framework, for a system of interacting particles under the above-mentioned conditions, and associated to an entropy sν, with ν > 1, certainly enlarges the possibility of experimental verifications.
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
A two-parameter family of double-power-law biorthonormal potential-density expansions
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn
2018-05-01
We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.
Polyakov loop and QCD thermodynamics from the gluon and ghost propagators
International Nuclear Information System (INIS)
Fukushima, Kenji; Kashiwa, Kouji
2013-01-01
We investigate quark deconfinement by calculating the effective potential of the Polyakov loop using the non-perturbative propagators in the Landau gauge measured in the finite-temperature lattice simulation. With the leading term in the 2-particle-irreducible formalism the resultant effective potential exhibits a first-order phase transitions for the pure SU(3) Yang–Mills theory at the critical temperature consistent with the empirical value. We also estimate the thermodynamic quantities to confirm qualitative agreement with the lattice data near the critical temperature. We then apply our effective potential to the chiral model-study and calculate the order parameters and the thermodynamic quantities. Unlike the case in the pure Yang–Mills theory the thermodynamic quantities are sensitive to the temperature dependence of the non-perturbative propagators, while the behavior of the order parameters is less sensitive, which implies the importance of the precise determination of the temperature-dependent propagators
Renewable carbohydrates are a potential high-density hydrogen carrier
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)
2010-10-15
The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)
An improved thermodynamic perturbation theory for Mercedes-Benz water.
Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A
2007-11-07
We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.
Calculation and analysis of thermodynamic relations for superconductors
International Nuclear Information System (INIS)
Nazarenko, A.B.
1989-01-01
The absorption coefficients of high-frequency and low-frequency sound have been calculated on the basis of the Ginzburg-Landau theory. This sound is a wave of periodic adiabatic bulk compressions and rarefactions of the frequency ω in an isotropic superconductor near the transition temperature. Thermodynamic relations have been obtained for abrupt changes in the physical quantities produced as a result of a transition from the normal state to the superconducting state. These relations are similar to the Ehrenfest relations. The above--mentioned thermodynamic quantities are compared with the published experimental results on YBa 2 Cu 3 O 7-δ . The experiments on the absorption of ultrasound in recently discovered superconductors mainformation on the phase transition type and thermodynamic relations for these superconductors, in particular, the T c -vs-dp curve. Similar calculations have been carried out for 2 He-transition experiments with ferromagnetic materials. The order parameter in the thermodynamic potential was assumed to be isotropic
Thermodynamic properties of an emerging chemical disinfectant, peracetic acid.
Zhang, Chiqian; Brown, Pamela J B; Hu, Zhiqiang
2018-04-15
Peracetic acid (PAA or CH 3 COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH 3 COOOH (aq) , CH 3 COOOH (g) , CH 3 COOOH (l) , and CH 3 COOO (aq) - are -299.41kJ·mol -1 , -283.02kJ·mol -1 , -276.10kJ·mol -1 , and -252.60kJ·mol -1 , respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA. Copyright © 2017 Elsevier B.V. All rights reserved.
Life, hierarchy, and the thermodynamic machinery of planet Earth.
Kleidon, Axel
2010-12-01
Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates
Design of thermodynamic experiments and analyses of thermodynamic relationships
International Nuclear Information System (INIS)
Oezer Arnas, A.
2009-01-01
In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)
HPLC retention thermodynamics of grape and wine tannins.
Barak, Jennifer A; Kennedy, James A
2013-05-08
The effect of grape and wine tannin structure on retention thermodynamics under reversed-phase high-performance liquid chromatography conditions on a polystyrene divinylbenzene column was investigated. On the basis of retention response to temperature, an alternative retention factor was developed to approximate the combined temperature response of the complex, unresolvable tannin mixture. This alternative retention factor was based upon relative tannin peak areas separated by an abrupt change in solvent gradient. Using this alternative retention factor, retention thermodynamics were calculated. Van't Hoff relationships of the natural log of the alternative retention factor against temperature followed Kirchoff's relationship. An inverse quadratic equation was fit to the data, and from this the thermodynamic parameters for tannin retention were calculated. All tannin fractions exhibited exothermic, spontaneous interaction, with enthalpy-entropy compensation observed. Normalizing for tannin size, distinct tannin compositional effects on thermodynamic parameters were observed. The results of this study indicate that HPLC can be valuable for measuring the thermodynamics of tannin interaction with a hydrophobic surface and provides a potentially valuable alternative to calorimetry. Furthermore, the information gathered may provide insight into understanding red wine astringency quality.
On thermodynamics of AdS black holes in M-theory
International Nuclear Information System (INIS)
Belhaj, A.; Chabab, M.; Masmar, K.; El Moumni, H.; Sedra, M.B.
2016-01-01
Motivated by recent work on asymptotically AdS 4 black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS p+2 x S 11-p-2 , where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)
Density-space potential phase difference in a Kelvin--Helmholtz instability
International Nuclear Information System (INIS)
Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.
1974-01-01
The low-frequency instability found in a hollow cathode discharge in helium was studied using an ion beam probe as a primary diagnostic tool. Three aspects of the instability are discussed: the location and amplitude of the oscillation and its correlation with the shape of the space potential; the phase angle between density and space potential oscillations; and the comparison of the data with three known instability models: Kelvin--Helmholtz, Rayleigh--Taylor, and drift waves--for mode identification. (U.S.)
Generalized laws of thermodynamics in the presence of correlations.
Bera, Manabendra N; Riera, Arnau; Lewenstein, Maciej; Winter, Andreas
2017-12-19
The laws of thermodynamics, despite their wide range of applicability, are known to break down when systems are correlated with their environments. Here we generalize thermodynamics to physical scenarios which allow presence of correlations, including those where strong correlations are present. We exploit the connection between information and physics, and introduce a consistent redefinition of heat dissipation by systematically accounting for the information flow from system to bath in terms of the conditional entropy. As a consequence, the formula for the Helmholtz free energy is accordingly modified. Such a remedy not only fixes the apparent violations of Landauer's erasure principle and the second law due to anomalous heat flows, but also leads to a generally valid reformulation of the laws of thermodynamics. In this information-theoretic approach, correlations between system and environment store work potential. Thus, in this view, the apparent anomalous heat flows are the refrigeration processes driven by such potentials.
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Thermodynamics for scientists and engineers
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2011-02-01
This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.
Rapid density-measurement system with vibrating-tube densimeter
International Nuclear Information System (INIS)
Kayukawa, Yohei; Hasumoto, Masaya; Watanabe, Koichi
2003-01-01
Concerning an increasing demand for environmentally friendly refrigerants including hydrocarbons, thermodynamic properties of such new refrigerants, especially densities, are essential information for refrigeration engineering. A rapid density-measurement system with vibrating-tube densimeter was developed in the present study with an aim to supply large numbers of high-quality PVT property data in a short period. The present system needs only a few minutes to obtain a single datum, and requires less than 20 cm 3 sample fluid. PVT properties in the entire fluid-phase, vapor-pressures, saturated-liquid densities for pure fluid are available. Liquid densities, bubble-point pressures and saturated-liquid densities for mixture can be obtained. The measurement range is from 240 to 380 K for temperature and up to 7 MPa for pressure. By employing a new calibration function, density can be precisely obtained even at lower densities. The densimeter is calibrated with pure water and iso-octane which is one of the density-standard fluids, and then measurement uncertainty was evaluated to be 0.1 kg m -3 or 0.024% whichever greater in density, 0.26 kPa or 0.022% whichever greater in pressure and 3 mK for temperature, respectively. The performance of the present measurement system was examined by measuring thermodynamic properties for refrigerant R134a. The experimental results were compared with available equation of state and confirmed to agree with it within ±0.05% for liquid densities while ±0.5% in pressure for the gas phase
Thermodynamic forces in coarse-grained simulations
Noid, William
Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.
Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds
Yalameha, Shahram; Vaez, Aminollah
2018-04-01
In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.
Institute of Scientific and Technical Information of China (English)
LIU Zhong-Li; CHENG Yan; TAN Ni-Na; GOU Qing-Quan
2006-01-01
The thermodynamic properties of LiBC are investigated by using the full-potential linearized muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT) and using the quasi-harmonic Debye model. The dependencies of the normalized lattice parameters a/a0 and c/c0, the ratio (c/a)/2, the normalized primitive volume V/V0 on pressure and temperature are successfully obtained. It is found that the interlayer covalent interactions (Li-B bonds or Li-C bonds) are more sensitive to temperature and pressure than intralayer ones (B-C bonds), as gives rise to the extreme lattice anisotropy in the bulk hcp LiBC.
International Nuclear Information System (INIS)
Akkelin, S.V.; Sinyukov, Yu.M.
2004-01-01
A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions
International Nuclear Information System (INIS)
Jezierski, Andrzej; Szytuła, Andrzej
2016-01-01
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0< P<9 GPa and the temperature range 0< T<300 K. - Highlights: • Full relativistic band structure of LaPtIn and CePtIn. • Fermi surface of LaPtIn, LaPtInH, CePtIn, CePtInH. • Effect of hydrogenation on the electronic structure of LaPtIn and CePtIn. • Thermodynamic properties in the quasi-harmonic Debye-Grüneisen model.
Dual QCD thermodynamics and quark–gluon plasma
International Nuclear Information System (INIS)
Chandola, H.C.; Punetha, Garima; Dehnen, H.
2016-01-01
Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark–gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP–hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP–hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
A New Perspective on Thermodynamics
Lavenda, Bernard H
2010-01-01
Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...
Thermodynamic analysis of algal biocrude production
International Nuclear Information System (INIS)
Beal, C.M.; Hebner, R.E.; Webber, M.E.
2012-01-01
Although algal biofuels possess great potential, profitable production is quite challenging. Much of this challenge is rooted in the thermodynamic constraints associated with producing fuels with high energy, low entropy, and high exergy from dispersed materials. In this study, a preliminary thermodynamic analysis is presented that calculates the energy, entropy, and exergy of the intermediate products for algal biocrude production. These values are also used in an initial attempt to characterize the thermodynamic efficiency of that system. The production pathway is simplified by assuming ideal solutions throughout. Results for the energy and exergy efficiencies, and the first-order energy and exergy return on investment, of the system are given. The summary finding is that the first-order energy return on investment in the best case considered could be as high as 520, as compared to 1.7 × 10 −3 in the experimental unit under development. While this analysis shows that significant improvement may be possible, the ultimate thermodynamic efficiency of algal biofuels likely lies closer to the moderate case examined here, which yielded a first-order energy return on investment of 10. For perspective, the first-order energy return on investment for oil and gas production has been estimated in the literature to be ∼35. -- Highlights: ► A first-principles thermodynamic analysis was conducted for algal biocrude production. ► The energy, entropy, and exergy was determined for each intermediate product by assuming the products were ideal solutions. ► The thermodynamic properties were used to calculate the energy and exergy return on investments for three cases. ► It was determined that the energy and exergy return on investments could be as high as ∼500. ► More realistic assumptions for efficient systems yielded return on investments on the order of 10.
Stability, electronic and thermodynamic properties of aluminene from first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Yuan, Junhui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu, Niannian [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Xue, Kanhao, E-mail: xkh@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)
2017-07-01
Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.
Stability, electronic and thermodynamic properties of aluminene from first-principles calculations
International Nuclear Information System (INIS)
Yuan, Junhui; Yu, Niannian; Xue, Kanhao; Miao, Xiangshui
2017-01-01
Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Dong, S.
2018-05-01
We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.
Directory of Open Access Journals (Sweden)
R. Feistel
2008-12-01
Full Text Available A new seawater standard for oceanographic and engineering applications has been developed that consists of three independent thermodynamic potential functions, derived from extensive distinct sets of very accurate experimental data. The results have been formulated as Releases of the International Association for the Properties of Water and Steam, IAPWS (1996, 2006, 2008 and are expected to be adopted internationally by other organizations in subsequent years. In order to successfully perform computations such as phase equilibria from combinations of these potential functions, mutual compatibility and consistency of these independent mathematical functions must be ensured. In this article, a brief review of their separate development and ranges of validity is given. We analyse background details on the conditions specified at their reference states, the triple point and the standard ocean state, to ensure the mutual consistency of the different formulations, and the necessity and possibility of numerically evaluating metastable states of liquid water. Computed from this formulation in quadruple precision (128-bit floating point numbers, tables of numerical reference values are provided as anchor points for the consistent incorporation of additional potential functions in the future, and as unambiguous benchmarks to be used in the determination of numerical uncertainty estimates of double-precision implementations on different platforms that may be customized for special purposes.
Self-consistent density functional calculation of the image potential at a metal surface
International Nuclear Information System (INIS)
Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P
2007-01-01
It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description
Self-consistent density functional calculation of the image potential at a metal surface
Energy Technology Data Exchange (ETDEWEB)
Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)
2007-07-04
It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.
Exact exchange-correlation potential and approximate exchange potential in terms of density matrices
International Nuclear Information System (INIS)
Holas, A.; March, N.H.
1995-01-01
An exact expression in terms of density matrices (DM) is derived for δF[n]/δn(r), the functional derivative of the Hohenberg-Kohn functional. The derivation starts from the differential form of the virial theorem, obtained here for an electron system with arbitrary interactions, and leads to an expression taking the form of an integral over a path that can be chosen arbitrarily. After applying this approach to the equivalent system of noninteracting electrons (Slater-Kohn-Sham scheme) and combining the corresponding result with the previous one, an exact expression for the exchange-correlation potential v xc (r) is obtained which is analogous in character to that for δF[n]/δn(r), but involving, besides the interacting-system DMs, also the noninteracitng DMs. Equating the former DMs to the latter ones, we reduce the result for the exact v xc (r) to that for an approximate exchange-only potential v x (r). This leads naturally to the Harbola-Sahni exchange-only potential
DEFF Research Database (Denmark)
Horacek, J.; Adamek, J.; Müller, H.W.
2010-01-01
This paper focuses on interpretation of fast (1 µs) and local (2–4 mm) measurements of plasma density, potential and electron temperature in the edge plasma of tokamak ASDEX Upgrade. Steady-state radial profiles demonstrate the credibility of the ball-pen probe. We demonstrate that floating...... potential fluctuations measured by a Langmuir probe are dominated by plasma electron temperature rather than potential. Spatial and temporal scales are found consistent with expectations based on interchange-driven turbulence. Conditionally averaged signals found for both potential and density are also...
Improving Power Density of Free-Piston Stirling Engines
Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.
2016-01-01
Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.
Metal hydrides based high energy density thermal battery
Energy Technology Data Exchange (ETDEWEB)
Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)
2015-10-05
Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.
Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX
Energy Technology Data Exchange (ETDEWEB)
Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)
1993-12-31
Measurements of density, potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. The properties of plasma fluctuations in a tokamak and stellarator can then be compared. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to measure the radial profiles of fluctuations in the ion saturation current and floating potential in W7-AS and ASDEX. In both devices, a reversal in radial electric field and an associated velocity shear layer at the plasma boundary have been observed and in both cases the normalized ion saturation current fluctuation level decreases monotonically moving towards the plasma centre and through the shear layer. At the radial position where the phase velocity in the poloidal direction of the fluctuations goes to zero, the normalized ion saturation current fluctuation level of 0.25 are similar for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between fluctuations in floating potential and ion saturation current has been observed in both machines. (author) 6 refs., 4 figs.
On thermodynamics of AdS black holes in M-theory
Energy Technology Data Exchange (ETDEWEB)
Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, LIRST, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LASIMO, Faculte des Sciences, Kenitra (Morocco)
2016-02-15
Motivated by recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS{sub p+2} x S{sup 11-p-2}, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)
Introduction to applied thermodynamics
Helsdon, R M; Walker, G E
1965-01-01
Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o
Twenty lectures on thermodynamics
Buchdahl, H A
2013-01-01
Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text
Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles
DEFF Research Database (Denmark)
Bakkedal, Morten Bjørn
to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should...
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-01-01
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214
Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals
Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, G.Q.
2017-01-01
For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli,
Hütter, Markus; Brader, Joseph M
2009-06-07
We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.
International Nuclear Information System (INIS)
Sato, H.
2009-01-01
Swelling pressure was discussed focusing on the thermodynamic properties of water on smectite (montmorillonite) which is the major clay mineral constituent of the bentonite buffer. The thermodynamic data of the water on the smectite surface were obtained as a function of water content and temperature in a range of dry density 0.6-0.9 Mg/m 3 . Purified Na-smectite of which all interlayer cations were exchanged with Na+ ions, was used. The activity (a H 2 O ) and the relative partial molar Gibbs free energy (ΔG H 2 O ) of the water were obtained at 25 C. Both a H 2 O and ΔG H 2 O decreased with a decrease of water content, and similar results were obtained to data reported for montmorillonite (Kunipia-F bentonite). Since the specific surface area of smectite is about 800 m 2 /g, water up to approximately 2 water layers from smectite surface is thermodynamically evaluated to be bound. Swelling pressure versus smectite partial density was calculated based on ΔG H 2 O and compared to data experimentally obtained for various kinds of bentonites. The calculated results were in good agreement with the measured data over the range of smectite partial density between 1.0 and 2.0 Mg/m 3 . (author)
Advanced classical thermodynamics
International Nuclear Information System (INIS)
Emanuel, G.
1987-01-01
The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references
Bremsstrahlung spectra for Al, Cs, and Au atoms in high-temperature, high-density plasmas
International Nuclear Information System (INIS)
Kim, L.; Pratt, R.H.; Tseng, H.K.
1985-01-01
Results are presented from a numerical calculation for the bremsstrahlung spectrum and Gaunt factors of Al, Cs, and Au atoms in high-temperature (-T), high-density (-rho) plasmas. Plasma temperatures kT = 0.1 and 1.0 keV and plasma densities rho = rho 0 (the normal solid density) and rho = 100rho 0 are considered. This allows us to determine the generality and identify the origins of features which we had previously identified in calculations for Cs. We also now present results for the total energy loss of an electron in such a plasma. We use a relativistic multipole code which treats the bremsstrahlung process as a single-electron transition in a static screened central potential. We take for the static potential corresponding to an atom in a hot dense plasma the finite-temperature, finite-density Thomas-Fermi model. This approach corresponds to an average atom in local thermodynamic equilibrium. In comparison to isolated-neutral-atom results we observe general suppression of cross sections and a particular suppression in the tip region of the spectrum. Within this model, both superscreening and shape resonances are found in the circumstances of extreme density. At more normal densities and except for the soft-photon end, the spectrum at these energies for an atom in a hot plasma (characterized by an average degree of ionization) can be well represented by the spectrum of the corresponding isolated ion, which has a similar potential shape at the distances which characterize the process
Directory of Open Access Journals (Sweden)
Ying Jiang
2017-02-01
Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.
Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.
2018-06-01
In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.
Pikus, F. G.; Efros, A. L.
1993-06-01
A two-dimensional electron liquid (TDEL), subjected to a smooth random potential, is studied in the regime of the fractional quantum Hall effect. An analytical theory of the nonlinear screening is presented for the case when the fractional gap is much less than the magnitude of the unscreened random potential. In this ``narrow-gap approximation'' (NGA), we calculate the electron density distribution function, the fraction of the TDEL which is in the incompressible state, and the thermodynamic density of states. The magnetocapacitance is calculated to compare with the recent experiments. The NGA is found to be not accurate enough to describe the data. The results for larger fractional gaps are obtained by computer modeling. To fit the recent experimental data we have also taken into account the anyon-anyon interaction in the vicinity of a fractional singularity.
Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method
International Nuclear Information System (INIS)
Wang, Hanfu; Jin, Hao; Chu, Weiguo; Guo, Yanjun
2010-01-01
The lattice dynamics and thermodynamic properties of Mg 2 Si and Mg 2 Ge are studied based on the first principles calculations. We obtain the phonon dispersion curves and phonon density of states spectra using the density functional perturbation theory with local density approximations. By employing the quasi-harmonic approximation, we calculate the temperature dependent Helmholtz free energy, bulk modulus, thermal expansion coefficient, specific heat, Debye temperature and overall Grueneisen coefficient. The results are in good agreement with available experimental data and previous theoretical studies. The thermal conductivities of both compounds are then estimated with the Slack's equation. By carefully choosing input parameters, especially the acoustic Debye temperature, we find that the calculated thermal conductivities agree fairly well with the experimental values above 80 K for both compounds. This demonstrates that the lattice thermal conductivity of simple cubic semiconductors may be estimated with satisfactory accuracy by combining the Slack's equation with the necessary thermodynamics parameters derived completely from the first principles calculations.
International Nuclear Information System (INIS)
Yang Xi; Liu Hui; Hou Haifeng; Flamm, Alison; Zhang Xuesheng; Wang Zunyao
2010-01-01
The thermodynamic properties of 75 polyfluorinated dibenzo-p-dioxins (PFDDs) in the ideal gas state at 298.15 K and 1.013 x 10 5 Pa have been calculated at the B3LYP/6-311G* level using Gaussian 03 program. The isodesmic reactions were designed to calculate standard enthalpy of formation (ΔH f o ) and standard free energy of formation (ΔG f o ) of PFDDs congeners. The relations of these thermodynamic parameters with the number and position of fluorine atom substitution (N PFS ) were discussed, and it was found that there exist high correlations between thermodynamic parameters (entropy (S o ), ΔH f o and ΔG f o ) and N PFS . According to the relative magnitude of their ΔG f o , the relative stability order of PFDD congeners was theoretically proposed.
Effect of deformation and orientation on spin orbit density dependent nuclear potential
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Thermodynamics of nuclear materials
International Nuclear Information System (INIS)
1979-01-01
Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
Hyeon, Changbong; Hwang, Wonseok
2017-07-01
Using Brownian motion in periodic potentials V (x ) tilted by a force f , we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q , and in order to limit the output fluctuation within a relative uncertainty ɛ , at least 2 kBT /ɛ2 of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f ≪V'(x ) ] but also at far-from-equilibrium [f ≫V'(x ) ] , more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σq2) increases with its mean (μq), and it cannot be smaller than 2 kBT μq .
Thermodynamic modelling of alkali-activated slag cements
International Nuclear Information System (INIS)
Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.
2015-01-01
Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags
Thermodynamics of DBI Black Holes in Anti-de Sitter Spacetime
International Nuclear Information System (INIS)
Jia Dongyan; Yue Ruihong; Huang Shiming
2011-01-01
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole. In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes. (general)
Gravity as a thermodynamic phenomenon
Moustos, Dimitris
2017-01-01
The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.
High energy lithium-oxygen batteries - Transport barriers and thermodynamics
Das, Shyamal K.
2012-01-01
We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.
Thermodynamic database for proteins: features and applications.
Gromiha, M Michael; Sarai, Akinori
2010-01-01
We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection of a large number of thermodynamic data on protein stability along with the sequence and structure information, experimental methods and conditions, and literature information. This is a valuable resource for understanding/predicting the stability of proteins, and it can be accessible at http://www.gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html . ProTherm has several features including various search, display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine the relationship among thermodynamics, structure, and function of proteins. We describe the progress on the development of methods for understanding/predicting protein stability, such as (i) relationship between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii) empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning techniques. The list of online resources for predicting protein stability has also been provided.
Thermodynamics and structure of liquid metals from a consistent optimized random phase approximation
International Nuclear Information System (INIS)
Akinlade, O.; Badirkhan, Z.; Pastore, G.
2000-05-01
We study thermodynamics and structural properties of several liquid metals to assess the validity of the generalized non-local model potential (GNMP) of Li et. al. [J.Phys. F16,309 (1986)]. By using a new thermodynamically consistent version of the optimized random phase approximation (ORPA), especially adapted to continuous reference potentials, we improve our previous results obtained within the variational approach based on the Gibbs - Bogoliubov inequality. Hinging on the unified and very accurate evaluation of structure factors and thermodynamic quantities provided by the ORPA, we find that the GNMP yields satisfactory results for the alkali metals, however, those for the polyvalent metals point to a substantial inadequacy of the GNMP for high valence systems. (author)
Singularity-free interpretation of the thermodynamics of supercooled water
International Nuclear Information System (INIS)
Sastry, S.; Debenedetti, P.G.; Sciortino, F.; Stanley, H.E.
1996-01-01
The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water. copyright 1996 The American Physical Society
Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir
2018-04-01
The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.
Density functional theory of the electrical double layer: the RFD functional
International Nuclear Information System (INIS)
Gillespie, Dirk; Valisko, Monika; Boda, Dezso
2005-01-01
Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions
Thermodynamic estimation: Ionic materials
International Nuclear Information System (INIS)
Glasser, Leslie
2013-01-01
Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy
Thermodynamics and kinetics of the glass transition: A generic geometric approach
International Nuclear Information System (INIS)
Gutzow, I.; Ilieva, D.; Babalievski, F.; Yamakov, V.
2000-01-01
A generic phenomenological theory of the glass transition is developed in the framework of a quasilinear formulation of the thermodynamics of irreversible processes. Starting from one of the basic principles of this science in its approximate form given by de Donder's equation, after a change of variables the temperature dependence of the structural parameter ξ(T), the thermodynamic potentials ΔG(tilde sign)(T), the thermodynamic functions and the time of molecular relaxation τ of vitrifying systems is constructed. In doing so, a new effect in the ΔG(tilde sign)(T) course is observed. The analysis of the higher derivatives of the thermodynamic potential, and especially the nullification of the second derivative of the configurational specific heats ΔC(tilde sign) p (T) of the vitrifying liquid defines glass transition temperature T(tilde sign) g and leads directly to the basic dependence of glass transition kinetics: the Frenkel-Kobeko-Reiner equation. The conditions guaranteeing the fulfillment of this equation specify the temperature dependence of the activation energy U(T,ξ(tilde sign)) for viscous flow and give a natural differentiation of glass formers into fragile and strong liquids. The effect of thermal prehistory on the temperature dependence of both thermodynamic functions and kinetic coefficients is established by an appropriate separation of de Donder's equation. (c) 2000 American Institute of Physics
International Nuclear Information System (INIS)
Stránský, Pavel; Macek, Michal; Cejnar, Pavel
2014-01-01
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies
TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1987-present, Potential Density Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Potential Density Anomaly (sigma-theta) data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...
Zhang, J. Y.; Xie, Y. P.; Guo, H. B.; Chen, Y. G.
2018-05-01
Aluminum nitride (AlN) has a polar crystal structure that is susceptible to electric dipolar interactions. The inversion domains in AlN, similar to those in GaN and other wurtzite-structure materials, decrease the energy associated with the electric dipolar interactions at the expense of inversion-domain boundaries, whose interface energy has not been quantified. We study the atomic structures of six different inversion-domain boundaries in AlN, and compare their interface energies from density functional theory calculations. The low-energy interfaces have atomic structures with similar bonding geometry as those in the bulk phase, while the high-energy interfaces contain N-N wrong bonds. We calculate the formation energy of an inversion domain using the interface energy and dipoles' electric-field energy, and find that the distribution of the inversion domains is an important parameter for the microstructures of AlN films. Using this thermodynamic model, it is possible to control the polarity and microstructure of AlN films by tuning the distribution of an inversion-domain nucleus and by selecting the low-energy synthesis methods.
Yourgrau, Wolfgang; Raw, Gough
2002-01-01
Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.
EXTRACTION OF STRONTIUM(II BY CROWN ETHER: INSIGHTS FROM DENSITY FUNCTIONAL CALCULATION
Directory of Open Access Journals (Sweden)
Saprizal Hadisaputra
2012-12-01
Full Text Available The structures, energetic and thermodynamic parameters of crown ethers with different cavity size, electron donating/withdrawing substituent groups and donor atoms have been determined with density functional method at B3LYP level of theory in gas and solvent phase. Small core quasi-relativistic effective core potentials was used together with the accompanying SDD basis set for Sr2+ and DZP basis set was used for crown ether atoms. Natural bond orbital (NBO analysis was evaluated to characterize the distribution of electrons on the complexes. The interaction energy is well correlated with the values of Strontium charge after complexation, the second order interaction energies (E2 and HOMO-LUMO energy gab (∆Egab. The interaction energy and thermodynamics parameters in gas phase are reduced in solvent phase as the solvent molecules weaken the metal-crown ether interaction. The thermodynamic parameters indicated that less feasibility to extract Sr2+ ion directly from pure water without presence of organic solvent. The theoretical values of extraction energy for Sr(NO32 salt from aqueous solution in different organic solvent is validated by the experimental trend. This study would have strong contribution in planning the experiments to the design of specific host ligand and screening of solvent for extraction of metal ion.
Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter
International Nuclear Information System (INIS)
Martin, R.
1977-01-01
The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermi's equation. Approximate calculus methods are found from analytic study of the T-Fermi's equation for non zero temperature. T-Fermi's equation is solved with the code ''Golem''written in Fortran V (Univac). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (author) [es
Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter
International Nuclear Information System (INIS)
Martin, R.
1977-01-01
The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs
Energy Technology Data Exchange (ETDEWEB)
Jakse, Noel; Bretonnet, Jean-Louis [Laboratoire de Theorie de la Matiere Condensee, Universite de Metz, 1 Boulevard FD Arago, 57078 Metz Cedex 3 (France)
2003-12-08
Understanding the interatomic interactions in noble gases remains one of the fundamental problems not completely solved to date. From small-angle neutron scattering experiments it is well-known that three-body forces exist and cannot be neglected. On the theoretical side, semi-analytic and simulation methods have been used to reveal the nature of these many-body interactions. The purpose of the present work is to provide an overview of the different three-body contributions to the interactions and their relative importance in describing the structural and thermodynamic properties for noble gases by means of the integral equation theory and molecular dynamics simulations. We examine the relevance of the effective state-dependent pair potential in this framework, as well as the self-consistency problem that we are faced with in the integral equation theory.
Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin
International Nuclear Information System (INIS)
Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane
2012-01-01
This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series
Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration
Becattini, F.; Grossi, E.
2015-08-01
We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.
Dynamics and thermodynamics of linear quantum open systems.
Martinez, Esteban A; Paz, Juan Pablo
2013-03-29
We analyze the evolution of the quantum state of networks of quantum oscillators coupled with arbitrary external environments. We show that the reduced density matrix of the network always obeys a local master equation with a simple analytical solution. We use this to study the emergence of thermodynamical laws in the long time regime demonstrating two main results: First, we show that it is impossible to build a quantum absorption refrigerator using linear networks (thus, nonlinearity is an essential resource for such refrigerators recently studied by Levy and Kosloff [Phys. Rev. Lett. 108, 070604 (2012)] and Levy et al. [Phys. Rev. B 85, 061126 (2012)]). Then, we show that the third law imposes constraints on the low frequency behavior of the environmental spectral densities.
Applied chemical engineering thermodynamics
Tassios, Dimitrios P
1993-01-01
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.
Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur
2016-04-06
Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.
Matoz-Fernandez, D A; Linares, D H; Ramirez-Pastor, A J
2012-09-04
The statistical thermodynamics of straight rigid rods of length k on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter, δ, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with δ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome and limitations of the theoretical model.
Quantum chemical approach to estimating the thermodynamics of metabolic reactions.
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-12
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach
Suthar, P. H.; Gajjar, P. N.
2018-04-01
The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.
Simulation of Cu-Mg metallic glass: Thermodynamics and structure
DEFF Research Database (Denmark)
Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel
2004-01-01
We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from...... the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature...
Thermodynamic aspects of the glass-rubber transition
Staverman, A.J.
1966-01-01
In 1933 Ehren/est defined transitions in which not only the thermodynamical potential but also the specific volume and entropy of the two states are equal. For these transitions he derived three relations, between the differences of the coefficients of dilatation and of compressibility and the
Galaxy halo expansions: a new biorthogonal family of potential-density pairs
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis
2018-05-01
Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.
International Nuclear Information System (INIS)
Xu Chang; Li Baoan; Chen Liewen
2010-01-01
Based on the Hugenholtz-Van Hove theorem, it is shown that both the symmetry energy E sym (ρ) and its density slope L(ρ) at normal density ρ 0 are completely determined by the nucleon global optical potentials. The latter can be extracted directly from nucleon-nucleus scatterings, (p,n) charge-exchange reactions, and single-particle energy levels of bound states. Averaging all phenomenological isovector nucleon potentials constrained by world data available in the literature since 1969, the best estimates of E sym (ρ 0 )=31.3 MeV and L(ρ 0 )=52.7 MeV are simultaneously obtained. Moreover, the corresponding neutron-proton effective mass splitting in neutron-rich matter of isospin asymmetry δ is estimated to be (m n * -m p * )/m=0.32δ.
Specifically Prescribed Dynamic Thermodynamic Paths and Resolidification Experiments
International Nuclear Information System (INIS)
Nguyen, J; Orlikowski, D; Streitz, F; Holmes, N; Moriarty, J
2003-11-01
We describe here a series of dynamic compression experiments using impactors with specifically prescribed density profiles. Building upon previous impactor designs, we compose our functionally graded density impactors of materials whose densities vary from about 0.1 g/cc to more than 15 g/cc. These impactors, whose density profiles are not restricted to be monotonic, can be used to generate prescribed thermodynamic paths in the targets. These paths include quasi-isentropes as well as combinations of shock, rarefraction, and quasi-isentropic compression waves. The time-scale of these experiments ranges from nanoseconds to several microseconds. Strain-rates in the quasi-isentropic compression experiments vary from approximately 10 4 s -1 to 10 6 s -1 . We applied this quasi-isentropic compression technique to resolidify water where ice is at a higher temperature than the initial water sample. The particle velocity of quasi-isentropically compressed water exhibits a two-wave structure and sample thickness scales consistently with water-ice phase transition time. Experiments on resolidification of molten bismuth are also promising
Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism
Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron
2014-01-01
In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating
Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao
2015-01-01
Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.
Thermodynamics of nuclear materials
International Nuclear Information System (INIS)
Rand, M.H.
1975-01-01
A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented
Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems
Directory of Open Access Journals (Sweden)
Goutsias John
2010-11-01
Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for
Thermodynamics and stability of hyperbolic charged black holes
International Nuclear Information System (INIS)
Cai Ronggen; Wang Anzhong
2004-01-01
In AdS space the black hole horizon can be a hypersurface with a positive, zero, or negative constant curvature, resulting in different horizon topology. Thermodynamics and stability of black holes in AdS spaces are quite different for different horizon curvatures. In this paper we study thermodynamics and stability of hyperbolic charged black holes with negative constant curvature horizon in the grand canonical ensemble and canonical ensemble, respectively. They include hyperbolic Reissner-Nordstroem black holes in arbitrary dimensions and hyperbolic black holes in the D=5,4,7 gauged supergravities. It is found that associated Gibbs free energies are always negative, which implies that these black hole solutions are globally stable and the black hole phase is dominant in the grand canonical ensemble, but there is a region in the phase space where the black hole is not locally thermodynamically stable with a negative heat capacity for a given gauge potential. In the canonical ensemble, the Helmholtz free energies are not always negative and heat capacities with fixed electric charge are not always positive, which indicates that the Hawking-Page phase transition may happen and black holes are not always locally thermodynamically stable
Thermodynamics of Acoustic Black Holes in Two Dimensions
Directory of Open Access Journals (Sweden)
Baocheng Zhang
2016-01-01
Full Text Available It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimensions, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but it is difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.
Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes
International Nuclear Information System (INIS)
Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao
2016-01-01
The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)
Olander, Donald
2007-01-01
The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Manh-Thuong, E-mail: manhth.nguyen@gmail.com; Gebauer, Ralph [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy); Farnesi Camellone, Matteo, E-mail: mfarnesi@sissa.it [CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche and SISSA Scuola Internazionale di Studi Superiori Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)
2015-07-21
Extensive first principles calculations are carried out to investigate Au monomers and dimers supported on α-Fe{sub 2}O{sub 3}(0001) surfaces in terms of structure optimizations, electronic structure analyses, and ab initio thermodynamics calculations of surface phase diagrams. All computations rely on density functional theory in the generalized gradient approximation (Perdew-Burke-Ernzerhof (PBE)) and account for on-site Coulomb interactions via inclusion of a Hubbard correction (PBE+U). The relative stability of Au monomers/dimers on the stoichiometric termination of α-Fe{sub 2}O{sub 3}(0001) decorated with various vacancies (multiple oxygen vacancies, iron vacancy, and mixed iron-oxygen vacancies) has been computed as a function of the oxygen chemical potential. The charge rearrangement induced by Au at the oxide contact is analyzed in detail and discussed. On one hand, ab initio thermodynamics predicts that under O-rich conditions, structures obtained by replacing a surface Fe atom with a Au atom are thermodynamically stable over a wide range of temperatures. On the other hand, the complex of a CO molecule on a Au atom substituting surface Fe atoms is thermodynamically stable only in a much more narrow range of values of the O chemical potential under O-rich conditions. In the case of a Au dimer, under O-rich conditions, supported Au atoms at an O-Fe di-vacancy are more stable. However, upon CO adsorption, the complex of a CO molecule and 2 Au atoms located at a single Fe vacancy is more favorable.
Information Thermodynamics of Cytosine DNA Methylation.
Directory of Open Access Journals (Sweden)
Robersy Sanchez
Full Text Available Cytosine DNA methylation (CDM is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise" induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1 the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2 whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic
Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound
Directory of Open Access Journals (Sweden)
S. Boucetta
2014-03-01
Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.
Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.
2018-04-01
Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
Advanced thermodynamics engineering
Annamalai, Kalyan; Jog, Milind A
2011-01-01
Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form
Modern engineering thermodynamics
Balmer, Robert T
2010-01-01
Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica
International Nuclear Information System (INIS)
Robinett, R.W.
2002-01-01
After briefly reviewing the definitions of classical probability densities for position, P C L(x), and for momentum, P C L(p), we present several examples of classical mechanical potential systems, mostly variations on such familiar cases as the infinite well and the uniformly accelerated particle for which the classical distributions can be easily derived and visualized. We focus especially on a simple potential which interpolates between the symmetric linear potential, V(x)=F vertical bar x vertical bar, and the infinite well, which can illustrate, in a mathematically straightforward way, how the divergent δ-function classical probability density for momentum for the infinite well can be seen to arise. Such examples can help students understand the quantum mechanical momentum-space wavefunction (and its corresponding probability density) in much the same way that other semiclassical techniques, such as the WKB approximation, can be used to visualize position-space wavefunctions. (author)
International Nuclear Information System (INIS)
Lago, S.; Giuliano Albo, P.A.
2013-01-01
Highlights: ► A novel method for calculating the isobaric specific heat capacity is presented. ► Heat capacity (C p ) was determined only by speed-of-sound and density measurements. ► (C p ) temperature dependence has been related to speed-of-sound by a new expression. ► Heat capacity for water, nonane, undecane, and rapeseed oil methyl ester are obtained. -- Abstract: The determination of thermal quantities from mechanical properties is still a challenge in the thermodynamic field. In this work, the authors suggest a preliminary numerical calculation which allows to determine the constant pressure specific heat capacity, starting from density and speed-of-sound experimental values, as input data. This method is a variant of the well characterized Recursive Equation Method (REM) [1] and permits to develop empirical equations of state for single phase fluids. In particular, the isobaric specific heat capacity has been obtained, in a wide range of temperatures and pressures, for pure water, n-nonane, n-undecane, and rapeseed oil methyl ester. The results have been compared with those available in the literature, when it was possible. Moreover, the typical uncertainty of heat capacity has been estimated to be in the order of 1.5%; however it has been shown that it can be improved when proper distributions of the experimental points are available
Size-dependent error of the density functional theory ionization potential in vacuum and solution.
Sosa Vazquez, Xochitl A; Isborn, Christine M
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions
International Nuclear Information System (INIS)
Mkam Tchouobiap, S E; Mashiyama, H
2011-01-01
Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.
Connecting thermodynamics and economics: well-lit roads and burned bridges.
Glucina, Mark David; Mayumi, Kozo
2010-01-01
Almost 40 years have passed since Georgescu-Roegen's seminal work, The Entropy Law and the Economic Process. During this time there has been much debate on the relevance of thermodynamics to economics, and many attempts to build bridges between the two. There has also been much confusion as to what the laws of thermodynamics actually say. This article clearly explains heat, work, and the thermodynamic laws, the meaning of entropy, and the importance of kinetics as a barrier to thermodynamically favorable processes. The two most important misunderstandings in the literature, namely entropy as disorder, and entropy as a measure of information, are highlighted. Reviewing the literature shows that thermodynamics is most relevant for building a descriptive model, or preanalytic vision of economics, because it implies physical constraints on production and consumption. Similarly, it suggests that there may be serious flaws with neoclassical economic models, and in particular the primacy of sustained growth. However, thermodynamics does not seem to aid mathematical modeling in economics, nor does it provide normative insights. As an aid to energy policy, thermodynamics is useful for assessing the feasibility of technology options--those that have the potential to meet our goals, and should be counted as options, and those that should not. But it does not provide a prescription outside of this technical realm. Factors, such as environmental impact, cost, and social acceptability, will ultimately determine which technically feasible options are most desirable.
Relativistic thermodynamics of Fluids. l
International Nuclear Information System (INIS)
Havas, P.; Swenson, R.J.
1979-01-01
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail
International Nuclear Information System (INIS)
Heintz, Andreas
2005-01-01
Mixtures of ionic liquids with organic solvents exhibit a most interesting research area in thermodynamics. The increasing utilization of ionic liquids in chemical processes and separation processes requires reliable and systematic data of thermodynamic and thermophysical properties such as activity coefficients, VLE and LLE data, heats of mixing as well as gas solubility data, densities and transport properties like viscosity, electric conductivity and mutual diffusion coefficients. This review presents an survey of the most recent data material including current developments and aspects of research activities needed in the future
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics
Quark-number susceptibility, thermodynamic sum rule, and the hard thermal loop approximation
International Nuclear Information System (INIS)
Chakraborty, Purnendu; Mustafa, Munshi G.; Thoma, Markus H.
2003-01-01
The quark number susceptibility, associated with the conserved quark number density, is closely related to the baryon and charge fluctuations in the quark-gluon plasma, which might serve as signature for the quark-gluon plasma formation in ultrarelativistic heavy-ion collisions. In addition to QCD lattice simulations, the quark number susceptibility has been calculated recently using a resummed perturbation theory (hard thermal loop resummation). In the present work we show, based on general arguments, that the computation of this quantity neglecting hard thermal loop vertices contradicts the Ward identity and violates the thermodynamic sum rule following from quark number conservation. We further show that the hard thermal loop perturbation theory is consistent with the thermodynamic sum rule
Beyond heat baths II: framework for generalized thermodynamic resource theories
Yunger Halpern, Nicole
2018-03-01
Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family’s structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilárd’s engine and Landauer’s Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. An early version of this paper partially motivated the later development of noncommutative thermalization. This generalization expands the theories’ potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.
Statistical Thermodynamics and Microscale Thermophysics
Carey, Van P.
1999-08-01
Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.
International Nuclear Information System (INIS)
Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.
1993-01-01
Radial profiles of gas temperature, electron temperature, and electron density were measured in a free-burning atmospheric-pressure argon arc-discharge plasma using line-shape analysis of scattered laser light. This method yields gas temperature, electron temperature, and electron density directly, with no reliance on the assumption of local thermodynamic equilibrium (LTE). Our results show a significant departure from LTE in the center of the discharge, contrary to expectations
Black hole phase transitions and the chemical potential
Energy Technology Data Exchange (ETDEWEB)
Maity, Reevu, E-mail: reevum@iitk.ac.in; Roy, Pratim, E-mail: proy@iitk.ac.in; Sarkar, Tapobrata, E-mail: tapo@iitk.ac.in
2017-02-10
In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.
Black hole phase transitions and the chemical potential
Directory of Open Access Journals (Sweden)
Reevu Maity
2017-02-01
Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.
QED corrections to Planck's radiation law and photon thermodynamics
International Nuclear Information System (INIS)
Partovi, M.H.
1994-01-01
Leading corrections to Planck's radiation formula and other photon thermodynamic functions arising from the pair-mediated photon-photon interaction are calculated. This interaction is found to be attractive and to cause a small increase in occupation number for all modes and a corresponding correction to the equation of state. The results are valid for the range of temperatures well below T e =5.9 GK, the temperature equivalent to the electron mass, a range for which the photon gas is essentially free of pair-produced electrons and positrons. An interesting effect of these corrections is the behavior of the photon gas as an elastic medium and its ability to propagate density perturbations. It is found that the cosmic photon gas subsequent to electron-positron annihilation would have manifested these elastic properties were it not for the presence of the free electrons and their dominance of the photon thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)
2016-01-21
The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.
International Nuclear Information System (INIS)
Peretrukhin, V.F.; Spitsyn, V.I.
1982-01-01
The oxidation potentials of neptunium, plutonium, and americium in the valance states from (III) to (VII) have been determined experimentally in 0.1-15 M NaOH. Heptavalent plutonium and americium are thermodynamically able to oxidize water with the evolution of oxygen in 0.1-15 M NaOH, neptunium(VII) in 0.1-7 M NaOH. All valance states of plutonium resist disproportionation in alkaline solutions; in the case of neptunium and americium only one disproportionation reaction is possible; of the hexavalent state in to penta- and heptavalent states. The degree of completion of the reaction can be calculated accurately from the oxidation potentials determined
Moustafa, Sabry Gad Al-Hak Mohammad
Molecular simulation (MS) methods (e.g. Monte Carlo (MC) and molecular dynamics (MD)) provide a reliable tool (especially at extreme conditions) to measure solid properties. However, measuring them accurately and efficiently (smallest uncertainty for a given time) using MS can be a big challenge especially with ab initio-type models. In addition, comparing with experimental results through extrapolating properties from finite size to the thermodynamic limit can be a critical obstacle. We first estimate the free energy (FE) of crystalline system of simple discontinuous potential, hard-spheres (HS), at its melting condition. Several approaches are explored to determine the most efficient route. The comparison study shows a considerable improvement in efficiency over the standard MS methods that are known for solid phases. In addition, we were able to accurately extrapolate to the thermodynamic limit using relatively small system sizes. Although the method is applied to HS model, it is readily extended to more complex hard-body potentials, such as hard tetrahedra. The harmonic approximation of the potential energy surface is usually an accurate model (especially at low temperature and large density) to describe many realistic solid phases. In addition, since the analysis is done numerically the method is relatively cheap. Here, we apply lattice dynamics (LD) techniques to get the FE of clathrate hydrates structures. Rigid-bonds model is assumed to describe water molecules; this, however, requires additional orientation degree-of-freedom in order to specify each molecule. However, we were able to efficiently avoid using those degrees of freedom through a mathematical transformation that only uses the atomic coordinates of water molecules. In addition, the proton-disorder nature of hydrate water networks adds extra complexity to the problem, especially when extrapolating to the thermodynamic limit is needed. The finite-size effects of the proton disorder contribution is
Some universal trends of the Mie(n,m) fluid thermodynamics
International Nuclear Information System (INIS)
Orea, Pedro; Reyes-Mercado, Yuri; Duda, Yurko
2008-01-01
By using canonical Monte Carlo simulation, the liquid-vapor phase diagram, surface tension, interface width, and pressure for the Mie(n,m) model fluids are calculated for six pairs of parameters m and n. It is shown that after certain re-scaling of fluid density the corresponding states rule can be applied for the calculations of the thermodynamic properties of the Mie model fluids, and for some real substances
A thermodynamic approach to obtain materials properties for engineering applications
Chang, Y. Austin
1993-01-01
With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.
Thermodynamic quantities for the Klein–Gordon equation
Indian Academy of Sciences (India)
We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverselinear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation.We use a method based on the Euler–MacLaurin formula to analytically compute thethermal ...
International Nuclear Information System (INIS)
Carroll, Beth E.; Otis, Richard A.; Borgonia, John Paul; Suh, Jong-ook; Dillon, R. Peter; Shapiro, Andrew A.; Hofmann, Douglas C.; Liu, Zi-Kui; Beese, Allison M.
2016-01-01
Many engineering applications, particularly in extreme environments, require components with properties that vary with location in the part. Functionally graded materials (FGMs), which possess gradients in properties such as hardness or density, are a potential solution to address these requirements. The laser-based additive manufacturing process of directed energy deposition (DED) can be used to fabricate metallic parts with a gradient in composition by adjusting the volume fraction of metallic powders delivered to the melt pool as a function of position. As this is a fusion process, secondary phases may develop in the gradient zone during solidification that can result in undesirable properties in the part. This work describes experimental and thermodynamic studies of a component built from 304L stainless steel incrementally graded to Inconel 625. The microstructure, chemistry, phase composition, and microhardness as a function of position were characterized by microscopy, energy dispersive spectroscopy, X-ray diffraction, and microindentation. Particles of secondary phases were found in small amounts within cracks in the gradient zone. These were ascertained to consist of transition metal carbides by experimental results and thermodynamic calculations. The study provides a combined experimental and thermodynamic computational modeling approach toward the fabrication and evaluation of a functionally graded material made by DED additive manufacturing.
Role of density modulation in the spatially resolved dynamics of strongly confined liquids.
Saw, Shibu; Dasgupta, Chandan
2016-08-07
Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can be quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.
Monte Carlo study of one-dimensional confined fluids with Gay-Berne intermolecular potential
Moradi, M.; Hashemi, S.
2011-11-01
The thermodynamic quantities of a one dimensional system of particles with Gay-Berne model potential confined between walls have been obtained by means of Monte Carlo computer simulations. For a number of temperatures, the systems were considered and their density profiles, order parameter, pressure, configurational temperature and average potential energy per particle are reported. The results show that by decreasing the temperature, the soft particles become more ordered and they align to the walls and also they don't show any tendency to be near the walls at very low temperatures. We have also changed the structure of the walls by embedding soft ellipses in them, this change increases the total density near the wall whereas, increasing or decreasing the order parameter depend on the angle of embedded ellipses.
Computational Thermodynamics of Materials Zi-Kui Liu and Yi Wang
Energy Technology Data Exchange (ETDEWEB)
Devanathan, Ram
2017-02-01
This authoritative volume introduces the reader to computational thermodynamics and the use of this approach to the design of material properties by tailoring the chemical composition. The text covers applications of this approach, introduces the relevant computational codes, and offers exercises at the end of each chapter. The book has nine chapters and two appendices that provide background material on computer codes. Chapter 1 covers the first and second laws of thermodynamics, introduces the spinodal as the limit of stability, and presents the Gibbs-Duhem equation. Chapter 2 focuses on the Gibbs energy function. Starting with a homogeneous system with a single phase, the authors proceed to phases with variable compositions, and polymer blends. The discussion includes the contributions of external electric and magnetic fields to the Gibbs energy. Chapter 3 deals with phase equilibria in heterogeneous systems, the Gibbs phase rule, and phase diagrams. Chapter 4 briefly covers experimental measurements of thermodynamic properties used as input for thermodynamic modeling by Calculation of Phase Diagrams (CALPHAD). Chapter 5 discusses the use of density functional theory to obtain thermochemical data and fill gaps where experimental data is missing. The reader is introduced to the Vienna Ab Initio Simulation Package (VASP) for density functional theory and the YPHON code for phonon calculations. Chapter 6 introduces the modeling of Gibbs energy of phases with the CALPHAD method. Chapter 7 deals with chemical reactions and the Ellingham diagram for metal-oxide systems and presents the calculation of the maximum reaction rate from equilibrium thermodynamics. Chapter 8 is devoted to electrochemical reactions and Pourbaix diagrams with application examples. Chapter 9 concludes this volume with the application of a model of multiple microstates to Ce and Fe3Pt. CALPHAD modeling is briefly discussed in the context of genomics of materials. The book introduces basic
Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.
Kleidon, Axel
2010-01-13
The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society
Behavior of the Thermodynamic Properties of Binary Mixtures near the Critical Azeotrope
Directory of Open Access Journals (Sweden)
Azzedine Abbaci
2003-12-01
Full Text Available Abstract: In this work we investigate the critical line of binary azeotropic mixtures of acetone-n-pentane. We pinpoint the abnormal behavior of the critical density line as a function of the mole fraction of one of the component and show its influence on other thermodynamic properties such as the volume, the enthalpy and the entropy.
Nanothermodynamics: a subdivision potential approach
Directory of Open Access Journals (Sweden)
R. Moussavi
2005-12-01
Full Text Available Classical thermodynamic laws and relations have been developed for macroscopic systems that satisfy the thermodynamic limit. These relations are challenged as the system size decreases to the scale of nano-systems, in which thermodynamic properties are overshadowed by system size, and the usual classical concepts of extensivity and intensivity are no longer valid. The challenges to the classical thermodynamics in relation to small systems are demonstrated, and via the approach introduced by Hill, the concept of sub-division potential is clarified in details. The fundamental thermodynamic relations are obtained using a rational-based method.
International Nuclear Information System (INIS)
Hemanadhan, M; Shamim, Md; Harbola, Manoj K
2014-01-01
The modified local spin density (MLSD) functional and the related local potential for excited states is tested by employing the ionization potential theorem. The exchange functional for an excited state is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding exchange potential is given by an analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ϵ max accurately, the potential is corrected for its asymptotic behaviour by employing the van Leeuwen and Baerends (LB) correction to it. ϵ max so obtained is then compared with the ΔSCF ionization energy calculated using the MLSD functional with self-interaction correction for the orbitals involved in the transition. It is shown that the two match quite accurately. The match becomes even better by tuning the LB correction with respect to a parameter in it. (paper)
Pakhomov, Anton; Sudin, Natalya
2013-12-01
This research is devoted to possible mechanisms of decision-making in frames of thermodynamic principles. It is also shown that the decision-making system in reply to emotion includes vector component which seems to be often a necessary condition to transfer system from one state to another. The phases of decision-making system can be described as supposed to be nonequilibrium and irreversible to which thermodynamics laws are applied. The mathematical model of a decision choice, proceeding from principles of the nonlinear dynamics considering instability of movement and bifurcation is offered. The thermodynamic component of decision-making process on the basis of vector transfer of energy induced by emotion at the given time is surveyed. It is proposed a three-modular model of decision making based on principles of thermodynamics. Here it is suggested that at entropy impact due to effect of emotion, on the closed system-the human brain,-initially arises chaos, then after fluctuations of possible alternatives which were going on-reactions of brain zones in reply to external influence, an order is forming and there is choice of alternatives, according to primary entrance conditions and a state of the closed system. Entropy calculation of a choice expectation of negative and positive emotion shows judgment possibility of existence of "the law of emotion conservation" in accordance with several experimental data.
Thermodynamic instabilities in hot and dense nuclear matter
Directory of Open Access Journals (Sweden)
Lavagno A.
2016-01-01
Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.
Thermodynamics an engineering approach
Cengel, Yunus A
2014-01-01
Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...
Thermodynamic assessment of the Pd−Rh−Ru system using calphad and first-principles methods
Energy Technology Data Exchange (ETDEWEB)
Gossé, S., E-mail: stephane.gosse@cea.fr [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Dupin, N. [Calcul Thermodynamique, Rue de l' avenir, 63670, Orcet (France); Guéneau, C. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Crivello, J.-C.; Joubert, J.-M. [Chimie Métallurgique des Terres Rares, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F-94320, Thiais (France)
2016-06-15
Palladium, rhodium and ruthenium are abundant fission products that form in oxide fuels in nuclear reactors. Under operating conditions, these Platinum-Group Metal (PGM) fission products accumulate in high concentration at the rim of the oxide fuel and mainly precipitate into metallic solid solutions. Their thermochemistry is of significant interest to predict the high temperature chemical interactions between the fuel and the cladding or the possible precipitation of PGM phases in high level nuclear waste glasses. To predict the thermodynamic properties of these PGM fission products, a thermodynamic modeling is being developed on the ternary Pd−Rh−Ru system using the Calphad method. Because experimental thermodynamic data are scarce, Special Quasirandom Structures coupled with Density Functional Theory methods were used to calculate mixing enthalpy data in the solid solutions. The resulting thermodynamic description based on only binary interaction parameters is in good agreement with the few data on the ternary system. - Highlights: • The mixing enthalpy of solid solutions in the Pd−Rh−Ru system was calculated using the DFT and SQS methods. • A thermodynamic assessment of the Pd−Rh−Ru ternary system was performed using the Calphad method. • The extrapolation based on only binary interaction parameters leads to a good agreement with the data on the ternary.
International Nuclear Information System (INIS)
Lisa, C.; Ungureanu, M.; Cosmaţchi, P.C.; Bolat, G.
2015-01-01
Graphical abstract: - Highlights: • Thermodynamic properties of the ethylbenzene–octane–propylbenzene system. • Equations with much lower standard deviations in comparison with other models. • The prediction of the V E based on the refractive index by means of the MLR method. - Abstract: The density (ρ) and the refractive index (n) have been experimentally determined for the ethylbenzene (1)–octane (2)–propylbenzene (3) ternary system in the entire variation range of the composition, at three temperatures: 298.15, 308.15 and 318.15 K and pressure 0.1 MPa. The excess thermodynamic properties that had been calculated based on the experimental determinations have been used to build empirical models which, despite of the disadvantage of having a greater number of coefficients, result in much lower standard deviations in comparison with the Redlich–Kister type models. The statistical processing of experimental data by means of the multiple linear regression method (MLR) was used in order to model the excess thermodynamic properties. Lower standard deviations than the Redlich–Kister type models were also obtained. The adjustment of the excess molar volume (V E ) based on refractive index by means of the Multiple linear regression of the SigmaPlot 11.2 program was made for the ethylbenzene (1)–octane (2)–propylbenzene (3) ternary system, obtaining a simple mathematical model which correlates the excess molar volume with the refractive index, the normalized temperature and the composition of the ternary mixture: V E = A 0 + A 1 X 1 + A 2 X 2 + A 3 (T/298.15) + A 4 n for which the standard deviation is 0.03.
Energy Technology Data Exchange (ETDEWEB)
Nazarov, Roman; Hickel, Tilmann; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)
2011-07-01
A dramatic increase of the vacancy concentration in a H-rich atmosphere, the so called superabundant vacancy formation, has been experimentally observed in several metals and alloys. In order to study this phenomenon we systematically applied density functional theory to a large set of fcc metals. We found that a large amount of H can be trapped by a monovacancy with, e.g., up to 15 H atoms in an Al vacancy, up to 12 H atoms in the case of Pd and more than 17 H atoms for Pb. Based on the defect formation energies from DFT calculations, we have constructed a thermodynamic model that determines the equilibrium concentration of point defects as a function of temperature and H chemical potential. By applying this approach we revealed that the vacancy concentration can indeed strongly increase if H is added. To understand the phenomenon of accelerated self-diffusion in a H-rich atmosphere we coupled the information on the number of vacancies from the thermodynamic treatment with self-diffusion barriers obtained from DFT calculations. Using this approach we found that the self-diffusion coefficient is reduced not only due to the increased vacancy concentration, but also as a result of a H-induced lubricant effect.
Hadronic thermodynamics: Is there a limiting temperature
International Nuclear Information System (INIS)
Olive, K.E.
1984-01-01
The hadron mass spectrum continues to be a topic of theoretical interest and will remain so until there can be some experimental verification in future heavy ion collisions. There are a variety of models such as the bootstrap, dual, bag etc., which all predict an exponentially rising density of states approx.= exp(m/T 0 ), T 0 approx.=160 MeV. Once one assumes an exponential mass spectrum, one generally finds singularities in thermodynamic quantities and hence possibly a limiting temperature at T 0 . In this talk, I point out some possible ways out of this dilemma. (orig./HSI)
International Nuclear Information System (INIS)
Hong, Byung Sik
1999-01-01
The energy dependence of the thermodynamical parameters in nucleus-nucleus collisions are studied from 1A to 200A GeV in the framework of the statistical thermal model. The energy and entropy densities, as well as the pressure, of hot and dense hadronic matter are calculated by using the available input parameters of the model. No discontinuity or steep rise in the thermodynamical parameters has been found. The equation of state in terms of the speed of sound is investigated as a function of the energy density, and it increases monotonically up to 200A GeV. The estimated sonic velocities above 10A GeV are very close to that of an ideal ultrarelativistic hadron gas in the presence of resonances
Thermodynamic properties of gaseous propane from model ...
African Journals Online (AJOL)
A fourth-order virial equation of state was combined with isotropic model potentials to predict accurate volumetric and caloric thermodynamic properties of propane in the gas phase. The parameters in the model were determined in a fit to speed-of-sound data alone; no other data were used. The approximation employed for ...
Principles of hyperplasticity an approach to plasticity theory based on thermodynamic principles
Houlsby, Guy T
2007-01-01
A new approach to plasticity theory firmly routed in and compatible with the laws of thermodynamicsProvides a common basis for the formulation and comparison of many existing plasticity modelsIncorporates and introduction to elasticity, plasticity, thermodynamics and their interactionsShows the reader how to formulate constitutive models completely specified by two scalar potential functions from which the incremental responses of any hyperplastic model can be derived.
Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.
2018-05-01
Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).
Thermodynamic study on some alkanediol solutions: Measurement and modeling
International Nuclear Information System (INIS)
Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali
2013-01-01
Highlights: • Measuring densities and viscosities for binary mixtures of some alkanediols. • Finding excess molar volume, partial molar volume and thermal expansion coefficient. • Fitting excess molar volume values with PFP and Redlich–Kister polynomial equations. • Deducing excess Gibbs free energy of activation and other thermodynamic parameters. • Predicting viscosity values with different single parameter semi empirical equations. - Abstract: The densities ρ and viscosities η of 1,2-ethanediol with 1,2-propanediol or 1,3-propanediol, and 1,2-propanediol with 1,3-propanediol binary liquid mixtures over the entire concentration range at temperatures (298.15 to 308.15) K with 5 K interval were measured. The experimental data were used to calculate the excess molar volume V m E , partial molar volume V ¯ m,i , partial molar volume at infinite dilution V ¯ i ∞ , apparent molar volume V φi , coefficient of thermal expansion α p , excess coefficient of thermal expansion α p E , excess viscosity η E , excess Gibbs energy of activation ΔG *E , and other thermodynamic parameters. A Redlich–Kister equation and Prigogine–Flory–Patterson (PFP) model was applied to correlate the excess molar volume results. Moreover, the viscosity data were correlated with the Grunberg–Nissan, Tamura–Kurata, Hind–Ubbelohde and Katti–Chaudhary equations. Good agreement was found between experimental data and modeling results